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Preface

This book and [AgoMO05] grew out of notes used to teach various types of computer
graphics courses over a period of about 20 years. Having retired after a lifetime of
teaching and research in mathematics and computer science, I finally had the time to
finish these books. The goal of these books was to present a comprehensive overview
of computer graphics as seen in the context of geometric modeling and the mathe-
matics that is required to understand the material. The reason for two books is that
there was too much material for one. The practical stuff and a description of the
various algorithms and implementation issues that one runs into when writing a geo-
metric modeling program ended up in [AgoMO05], and the mathematical background
for the underlying theory ended up here. I have always felt that understanding the
mathematics behind computer graphics was just as important as the standard algo-
rithms and implementation details that one gets to in such courses and included a
fair amount of mathematics in my computer graphics courses.

Given the genesis of this book, the primary intended audience is readers who are
interested in computer graphics or geometric modeling. The large amount of mathe-
matics that is covered is explained by the fact that I wanted to provide a complete
reference for all the mathematics relevant to geometric modeling. Although computer
scientists may find sections of the book very abstract, everything that was included
satisfied at least one of two criteria:

(1) It was important for some aspect of a geometric modeling program, or
(2) Tt provided helpful background material for something that might be used in
such a program.

On the other hand, because the book contains only mathematics and is so broad in
its coverage (it covers the basic definitions and main results from many fields in math-
ematics), it can also serve as a reference book for mathematics in general. It could in
fact be used as an introduction to various topics in mathematics, such as topology
(general, combinatorial, algebraic, and differential) and algebraic geometry.

Two goals were very important to me while writing this book. One was to thor-
oughly explain the mathematics and avoid a cookbook approach. The other was to
make the material as self-contained as possible and to define and explain pretty much
every technical term or concept that is used. With regard to the first goal, I have tried
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very hard to present the mathematics in such a way that the reader will see the moti-
vation for it and understand it. The book is aimed at those individuals who seek such
understanding. Just learning a few formulas is not good enough. I have always appre-
ciated books that tried to provide motivation for the material they were covering and
have been especially frustrated by computer graphics books that throw the reader
some formulas without explaining them. Furthermore, the more mathematics that
one knows, the less likely it is that one will end up reinventing something. The success
or failure of this book should be judged on how much understanding of the mathe-
matics the reader got, along with whether or not the major topics were covered
adequately.

To accomplish the goal of motivating all of the mathematics needed for geomet-
ric modeling in one book, even if it is large, is not easy and is impossible to do from
scratch. At some places in this book, because of space constraints, few details are pro-
vided and I can only give references. Note that I always have the nonexpert in mind.
The idea is that those readers who are not experts in a particular field should at least
be shown a road map for that field. This road map should organize the material in a
logical manner that is as easy to understand and as motivated as possible. It should
lay out the important results and indicate what one would have to learn if one wanted
to study the field in more detail. For a really in-depth study of most of the major topics
that we cover, the reader will have to consult the references.

Another of my goals was to state everything absolutely correctly and not to make
statements that are only approximately correct. This is one reason why the book is so
long. Occasionally, I had to digress a little or add material to the appendices in order
to define some concepts or state some theorems because, even though they did not
play a major role, they were nevertheless referred to either here or in [AgoMO05]. In
those cases involving more advanced material where there is no space to really get
into the subject, I at least try to explain it as simply and intuitively as possible. One
example of this is with respect to the Lebesque integral that is referred to in Chapter
21 of [AgoMO05], which forced the inclusion of Section D.4. Actually, the Lebesgue
integral is also the only example of where a concept was not defined.

Not all theorems stated in this book are proved, but at least I try to point out any
potential problems to the reader and give references to where the details can be found
in those cases where proofs are omitted, if so desired. Proofs themselves are not given
for their own sake. Rather, they should be thought of more as examples because they
typically add insight to the subject matter. Although someone making a superficial
pass over the mathematical topics covered in the book might get the impression that
there is mathematics that has little relevance to geometric modeling, that is not the
case. Every bit of mathematics in this book and its appendices is used or referred to
somewhere here or in [AgoMO05]. Sometimes defining a concept involved having to
define something else first and so on. I was not trying to teach mathematics for its
own interesting sake, but only in so far as it is relevant to geometric modeling, or at
least potentially relevant. When I say “potentially,” T am thinking of such topics as
algebraic and differential topology that currently appear in only minimal ways in mod-
eling systems but obviously will some day play a more central role.

It is assumed that the reader has had minimally three semesters of calculus and
a course on linear algebra. An additional course on advanced calculus and modern
algebra would be ideal. The role of Appendices B-F is to summarize what is assumed.
They consist mainly of definitions and statements of results with essentially no expla-
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nations. The reason for including them is, as stated earlier, to be self-contained.
Readers may have learned the material at some point but forgotten the details, such
as a definition or the precise statement of a theorem. A reader who does not under-
stand some particular material in the appendices may not understand the discussion
at those places in the book where it is used. The biggest of the appendices is Appen-
dix B, which consists of material from modern algebra. This appendix is needed for
Chapters 7, 8, and 10, although not that much of it is needed for Chapters 7 and 8.
Only Chapter 10 on algebraic geometry needs a lot of that background. This is the
one place where using this text in the context of a course would be a big advantage
over reading the material on one’s own because an instructor who knows the mate-
rial would actually be able to explain the important parts of it quite easily and quickly
even to students who have not had a prior course on modern algebra. The actual
applications of Chapter 10 to geometric modeling do not require that much knowl-
edge if one skips over the background and proofs of the theorems that lead up to
them. Hopefully, however, the reader with a minimal mathematics background will
be reduced to simply learning “formulas” in only a few places in this book.

The extensive material on topology, in particular algebraic and differential topol-
ogy, has heretofore not been found in books directed toward geometric modeling.
Although this subject is slowly entering the field, its coming has been slow. Probably
the two main reasons for this are that computers are only now getting to be power-
ful enough to be able to handle the complicated computations, and the material
involves exceptionally advanced mathematics that even mathematics majors would
normally not see until graduate school. It is not very surprising therefore that in cases
like this most of the advancement here will probably come from mathematicians who
either switch their research interest to computer science or who want to use com-
puters to make advances in their field. Having said that though, I also strongly feel
that there is much that can be explained to a nontopologist, and Chapters 6-8 are an
attempt to do this. A similar comment applies to the algebraic geometry in Chapter
10. It is because of my emphasis on explaining things that I suggested earlier that
mathematics students could also use this book to learn about this material, not just
computer scientists.

With regard to the bibliography, it is fairly small because the book is not addressed
to mathematicians per se. This meant that many good but advanced references that
I could have given, but whose intended audience is research mathematicians, are
omitted. This lack of completeness is partially compensated by the fact that additional
references can be found in the references that are given.

The numbering of items in this book uses the following format: x.y.z refers to item
number z in section y of chapter x. For example, Theorem 6.5.7 refers to the seventh
item of type theorem, proposition, lemma, or example in section 5 of Chapter 6. Algo-
rithm 10.11.1 refers to the first algorithm in Section 11 of Chapter 10. Tables are num-
bered like algorithms. Figures are numbered by chapter, so that Figure 9.21 refers to
the twenty-first figure in Chapter 9. Exercises at the end of chapters are numbered by
section.

Cupertino, California Max K. Agoston
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CHAPTER 1

Linear Algebra Topics

1.1 Introduction

This chapter assumes a basic knowledge and familiarity of linear algebra that is
roughly equivalent to what one would get from an introductory course in the subject.
See Appendix B and C for the necessary background material. In particular, we assume
the reader is familiar with the vector space structure of n-dimensional Euclidean
space R" and its dot product and associated distance function. The object of this
chapter is to discuss some important topics that may not have been emphasized or
even covered in an introductory linear algebra course. Those readers with a weak
background in abstract linear algebra and who have dealt with vectors mostly in the
context of analytic geometry or calculus topics in R? or R? will also get a flavor of the
beauty of a coordinate-free approach to vectors. Proofs should not be skipped because
they provide more practice and insight into the geometry of vectors. The fact is that
a good understanding of (abstract) linear algebra and the ability to apply it is essen-
tial for solving many problems in computer graphics (and mathematics).

As in other places in this book we have tried to avoid generality for generality’s
sake. By and large, the reader can interpret everything in the context of subspaces of
R"; however, there are parts in this chapter where it was worthwhile to phrase the
discussion more generally. We sometimes talk about inner product spaces, rather than
just sticking to R™ and its dot product, and talk about vector spaces over other fields,
the complex numbers C in particular. This was done in order to emphasize the general
nature of the aspect at hand, so that irrelevant details do not hide what is important.
Vector spaces over the complex numbers will be important in later chapters.

Geometry is concerned with lots of different types of spaces. This chapter is about
the simplest of these, namely, the linear ones, and some related topics. Hopefully,
much of the material that is covered is review except that we shall approach the
subject here, like in many other places, with a vector approach. Sections 1.2-1.5
review the definition and basic properties of k-dimensional planes in R". We also look
at the abstract definition of angle and some important concepts related to ortho-
gonality, such as that of the orthogonal projection of a vector. Next, in Sections 1.6
and 1.7 we discuss the extremely important concepts of orientation and convexity.
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Some basic results on the diagonalization of maps and matrices in Section 1.8 lead
to a discussion of bilinear maps and quadratic forms in Section 1.9. Section 1.10
describes a general version of the three-dimensional cross product. Finally, Section
1.11 defines the generalized inverse of a transformation and matrix along with several
applications.

1.2 Lines

Our first goal in this chapter is to characterize linear subspaces of Euclidean space
and summarize some basic facts about them. There is not much to say about points,
the O-dimensional linear subspaces, but the one-dimensional subspaces, namely,
“straight” lines, are a special case that is worth looking at separately.

First of all, let us consider lines in the plane. The usual definition of a line in this
case is as the set of solutions to a linear equation.

Definition. (The equation definition of a line in the plane) Any set L in R? of the form
{x,y)lax+by =c,(a,b) #(0,0)}, (1.1)

where a, b, and c are fixed real constants, is called a line. If a = 0, then the line is
called a horizontal line. If b = 0, then the line is called a vertical line. If b # 0, then
—a/b is called the slope of the line.

Although an equation defines a unique line, the equation itself is not uniquely
defined by a line. One can multiply the equation for a line by any nonzero constant
and the resultant equation will still define the same line. See Exercise 1.2.1.

The particular form of the equation in our definition for a line is a good one from
a theoretical point of view, but for the sake of completeness we list several other well-
known forms that are often more convenient.

The slope-intercept form: The line with slope m and y-intercept (0,b) is defined by
y=mx+b. (1.2)

The point-slope form: The line through the point (x;,y;) with slope m is defined
by

y -y =m(x — xq). (1.3)
The two-point form: The line through two distinct points (x1,y;) and (X3,y2) is

defined by

}’—}’12—},2_}71 (x=x1). (1.4)
X2 — X1

Note that equations (1.2) and (1.3) above apply only to nonvertical lines.
When one wants to define lines in higher dimensions, then one can no longer use
a single equation and so we now give an alternative definition that works in all dimen-
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sions. It is based on the intuitive geometric idea that a line is defined by a point and
a direction.

Definition. (The point-direction-vector definition of a line) Any subset L of R" of
the form

{p+tv|teR}, (1.5a)

where p is a fixed point and v is a fixed nonzero vector in R", is called a line (through
p). The vector v is called a direction vector for the line L. By considering the compo-
nents of a typical point x = p + tv in L separately, one gets equations

X1 =Pp1+tvy
X2 =p2ttvy

Xn =Pn+tvy, teR, (1.5b)
that are called the parametric equations for the line.

In the case of the plane, it is easy to show that the two definitions of a line agree
(Exercise 1.2.2). The definition based on the equation in (1.1) is an implicit defini-
tion, meaning that the object was defined by an equation, whereas the definition using
(1.5a) is an explicit definition, meaning that the object was defined in terms of a para-
meterization. We can think of t as a time parameter and that we are walking along
the line, being at the point p + tv at time t.

Note that the direction vector for a line is not unique. Any nonzero multiple of v
above would define the same line. Direction vectors are the analog of the slope of a
line in higher dimensions.

1.2.1. Example. To describe theline L containing the points p=(0,2,3) andq=(-2,1,-1).

Solution. The vector pq = (-2,-1,-4) is a direction vector for L and so parametric
equations for L are

-2t
2-t
3-4t

N < X
I

1.2.2. Example. Suppose that the parametric equations for two lines L; and L, are:

Li: x=1-t Ly x=2+t
y=2+t y=1-2t
z=-1+t z=-2+t (1.6)

Do the lines intersect?

Solution. We must solve the equations



4 1 Linear Algebra Topics

1-t=2+s
24+t=1-2s
—1+t=-2+s

for s and t. The first two equations imply that t = -1 and s = 0. Since these two values
also satisfy the third equation, the lines L; and L, intersect at the point (2,1,-2).

Note. A common mistake when trying to solve a problem like that in Example 1.2.2
is to use the same variable for both s and t. Just because lines intersect does not mean
that persons “walking” along the lines will get to the intersection point at the same
“time.”

Definition. Points are said to be collinear if they lie on the same line and non-
collinear, otherwise.

Definition. Let p, q € R". The set

{p+tpq|t[0,1]} (1.7)

is called the segment from p to q and is denoted by [p,ql. The points of [p,q] are said
to lie between p and q.

Note that [p,q] = [q,p] (Exercise 1.2.5). A segment basically generalizes the notion
of a closed interval of the real line, which explains the notation, but the two concepts
are not quite the same when n = 1 (Exercise 1.2.6). The following proposition gives a
very useful alternative characterization of a segment.

1.2.3. Proposition. Let p, q € R". Then

[p.q]={x € R" ||px|+|xq| =[pql}. (1.8)

Proof. Let

S = {x|[px[+|xq = [pql}.

In order to show that [p,q] = S we must prove the two inclusions [p,q] < S and
Sclpql

To prove that [p,q] ¢ S, let x € [p,q]. Then x = p + tpq for some t with 0 <t < 1.
It follows that

Ipx|+[xq] = [t/ [pq|+[1-t||pq| = [pq,

so that x € S.

To prove that S c [p,q], let x € S. Since Ipx| + Ixql = Ipql = Ipx + xq, the triangle
inequality implies that the vectors px and xq are linearly dependent. Assume without
loss of generality that px = txq. Then
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ltl [xq| +|xq| = |txq +xq].
In other words,
[t|+1 =1t +1] (1.9)
It is easy to show that the only solutions to (1.9) are 0 < t. But the equation px = txq

can be rewritten as

t
= + —
x=p 1+tpq

which shows that x € [p,q] since 0 < t/(1 +1t) < 1.

The next proposition proves another fairly innocuous looking fact. It also plays a
key role in the proofs of a number of future theorems.

1.2.4. Proposition. Let p be a point on a line L. If ¢ > 0, then there are two and
only two points x on L that satisfy the equation Ipx| = c.

Proof. Let q be a point on L distinct from p. Then any point x on L has the form

x = p + spq and hence ¢ = lpx| = Is| Ipql. The only solutions to Is| = ¢/lpql are s = +t,
where t = ¢/lpql. In other words,

X=p+tpq or x=p-tpq
and the proposition is proved.
Finally,

Definition. Let p, v, q € R™ If v # 0, then the ray from p in direction v, denoted by
ray(p,v), is defined by

ray(p,v)={p+tv|0<t}.

If p # q, then the ray from p through q, denoted by [pq >, is defined by

[pq > =ray(p,pq).

1.3 Angles

The intuitive notion of the angle between two vectors is something that one picks up
early, probably while studying Euclidean geometry in high school. In this section we
show that there is a very simple rigorous definition of this that is also very easy to
compute. Everything we do here holds for an arbitrary real vector space with an inner
product, but, for the sake of concreteness, we restrict the discussion to Euclidean
space with its standard dot product.
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Definition. Let u, ve R". Define the angle 6 between the vectors u and v, denoted by
Z(u,v), as follows: If either u or v is the zero vector, then 0 is zero; otherwise, 0 is that
real number such that

uev
cose=m, and 0<0<m.
u| v

Note the purely formal aspect of this definition and that we need the Cauchy-
Schwarz inequality to insure that the absolute value of the quotient in (a) is not bigger
than 1 (otherwise there would be no such angle). The motivation behind the defini-
tion is the law of cosines from Euclidean geometry shown in Figure 1.1. To see this,
substitute Ipl, Iql, and Ip + gl for a, b, and c, respectively, and simplify the result.

Now if lul = 1, then

uev=|v|cos8,

which one will recognize as the length of the base of the right triangle with hypotenuse
v and base in the direction of u. See Figure 1.2. This means that we can give the fol-
lowing useful interpretation of the dot product:

u e v is the (signed) length of “the orthogonal projection of von n” whenever |u|=1.

Definition. Let u, v e R" If the angle between the two vectors u and v is /2, then
they are said to be perpendicular and we shall write u L v. If the angle between them
is 0 or w, they are said to be parallel and we shall write u Il v.

a% +b% —2ab cos 0 = c? Figure 1.1. The law of cosines.

u

Ivl cos ©

=1 = uv=Ivicos 8 Figure 1.2. Interpreting the dot product.
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Definition. Two vectors u and v in an arbitrary vector space with inner product
are said to be orthogonal if uev = 0.

1.3.1. Theorem. Letu, ve R"

(1) u L v if and only if u and v are orthogonal.
(2) u ll v if and only if u and v are linearly dependent.

Proof. Most of the theorem follows easily from the definitions. Use the Cauchy-
Schwarz inequality to prove (2).

Although the words “orthogonal” and “perpendicular” have different connota-
tions, Theorem 1.3.1 shows that they mean the same thing and we have an extremely
easy test for this property, namely, we only need to check that a dot product is zero.
Checking whether two vectors are parallel is slightly more complicated. We must
check if one is a multiple of the other.

Finally, note that if u = (uy,uy, . . . ,uy) is a unit vector, then u; = uee; = cos 6;, where
0; is the angle between u and e;. This justifies the following terminology:

e . . . 1
Definition. If v is a nonzero vector, then the ith component of the unit vector —v
is called the ith direction cosine of v. vl

1.4 Inner Product Spaces: Orthonormal Bases

This section deals with some very important concepts associated with arbitrary vector
spaces with an inner product. We shall use the dot notation for the inner product. The
reader may, for the sake of concreteness, mentally replace every phrase “vector space”
with the phrase “vector subspace of R" or C",” but should realize that everything we
do here holds in the general setting.

Probably the single most important aspect of inner product spaces is the existence
of a particularly nice type of basis.

Definition. If vy, v, ..., v, are vectors in an inner product space, we say that they
are mutually orthogonal if v; ® v; = 0 for i # j. A set of vectors is said to be a mutually
orthogonal set if it is empty or its vectors are mutually orthogonal.

Definition. Let V be an inner product space and let B be a basis for V. If B is a
mutually orthogonal set of vectors, then B is called an orthogonal basis for V. If, in
addition, the vectors of B are all unit vectors, then B is called an orthonormal basis.
In the special case where V consists of only the zero vector, it is convenient to call the
empty set an orthonormal basis for V.

Orthonormal bases are often very useful because they can greatly simplify com-
putations. For example, if we wanted to express a vector v in terms of a basis vy, v,
..., vy, then we would normally have to solve the linear equations

Vv=ajvy+asvay+...+apvy



8 1 Linear Algebra Topics

for the coefficients a;. On the other hand, if we have an orthonormal basis, then it is
easy to check that a; = v ® v; and there is nothing to solve. Our first order of business
therefore is to describe an algorithm, the Grami-Schmidt algorithm, which converts an
arbitrary basis into an orthonormal one.

The Gram-Schmidt algorithm is an algorithm that actually can be applied to any
collection of vectors and will produce an orthonormal basis for the space spanned by
these vectors. We shall illustrate how this process works in the case of two and three
vectors.

Let v; and v; be two nonzero vectors. Then u; = (1/lv{l)v; is a unit vector. We want
to find a unit vector u;, that is orthogonal to u; and so that u; and u, span the same
space as vy and v;. Consider Figure 1.3. If we could find the orthogonal vector w, then
all we would have to do is make w have unit length to get u, (assuming that w is not
zero). But w can easily be computed from the “orthogonal projection” v of v, on wy
and we pointed out in Section 1.3 that v could be found using the dot product. The
following equations now summarize how one can compute the orthonormal basis u,
and uy:

1
U =—V
|V1|
W= w
27 wi (1.10)
where
W=V,—-V

v=(vyeuu.

To see that these computations really do produce orthogonal vectors it suffices to show
that the dot product of the vectors w and u; is zero. But

weuy =[v, —(voeu)ujeuy
=vyeu; —(vyeu)(ujeu)

=0.

Next, suppose that we want to construct an orthonormal basis for the space
spanned by three vectors vy, v,, and vs. See Figure 1.4(a). First, apply the construc-
Va

U

Vi

U Figure 1.3. A simple orthogonal projection.
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tion above to find an orthonormal basis for the space spanned by v; and v,. Assume
that u; and u; form such a basis. Now find the third vector us by projecting vs to the
vector x in the subspace X spanned by u; and u,. The difference w = v3 — x is a vector
orthogonal to X that is then normalized to have unit length (assuming again that it
is not zero). This leaves one question unanswered, namely, how does one compute x?
The example in Figure 1.4(b) motivates the answer. We see that the projection
of (1,2,3) onto the plane is (1,2,0). This vector is the sum of two vectors (1,0,0) and
(0,2,0), which happen to be the orthogonal projections of (1,2,3) onto the vectors e
and e;, respectively. Tt turns out that the only important property of e; and e, is that
these vectors form an orthonormal basis for the plane. We have now sketched the key
ideas needed for the general case. This leads to the recursive construction described
in Algorithm 1.4.1.

V3

w
,} ’7” E
II 1
/) |
/III 1

(0,2, 01420 (1,2, 0)

projection of ot
V3 onto X (1 0 O)

(a) (b)

Figure 1.4. More orthogonal projections.

Input: a set of vectors S = { vi,va, ..., Vk }
Qutput:  an orthonormal basis B = { uy,u,, ...,u,, } for span(S)

If S=¢,thenreturn¢.
Let s =1, B=¢,andm= 0.

Step 1: If s >k, then return B.
Step 2: Let

W=V, — (vyeu)u — (vyeuw)u — ... — (Vg ® Up) U,
If w0, then add u,,; = (1/lwl) w to B and increment m.

Increment s.
Go to Step 1.

Algorithm 1.4.1. The Gram-Schmidt algorithm.
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1.4.1. Theorem. The Gram-Schmidt algorithm gives the correct result.
Proof. There are two parts to proving that the algorithm works. We have to show

(1) the vectors u; form an orthonormal set and
(2) they span the same space as the v;.

One uses induction in both cases. To prove (1) it suffices to check that w ¢ u; = 0,
i=1,2,..., m, which is straightforward. This shows that orthogonality is preserved

as we go along.
To prove (2), assume inductively that at the beginning of Step 2

span(vy,va,...,Vs_1) =span(ug,uy,...,Uy). (1.11)

The inductive hypothesis (1.11) implies that w belongs to span (vq,vs,...,vs), and
therefore so does uy,.1. This and (1.11) shows that

span(ug,uy,...,Un) S span(vy,va,...,Vs). (1.12)
Now solve the equation for w in Step 2 of the algorithm for v,. Using the inductive
hypothesis (1.11), we see that v lies in span(vy,v,, . .. ,vs_1,uy) and this and another
use of the inductive hypothesis (1.11) shows that

span(vy,va,...,Vs) C span(ug,uy, ..., Ume). (1.13)
The inclusions (1.12) and (1.13) imply that we actually have an equality of sets,
proving (2) and the theorem (modulo some special cases such as w = 0 that we leave
to the reader).

It should be clear that m = k in the Gram-Schmidt algorithm if and only if the

vectors vy, Vs, . . ., Vg are linearly independent. In the worst case, where S is empty or
Vi=va=...=vg=0, then m =0.

1.4.2. Corollary. Everysubspace of an inner product space has an orthonormal basis.

1.4.3. Example. To find an orthonormal basis u; and u, for the subspace X in R?
spanned by the vectors vi = (2,-1,1) and v, = (-1,4,0).

Solution. Applying the Gram-Schmidt algorithm we get

1 1
u =—v=—(2,-1,1).
1 |V1| 1 Jg( )
To get uy, let

w=v,-v=(,31).
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Then

1 1
=—w=——(,31).
u2 |W|w m(y 1)

One can easily check that u; and u, are what we want.

Definition. Let X be a subspace of an inner product space V. The orthogonal com-
plement of X in V, denoted by X?, is defined by

Xt ={veV|vew=0forallweX}.
Every vector in X* is called a normal vector for X.

1.4.4. Theorem. If X is a subspace of an inner product space V, then the orthogo-
nal complement X* of X is a subspace of V and

V=Xo&X"
Conversely, if
V=X@aY,

where Y is a subspace with the property that every vector in Y is normal to X, then
Y = X4

Proof. It is an easy exercise, left to the reader, to show that X' is a subspace. We
prove that V is a direct sum of X and X*. Let uy, uy, . . ., ux be an orthonormal basis
for X. Define a linear transformation T : V — V by

TW)=(veupu;+(veuy)ur +...+(veu)uyx (or0if k =0).

It is easy to check that ker(T) = X* and that v — T(v) belongs to ker(T). We also have
that

v =T(v)+(v-T(Wv)).

These facts imply the first part of the theorem. We leave the reader to fill in the details
and to prove the converse part (Exercise 1.4.1).

Definition. An inner product space V is said to be the orthogonal direct sum of
two subspaces X and Y if it is a direct sum of X and Y and if every vector of X is
orthogonal to every vector of Y.

By Theorem 1.4.4, if V is an orthogonal direct sum of X and Y, then
Y = X% Another consequence of Theorem 1.4.4 is that subspaces can be defined
implicitly.
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1.4.5. Theorem. If X is a k-dimensional subspace of an n-dimensional inner
product space V, then there exist n—k orthonormal vectors ny, n,, ..., n, g, so that

X={ueV|njeu=0 for 1<i<n-k}.

Proof. Choose the vectors n; to be an orthonormal basis for the orthogonal
complement of X.

Now let X be a subspace of an inner product space V. Let ve V. Since V=X @
X', we can express v uniquely in the form v=x @ y, where x ¢ X and y € X*.

Definition. The vector x, denoted by V!, is called the orthogonal projection of v on X
and the vector y, denoted by v, is called the orthogonal complement of v with respect
to X.

Note that in the definition, because of the symmetry of the direct sum operator,
the orthogonal complement v of v with respect to X is also the orthogonal projec-
tion of v on X*. The next theorem shows us how to compute orthogonal projections
and complements.

1.4.6. Theorem. Letuy, uy,..., ug k=1, be any orthonormal basis for a subspace
X in an inner product space V. Let v € V. If vl and v* are the orthogonal projection
and orthogonal complement of v on X, respectively, then
vi=(veu)uj+(veur)us +...+(veuy)uy (1.14)
and
vi=v—(veu u;—(veuy)us —... —(veuy)ug. (1.15)
Proof. Exercise 1.4.2.

In Theorem 1.4.6 it is essential that we have an orthonormal basis, otherwise it
is easy to come up with examples that show equations (1.14) and (1.15) are false.

The next definition formalizes some common terminology.

Definition. Let u # 0 and v be vectors in an inner product space. Then the orthogo-

nal projection of v on u, denoted by v!, and the orthogonal complement of v with respect
to u, denoted by v', are defined by

V||=(v.£ji (1.16)

and

vl=v—(v0ﬁ)ﬁ. (1.17)
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Figure 1.5. Decomposing a vector with
respect to a subspace.

Clearly, the orthogonal projection of v on u is the same as the orthogonal projec-
tion of v on the subspace spanned by u and hence is really just a special case of the
earlier definition. A similar comment holds for the orthogonal complement. Another
way of looking at what we have established is that, given a subspace X, every vector
v can be decomposed into two parts, one “parallel” to X and the other orthogonal to
it. See Figure 1.5.

We finish this section with a look at some very important classes of matrices.

Definition. An n x n real matrix A is said to be orthogonal if AAT = ATA =1, that is,
the inverse of the matrix is just its transpose.

1.4.7. Lemma.

(1) The transpose of an orthogonal matrix is an orthogonal matrix.

(2) Orthogonal matrices form a group under matrix multiplication.

(3) The determinant of an orthogonal matrix is +1.

(4) The set of orthogonal matrices with determinant +1 forms a subgroup of the
group of orthogonal matrices.

Proof. Easy.

Definition. The group of nonsingular real n x n matrices under matrix multiplica-
tion is called the (real) linear group and is denoted by GL(n,R). The subgroup of
orthogonal n x n matrices is called the orthogonal group and is denoted by O(n). An
orthogonal matrix that has determinant +1 is called a special orthogonal matrix. The
subgroup of O(n) of special orthogonal n x n matrices is called the special orthogonal
group and is denoted by SO(n).

The groups SO(n) and O(n) play an important role in many areas of mathemat-
ics and much is known about them and their structure. Here are two useful charac-
terizations of orthogonal matrices.

1.4.8. Theorem. There is a one-to-one correspondence between orthogonal
matrices and orthonormal bases.
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Proof. If we think of the rows of the matrix as vectors, then we get the corres-
pondence by associating to each matrix the basis of R", which consists of the rows
of the matrix. A similar correspondence is obtained by using the columns of the
matrix.

1.4.9. Theorem. Assume n > 1. Let uy, up, ..., u, and vy, v, ..., vy be orthonor-
mal bases in a real inner product space V. If

vi = Ya;uj, ajeR, (1.18)
i1

then A = (aj) is an orthogonal matrix. Conversely, let A = (aj;) be an orthogonal matrix.
If uy, uy, .. ., uy is an orthonormal basis and if vy, v,, . . ., v, are defined by equation
(1.18), then the v's will also be an orthonormal basis.

Proof. The theorem follows from the following identities
Ost = Vg OV = (Zasjuj] o(Zatjujj = Zasjatj.
j=1 j=1 =1

There is a complex analog of an orthogonal real matrix.

Definition. An n x n complex matrix A is said to be unitary if AAT = ATA =1, that
is, the inverse of the matrix is just its conjugate transpose.

Lemma 1.4.7 remains true if we replace the word “orthogonal” with the word
“unitary.” In particular, the unitary matrices form a group like the orthogonal ones.

Definition. The group of nonsingular complex n X n matrices under matrix multi-
plication is called the (complex) linear group and is denoted by GL(n,C). The subgroup
of unitary n x n matrices is called the unitary group and is denoted by U(n). A unitary
matrix that has determinant +1 is called a special unitary matrix. The subgroup of U(n)
of special unitary n x n matrices is called the special unitary group and is denoted by
SU(n).

The analogs of Theorems 1.4.8 and 1.4.9 hold in the complex case. We omit the
details. See, for example, [Lips68] or [NobD77]. We shall run into orthogonal and
unitary matrices again later in this chapter and in Chapter 2 when we talk about
distance preserving maps or isometries.

1.5 Planes

Next, we define the higher-dimensional linear subspaces of Euclidean space. Certainly
vector subspaces of R" should be such spaces, but “translations” of those should count
also.
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Definition. Any subset X of R" of the form

X= {p+t1V1 +tovy +... .+t Vi | t,ty, ...tk € R}, (1.19a)
where p is a fixed point and the vy, v, ..., v are fixed linearly independent vectors
in R", is called a k-dimensional plane (through p). The dimension, k, of X will be
denoted by dim X. The vectors vy, vy, . . ., vk are called a basis for the plane.

Clearly, an alternative definition of a k-dimensional plane through a point p would
be to say that it is any set X of the form

X={p+v|veV} (1.19b)
where V is a k-dimensional vector subspace of R". Furthermore, the subspace V is
uniquely determined by X (Exercise 1.5.1).

The (n — 1)-dimensional planes in R" are especially interesting.
Definition. Any subset X of R" of the form
{pInep=dj}, (1.20)

where n is a fixed nonzero vector of R® and d is a fixed real number, is called a
hyperplane.

Note that if n = (aj,a,, ... ,a,) and p = (x1,X2, . . . ,Xn), then the equation in (1.20)
is equivalent to the usual form

ajX;+aXs +...+apXxy =d (1.21)

of the equation for a hyperplane. Note also that if pg belongs to the hyperplane, then
by definition d =n ® py and we can rewrite the equation for the hyperplane in the form

ne(p-po)=0. (1.22)

Equation (1.22) says that the hyperplane X consists of those points p with the prop-
erty that the vector p — py is orthogonal to the vector n. See Figure 1.6.

n

Figure 1.6. The point-normal definition
of a hyperplane.
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Definition. Equation (1.22) is called the point-normal form of the equation for the
hyperplane defined by (1.20) or (1.21). The vector n is called a normal vector to the
hyperplane.

1.5.1. Example. Consider the hyperplane defined by z = 0. This equation can be
rewritten in the form

0(x-0)+0(y —0)+1(z-0)=0.
Note that (0,0,0) is a point in the hyperplane and (0,0,1) is a normal vector for it.
The next proposition justifies the phrase “plane” in the word “hyperplane.”
1.5.2. Proposition.

(1) A hyperplane X in R" is an (n — 1)-dimensional plane. If X is defined by the
equation n ¢ p = d, then any basis for the vector subspace

K={peR"|nep=0}

is a basis for X.
(2) Conversely, every (n — 1)-dimensional plane in R" is a hyperplane.

Proof. To prove (1) note first that K is a vector subspace. This can be seen either by
a direct proof or by observing that K is the kernel of the linear transformation

T: R" >R
defined by
T(p)=nep.

It follows easily from Theorem B.10.3 that K is an (n — 1)-dimensional vector sub-
space of R". If py is any point of X, then it is easy to show that

X={po+qlqeK},

proving the first part of the lemma. The converse, part (2), follows from Theorem
1.4.5. Exercise 1.5.2 asks the reader to fill in missing details.

1.5.3. Example. To find a basis for the (hyper)plane X in R?® defined by
2x+y—-3z=6.

Solution. There will be two vectors v; and v, in our basis. We use Proposition
1.5.2(1). The vector n = (2,1,-3) is a normal vector for our plane. Therefore, to find v;

and v, is to find a basis for the kernel K of the map

p—onep.
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The direct approach is to solve the equation n ¢ p =0, that is, 2x + y — 3z = 0, for two
noncollinear points v; and v,. Alternatively, compute three noncollinear points po, p1,
and p; in X and set v; = pgp1 and v, = pgp2. For example, po = (1,1,-1), p; = (3,0,0),
and p2 =(0,6,0) would give vi = (2,-1,1) and v, = (-1,5,0). By construction these vectors
vi and v, will also be a basis for K. The first approach that involves solving an equa-
tion for only two points rather than solving the equation 2x + y — 3z = 6 for three
points is obviously simpler; however, in other problems a plane may not be defined
by an equation.

Example 1.5.3 shows how one can find a basis for a plane if one knows some
points in it. A related question in the case of hyperplanes is to find the equation for
it given some points in it. To answer that question in R? one can use the cross product.
Definition. Let v, w € R3. Define the cross product v x w € R3 by

A% XW=(V2W3 —V3W32,V3W| —V{W3,ViW> —V2W1). (123)

Now, formula (1.23) is rather complicated. The standard trick to make it easier to
remember is to take the formal determinant of the following matrix:

i j k
Vi V2 V3
Wi W3 W3
The coefficients of the symbols i, j, and k will then be the x-, y-, and z-component,
respectively, of the cross product.
We shall look at the cross product and its properties more carefully later in Section
1.10. Right now we shall only make use of the fact that the cross product of two vectors

produces a vector that is orthogonal to both of these vectors, something easily checked
from the formula.

1.5.4. Example. To find an equation for the hyperplane that contains the points
p=(1,0,1), q=(1,2,0), and r = (0,0,3).

Solution. We have that
pq=(0,2,-1), pr=(-1,0,2), and pqxpr=(412).
Therefore, an equation for the plane is
(4,1,2)e((x,y,2)-(1,0,1)) =0,
which reduces to
4x+y+2z=6.

If we compare arbitrary k-dimensional planes and hyperplanes, we see that the
former have so far only an explicit definition in terms of parameterizations whereas
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the latter can also be defined implicitly via an equation using a normal vector. Actu-
ally, Theorem 1.4.5 corrects this situation and shows that an arbitrary k-dimensional
plane X can also be defined by means of normal vectors and hence an equation in the
following sense: If pg is any point in the plane, then there exist n—k orthonormal
vectors ny, ny, . .., N, so that

X={p|nje(p-po)=0 for 1<i<n-k}. (1.24)

Definition. Equation (1.24) is called the point-normals form of the equation for the
plane X.

Now normal vectors to hyperplanes are not unique, because any nonzero multi-
ple will determine the same hyperplane.

1.5.5. Lemma. Ifn; and n; are two normal vectors for a hyperplane X, then n; and
n; are parallel.

Proof. By hypothesis, X is defined by equations
n; ep =d;.

Replacing n, by a nonzero multiple if necessary, we may assume that d; = d,.
Therefore,

njep=n;ep
for all p in X. It follows that
njep=0
and
n,ep=0

define the same hyperplane Y. But Y is an (n — 1)-dimensional vector subspace of R"
and so has a unique one-dimensional orthogonal complement (Theorem 1.4.4). Since
the normal vectors n; and n; belong to this complement, they must be multiples of
each other and the lemma is proved.

Lemma 1.5.5 justifies the following definition:

Definition. Two hyperplanes are said to be parallel if they have parallel normal
vectors. Two hyperplanes are said to be orthogonal if they have orthogonal normal
vectors. A vector is said to be parallel or orthogonal to a hyperplane if it is orthogonal
or parallel, respectively, to a normal vector of the hyperplane.

Although we shall not do so here (except in the case of “oriented” hyperplanes
later on), it is actually possible to define an angle between arbitrary planes. See
[IpsM95], for example. One could then define parallel and orthogonal in terms of that
angle like we did for vectors. At any rate, with our definition, we are calling any two
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hyperplanes defined by equations n ¢ p = d; and n ¢ p = d;, parallel. They also have
the same bases. It is useful to generalize these definitions.

Definition. Let X and Y be s- and t-dimensional planes, respectively, with s <t. If Y
has a basis vy, v, ,..., v, sothatvy,v,,..., vsis a basis for X, then we say that X
is parallel to Y and Y is parallel to X.

1.5.6. Lemma. In the case of hyperplanes the two notions of parallel agree.
Proof. Exercise 1.5.5.

Next, we want to extend the notion of orthogonal projection and orthogonal com-
plement of vectors to planes. Let X be a k-dimensional plane with basis v, vo, . . ., V.
Let Xg be the vector subspace generated by the vectors v, that is,

X =span(vy,va, ..., Vi)
Note that Xj is a plane through the origin parallel to X.
1.5.7. Lemma. The plane X, is independent of the choice of basis for X.
Proof. Exercise 1.5.6.

Definition. Let v be a vector. The orthogonal projection of v on X is the orthogonal
projection of v on Xg. The orthogonal complement of v with respect to X is the orthog-
onal complement of v with respect to Xo.

By Lemma 1.5.7, the orthogonal projection of a vector on a plane and its orthog-
onal complement is well defined. We can use Theorem 1.4.6 to compute them.
A related definition is

Definition. A vector is said to be parallel to a plane if it lies in the subspace spanned
by any basis for the plane. A vector is said to be orthogonal to a plane if it is orthog-
onal to all vectors in any basis for the plane. More generally, a plane X is said to be
parallel to a plane Y if every vector in a basis for X is parallel to Y and X is orthogo-
nal to Y if every vector in a basis for X is orthogonal to Y.

It is easy to show that the notion of a vector or plane being parallel or orthogo-
nal to another plane does not depend on the choice of bases for the planes. Note that,
as a special case, a vector will be parallel to a line if and only if it is parallel to any
direction vector for the line. Another useful observation generalizes and makes more
precise a comment in the last section. Specifically, given an arbitrary plane X in R",
any vector v in R” can be decomposed into a part that is parallel to X and a part that
is orthogonal to it. See Figure 1.5 again. Finally, the new notion of parallel and orthog-
onal planes agrees with the earlier one.

1.5.8. Example. To find the equation for the plane X in R? through the point pg =
(1,3,2), which is parallel to the line
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and orthogonal to the plane x —z=2 .

Solution. If n = (a,b,c) is a normal for X, then n must be orthogonal to the direc-
tion vector (3,-1,0) for the given line and orthogonal to the normal (1,0,-1) for the
given plane, that is,

3a-b=0
and
a—-c=0.

Solving these two equations gives that b = 3a and ¢ = a. In other words, (a,3a,a) is a
normal vector for X. It follows that

1,3,1)e((x,y,2)—(1,3,2)) =0
or
x+3y+z=12
is an equation for X.

We finish this section with two more definitions. The first generalizes the half-
planes R%} and RZ.

Definition. Let py, n € R" with n # 0. The sets
{peR"ne(p-po)=0}
and
{peR"|ne(p-po) <0}

are called the halfplanes determined by the hyperplane n ¢ (p — pg) = 0. A halfline is
a halfplane in R.

A hyperplane in R" divides R" into three parts: itself and the two halfplanes on
either “side” of it. Figure 1.7 shows the two halfplanes in the plane defined by the line
(hyperplane) 2x + 3y — 6 = 0.

Sometimes one needs to talk about the smallest plane spanned by a set.

Definition. Let X ¢ R". The affine hull or affine closure of X, denoted by aff (X), is
defined by

aff(X) = {P| P is a plane which contains X}.

The following lemma justifies the definition of the affine hull of a set:
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Figure 1.7. The halfplanes defined by the line
2x+ 3y -6=0. 2Xx+3y-6=0
2x+3y-620

N

2x+3y-6<0

1.5.9. Lemma.

(1) The intersection of an arbitrary number of planes is a plane.
(2) If X is a plane, then aff (X) = X.

Proof. This is left as an exercise for the reader (Exercises 1.5.3 and 1.5.4).

It follows from the lemma that affine hulls are actually planes. One can also easily
see that aff(X) is contained in any plane that contains X, which is why one refers to
it as the “smallest” such plane.

1.5.10. Theorem. Let pg, p1,..., px € R". Then
aff({po,p1, ..., Pk} ={po + tipop1 + ... + tkpopk | ti R}

Proof. Exercise 1.5.8.

Let X and Y be two planes in R™. The definition implies that X and Y are the trans-
lations of unique vector subspaces V and W, respectively, that is,

X={p+v|veV} and Y={q+w|weW}
for some p, q € R™
Definition. The planes X and Y in R" are said to be transverse if
dim(V N W) = max{0,dim(V) + dim(W) —n}.
Two transverse lines in R? are said to be skew.

Intuitively, two planes are transverse if their associated subspaces V and W span
as high-dimensional space as possible given their dimensions. To put it another way,
the intersection of V and W should be as small as possible. Sometimes this is referred
to as the planes being in general position. For example, the x- and y-axes are trans-

verse in R", but the x-axis and the parallel line defined by y = 1 are not. The xy- and
yz-plane are transverse in R? but not in R*.
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1.6 Orientation

This section is an introduction to the concept of orientation. Although this intuitive
concept is familiar to everyone, probably few people have thought about what it means
and how one could give a precise definition.

The notion of orientation manifests itself in many different contexts. In everyday
conversation one encounters phrases such as “to the left of,” “to the right of,” “clock-
wise,” or “counterclockwise.” Physicists talk about right- or left-handed coordinate
systems. In computer graphics, one may want to pick normals to a planar curve in a
consistent way so that they all, say, point “inside” the curve. See Figure 1.8. A similar
question might be asked for normals in the case of surfaces. How can one tell in a
systematic way that our choice of normals is “consistent”? What does this really mean?

Probably the easiest way to demonstrate the orientability property for surfaces is
in terms of the number of “sides” that they have. Consider the cylinder in Figure 1.9(a).
This surface has the property that if one were a bug, the only way to get from the
“outside” to the “inside” would be to crawl over the edge. We express this by saying
that the cylinder is “two-sided” or orientable. Now, a cylinder can be obtained from
a strip of paper by gluing the two ends together in the obvious way. If, on the other
hand, we take this same strip of paper and first give it a 180-degree twist before we
glue the ends together, then we will get what is called a Moebius strip (discovered by
A.F. Moebius and independently by J.B. Listing in 1858). See Figure 1.9(b). Although

Promre e P Figure 1.8. Uniformly oriented normals.

Meridian

Cylinder Moebius Strip i . .
Figure 1.9. Induced orientations

(@ (®) along paths.
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the strip has two sides at any given point, we can get from one side to the other by
walking all the way around the strip parallel to the meridian. The Moebius strip is a
“one-sided” or nonorientable surface. In general, a simple-minded definition is to say
that a surface S is orientable (nonorientable) if one cannot (can) get from one side of
S at a point to the other side by walking along the surface.

One can define orientability also in terms of properties that relate more directly
to the intuitive meaning of “orient.” For example, an orientable surface is one where
it is possible to define a consistent notion of left and right or clockwise and counter-
clockwise. But what does “consistent” mean? If two persons are standing at different
points of a surface and they each have decided what to call clockwise, how can they
determine whether their choices are consistent (assuming that they cannot see each
other)? One way to answer this question is to have one of them walk over to where
the other one is standing and then compare their notions of clockwise. This leads to
the following approach to defining a consistent orientation at every point of a surface
S. Starting at a point p on the surface choose an orientation at p by deciding which
of the two possible rotations around the point is to be called clockwise. Now let q be
any other point of S (q may be equal to p). Walk to q along some path, all the while
remembering which rotation had been called clockwise. This will induce a notion of
clockwise for rotations at q, and hence an orientation at q. Unfortunately, there are
many paths from p to q (nor is there a unique shortest path in general) and, although
this may not seem immediately obvious, different paths may induce different orien-
tations. If an orientation at p always induces the same orientation at every point of
the surface no matter which path we take to that point, then S is called orientable.
Figure 1.9(b) shows that walking around the meridian of the Moebius strip will induce
an orientation back at the starting point that is opposite to the one picked at the begin-
ning. Therefore, we would call the Moebius strip nonorientable, and our new defini-
tion is compatible with the earlier one.

Orientability is an intrinsic property of surfaces. F. Klein was the first to observe
this fact explicitly in 1876. The sphere is orientable, as are the torus (the surface of a
doughnut) and double torus (the surface of a solid figure eight) shown in Figure 1.10.
Actually, since the torus will be a frequent example, this is a good time to give a slightly
more precise definition of it. It is a special case of a more general type of surface.

Definition. A surface of revolution in R? is a space S obtained by revolving a planar
curve about a line in that plane called the axis of revolution. A meridian of S is a con-

<>
D ’ -
Torus Double Torus

Figure 1.10. Orientable surfaces.
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nected component of the intersection of S and a plane through the axis of revolution.
A circle of latitude of S is a connected component of the intersection of S and a plane
orthogonal to the axis of revolution. A torus is a surface of revolution where the curve
being revolved is a circle that does not intersect the axis of revolution.

See Figure 1.11. Note that meridians of surfaces of revolution meet their circles
of latitude in a single point. Note also that a surface of revolution may not actually
be a “surface” if the curve being revolved is not chosen carefully, for example, if it
intersects the axis. (The term “surface” will be defined carefully in Chapter 5.) Sur-
faces of revolution are also orientable.

There are surfaces without boundary that are nonorientable and the reader is
challenged to find one on his own (or wait until Chapter 6). One word of caution
though: Nonorientable surfaces without boundary cannot be found in R? (see Exer-
cise 6.5.1.). One needs a fourth dimension.

Enough of this intuitive discussion of orientability. Let us move on to mathemat-
ical definitions. In this section we define the most basic concept, namely, what is
meant by the orientation of a vector space. This corresponds to a definition of the
local concept, that is, the notion of an orientation at a point.

Consider the problem of trying to define an orientation at the origin of R?. Let
(v1,v2) be an ordered basis. See Figure 1.12. We could use this ordered pair to suggest
the idea of counterclockwise motion. The only trouble is that there are many ordered
bases for R?. For example, the pair (w;,w) in Figure 1.12 also corresponds to coun-

axis of revolution

meridian

ircle of latitud . .
crele of JaHee Figure 1.11. A surface of revolution.

Va

ws

Vi

Figure 1.12. Using ordered bases to
define an orientation.
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terclockwise motion. Therefore, we need an appropriate equivalence relation. The key
to defining this relation is the matrix relating two ordered bases.
Let (v1,v2) and (w;,w;) be two ordered bases. Suppose that

Vi =ajjwy +ajpwp,

for aj; € R. Define (vi,v2) to be equivalent to (w;,w») if the determinant of the matrix
(ajj) is positive. Since we are dealing with bases, we know that the aj; exist and are
unique and that the matrix (a;j) is nonsingular. It is easy to see that our relation is an
equivalence relation and that we have precisely two equivalence classes because the
nonzero determinant is either positive or negative. We could define an orientation of
R? to be such an equivalence class. As a quick check to see that we are getting what
we want, note that if w; = v, and w;, = vy, then

(2}

and the determinant of this matrix is —1, so that (v{,v;) and (v,,v{) determine differ-
ent equivalence classes.
Because we only used vector space concepts, it is easy to generalize what we just

did.

Definition. Let By = (v{,v3, ...,vy) and B, = (w,wy, ... ,wy) be ordered bases for a
vector space V and let

n
wi = Y ajjivj, where ajeR.
i=

We say that Bj is equivalent to B, and write By ~ B; if the determinant of the matrix
(ajj) is positive.

1.6.1. Lemma. -~ is an equivalence relation on the set of ordered bases for V with
precisely two equivalence classes.

Proof. Exercise 1.6.1.

Definition. An orientation of a vector space V is defined to be an equivalence
class of ordered bases of V with respect to the relation ~. Given one orientation of V,
then the other one is called the opposite orientation. The equivalence class of an ordered
basis (vq,va, . . . ,vy) will be denoted by [vy,vs, . . . ,vy]. We shall say that the ordered basis
(vi,va, ... ,vn) induces or determines the orientation [vy,v,, ... ,va]. An oriented vector
space is a pair (V,0), where V is vector space and ¢ is an orientation of it.

1.6.2. Example. To show that the ordered bases ((1,3),(2,1)) and ((1,1),(2,0)) deter-
mine the same orientation of the plane.

Solution. See Figure 1.13. Note that
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Figure 1.13. Ordered bases.

(-1,3) (1,3)

(1,1) @1

(2,0)

G-

Ly = é(1,3)+§(2,1)

2 6
(2,0)= —§(1,3)+ E(Z,l)

and
12
det 52 g=2>0.
5 5

1.6.3. Example. To show that the ordered bases ((1,3),(2,1)) and ((3,-1),(-1,3))
determine different orientations of the plane.

Solution. See Figure 1.13. Note that

7 6
(-1,3) =§(1,3)—§(2,1)

and

-1 2) g
det[z 6]=—§<0.
5 5
Since arbitrary vector spaces do not have any special bases, one typically cannot
talk about a “standard” orientation, but can only compare ordered bases as to
whether they determine the same orientation or not. In the special case of R" we do
have the standard basis (ey,e;, . . . ,e,) though.
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Definition. [ej,ey, ... ,e,] is called the standard orientation of R™.

The standard orientation corresponds to what is called a right-handed coordinate
system and the opposite orientation to a left-handed coordinate system.

It should be pointed out that the really important concept here is not the formal
definition of an orientation but rather the associated terminology. It is phrases like
“these two ordered bases determine the same or opposite orientations” or “this basis
induces the standard or non-standard orientation of R™ that the reader needs to
understand.

Solving linear equations can be tedious and therefore it is nice to know that there
is a much simpler method for determining whether or not ordered bases determine
the same orientation or not in the case of R™

1.6.4. Lemma. Two ordered bases (vi,va,...,vy) and (wi,wy, ... ,wy) of R™ deter-
mine the same orientation if and only if

Vi W1
det] and det
Vn-1 Wp-1
Vn Wi

have the same sign.

Proof. The details of the proof are left to the reader. The idea is to relate both bases
to the standard ordered basis (ej,e,, . . . ,en).

1.6.5. Example. The solutions to Examples 1.6.2 and 1.6.3 above are much easier
using Lemma 1.6.4. One does not have to solve any linear equations but simply has
to compute the following determinants:

det(1 3):—5 det(1 1)=—2 det(3 _1):8
21 2 0 -1 3

Definition. Let V be a vector space. A nonsingular linear transformation T : V — V
is said to be orientation preserving (or sense preserving) if (vi,va,...,v,) and
(T(v1),T(v2), ..., T(vy)) determine the same orientation of V for all ordered bases (vi,v3,
...,vp) of V. If T is not orientation preserving then it is said to be orientation revers-
ing (or sense reversing). More generally, if (V,0) and (W,t) are two oriented n-
dimensional vector spaces and if T : V — W is a nonsingular linear transformation
(that is, an isomorphism), then T is said to be orientation preserving if © = [T(vy),
T(vy), ..., T(vy)] for all ordered bases (vi,vy, ...,vy) of V with the property that ¢ =
[vi,va, . .., vu]; otherwise, T is said to be orientation reversing.

The identity map for a vector space is clearly orientation preserving. Exercise 1.6.7
asks you to show that whether or not a map is orientation preserving or reversing can
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be determined by checking the property on a single ordered basis. In the case of an
arbitrary linear transformation from a vector space to itself there is another simple
test for when it is orientation preserving or reversing.

1.6.6. Theorem. Let V be a vector space and let T : V — V be a nonsingular linear
transformation. The transformation T is orientation preserving if and only if
det(T) > 0.

Proof. This theorem follows immediately from the definitions that are involved.

1.6.7. Theorem. LetV be a vector space and let T, T; : V — V be nonsingular linear
transformations.

(1) The transformation T is orientation preserving if and only if T! is.

(2) Let T=TyoTyo---oTg : V— V. The transformation T is orientation preserv-
ing if and only if the number of transformations T; that are orientation revers-
ing is even.

Proof. This theorem is an immediate consequence of Theorem 1.6.6 and the
identities

det(T_1)= dou(D) and det(T) =det(T;)det(T,) - - - det(Ty).
Definition. Let X be a plane in R" with basis vy, v,, ..., vk. An orientation of X
is an orientation of the linear subspace aff({v{,v,,...,v}) (which is X translated

to the origin) of R". An oriented plane is a pair (X,0), where X is a plane and o is
an orientation of X. The expression “the plane X oriented by (the ordered basis)
(wy,w3, . .. ,wy)” will mean the oriented plane (X, [w;,wy, . .. ,wg]). An oriented line is
often called a directed line.

An oriented plane (X,c) will often be referred to simply as the “oriented plane X.”
In that case the orientation ¢ is assumed given but just not stated explicitly until it is
needed. The orientation of an oriented line is defined by a unique unit direction
vector.

Normally, although they seem to make sense, expressions such as “the angle
between two lines” or “the angle between two planes in R¥” are ambiguous because
it could mean one of two angles. In the oriented case one can make sense of that
however.

Definition. Let (X,0) and (Y,t) be oriented hyperplanes in R". Let ¢ = [v,vy, ...,
vp1] and T = [wy,wy, ... ,wy1]. If v, and wy, are normal vectors for X and Y, respec-
tively, with the property that (vy,v,, . ..,vy) and (wy,wo, ... ,wy) induce the standard
orientation of R", then the angle between the vectors v, and wy, is called the angle
between the oriented hyperplanes (X,6) and (Y,1).

The angle between oriented hyperplanes is well defined (Exercise 1.6.5).
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Definition. Let L be an oriented line and let u be the unit vector that defines the
orientation of L. Let p and q be two points on L. The oriented or signed distance from
p to q, denoted by lpqll, is defined by

Ipdll=pqeu.

It is easy to check that if p # q, then lpqll is just the ordinary (unsigned) distance
lpq! if the vector pq induces the same orientation on L as u and —lpql otherwise
(Exercise 1.6.6).

The angle between two vectors as defined in Section 1.3 is always a nonnegative
quantity, but sometimes it is convenient to talk about a signed angle, where the sign
of the angle is determined by the direction (counterclockwise or clockwise) that the
angle “sweeps” out.

Definition. Let u and v be two linearly independent vectors in the plane R?. If 8 is
the angle between u and v, define Zs(u,v), the signed angle between u and v, by

Z(u,v)=0, if the ordered basis (u,v) induces the standard orientation of R?
=-0, otherwise.

This finishes our discussion of the local theory of orientation. We shall return to
the subject of orientation in Chapters 6 and 8 and define what is meant by an orien-
tation at a point of a “curved” space. We shall also consider global aspects of orien-
tation and what it might mean to say that an entire space is oriented. However, in
order not to leave the reader in a kind of limbo with respect to how the definitions of
this section fit into the whole picture, it is useful to give a brief sketch of what is to
come. Surfaces will serve as a good example.

Suppose that S is a smooth surface. What we mean by that is that S has a nice
tangent plane T, at every point p that varies continuously as we move from point to
point. Let us call the point where the tangent plane touches the surface its “origin.”
Since every tangent plane T}, is a two-dimensional vector space, we already know what
it would mean to have an orientation o, for each T}, separately. The family of orien-
tations O = {op]) is called an orientation for S if the orientations o, vary continuously
from point to point. To explain what is meant by the notion of a continuously varying
orientation, note that there is a well-defined one-to-one projection m, of a neighbor-
hood of the origin in T, onto a neighborhood of p in the surface. Figure 1.14 shows

Figure 1.14. Defining continuously varying
orientations.
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this correspondence in the case of a curve. This means that if two points p and q are
close, then the map

_ -1
Tlp,q =Tq Tp

is a well-defined bijection between a neighborhood of the origin in T, and a neigh-
borhood of the origin in Tq. We can use this map to set up a correspondence between
ordered bases in the two tangent spaces. In this way we can compare orientations,
and we say that the orientations in O vary continuously if for nearby points 6, and
04 correspond under mp, q. An oriented surface is a pair (S,0), where 8 is a surface and
O an orientation for S.

1.7 Convex Sets

Definition. A subset X of R" is said to be convex if, for every pair of points p and q
in X, the segment [p,q] is entirely contained in X.

Examples of convex and nonconvex sets are shown in Figure 1.15(a) and (b),
respectively. The next proposition lists some basic facts about convex sets.

1.7.1. Proposition.

(1) Both the empty set and R" are convex.
(2) Each halfplane in R" is convex.
(3) The intersection of an arbitrary number of convex sets is convex.

Proof. Part (1) is trivial and parts (2) and (3) are left as exercises for the reader
(Exercise 1.7.1 and 1.7.2).

Because convex sets have many nice properties, it is convenient to introduce the
notion of the smallest convex set that contains a set.

convex set non—convex convex hull
set of (b)

() (b) (©

Figure 1.15. Convex and nonconvex sets and a convex hull.
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Definition. Let X ¢ R". The convex hull or convex closure of X, denoted by conv(X),

is defined by
conv(X)=n{C| C is a convex set that contains X}.

This definition is similar to the one for the affine hull of a set. Two facts justify it.
First, since each R" is convex, we are never taking an empty intersection. Second, by
Lemma 1.7.1(3) convex hulls are actually convex. One can also easily see that conv(X)
is contained in any convex set that contains X, which is why one refers to it as the
“smallest” such set.

1.7.2. Proposition. If X is a convex subset of R", then conv(X) = X.
Proof. Exercise 1.7.3.

Definition. A bounded subset of R" that is the intersection of a finite number of half-
planes is called a convex linear polyhedron.

The term “bounded” means that the set is contained in some closed disk about
the origin. See Section 4.2. For example, we do not want to call R” itself a convex
linear polyhedron. A convex linear polyhedron is a special case of a linear polyhedron
that will be defined in Section 6.3. It seems natural to give the definition here in order
to show that the intersection of halfplanes produces many interesting and quite
general sets and at the same time proves that these sets are convex. See Figure 1.16.

Certain convex linear polyhedra are especially interesting.

Definition. Let k > 0. A k-dimensional simplex, or k-simplex, is the convex hull o of
k + 1 linearly independent points vy, vy, . . ., and vi in R”. We write 6 = vgv; - - - vi. The
points v; are called the vertices of 6. Often one writes 6* to emphasize the dimension
of 6. If the dimension of ¢ is unimportant, then ¢ will be called simply a simplex. If
{wo, wi, ..., wij} < {vo, v, ..., v}, then T = wow; - - - wj is called a j-dimensional face
of 0 and we shall write T < ©.

Figure 1.17 shows some examples of simplices and shows that our use of the term
“k-dimensional” is justified. Note that R? does not contain any three-dimensional

Figure 1.16. A convex linear polyhedron X.
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Figure 1.17. Some simplices.

simplex. In general, R" contains at most n-dimensional simplices because it is not
possible to find j linearly independent points in R" for j>n + 1. Also, a simplex depends
only on the set of vertices and not on their ordering. For example, vov; = vivy. K-
simplices are the simplest kind of building blocks for linear spaces called simplicial
complexes, which are defined in Chapter 6, and they play an important role in alge-
braic topology. They have technical advantages over other regularly shaped regions
such as cubes. In particular, their points have a nice representation as we shall show
shortly in Theorem 1.7.4.

1.7.3. Lemma.
(1) The set aff({vo,vy, . .. ,vk}) consists of the points w that can be written in the
form
k k
w=2aivi, where Eai =1. (1.25)
i=0 i=0

(2) The set conv({vy,vy, . ..,vg}) consists of the points w that can be written in the
form

k k
w:Zaivi, where a; €[0,1] and Zaizl.

i=0 i=0

Proof. To prove (1), let

k
S= {2 aiVvj
i=0

£ni

i=0
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If w belongs to aff({vo,vy, . .. ,v}), then we know from Theorem 1.4.4 that

W=vVg+tvgVi +.... +txvovy for somet; e R.
This equation can be rewritten in the form

W=(1—t1 —...—tk)V() +tvy+... +tgvg,

which shows that w belongs to S. Conversely, if w belongs to S, then

k k
W= Zaivi for some a; such that Zai =1
i=0 i=0

This equation can be rewritten in the form
W =Vg+ajvgvy +...+agVoVg.

Part (1) is proved.
To prove (2), let

k
S= {Z ajVvj

i=0

k
a; €[0,1] and Zai = 1}.

i=0

We need to show that S is the smallest convex set containing {vo,vy,
that S is convex first. Consider two points

k k
W= zaivi and w'= Ebivi

i=0 i=0

in S and let t € [0,1]. Then

k k
aivi] +(1- t)(z biv; )
-0

p=tw+(1-t)w’ = (
i=0

1

(ta; +(1-1t)bj)v;.

k
i=0

Clearly, 0 < ta; + (1 — t)b;. Furthermore,

k k k
Z(t a; +(1-1t)b;) =t(2ai)+(l—t)(zbij

i=0 i=0 i=0
=t-1+(1-1)-1
=1.

...,vx). We show
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This also shows that ta; + (1 — t)b; < 1; hence the point p belongs to S, proving that S
is convex since p is a typical point on the segment from w to w’.
Next, we show that S belongs to every convex set C containing the points vy, vy,
., and vi. The case k = 0 is trivial. Assume that k > 1 and that the statement has
been proved for all values smaller than k. Let

k
W = z aiVvj
i=0

belong to S. Since not all a; can be zero, we may assume without loss of generality
that ag # 0. The case ag = 1 is trivial, and so assume that ag < 1. Thus we can write

k a:
W =agVy +(1—a0)(z ! Vi).

i1 1-a0

But

k . k
z aj _ 1 a;

Sl-a l-acd
1
_1—a0
=1

(1-ap)

and 0 < a/(1 — ag) < 1. By our inductive hypothesis

k .
UZZ ai Vi

o1 1=ao

belongs to every convex set containing vy, vy, . .., and vg. In particular, u belongs to
C. Since vy belongs to C, it follows that w = agvg + (1 — ap)u belongs to C and we are
done. Therefore,

S =conv({vg,vi,...,Vk})

and (2) is proved.

An interesting consequence of Lemma 1.7.3(1) is that it gives us a homogeneous
way of defining a plane. We could define a k-dimensional plane as a set defined by k
+ 1 linearly independent points vy, vy, . . ., vk which satisfy equation (1.25) instead of
the definition we gave in Section 1.5 that involved a point and a basis.

Lemma 1.7.3(2) motivates the following definition.

Definition. An expression of the form

k k
Zaivi, where a; €[0,1] and Zai =1,
i=0 i=0
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and where the v; are any objects for which the expression makes sense is called a
convex combination of the v;.

1.7.4. Theorem. Let vy, vy,..., vg be k+ 1 linearly independent points.
(1) Every point w of aff({vg,vy, . . . ,v}) can be written uniquely in the form
k k
w= Zaivi, where Zai =1.
i=0 i=0

(2) Every point w of the simplex ¢ = vgv; - - - vk can be written uniquely in the
form

k k
W= Zaivi, where a; €[0,1], and Zai =1.
i=0 i=0

Furthermore, the dimension and the vertices of a simplex are uniquely deter-
mined, that is, if vovy - - - v = vg'vy" - - . v/, then k = t and v; = v{ after a renum-
bering of the v;’.

Proof. Lemma 1.7.3 showed that every point w has a representation as shown in (1)

and (2). We need to show that it is unique. Suppose that we have two representations
of the form

k k
w = Zaivi = Za{vi.
i-0 i-0

Then

=]
Il

k k
W-—wW= zaivi —Zai’vi
i=0 i=0

(ai —af)v;

Il
.MW

._.
Il
o

Il
.MW

,_.
I
[=}

(ai —af)(vi —vo) +( (ai —af ))VO

k
i=0

(ai - ai/)(Vi - Vo)

I
.MW

._.
Il
o

(i —af)(vi — vo).

Il
.MW

._.
1
—_

The second to last equality sign follows from the fact that
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i=0 i=0 i=0
But the vectors vi — vy, v; — Vg, ..., and vk — vg are linearly independent, so that
aj=a; fori=1,2,... k, which then also implies that ag = ay". This proves that the rep-

resentation for w is unique.
The rest of part (2) is left as an exercise.

Definition. Using the notation in Theorem 1.7.4(1), the a; are called the barycentric
coordinates of w with respect to the points v;. The point

L(v+v+ L+ Vk)
Krl votvi k

is called the barycenter of the simplex o.

1.7.5. Example. Letvg=(1,0),v;=(4,0), and v, =(3,5). We want to find the barycen-
tric coordinates (ag,aj,a;) of w = (3,1) with respect to these vertices.

Solution. We must solve
aop(1,0)+a;1(4,00+a»(3,5 =31

for ag, ay, and a,. Since a, = 1 — ag — a;, we really have to solve only two equations in
two unknowns. The unique solutions are ag=4/15, a; = 8/15, and a, = 1/5. The barycen-
ter of the simplex vgvyv, is the point (8/3,5/3).

Theorem 1.7.4 shows that barycentric coordinates are another way to parame-
terize points, which is why that terminology is used. They are a kind of weighted sum
and are very useful in problems that deal with convex sets. In barycentric coordinates,
the point w in the definition would be represented by the tuple (ag,ay, ... ,ax). The
barycenter would have the representation

( 1 1 1 )
k+1U'k+1""""k+1/)

Barycentric coordinates give information about ratios of volumes (or areas in
dimension 2). (For a general definition of volume in higher dimensions see Chapter

4.) Consider a simplex 6 = vov; - - - v and a point w in it. Let (ag,ay, ... ,ax) be the
barycentric coordinates of w. Let A be the volume of ¢ and let A; be the volume of the
simplex with vertices vg, vy, ..., Vi_1, W, Vi1, . .., Vk. See Figure 1.18.

A.
1.7.6. Proposition. a; :Kl'

Proof. See [BoeP9%4].

Finally, barycentric coordinates are useful in describing linear maps between sim-
plices. Let f be a map from the set of vertices of a simplex 6 onto the set of vertices
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Figure 1.18. Barycentric coordinates and volume ratios. )

Vo Vi

of another simplex 1. Let 6 = vovy - - - v and T = wow; - - - wg. If we express points of ¢
in terms of the (unique) barycentric coordinates with respect to its vertices, then f
induces a well-defined map

fl:6—>7

defined by

K K
If (2 aivij =Y aif(vy).
i-0 i-0

Definition. The map Ifl is called the map from ¢ to T induced by the vertex map f.

In Chapter 6 we shall see that the map f is a special case of what is called a sin-
plicial map between simplicial complexes and Ifl is the induced map on their under-
lying spaces. The main point to note here is that a map f of vertices induces a map
Ifl on the whole simplex. (This is very similar to the way a map of basis vectors in a
vector space induces a well-defined linear transformation of the whole vector space.)
This gives us a simple abstract way to define linear maps between simplices, although
a formula for this map in Cartesian coordinates is not that simple. See Exercises 1.7.6
and 1.7.7.

1.8 Principal Axes Theorems

The goal of this section is to state conditions under which a linear transformation can
be diagonalized. We shall be dealing with vector spaces over either the reals or the
complex numbers. We refer to the main theorems of this section as “principal axes
theorems” because they can be interpreted as asserting the existence of certain coor-
dinate systems (coordinate axes) with respect to which the transformation has a par-
ticularly simple description. Such diagonalization theorems are special cases of what
are usually called “spectral theorems” in the literature because they deal with the
eigenvalues (the “spectrum”) of the transformation.
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In the final analysis, it will turn out that a transformation is diagonalizable if the
matrix associated with it is symmetric or Hermitian. Unfortunately, those properties
of a matrix are not independent of the basis that is used to define the matrix. For
example, it is possible to find a transformation and two bases, so that the matrix is
symmetric with respect to one basis and not symmetric with respect to the other. The
definition that captures the essence of the symmetry that we need is that of the
“adjoint” transformation.

1.8.1. Lemma. Let V be an n-dimensional vector space over a field k. If 0.V — k is
a nonzero linear functional, then

dim ker (o) =n-1.

Proof. Since o is nonzero, dim im(a) = 1 and so the lemma is an immediate conse-
quence of Theorem B.10.3.

If the vector space V has an inner product e, then it is easy to check that for each
u € V the map

u*: Vok
defined by
u*(v)=veu

is a linear transformation, that is, a linear functional. There is a converse.

1.8.2. Theorem. If o is a linear functional on an n-dimensional vector space V with
inner product e, then there is a unique u in V, so that

av)=uev

for all vin V.

Proof. If o is the zero map, then u is clearly the zero vector. Assume that o is
nonzero. Then by Lemma 1.8.1, the subspace X = ker(o) has dimension n — 1. Let ug
be any unit vector in the one-dimensional orthogonal complement X* of X. We show
that

u =o(ug) ugp

is the vector we are looking for. (The complex conjugate operation is needed in case
we are dealing with vector spaces over the complex numbers.) If v is an arbitrary
vector in V, then V = X ® Xt implies that v = x + cu, for some x in X and some scalar
c. But



1.8 Principal Axes Theorems 39

av)=o(x+cu)=alcu)=c |OL(110)|2
and
uev=ue(x+cu)=cueu =c|0c(u0)|2.

The existence part of the theorem is proved. To prove uniqueness, assume that there
is another vector u’” in V with a(v) = u’ev. Then (u — u’)ev =0 for all v in V. In par-
ticular, letting v = u — u’, we get that

(u-u’)e(u-u’)=0,
which implies that u = u’ and we are done.

Next, assume that V is a vector space and T:V — V is a linear transformation.
Given v € V, define a linear functional Ty by

Ty(w)=T(w)ev.
By Theorem 1.8.2, there is a unique vector v*, so that
Ty(W) =v* e w.
Definition. The map
T*:V->V
defined by
T*(v)=v*
is called the adjoint of T.
1.8.3. Lemma. The adjoint map T* satisfies
T(v)ew=veT*(w)
for all v, we V.
Proof. By definition, T(v)ew = Ty(v) = w*ev = T*(w)ev.
1.8.4. Lemma. The adjoint map T* is a linear transformation.
Proof. Using Lemma 1.8.3 and the linearity of the dot product, we have that

ueT*(av+bw)=T(u)e(av+bw)
=aT(u)ev+bT(u)ew
=aueT*(v)+bueT*(w)
=ue(aT*(v)+bT*(w)).
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Since this holds for all vectors u, we must have T*(av + bw) = aT*(v) + bT*(w), which
proves the lemma.

Definition. A linear transformation T:V — V is called self-adjoint if T = T*.

It follows from Lemma 1.8.3 that if a linear transformation T is self-adjoint
then

T(v)ew =veT(w).
One can prove the converse, namely
1.8.5. Lemma. If a linear transformation T:V — V satisfies
T(v)ew =veT(w).
for all v, w € V, then T is self-adjoint.
Proof. The lemma follows from the fact that for all vectors v we have
veT(w)=T(v)ew=veT*(w).

1.8.6. Theorem. LetV be a real vector space and T:V — V a linear transformation.
If M is the matrix of T with respect to an orthonormal basis, then the matrix of the
adjoint T* of T with respect to that same basis is M™.

Proof. Letu, uy, ..., u, be an orthonormal basis. By definition of the matrix for a
linear transformation and properties of orthonormal bases, the ijth entries of the
matrices for T and T* are T(w;)-u; and T*(w;)-u; , respectively. But

T(ui)ouj =u;eT* (Uj) =T* (uj)cui.

1.8.7. Corollary. The matrix for a self-adjoint linear transformation on a real vector
space with respect to an orthonormal basis is symmetric. Conversely, if the matrix for
a linear transformation over a real vector space with respect to an orthonormal basis
is symmetric, then the linear transformation is self-adjoint.

Proof. This is an easy consequence of Theorem 1.8.6.

Self-adjoint transformations are sometimes called symumetric transformations
because of Corollary 1.8.7. The complex analogs of Theorem 1.8.6 and Corollary 1.8.7
simply replace the transpose with the complex conjugate transpose and the self-
adjoint transformations in this case are sometimes called Hermitian.

We now return to the problem of when a linear transformation can be diagonal-
ized. We shall deal with real and complex vector spaces separately. The reason is that
eigenvalues are roots of the characteristic polynomial of a transformation. Although
polynomials always factor completely into linear factors over the complex numbers,
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this is not always the case over the reals. A polynomial may have no roots at all over
the reals.

1.8.8. Lemma. Every eigenvalue of a self-adjoint linear transformation T on a
complex vector space V with inner product e is real.

Proof. Let A be an eigenvalue for T and u a nonzero eigenvector for A. Then
Mueu)=Aueu=T(u)eu=ueT*(u)=ueT(u)=ueiu=Ar(ueu).
Since ueu # 0, A = A, that is, A is real.

1.8.9. Lemma. Let T be a self-adjoint linear transformation over a real n-
dimensional vector space V, n > 1, with inner product ¢. Then

(1) The characteristic polynomial of T is a product of linear factors.
(2) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. By passing to the matrix A for T, (1) follows immediately from Lemma 1.8.8
because we can think of A as defining a complex transformation on C" and every poly-
nomial of degree n factors into linear factors over the complex numbers. To prove (2),
assume that T(u) = Au and T(v) = uv for A # W. Then

AMuev)=Auev=T(u)ev=ueT(v)=ueuv=p(uev).
Since A # |, it follows that uev = 0, and we are done.

1.8.10. Theorem. (The Real Principal Axes Theorem) Let T be a self-adjoint trans-
formation on an n-dimensional real vector space V, n > 1. Then V admits an ortho-
normal basis ug, uy, ..., u, consisting of eigenvectors of T, that is,

T(u;) = Aju;
for some real numbers A;

Proof. The proof is by induction on n. The theorem is clearly true for n = 1. Assume,
therefore, inductively that it has been proved for dimension n — 1, n > 1. There are
basically two steps involved in the rest of the proof.

First, we need to know that the transformation actually has at least one real eigen-
value A. This was proved by Lemma 1.8.9(1). Let v be a nonzero eigenvector for A and
let u; = v/lvl.

The second step, in order to use the inductive hypothesis, is to show that the
orthogonal complement W+ of W = <v> = <u;> is an invariant subspace of T. This
follows from the fact that if w € W+, then

veT(w)=veT*(w)=T(v)ew=Avew =0,
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so that T(w) e W*. Clearly, S = TIW* is a self-adjoint transformation on the (n — 1)-
dimensional vector space W+. The inductive hypothesis applied to S means that there
is an orthonormal basis u, us, . . ., u, for Wt which are eigenvectors for S (and hence
for T). The vectors u; are obviously what we wanted, proving the theorem.

In the case of Theorem 1.8.10, the name “Principal Axes Theorem” comes from
its role in finding the principal axes of ellipses. The matrix form of Theorem 1.8.10 is

1.8.11. Theorem. If A is a real symmetric n X n matrix, then there exists an orthog-
onal matrix P so that D = P~!AP is a diagonal matrix. In particular, every real sym-
metric matrix is similar to a diagonal one.

Proof. Simply let the columns of P be the vectors that form an orthonormal basis
of eigenvectors.

Note that Theorem 1.8.11 only gives sufficient conditions for a matrix to be similar
to a diagonal one. Nonsymmetric matrices can also be similar to a diagonal one. For
necessary and sufficient conditions for a matrix to be diagonalizable see Theorem
C.4.10.

In Theorem 1.8.11, the number s of positive diagonal entries of D is uniquely deter-
mined by A. We may assume that the diagonal of D has the s positive entries first, fol-
lowed by r — s negative entries, followed by n — r zeros, where r is the rank of A.

1.8.12. Example. Let

We want to find an orthogonal matrix P so that P"'AP is a diagonal matrix.

Solution. Consider A to be the matrix of a linear transformation T on RZ. Now, the
roots of the characteristic polynomial

det(t1>-A)=t>-4t+3

are 1 and 3, which are the eigenvalues of T. To find the corresponding eigenvectors,
we must solve

xy)*?-A)=0
and
(x y)(3 - A) =0.
This leads to two pairs of equations

-x+y=0
x-y=0
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and

x+y=0
x+y=0.
In other words, the vectors v; = (1,1) and v, = (1,-1) are eigenvectors corresponding

to eigenvalues 1 and 3, respectively. Let u; = (1/~2,172) and u, = (1N2,-1~2). If P is
the matrix with columns u;, then

1 1
p=| V2 V2| .ng P‘lAP:(l 0).
1 1 03
V2 V2
1.8.13. Example. Let
211
A=|1 2 1
11 2

We want to find an orthogonal matrix P so that P"'AP is a diagonal matrix.

Solution. The roots of the characteristic polynomial

t—-2 -1 -1
det(tI’—A)=det| -1 t-2 -1 = (t=1%(t—4)
-1 -1 t-2

are 1 and 4. To find the eigenvectors corresponding to the eigenvalue 1 we need to
solve the equations

-x-y-z=0
—-Xx-y-z=0
-x-y-z=0.

The solution set X has the form

{(~y-2,y,2)| y,ze R} ={y(-1,1,00+z(-1,0,1) | y,ze R}.

Applying the Gram-Schmidt algorithm to the basis (-1,1,0), (-1,0,1) produces the
orthonormal basis u; = (-1~2,1/2,0) and u, = (-1V6,~1/6,216) for X. Next, to find
the eigenvector for the eigenvalue 4, we need to solve

2x—-y-z=0
—Xx+2y-z=0
-x-y+2z=0.
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The solutions to these equations have the form x(1,1,1). Let u; = (1N3,13,113).
Finally, if P is the matrix whose columns are the u;, then

111
V2 Ve V3 100
_| 1 1 1 “Ap—
P-| &5 -Jc 75| and PAP=|0 1 0
30 00 4
° % 7

Definition. A linear transformation T is said to be normal if it commutes with its
adjoint, that is, TT* = T*T.

1.8.14. Theorem. (The Complex Principal Axes Theorem) Let T be a normal trans-
formation on an n-dimensional complex vector space V, n > 1. Then V admits an
orthonormal basis uj, uy, . . ., u, consisting of eigenvectors of T, that is,

T(u;) = Aiu;
for some complex numbers A;,
Proof. See [Lips68].

The matrix form of Theorem 1.8.14 is

1.8.15. Theorem. If A is a normal matrix, then there exists an unitary matrix P so
that D = P'AP is a diagonal matrix.

Proof. See [Lips68].

1.9 Bilinear and Quadratic Maps

This section describes some maps that appear quite often in mathematics. However,
we are not interested in just the general theory. Quadratic maps and quadratic forms,
in particular, have important applications in a number of areas of geometry and topol-
ogy. For example, the conics, which are an important class of spaces in geometry, are
intimately connected with quadratic forms. Other applications are found in Chapters
8 and 9.

Definition. A bilinear map on a vector space V over a field k is a function
f:V x V — k satisfying

(1) f(av + bv’,w) = af(v,w) + bf(v’,w), and
(2) f(v,aw + bw’) = af(v,w) + bf(v,w’),

forallv, v, w,w e Vanda, b € k.
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1.9.1. Example. The dot product on R" is a bilinear map. More generally, an inner
product is a bilinear map.

1.9.2. Example. The determinant function on R? (where we think of either the rows
or columns of the matrix as vectors in R?) is a bilinear map.

1.9.3. Example. Let A be an n X n matrix. The map f:R” x R® — R defined by
flv,w)=vAwT
is a bilinear map.

1.9.4. Example. Let T be a linear transformation on R". The map f:R" x R* - R
defined by

f(v,w)=veT(w)
is a bilinear map.
Definition. Let f be a bilinear map on a vector space V. Let B = (vq,v, . .. ,v,) be an
ordered basis for V and let aj; = f(v;,vj). The matrix A = (a;) is called the matrix for f
with respect to the basis B. The determinant of A is called the discriminant of f with

respect to the basis B.

The matrix for a bilinear map clearly depends on the chosen basis. However, the
following is true:

1.9.5. Proposition. If B’ = (v{’,vy/,...,vy") is another ordered basis for V and if A’
is the matrix of the bilinear map f with respect to B’, then

A’ =CACT,

where C = (c¢j) is the matrix relating the basis B to the basis B, that is,

n
’
Vi = z CijVj .
=1

Proof. This can be checked by a straightforward computation.

Definition. A real n x n matrix A is said to be congruent to a real n x n matrix B if
there exists a nonsingular matrix C such that A = CBC'.

It is easy to show that the congruence relation is an equivalence relation on the
set of all n x n real matrices. We can rephrase Proposition 1.9.5.

1.9.6. Corollary. The matrix of a bilinear map is unique up to congruence, so that
the study of bilinear maps is equivalent to the study of congruence classes of matrices.
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Definition. The rank of a bilinear map f is the rank of any matrix for f. A bilinear
map on an n-dimensional vector space is said to be degenerate or nondegenerate if its
rank is less than n or equal to n, respectively.

It follows from Proposition 1.9.5 that the rank of a bilinear map is well

defined.

1.9.7. Proposition. The matrix associated to a symmetric bilinear map with respect
to any basis is a symmetric matrix.

Proof. Exercise.

Definition. A quadratic map on a vector space V over a field k is any map q:V — k
that can be defined in the form q(v) = f(v,v), where f is some bilinear map on V.
In that case, q is also called the quadratic map associated to f. The quadratic map
q is said to be degenerate or nondegenerate if f is. A discriminant of q is defined to
be discriminant of f with respect to some basis for V. The quadratic map q and the
bilinear map f are said to be positive definite if q(v) = f(v,v) > 0 for all v # 0.

1.9.8. Example. Let f be a bilinear map on R? and assume that
f(v,w) =aj1viwy +aviws, +a21vowy +a2vows.
The quadratic map q associated to f is then given by
q(v) = a11V12 +(aj2 +az)viva + asz%-
We see that q is just a homogeneous polynomial of degree 2 in vi and v,.

If the field k does not have characteristic 2 and if f is a symmetric bilinear map
with associated quadratic map g, then

fv,w) = %[q(v +w)—q(v) —q(w)].

In other words, knowledge of g alone allows one to reconstruct f, so that the concepts
“symmetric bilinear map” and “quadratic map” are really just two ways of looking at
the same thing.

The form of the quadratic map in Example 1.9.8 and others like it motivates
what is basically nothing but some alternate terminology for talking about quadratic
maps.

Definition. A d-ic form over a field k is a homogeneous polynomial over k of degree
d in an appropriate number of variables. A linear or quadratic form is a d-ic form
where d is 1 or 2, respectively.

For example, 2x + 3y is a linear form in variables x and y and

x? +5y% —2z2 +3xy +yz
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is a quadratic form in variables x, y, and z. Note that the quadratic form can be rewrit-
ten with symmetric cross-terms as

3 3 1 1
x% +5y% 272 +5xy+5yx+5yz+zzy.

It follows that one can associate the symmetric matrix

1 3 0
2

3 1

Z 5 =

2 2
1

0 - -2
2

with this form. More generally, if the field k does not have characteristic 2, such as,
for example, R or C, we can make the cross-terms symmetric with the trick shown in
the example above. It follows that in this case every quadratic form in n variables is
simply an expression of the type

n n
2. D aiXix;,
i=1 j=1

where A = (a;) is a symmetric matrix. This means that every quadratic form defines
a unique quadratic map

q: Vok

on a vector space V in the following way: Choose an ordered basis B = (vq,v, . .. ,vy)
for V. Let v € V and suppose that

n
V= 2 XiVj.
i=1

Then

n n
qv)=xAxT = ZZainin,
i=1 j=1

where x = (x1,Xz, . . . ,Xp). In this case also, the matrix for the associated bilinear map
is just the matrix A. Of course, for all this to make sense we are treating the x; as
values rather than variables, but we can see that from a theoretical point of view there
is no difference between the theory of quadratic forms and quadratic maps. This
explains why in the literature the terms “quadratic map” and “quadratic form” are
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often used interchangeably. In particular, one uses the same terms, such as “degen-
erate,” “nondegenerate,” “positive definite,” or “discriminant” for both. One will some-
times also find the term “bilinear form” used instead of “bilinear map.”

Note. In this book we shall often use the more popular term “quadratic form” even
though we may interpret it as a quadratic map because that is typically more con-
venient computationally. Specifically, when the field k does not have characteristic 2,
we shall always feel free to switch between a quadratic form and the appropriate cor-
responding quadratic map with its unique associated symmetric bilinear map whose
symmetric matrix is unique up to congruence.

Now, an arbitrary quadratic form can be quite complicated. Key to understand-
ing them is the fact that one can always choose a basis, so that with respect to this
basis, the form has a nice simple structure.

1.9.10. Theorem. (The Principal Axes Theorem) Given a quadratic form q defined
on R", there exists an orthonormal basis for R" with respect to which q has the
form

2 2 2 2
q(x1,X2, ..., Xn) = MX{ +... +AsX§ —Ag1X5ey —- .. — AsstX5r, where A;>0.

The difference s — t is called the signature of the quadratic form or the associated
symmetric bilinear map.

Proof. This is an immediate consequence of Theorem 1.8.11. The integers s and t,
and hence the signature, are independent of the basis and hence invariants of the
quadratic form.

If we do not insist on an orthonormal basis for the diagonalization of a quadratic
form, then there is a weaker version of Theorem 1.9.10. It is interesting because there
is a simpler algorithm for finding a diagonalizing basis for a quadratic form. Here is
its matrix form.

1.9.11. Theorem. If A is a real symmetric n x n matrix of rank r, then A is con-
gruent to a unique diagonal matrix whose first s diagonal entries are +1, the next
r — s entries are —1, and the remaining entries are zeros.

Proof. We sketch a proof. For more details, see [Fink72]. Assume that A is not the
zero matrix; otherwise, there is nothing to prove.

Step 1. To make A congruent to a matrix A; that has a nonzero diagonal element.

If A has a nonzero diagonal element, then let Ay = A. If all diagonal elements of
A are zero, let ajj be any nonzero entry of A. Let E be the elementary matrix Ej;(1),
which has 1s on the diagonal, a 1 in the jith place, and zeros everywhere else. Let
A; = EAET. The matrix A; is obtained from A by adding the jth row of A to the ith
row followed by adding the jth column of the result to the ith column. It is easy to
see that the ith diagonal element of A; is 2aj; and hence nonzero.
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Step 2. To make A; congruent to a matrix A, which has a;; nonzero.

Let F = (fjj) be the elementary matrix defined by
=1 1if s=t, s#lori,
=1, if s=1, t=i
=1, if s=i, t=1

=0, otherwise.

Then A, = FA,F! is the matrix obtained from A; by interchanging the first and ith
diagonal element.

Step 3. To make A; congruent to a matrix A; in which the only nonzero element
in the first row or first column is ai;.

Step 3 is accomplished via elementary matrices like in Step 1 that successively
add multiples of the first row to all the other rows from 2 to n and the same multi-
ples of the first column to the other columns.

After Step 3, the matrix A; will have the form

(3 2)
0 B
where B is a symmetric (n — 1) x (n — 1) matrix. Repeating Steps 1-3 on the matrix
B and so on will show that A is congruent to a diagonal matrix with the first r diag-
onal entries nonzero. By interchanging the diagonal entries like in Step 2 if necessary,

we may assume that all the positive entries come first. This shows that A is congru-
ent to a diagonal matrix

G=D(y,...,ds,~dst1,...,—d.,0,..,0),
where d; > 0. If

then HGH' has the desired form. To see why s is uniquely determined see [Fink72].

One nice property of the proof of Theorem 1.9.11 is that it is constructive.

1.9.12. Example. To show that the matrix

0
A=l0 0 -2
2
1
0 —— 0
2

is congruent to a diagonal one with +1s or 0 on the diagonal.



50 1 Linear Algebra Topics

Solution. We follow the steps outlined in Theorem 1.9.11. If the elementary
matrices E, F, and G are defined by

1 00 1 00 1 01
E=/1 1 0| F=|{0 1 0|, and G=|0 1 0]
1
0 01 -2 01 0 — 1
2
then
1 0 O
A=GFEAETFTGT=|0 -4 0 |
0 0 -2

Finally, define the elementary diagonal matrix H by

1 0 O
1
=10 = O
H=1" 3
1
0 0 Tz
and observe that
1 0 O
A>=HA HT=(0 -1 0|
0O 0 -1

Therefore, if M = HGFE, then MAMT = A, is the desired matrix and we are done.
It is worth pointing out one consequence of Theorem 1.9.10.

1.9.13. Corollary. A positive definite quadratic form is nondegenerate and all of its
discriminants are positive.

Proof. We may assume that the vector space is R® and then must have s = n in
Theorem 1.9.10. The discriminant is certainly positive with the respect to the ortho-
normal basis guaranteed by the theorem. The reason that the discriminant is always
positive is that the determinant of congruent matrices differs by a square.

110 The Cross Product Reexamined

In Section 1.5 we observed that R? has not only a dot product but also a cross product.
Note that the cross product produces another vector, whereas the dot product was a
real number. Various identities involving the dot and cross product are known. The
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cross product is a “product” that behaves very much like the product in the case of
real numbers except that it is not commutative. The two operations of vector addi-
tion and the cross product make R? into a (noncommutative) ring. Is there a similar
product in other dimensions? Unfortunately not, but the cross product does arise from
a general construction that applies to all dimensions and that is worth looking at
because it will give us additional insight into the cross product.

1.10.1. Theorem. Letvy, vy, ..., Vv, € R" Define a map T:R" — R by
Vi
T(w) =det
Vn-1
w

Then there is a unique u € R" such that T(w) = uew for all w.

Proof. This theorem is an immediate corollary to Theorem 1.8.2 because properties
of the determinant function show that T is a linear functional.

Definition. Using the notation of Theorem 1.10.1, the vector u is called the (gener-
alized) cross product of the vectors vy, va,...vy 1 and is denoted by vi X v X---X

Vp-1.

1.10.2. Proposition. The generalized cross product satisfies the following basic
properties:

(1) It is commutative up to sign, that is,
Vs(1) X Vg(2) X+ X Vg(n-1) = SIgN(G)Vy X Vo X -+ - X Vy_g
for all permutations ¢ of {1,2,...,n - 1}.
(2) It is a multi-linear map, that is,

Vi X o XaviX---Xvyg=a(vy X XVjX--XVy_q)

Vi XX (V4 Vi) XX Vg = (V) X XV XX Vg )+ (V) XX VX X W)

(3) (vixvyx---xvpp)evi=0, for all i.
(4) If the vectors v; are linearly independent, then the ordered basis

(Vi,V2, -V, VI X V2 X---X V1)
induces the standard orientation on R".
Proof. Facts (1) and (2) are immediate from the definition using properties of the

determinant. Fact (3) follows from the observation that the determinant of a matrix
with two equal rows is zero, so that each v; lies in the kernel of T in Theorem 1.10.1.
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To prove (4), note that by definition
Vi
Vi XVy X---XVy_1 ew =det : (1.26)

Vn

W

holds for all vectors w. When w is the vector vi X v, X - - - X vp_; we see that the left-
hand side of (1.26) is positive, which implies that the determinant is also. Now use
Lemma 1.6.4.

1.10.3. Proposition. In R? the generalized cross product agrees with the usual cross
product as defined in Section 1.5.

Proof. This is Exercise 1.10.1.

The next proposition lists a few of the well-known properties of the cross product
in the special case of R3.

1.10.4. Proposition. The (generalized) cross product in R? satisfies
(1) la x vl = vl lwl sin®, where 0 is the angle between u and v.
2) ux(vxw)=(uew)v-—(uev) w
(uxv)xw=(uew)v-—(vew) u
(3) lu x vl* = lul® vI> — (uev)?
(4) (up xwp)e(vy x v2) = (uyevy)(uzevz) — (u;evr)(uzovy)

Proof. Exercise 1.10.2.

One way to look at identity (3) in Proposition 1.10.4 is that the cross product meas-
ures the deviation from equality in the Cauchy-Schwarz inequality.

1.10.5. Example. Find the equation of the plane through (1,0,3) with basis
vi =(1,1,0) and v, = (0,1,1).

Solution. By Proposition 1.10.2(3),
u=vy xvy=(1,-11)
is a normal vector for the plane. Therefore, an equation for it is
1L,-1LDe((x,y,2)-(1,0,3))=0
or

x-y+z=4.
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111 The Generalized Inverse Matrix

Let
T: R™" > R"
be a linear transformation. Now normally one would not expect this arbitrary map T
to have an inverse, especially if m > n, but it turns out that it is possible to define
something close to that that is useful. Define a map
T": R" > R™
as follows: See Figure 1.19. Let b € R". The point b may not be in the image of T,
im(T), since we are not assuming that T is onto, but im(T) is a plane in R". There-
fore, there is a unique point ¢ € im(T) that is closest to b (Theorem 4.5.12). If the
transformation T is onto, then obviously ¢ = b. It is easy to show that T"'(c) is a plane
in R™ that is parallel to the kernel of T, ker(T). This plane will meet the orthogonal
complement of the kernel of T, ker(T)!, in a unique point a. For an alternative
definition of the point a write R™ in the form
R™ = ker(T) @ ker(T)"
and let
L Lo,
¢ =T |ker(T)" :ker(T)” — im(T).

It is easy to show that ¢ is an isomorphism and a = ¢"'(c). In either case, we define

T*(b) = a.
Definition. The map T* is called the generalized or Moore-Penrose inverse of T.
1.11.1. Lemma. T*is a well-defined linear transformation.

Proof. Easy.

RM ker(T)

Rn
T(0) \

a o im(T)

ker(Ty* <"~ @

—_\

Figure 1.19. The geometry behind the generalized inverse.
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y Figure 1.20. Computing the generalized
inverse for Example 1.11.2.

ker(T)

T () L =ker(T)™

1.11.2. Example. Consider the map T:R?> — R defined by T(x,y) =x —y. Let b € R.
We want to show that the generalized inverse T":R — R? is defined by

T*(b) = g(l, -1).

Solution. See Figure 1.20. The kernel of T, ker(T), is the line x = y in R2. The ortho-
gonal complement of ker(T) is the line L defined by x + y = 0. If a = T*(b), then a is
the point where the line T~'(b) meets L. Clearly, such a point a is just the orthogonal
projection of the vector (b,0) on L, that is,

a=(ue(b,0)u= g(l,—l),

for any unit direction vector u for L (Theorems 4.5.12 and 1.4.6). For example, we
could choose

1
u= Tz(l,—l).

Of interest to us is the matrix version of the generalized inverse. Let A be an
arbitrary real m x n matrix. Let T:R™ — R" be the natural linear transformation
associated to this matrix by the formula T(x) = xA.

Definition. The n X m matrix A* for the generalized inverse T" is called the general-
ized inverse or pseudo-inverse or Moore-Penrose inverse matrix for A.

1.11.3. Theorem.
(1) The generalized inverse matrix A* for a matrix A satisfies

AA*A=A, A*AA* =A*, (A*A)' =A*A, and (AA*) =AA*.
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(2) The generalized inverse matrix is uniquely defined by the identities in (1), that
is, if G is a matrix satisfying

AGA=A, GAG=G, (GA)' =GA, and (AG)' =AG,
then G = A*.
Proof. See [Penr55] or [RaoM71].
1.11.4. Corollary.

(1) If A is a real m x n matrix of rank n, then A* = (ATA)'AT.
(2) If A is a real m x n matrix of rank m, then A* = AT(AAT)™L.

Proof. The Corollary follows from Theorem 1.11.3(2). For part (1), it is easy to check
that ATA is a nonsingular n x n matrix and (ATA)"!AT satisfies the stated identities.
Part (2) follows from a similar argument.

1.11.5. Example. To compute the matrix A* for the map T*in Example 1.11.2 above.

Solution. In this case, we have that AT = (1 —1), so that ATA = 2 and
+ Ty AT _ 1
A*=(ATA) AT =20 -,

which agrees with our formula for T.
A nice application of the generalized inverse matrix and Corollary 1.11.4 is to a

linear least squares approximation problem. Suppose that we are given a real m x n
matrix A with n > m and b € R". We want to solve the equation

xA=b (1.27)
for x e R™. Unfortunately, the system of equations defined by (1.27) is overdetermined
and may not have a solution. The best that we can do in general is to solve the

following problem:

A linear least squares approximation problem: Given an m X n matrix A with n > m
and b € R", find a point ap € R™ that minimizes the distances laA — bl, that is, find ag so
that

lagA —b|= mlilg{ laA-b| }. (1.28)

It is easy to explain the name of the problem. Let

A=(aij), a=(a1,a2,...,am), and b=(b1,b2,...,bn).
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Equation (1.28) is trying to find the minimum for

n
2
\/z [(a1a1i +azar +...+ amami)—bi] .

i=1

To put it another way, we are trying to find the m-plane X in R™"! through the origin
defined by an equation of the form

aiX;+arxXs+...+amXm —Xms1 =0 (1.29)

that best fits the data points p; = (a15,22i, . . . ,am;,bi) € R™! in the sense that the sum
of the distances of the points p; to X is a minimum.

1.11.6. Theorem. If the matrix A in the linear least squares approximation problem
above has rank m, then there is a unique solution ag defined by

ag = A*(b) = AT(AAT) ' (b).

Proof. This is clear from the definition of the generalized inverse and Corollary
1.11.4(2). The uniqueness follows from the fact that the kernel of the linear transfor-
mation associated to A is 0.

We need to point out that the planes defined by equation (1.29) are a subset of all
the m-planes through the origin, so that our particular approximation problem had
a bias built into it. Here is the usual statement of the unbiased general problem. One
uses squares of the distances to avoid having to deal with square roots. The mini-
mization problem has the same answer in either case.

The linear least squares approximation problem: Given a set of points p; in R™! find
the m-plane X in R™! with the property that the sum of the squares of the distances of
the points p; to X is a minimum.

Because of the bias in the allowed solution to our approximation problem,
Theorem 1.11.6 does not always solve the general problem. For example, consider the
points (-1,1), (-1,2), (-1,3), (1,1), (1,2), and (1,3) in R?. The line that best approxi-
mates this data is clearly the vertical line x = 0. Theorem 1.11.6 would give us simply
the point (0,0). The reason for this is that the vertical line does not have an equation
of the form (1.29). Of course, Theorem 1.11.6 does give the expected answer “most”
of the time but one must make sure that this answer does not lie in the set of planes
excluded by equation (1.29).

There is another special case where Theorem 1.11.6 does not give a satisfactory
answer, namely, in the case where b is zero and we have a homogeneous equation

xA=0. (1.30)

A homogeneous equation like (1.30) always has a solution x = 0. This is what Theorem
1.11.6 would give us. Of course, this is the uninteresting solution and we are proba-
bly looking for a nonzero solution. We will be able to use Theorem 1.11.6 if we rewrite
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things. Suppose that we look for a solution a = (ay,a,, . . . ,ay) to equation (1.30) with
am # 0. Then equation (1.30) can be written in the form

alg ani

a aAm— . . .
(_1 Llj : . : =—(@m1 ‘' amn)
aAm aAm

Am-11 °** Am-1n

There is actually no loss of generality in assuming that a,, = 1. This equation is again
of the form (1.27) and if we assume that the right-hand side of this equation is not
the zero vector, then we can again apply Theorem 1.11.6 and get what we want in the
same sense as before. The only problem however is that we could assume different
coordinates of a to be nonzero and for each choice we shall get different solutions.
The general point to remember then is that the approach to the linear least squares
problem that we described above works well but the answer that we get depends on
the assumptions that we make.
We finish this section with two results about decompositions of matrices.

1.11.7. Theorem. Let A be a real m x n matrix of rank r. Then there exists an m X m
orthogonal matrix U, an n X n orthogonal matrix V, and a diagonal m x n matrix

01 0 0
D= ,
0 Oy
0 0
where 61 >0, 2>...2 0, >0, so that
A=UDVT. (1.31)

Proof. See [ForM67] or [RaoM71].

Definition. The decomposition of A in equation (1.31) is called the singular value
decomposition of A. The os are called the singular values of A.

The singular value decomposition of a matrix has useful applications. One
interpretation of Theorem 1.11.7 is that, up to change of coordinates, every linear
transformation T:R™ — R" of rank r has the form T(e;) = cje;, 1 < i < r. More pre-
cisely, one can find orthonormal bases uj, uy, ..., uy, of R™ and vy, v, ... v, of R?,
so that T(w)) =ojv;, 1 <i<r.

1.11.8. Theorem. Let A be a real m X n matrix of rank r. If A has the singular value
decomposition shown in equation (1.31), then

At =VD*UT,

and the n x m matrix D* is given by
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/6, 0 0
D* = -
0 /o,
0 0

Proof. One uses Theorem 1.11.3(2) and shows that VD'UT satisfies the appropriate
identities.

1.12 EXERCISES

Section 1.2
1.2.1. Suppose that the equations
ax+by=c and a’x+b’y=c¢
define the same line L. Show that a’ = ka, b’ = kb, and ¢’ = kc for some nonzero real

number k.

1.2.2. Show that the equation form and point-direction-vector form of the definition of a line
in the plane agree.

1.2.3. Find the equation for all lines in the plane through the point (2,3).
1.2.4. Find the parametric equations of the line through the points (0,1,2) and (-1,-1,-1).
1.2.5. If p, q € R" show that [p,q] = [q,p].

1.2.6. Let a, b € R with a £ b. Show that the interval [a,b] consists of the same numbers as
the segment [a,b] where a and b are thought of as vectors. The difference between a
segment and an interval in R is that the interval [a,b] is defined to be empty if b < a,
whereas this is not the case for segments. In fact, as segments (in R!) [a,b] = [b,a].

1.2.7. Consider the line L through (1,-1,0) with direction vector (-1,-1,2). Find the two points
on L that are a distance 2 from the point (0,-2,2).

Section 1.3

1.3.1. Find the cosines of the angles between the following pairs of vectors. Which pairs are
perpendicular? Which pairs are parallel?

(a) (311)7 (1:3) (b) (1,2): (_412) (C) (1!2)1 (_4,_8) (d) (_3,0)r (2!1)

Section 1.4

1.4.1. Fill in the missing details in the proof of Theorem 1.4.4.
1.4.2. Prove Theorem 1.4.6.
1.4.3. Find the orthogonal projection of (-1,2,3) on (1,0,1).
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1.12 Exercises 59

Use the Gram-Schmidt algorithm to replace the vectors (1,0,1), (0,1,1), and (2,-3,-1) by
an orthonormal set of vectors that spans the same subspace.

This exercise shows that equation (1.14) in Theorem 1.4.6 gives the wrong answer if the
vectors w; do not form an orthonormal basis. Consider the vector v = (1,2,3) in R>. Tts
orthogonal projection onto R? should clearly be (1,2,0). Let u; and u; be a basis for R?
and let

w=(veupu; +(veuy)u,.

(a) Tfuy=(1,00)and u, = (l,%z,o], show that w # (1,2,0).

2
(b) Ifu; =(2,0,0) and u; = (0,3,0), show that w # (1,2,0).

Section 1.5

1.5.1.

1.5.2.
1.5.3.
1.5.4.
1.5.5.
1.5.6.
1.5.7.

1.5.8.
1.5.9.

1.5.10.
1.5.11.
1.5.12.

1.5.13.

1.5.14.
1.5.15.

Suppose that X is a k-dimensional plane in R" and that
X={p+v|veV}={q+w|we W},

where p, q € R"and Vand W are k-dimensional vector subspaces of R”. Show that V=W.

Fill in the missing details in the proof of Proposition 1.5.2.

Prove that the intersection of two planes is a plane.

Prove that if X is a plane, then aff(X) = X.

Prove Lemma 1.5.6.

Prove Lemma 1.5.7.

(a) Prove that two lines in R? are parallel if and only if they have parallel direction
vectors.

(b) LetL and L’ be lines in R? defined by the equations ax + by =c and a’x + b’y = ¢,
respectively. Prove that L and L’ are parallel if and only if a’ = ka and b’ = kb for
some nonzero constant k.

Prove Theorem 1.5.10.

Find a basis for the plane x — 3y + 2z = 12 in R3.

Find the equation of all planes in R3 that are orthogonal to the vector (1,2,3).
Find the equation of the plane containing the points (1,0,1), (3,-1,1), and (0,1,1).

Find the equation for the plane in R? that contains the point (1,2,1) and is parallel to
the plane defined by x -y -z =7.

Find an equation for all planes in R3 that contain the point (1,2,1) and are orthogonal
to the plane defined by x -y - z="7.

Find an orthonormal basis for the plane x + 2y — z = 3.
Let X be the plane defined by 2x + y — 3z = 7. Let v = (2,1,0).

(a) Find the orthogonal projection of v on X.
(b) Find the orthogonal complement of v with respect to X.
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1.5.16. Find the point-normals equation for the line
x=1-3t
y=2t
z=3+1t
1.5.17. Determine whether the halfplanes 2y — x>0, y — 2x + 2 > 0, and -4y + 2x + 4 < 0 have
a nonempty intersection or not.
1.5.18. Let V and W be subspaces of R" of dimension s and t, respectively. Assume that s + t
> n. Prove that V is transverse to W if and only if one of the following holds:
(a) V+W=R"
(b) Ifwvy, vy, ..., vsand wy, wa, ..., w; are bases for V and W, respectively, then the
vectors vy, Va, ..., Vs, Wi, Wy, ..., W span R™.
1.5.19. Definition. Any subset X in C" of the form
X ={p+t1V1 + vy + ...+t vk | t1,t2,...,tk € C},
where p is a fixed point and the vy, v, . . ., vi are fixed linearly independent vectors in
C" is called a complex k-dimensional plane (through p). If k = 1, then X is called a
complex line.
(a) Prove that a complex line in C? can also be expressed as the set of points (x,y) €
C? satisfying an equation of the form
ax+by=c,
for fixed a, b, ¢ € C with (a,b) # (0,0).
(b) Prove that the real points of a complex plane in C" lie on a plane in R™
Section 1.6
1.6.1. Prove Lemma 1.6.1.
1.6.2. Determine whether the following pairs of ordered bases of R?> determine the same
orientation:
(@) ((1,-2), (-3,2)) and ((1,0), (-2,3))
(b) ((=1,1), (1,2)) and ((1,-2), (1,-4))
Solve this exercise in two ways: First, use only the definition of orientation and then
check your answer using the matrix approach of Lemma 1.6.4.
1.6.3. Why is “Does ((1,-2), (-2,4)) induce the standard orientation of the plane?” a mean-
ingless question?
1.6.4. (a) Find a vector (a,b) so that the basis ((-2,-3), (a,b)) determines the standard orien-

tation of the plane.
(b) Find a vector (a,b,c) so that the basis ((2,-1,0), (-2,-1,0), (a,b,c)) determines the
standard orientation of 3-space.
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1.6.5. Show that the angle between oriented hyperplanes (X,0) and (Y,t) is well defined.
Specifically, show that it does not depend on the choice of the normal vectors v, and
w,, for X and Y, in the definition.

1.6.6. Let L be an oriented line and let p and q be two points on L. Prove that
lpall=0, ifp=gq,

=|pq|, if the vector pq induces the same orientation on L, and
=—|pq|, if pq induces the opposite orientation on L.

1.6.7. Let (V,0) and (W,1) be two oriented n-dimensional vector spaces and let T:V — W be
a nonsingular linear transformation. Show that T is orientation preserving if

T=[T(v1), T(v2),...,T(vn)]

for any one ordered bases (vq,v3, . .. ,vy) of V with the property that ¢ = [vy,v2, . .. vyl

Section 1.7

1.7.1. Show that each halfplane in R" is convex.

1.7.2. Show that if X;, X, ..., Xy are convex sets, then their intersection is convex.
1.7.3. If X is convex, show that conv(X) = X.

1.7.4. Show that conv({po,p1}) = [po.p1]-

1.7.5. Let o be the two-dimensional simplex defined by the vertices vo = (-2,-1), v; = (3,0), and
v, = (0,2). The points of 6 can be described either with Cartesian or barycentric
coordinates (with respect to the vertices listed in the order given above).

(a) Find the Cartesian coordinates of the point p whose barycentric coordinates are

(lil)
4'12'3)

(b) Find the barycentric coordinates of the point q whose Cartesian coordinates are
(0,0).

1.7.6. Show that the simplicial map from the 1-simplex [2,5] to the 1-simplex [3,7] that sends
2 to 3 and 5 to 7 agrees with the “standard” linear map between the intervals, namely,

4 1
=—x+-.
g(x) 3513

1.7.7. Generalize Exercise 1.7.6 and show that the simplicial map from [a,b] to [c,d] agrees
with the standard linear map.

Section 1.8

1.8.1. Let

el )

Find a matrix P so that P~!AP is a diagonal matrix.
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Section 1.9
1.9.1. Let
1 2 -3
A= 2 5 -4|
-3 4 8

Find a nonsingular matrix C so that CAC! is a diagonal matrix.

Section 1.10

1.10.1. Prove Proposition 1.10.3. (Hint: First show that, if e, e;, and e3 are the standard basis
vectors in R?, then e; x e, =e3, €] X €3 =— €3, and e X e3 = e1.)

1.10.2. Prove Proposition 1.10.4.

Note: The properties will not be hard to prove if one uses the definition and basic
properties of determinants. This shows once again how valuable a good definition is
because some textbooks, especially in the physical sciences, deal with cross products
in very messy ways. Although it is our intuition which leads us to useful concepts, it
is usually a good idea not to stop with the initial insight but probe a little further and
really capture their essence.

1.10.3. Prove that if u, v e R3? are orthogonal unit vectors, then (u x v) x u = u.
1.10.4. Letu, v, w e R3. Prove

u
(a) ue(vxw)=det| v |
w
(b) ue(vxw)=ve(wxu)=we(uxv).

(The quantity ue (v X w) is called the triple product of u, v, and w.)




CHAPTER 2

Affine Geometry

2.1 Overview

The next two chapters deal with the analytic and geometric properties of some impor-
tant transformations of R". This chapter discusses the group of affine maps and its
two important subgroups, the group of similarities and the group of motions. Affine
maps are the transformations that preserve parallelism. Similarities are the affine
transformations that preserve angles. Motions are the distance-preserving similarities
and their study is equivalent to the study of metric properties of Euclidean space. As
a historical note, this reduction of geometric problems to algebra (namely the study
of certain groups in our case) was initiated by the German mathematician Felix Klein
at the end of the 19" century.

Except for some definitions and a few basic facts, the first part of the chapter (Sec-
tions 2.2-2.4) concentrates on the important special case of the plane R?. Presenting
a lot of details in the planar case where it is easier to draw pictures should make it
easier to understand what happens in higher dimensions since the generalizations are,
by and large, straightforward.

Motions are probably the most well-known affine maps and we analyze planar
motions in quite some detail in Section 2.2. Section 2.2.8 introduces the concept of a
frame. Frames are an extremely useful way to deal with motions and changing from
one coordinate system to another. It is not an overstatement to say that a person who
understands frames will find working with motions a triviality. There is a brief dis-
cussion of similarities in Section 2.3 and affine maps in Section 2.4. Parallel projec-
tions are defined in Section 2.4.1. Section 2.5 extends the main ideas from the plane
to higher dimensions. The important case of motions in R? is treated separately in
Sections 2.5.1 and 2.5.2.

There is not enough space to prove everything in this chapter and it will be up to
the reader to fill in missing details or to look them up in the references. Hopefully,
the details we do provide in conjunction with what we did in Chapter 1 will make
filling in missing details easy in most cases. Unproved facts are included because it
was felt that they were worth knowing about and help as motivation for the next
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chapter on projective transformations. References to where proofs may be found are
given in those cases where difficult results are stated but not proved.

Finally, we want to emphasize one point. The single most important topic in
this chapter is that of frames. Frames are so simple (they are just orthonormal bases),
yet if the reader masters their use, then dealing with transformations will be a
snap!

2.2 Motions

Definition. A transformation M:R" — R" is called a motion or isometry or congru-
ent transformation of R™ if

IM(p)M(q)| = Ipd],
for every pair of points p, q € R".

In simple terms, motions are distance-preserving maps. If one concentrates on
that aspect, then the term “isometry” is the one that mathematicians normally use
when talking about distance-preserving maps between arbitrary spaces. The term
“motion” is popular in the context of R".

2.2.1. Theorem.

(1) Motions preserve the betweenness relation.
(2) Motions preserve collinearity and noncollinearity.
(3) Motions send lines to lines.

Proof. To prove (1), let M be a motion and let C be a point between two points

A and B. Let (A’,C’,B’) = M(A,C,B). We must show that C’ is between A’ and B’
Now

|A’B’| =|AB|

=|AC|+|CB|

= |A'C'| + |C’B'|.
The first and third equality above follows from the definition of a motion. The second
follows from Proposition 1.2.3. Using Proposition 1.2.3 again proves (1). Parts (2) and
(3) of the theorem clearly follow from (1).
2.2.2. Lemma. Let M be a motion. If

C=A+tAB=(1-t)A+tB,

then

M(C) = M(A) + tM(A)M(B) = (1 - t)M(A) + tM(B).
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Proof. Let (A’ B’,C’) = M(A,B,C). Since M is a motion,
IA'C’|=|AC|=t||AB| = [t/ |A"B’|.
The proof is divided into cases.

Case 1. 0<t<1.
Case 2. 1<t.
Case 3. t<O.

In Case 1, C is between A and B. By Proposition 1.2.4, only
X;=A"+tA’'B’ or X;=A"-tA’'B’
are solutions to the equation
A’X’| =t |AB’|.

Of these, only X lies between A’ and B’. By part (1) of Theorem 2.2.1 we have that
C’ = X, which proves the lemma. The proofs in the other two cases are similar and
are left as exercises to the reader. Note that in Case 2 B is between A and C and in
Case 3 A is between C and B.

2.2.3. Lemma. LetL; and L, be two distinct lines in the plane which intersect in a
point C. Let P be any point not on either of these lines. Then there exist two distinct
points A and B on L; and L,, respectively, so that P lies on the line L determined by
A and B.

Proof. See Figure 2.1. Let v; and v, be direction vectors for L; and L, respectively.
These vectors are linearly independent since the lines are not parallel. Let A = C + av,
be any point on L; with a > 0 and let L be the line determined by P and A. To find
the intersection of L and L;, we must solve the equation

P+sPA=C+tv,

Figure 2.1. Proving Lemma 2.2.3.
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for real numbers s and t. This equation can be rewritten as
savi—tvy=(1-s)PC. 2.1

Since v; and v; are linearly independent, s cannot be 1 and equation (2.1) has a unique
solution for s and t. Let B = P + sPA.

2.2.4. Lemma. A motion M is a one-to-one and onto map.

Proof. The first part, that M is one-to-one, is easy, because if the distance between
the images of two points under M is zero, then so is the distance between the two
points by the definition of a motion.

Showing that M is onto is harder and we only prove it in the planar case here.
See [Gans69] for the general case. We begin by proving a stronger version of Theorem
2.2.1 (3).

Claim. M maps lines onto lines.

Let L be a line. We already know that M(L) is contained in a line L”. Let C’ be any
point of L’. We must show that there is a point C in L with M(C) = C’". To this end,
choose any two distinct points A and B of L and let (A’,B’) = M(A,B). Then C’ = A’ +
tA’B’ for some t. It follows from Lemma 2.2.2 that C' = M(A + tAB) and the claim is
proved.

We are ready to prove that planar motions are onto. See Figure 2.2. Let P’ be any
point of R?. We must show that P’ = M(P) for some point P. Take three noncollinear
points A, B, and C and let (A’,B",C") = M(A,B,C). Let L’ be the line that contains the
points A” and B’ and let L,” be the line that contains A” and C’. We just showed that
all the points on these two lines are in the image of M. Assume that P’ is not on these
two lines. By Lemma 2.2.3 there are two points D’ and E’ on these lines so that P’ is
on the line L’ determined by D’ and E’ and hence in the image of M. The planar case
of Lemma 2.2.4 is proved.

Although much of what we shall prove about motions depends only on their dis-
tance-preserving property and not on their domain, the domain can be important.
The following example shows that Lemma 2.2.4 definitely uses the fact that the
domain of the motion is all of the plane:

Figure 2.2. Proving motions are onto maps.
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2.2.5. Example. Let X ={ (x,y) | x>0 }c R? and define the distance-preserving map
T:X X by T(x,y) = (x + 1,y). The map T is clearly not onto.

2.2.6. Theorem. Motions form a group under composition.
Proof. Exercise.

The idea of a motion as a distance-preserving map is intuitively simple to under-
stand, but it is not very useful for making computations. In the process of deriving a
simple analytical description of motions, we shall not only get a lot of geometric
insights but also get practice in using linear algebra to solve geometric problems. We
begin our study of motions with an approach that is used time and again in mathe-
matics. Namely, if faced with the problem of classifying a set of objects, first isolate
as many simple and easy-to-understand elements as possible and then try to show
that these elements can be used as building blocks from which all elements of the
class can be “generated.”

221 Translations
The simplest types of motions are translations.
Definition. Any map T:R" »R" of the form
T(p)=p+V, (2.2)

where v is a fixed vector, is called a translation of R™. The vector v is called the trans-
lation vector of T.

Writing things out in terms of coordinates, it is easy to see that a map T(x1,X3,
coXn) = (X¢0,x2%, ... ,Xy) is a translation if and only if it is defined by equations of
the form

4
X1 =X1+¢
’

X2 =X3+C

Xn, =Xp +Cp, (2.3)

where the c; are fixed real numbers. Clearly, (cy,c, . . . ,cy) is the translation vector of
T in this case.

2.2.1.1. Theorem. Translations are motions.
Proof. This is a simple exercise for the reader.
Here are several simple interesting properties of translations.

2.2.1.2. Proposition. A translation T with nonzero translation vector v satisfies the
following properties:
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(1) T has no fixed points.

(2) T takes lines to lines with the same direction vector (or slope, in the case of
the plane).

(3) The only lines fixed by T are those with direction vector v. In the case of the
plane, the only lines fixed by T are those whose slope is the same as the slope
of one of their direction vectors.

Proof. (1) and (2) are left as exercises for the reader. To prove (3), consider a line L
through a point py with direction vector w. If T fixes L, then T maps a point pg + tw
on L to another point on L that will have the form pg + sw. Therefore,

Po +sw = T(po + tw)
=po+tw+v,

and so w is a multiple of v. The converse is just as easy.
In case of the plane, assume that the line L fixed by T is defined by the equation

ax+by =c. (2.4)

The line L has slope —a/b (the case of a vertical line where b is zero is left as an exer-
cise for the reader). If v = (h,k), then the slope of v is k/h. Choose a point (x,y) on L.
Since T(x,y) = (x + h,y + k) is assumed to lie on L, that point must also satisfy equa-
tion (2.4), that is,

a(x+h)+b(y+k)=c.

Using the identity (2.4) in this last equation implies that ah + bk = 0. This shows that
k/h = —a/b and we are done.

2.2.2 Rotations in the Plane

Another intuitively simple motion is a rotation of the plane.

Definition. Let 6 € R. A map R:R? -»R? of the form R(r,a) = (r,040), where points
have been expressed in polar coordinates, is called a rotation about the origin through
an angle 6.

See Figure 2.3. Using polar coordinates was an easy way to define rotations about
the origin, but is not convenient from a computational point of view. To derive the
equations for a rotation R in Cartesian coordinates, we use the basic correspondence
between the polar coordinates (r,00) and Cartesian coordinates (x,y) for a point p:

X =T COS O
y=rsino (2.5)

Let R(x,y) = (x,y"). Since R(r,0) = (r,0:+0),
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Figure 2.3. Defining a rotation with polar coordinates. y
p’=(o+6)
p=(ro)
)
(04
X
x'=rcos(0+0)=rcosocos®—rsinosin 0
y’=rsin (0t +6) =1 cos o sin 0+ r sin o cos 6. (2.6)

Substituting (2.5) into (2.6) leads to

2.2.2.1. Theorem. The equations for a rotation R about the origin through an angle
0 are

x’=xcos0—ysin 0

y’ =xsin0+ycos 6 2.7)
In particular, such a rotation is a linear transformation with matrix

(cose sin 9)' (2.8)

—-sin® cos©

2.2.2.2. Theorem. Rotations about the origin are motions.

Proof. This is proved by direct computations using the definition of a motion and
Theorem 2.2.2.1.

2.2.2.3. Example. The equations for the rotation R through an angle n/3 are

I S )
- YT
, V3 1

y =7X+ -y.

Furthermore, notice that the inverse of a rotation through an angle 6 is just the rota-
tion through the angle -0, so that given a rotation it is easy to write down the equa-
tions for the inverse. In our example the equations for the inverse are

X—lX'-i-ﬁ !
T2t T
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_—ﬁx,'Fl ’
y= 5 2Y~

We did not have to solve the first set of equations for x and y directly.

2.2.2.4. Example. Continuing Example 2.2.2.3, suppose that we would like to find
the image L’ of the line L defined by equation —-3x + 2y = 2.

Solution. All we have to do is substitute for x and y:

1, Y3, 31,
_3(5)( +7y )+2(—7X +5y )—2

“wp»

Simplification of the terms and omitting the “”on the variables gives that the equa-

tion for L’ is
e
(—%—Jikﬁ(—33;+Qy=2.

Of course, we could also have found two points p and q on L and then computed the
equation for the line through the two points R(p) and R(q), but that would be more
work.

So far we have only considered rotations about the origin, but it is easy to define
rotations about an arbitrary point.

Definition. Let p € R The general rotation R about p through an angle 0 is defined
by the equation R = TRoT™!, where T is the translation that sends the origin to p and
Ry is the rotation about the origin through the angle 6. The point p is called the center
of the rotation.

Note that a general rotation is a motion since it is a composite of motions.

2.2.2.5. Example. To find the equations for the rotation R about the point (-3,-1)
through the angle /3.

Solution. The translation T that sends the origin to (-3,-1) and its inverse T~! are
defined by the equations

T: x'=x-3 T x'=x+3

y=y-1 y'=y+1

The equations for the rotation Ry about the origin through the angle /3 were already
computed in Example 2.2.2.3. Therefore, the equations for R = TRoT™! are

x’—l(x+3)—£( +1)-3
=2 2 Y
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, V3 1
y —7(X+3)+5(y+l)—1.

The form of the solution to Example 2.2.2.5 generalizes to

2.2.2.6. Theorem. The equations for a rotation R about a point p = (a,b) through
an angle 6 are

x'=(x—a)cosO—(y—b)sin0+a

y'=(x—a)sin 0+(y —b)cos 0 +b.
Proof. Exercise.
Three interesting properties of rotations are

2.2.2.7. Proposition.

(1) The only fixed point of a rotation that is not the identity map is its
center.

(2) All rotations change the slope of a line unless the rotation is through an angle
of 0 or m.

(3) Only the rotations through an angle of 0 or © have a fixed line.

Proof. We shall only give a proof of (2). The proof of (1) is left as an exercise and
(3) is an immediate consequence of (2).

We already know from Proposition 2.2.1.2 that translations do not change
slopes. Therefore it suffices to prove (2) for rotations R about the origin. Let L
be a line defined by the equation ax + by = c. If R is a rotation through an angle
® and L’ = R(L), then substituting for x and y using the equations for R™! we get
that

a(xcos0+ysinB)+b(—xsin®+ycosd)=c

is an equation for L”. The proof of (2) in the special case where either L or L’ is ver-
tical is easy and is left as an exercise. In the rest of the discussion we assume that
slopes are defined. It follows that the slope for L’ is

bsin®—acos0
asinf+bcosH’

But this quotient can never equal the slope of L which is —a/b unless sin = 0, that is,
0 = 0 or m. (Simply set the two expressions equal and simplify the resulting equation
to get b? sin® = —a? sin6.) This proves the result.
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2.2.3 Reflections in the Plane

Another important type of motion is a reflection. Such a motion can be defined
in several ways. After giving our definition we shall discuss some of these other
characterizations.

Definition. Let L be a line in the plane. Define a map S:R?> —»R?, called the reflec-
tion about the line L, as follows: Choose a point A on L and a unit normal vector N
for L. If P is any point in R?, then

S(P)=P’ =P +2(PA *N)N. (2.9)
The line L is called the axis for the reflection S.

The reader will find Figure 2.4 helpful as we discuss the geometry behind reflec-
tions. First, note that W = (PA ¢ N)N is just the orthogonal projection of the vector PA
onto N. Define a point Q by the equation

PQ=W=(PA*N)N.

Intuitively, it should be clear that Q is the point on L as shown in Figure 2.4. This
does not follow from the definition however and must be proved. The following string
of equalities:

AQ*N=(PQ+AP)*N =[(PA*N)N+AP|*N=PA*N+AP*N =0

shows that Q satisfies the point-normal form of the equation AX e N = 0 for the points
X on the line (or hyperplane) L, so that Q does indeed lie on L. Furthermore, it is
easy to check that AQ is the orthogonal projection of AP on L. This means that, if V
is a unit direction vector for L, then AQ = (AP*V)V and we could have defined the
reflection S by

S(P) =P +2(PA + AQ). (2.10)
\ P+ N
\\ /
N \
L
W = (PA-N)N A+ sAB

\ Figure 2.4. Defining a reflection in the
\ plane.
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This definition has the advantage that one does not need to know a normal vector for
the line (only a direction vector or a second point B on the line). Of course, finding a
normal vector to a line in the plane is trivial. On the other hand, our normal vector
definition of a reflection will generalize to higher dimensions later.

Finally, since

Q=P+ (PA+N)N,

we see that Q is the point where the line through P that is orthogonal to L meets L.
Therefore, another definition of S(P) is that we solve for that point Q and then define

S(P) =P +2PQ. (2.11)

To put it another way, the segment PP’ is perpendicular to the line L and intersects
the line at its midpoint Q.

2.2.3.1. Theorem. Let S be the reflection about a line L.

(1) The definition of S depends only on L and not on the point A and the normal
vector N that are chosen in the definition. The three definitions of a reflection
specified by equations (2.9), (2.10), and (2.11) are equivalent.

(2) If t is chosen so that P + tN is the point where the line through P with direc-
tion vector N meets the line L, then S(P) = P + 2tN.

(3) The fixed points of S are just the points on its axis L.

(4) If L is the axis of a reflection S and L’ is a line orthogonal to L, then
S(L) =L".

(5) Reflections are motions.

Proof. Exercise.

2.2.3.2. Example. To find the reflection Sy about the x-axis.

Solution. If we choose A = (0,0) and N = (0,1), then PA = -P and
Sx(P)=P+2[(-P)*(0,1)] (0,1),

or

Sx (X! Y) = (X) _Y)

In other words, S, has equations

y =-y. (2.12)

2.2.3.3. Example. To find the reflection S about the line L defined by the equation
2x —y+2=0.
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L Figure 2.5. Example 2.2.3.3.

P (x,y) .

P'(x".y")

Solution. Let A = (=1,0), N = (1/5)(2,-1), and let P, Q, P’ be as shown in Figure 2.5.
Then PA = (—x—1,-y). Using the formulas in the definition of a reflection, it follows that
PO=|(-x1-y) 022Dz

) ) @ ) @ )

_(_ixﬁ 42 1 +Ej
755V 55 75V )

Since S(P) = P + 2PQ , we get that the equations for S are

x’——§x+i _8
TT5*TsY 75
4 3 4
= —X+-y+—-. 2.13
y Xty *3 (2.13)

To check our answer note that S(-3,1) evaluates to (1,-1), which is what it should be.
Again see Figure 2.5. Our equations also give that S(A) = A and S(B) = B.

2.2.3.4. Proposition. If S is the reflection about the line L defined by the equation
ax + by + ¢ =0, then

—ax—-by-c

Sx,y)=(x,y)+2 e (a,b). (2.14)

Proof. The proof of this formula is based on Theorem 2.2.3.1(2). We know that N =
(a,b) is a normal vector for L (although it may not be a unit vector). Therefore, if P
= (x,y), to find the point Q shown in Figure 2.4, we need to find t so that P + tN lies
on L. But

a(x+ta)+b(y+tb)+c=0

implies that



2.2 Motions 15
_ —ax-— by -c
a’ +b?
We get our equation by substituting this t into
S(P)=P+2PQ =P +2tN.
2.2.3.5. Example. We redo Example 2.2.3.3 using equation (2.14).
Solution. In this case

(= -2x+y-2
=
so that

—2x+y-2

= 2,-1)

Sx,y)=(x,y)+2

This equation simplifies to the same equation for S as before.

A final and more systematic way to compute reflections, one that is easier to
remember conceptually (given that one understands translations, rotations about the
origin, and the reflection about the x-axis), is based on the often useful general prin-
ciple that complicated problems should be solved by successively reducing them to
simpler ones until one arrives at a primitive problem whose solution is known.

Case 1 (The primitive problem). The equation for the reflection Sy about the
X-axis.

This problem was solved in Example 2.2.3.2 above and we got equations (2.12).
Case 2. The equation for a reflection about a line through the origin.

This case can be reduced to the Case 1 by first rotating the line to the x-axis, then
using the equation from Case 1, and finally rotating back.

Case 3 (The general case). The equation for a reflection about an arbitrary line.

By translating the line to a line through the origin we can reduce this case to Case
2, find the equation for that case, and then translate back.

The steps outlined in Cases 1-3 lead to the following characterization of a reflection:
2.2.3.6. Theorem. Every reflection S in the plane can be expressed in the form
S=T'R7'S(RT,

where T is a translation, R is a rotation about the origin, and S; is the reflection about
the x-axis.
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Proof. Exercise.

2.2.3.7. Example. To find the equation for the reflection S about the line in Example
2.2.3.3 using this approach.

Solution. First translate the line L to a line L’ that passes through the origin via the
translation

T: x'=x+1
y =y

Next, let R be the rotation about the origin through the angle -6 defined by

R will rotate L’ into the x-axis because 0 is the angle that the line L makes with the
x-axis. The equations for R and R™! are

S S e L2
R: x' = ﬁ5x+ ﬁsy R.x_gx ﬁsy
, 2 1 , 2 1
Y= E Y V=R

Finally, if S, is the reflection about the x-axis, then S is just the composite T"'R"!S,RT.
Since the equations for all the maps are known, it is now easy to determine the equa-
tions for S and they will again turn out to be the same as the ones as equations (2.13).

The reader might wonder at this point why we bothered to describe the solution
in Example 2.2.3.7 since it is more complicated than the one in Example 2.2.3.3. In
this instance, the method of Example 2.2.3.7 should simply be considered to be a case
of trying to give the reader more insight into how to solve a geometric problem. The
approach might not be efficient here but will be in other situations. It is important to
realize that there are two types of complexity: one, where we dealing with something
that is intellectually difficult, and the other, which may take a lot of time but only
involves intellectually simple steps. This is the case with the solution in Example
2.2.3.7. Actually, this type of question will probably come up again later on in this
chapter because there are usually many ways to solve problems. Any particular
problem may very well have an extremely elegant solution that a human might find.
On the other hand, a computer is not able to deal with problems on a case-to-case
basis and needs a systematic approach.

224 Motions Preserve the Dot Product

2.2.4.1. Theorem. If M is a motion with the property that M(0) = 0, then M is a
linear transformation, that is,
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M(au + bv) =a M(u)+ b M(v),
for all vectors u and v and real numbers a and b.
Proof. We shall show that M is a linear transformation in two steps.
Claim 1. M(u + v) = M(u) + M(v).
Define a vector w by the equation
u+v=2w. (2.15)
This equation can be rewritten as
w:u+%(v—u). (2.16)
See Figure 2.6. Since M(0) = 0 (which implies that IM(p)! = Ipl for any vector p), we
can use equation (2.15) and Lemma 2.2.2 to conclude that
M(u +v) = 2M(w). (2.17)

Similarly, equation (2.16) and Lemma 2.2.2 implies that
M(w) = M(u) + %(M(v) —M(u)). (2.18)

Substituting the expression for M(w) in equation (2.18) into equation (2.17) and sim-
plifying the result proves Claim 1.

Claim 2. M(cv) = cM(v), for any real number c.

This follows from Lemma 2.2.2 (let A= 0, B=v, and t = ¢ in that Lemma). Theorem
2.2.4.1 is proved.

M(u +v) = 2M(w) utv

M(v)
(W)

M(u)
Figure 2.6. Proving motions are linear
transformations.
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2.2.4.2. Theorem. Every motion M can be written uniquely in the form M = T{M,
= MoT,, where T; is a translation and My is a motion that fixes the origin, that is,
My(0) = 0.

Proof. Define the translation T; by Ti(p) = p + M(0) and let M; = T;"'M.
Clearly, M{(0) = 0 and M = T{M;. Similarly, if we define the translation T, by
To(p) = p - M'(0) and let M, = MT3!, then M»(0) = 0 and M = M,T,. Next, we
show that M, = M;. But by Theorem 2.2.4.1, the motions M; are linear transforma-
tions and so
M(p) = TiM; (p) = M (p) + M(0)
and
M(p) = M>T>(p) = Ma(p) — M, (M~1(0)).
Therefore, for all p,
M, (p) — M5 (M~1(0)) = M (p) + M(0).

The special case where p is 0 shows that —M,(M~!(0)) = M(0). In other words, we can
cancel those terms to get that M,(p) = M(p). The uniqueness part of the theorem is
proved in a similar way.

2.2.4.3. Lemma. Let M be a motion and assume that M(0) = 0. Then M(u) e M(v) =
uev for all vectors u and v.

Proof. The following string of equalities hold because M is a distance preserving
map and, by Theorem 2.2.4.1, also a linear transformation:

ueu+22uev+vev=(u+v)e(u+v)
=M®@u+v)e Mu+v)
= M(u) * M(u) + 2M(u) ® M(v) + M(v) ® M(v)
=ueu+2Mu)e M(v)+vev

Now cancel the terms ueu and vev from both sides and divide by 2.
2.2.4.4. Theorem. If M is a motion, then

M(A)M(B) e M(A)M(C) = AB » AC
for all points A, B, and C.

Proof. By Theorem 2.2.4.2 we can express M in the form M = TM,, where T is a
translation and M, is a motion with My(0) = 0. It is easy to check that

M(A)M(B) = Mo(A)M,(B)
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Figure 2.7. Motions preserve angles. C M(C)  M(B)
M
0 B 0
A M(A)
and

M(A)M(C) = Mo (A)M,(C).
The theorem now follows from Lemma 2.2.4.3 applied to M.
2.2.4.5. Corollary. Motions preserve angles.
See Figure 2.7. There is a converse to the results proved above.

2.2.4.6. Theorem. A map that preserves the length of vectors and the angles
between them also preserves distance, that is, it is a motion.

Proof. Exercise 2.2.4.1.

225 Some Existence and Uniqueness Results

LetPy, Py, ..., Prand Py, Py, ..., P,k >1, be two sequences of points in the plane.
We would like to determine when there is a motion M that sends P; to P;y. Since
motions always preserve distances, a minimal requirement is that [P;Pjl = [PyPy'| for
all i and j. Is this enough though?

Case 1. k=1.

There is no problem in this case. For example, the translation T(Q) = Q + P{P{’
would do the job. In fact, so would M = RT, where R is any rotation about Py". In other
words, there are an infinite number of distinct motions that send P; to Py’.

Case 2. k=2.

Assume, without loss of generality, that P # P,. Consider the translation T defined
in Case 1 that sends Py to Py’. By hypothesis, [P;’T(P,)| = [P;’P,’l. Let o be the angle
between the vectors Py'T(P;) and P{’P,” and let R be the rotation about the point Py’
through the angle a. See Figure 2.8. It is easy to show that the motion M = RT does
what we want, as does the motion M’ = SRT, where S is the reflection about the line
through P;” and P,". M and M’ are clearly distinct.

Case 3. k=3.
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TP, Figure 2.8. Moving two points to another two
e points.

s

X=R(©) Figure 2.9. Proving Lemma 2.2.5.1.

Let M and M’ be the motions defined in Case 2 that send P; and P, to P;” and
P,’, respectively. By hypothesis, IP/M(P3)l = IP/P3’l for i = 1,2. The next lemma
shows that either M or M’ does what we want, namely, either M(P3;) = P3" or
M’'(P3) = P5'.

2.2.5.1. Lemma. Let A, B, and C be three noncollinear points in the plane. The
only vectors X in the plane that satisfy the two equations |IAX| = |AC| and IBXI| = IBC|
are X = C and X = R(C), where R is the reflection about the line L determined by A
and B.
Proof. Assume that X = C.

Claim. The midpoint D = %(C+X) of the segment [C,X] lies on the line L.

See Figure 2.9. Once the claim is proved we are done because the definition of D

implies that X = C + 2CD, which is where the reflection sends the point D. Consider
the following identities:

CDOAD=(%(C+X)—Cj°(%(C+X)—A)

= %(AX -AC)e %(AC +AX)
1
= (AX” -lacr)

=0
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()
(a) (b)

Figure 2.10. Case 4 of the existence theorem.

Similarly, one can show that CDeBD = 0. It follows easily from this that the
vectors AD and BD are parallel and that D lies on L. This proves the claim and the
lemma.

Case 4. k> 3.

We claim that if the first three points Py, P, and P are linearly independent, then
the map defined in Case 3 that sends them to Py, Py’, and P3’, respectively, will already
send all the other points P;, i > 3, to Py’. Figure 2.10 shows how the argument pro-
ceeds. In Figure 2.10(a) we show three circles with centers Py, P,, and P3 and radius
P,P;, P,P;, and P;P;, respectively. The point P; lies on the intersection of these circles.
Figure 2.10(b) shows the corresponding circles around the image points. One has to
show that P; will get sent to the intersection of those circles and that this is the same
as the point Py’.

We have just given a constructive proof of the following theorem.

2.2.5.2. Theorem. (The Existence Theorem for Motions) Given points Py, P, . . .,
Py and P/, Py, . . ., P\’ with the property that [P;P;| = [P/P{| for all i and j, then there
is motion M, so that M(P;) = Py.

Proof. See [Gans69] for missing details in the discussion above.

Now that we have answered the question of the existence of certain motions, let
us look at the issue of uniqueness more closely?

2.2.5.3. Theorem. A motion that has two distinct fixed points fixes every point on
the line determined by those points.

Proof. Let M be a motion and assume that M(A,B) = (A,B) for two distinct points
A and B. Let L be the line determined by A and B and let C be any point of L. If C
= A + tAB, then Lemma 2.2.2 implies that M(C) = M(A) + tM(A)M(B). In other words,
M(C) = C and the theorem is proved.

2.2.5.4. Theorem. Any motion of the plane that leaves fixed three noncollinear
points must be the identity.
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Proof. Let A, B, and C be three noncollinear points and let M be a motion with
M(A,B,C) = (A,B,C). Let P be any other point in the plane. We would like to show that
M(P) = P. By Theorem 2.2.5.3, M is the identity on the three lines determined by the
points A, B, and C. If P lies on these lines we are done; otherwise, Lemma 2.2.3 implies
that P lies on a line through two distinct points that lie on two of these lines. Using
Theorem 2.2.5.3 we can again conclude that M fixes P.

2.2.5.5. Corollary. Two motions of the plane that agree on three noncollinear points
must be identical.

Proof. Let M and M’ be motions and assume that M(A,B,C) = M’(A,B,C) for three
noncollinear points A, B, and C. Consider the motion T = M"!M’. Since T(A,B,C) =
(A,B,C), Theorem 2.2.5.4 implies that T is the identity, that is, M = M’.

2.2.5.6. Corollary. Every motion of the plane is a composite of a translation, a rota-
tion, and/or possibly a reflection.

Proof. This follows from the construction in Case 3 above and Corollary 2.2.5.5.

Theorem 2.2.5.3 raises the question whether a motion of the plane that fixes two
distinct points is actually the identity map. That is not the case. Reflections, such
as the map T(x,y) = (x,—y), can leave all the points of a line fixed but still not be the
identity.

2.2.5.7. Theorem. A motion M of the plane that fixes two distinct points A
and B is either the identity map or the reflection about the line L determined by A
and B.

Proof. By Theorem 2.2.5.3, M fixes all the points on the line L. Let C be any point
not on L. Lemma 2.2.5.1 shows that C gets mapped by M either to itself or to its reflec-
tion C” about the line L. The theorem now follows from the Corollary 2.2.5.5 since we
know what M does on three points.

226 Rigid Motions in the Plane

2.2.6.1. Lemma. Every rotation R of the plane can be expressed in the form R =
RoT; = T2Rg, where Ry is a rotation about the origin and T; and T, are translations.
Conversely, if Rg is any rotation about the origin through a nonzero angle and if T is
a translation of the plane, then both RyT and TRy are rotations.

Proof. Suppose that R = TReT!, where Ry is a rotation about the origin and T is a
translation. By Theorem 2.2.4.2 we can move the translations to either side of R,
which proves the first part of the lemma. The other part can be proved by showing
that certain equations have unique solutions. For example, to show that TR is a rota-
tion, one assumes that it is a rotation about some point (a,b) and tries to solve the
equations

(x—a)cos®—(y—b)sinf+a=xcos0—ysinO+c
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(x—a)sin®+(y—b)cos0+b=xsin0+ycos0+d
for a and b. The details are left as an exercise.

2.2.6.2. Theorem. The set of all translations and rotations of the plane is a sub-
group of the group of all motions. The set of rotations by itself is not a group.

Proof. To prove the theorem one uses Lemma 2.2.6.1 to show that the composites
of translations and rotations about an arbitrary point are again either a translation
or a rotation.

Definition. A motion of the plane that is a composition of translations and/or
rotations is called a rigid motion or displacement.

Rigid motions are closely related to orientation-preserving maps. We defined that
concept in Section 1.6 for linear transformations and we would now like to extend
the definition to motions. Motions are not linear transformations, but by Theorem
2.2.4.2 they differ from one by a translation. Intuitively, we would like to say that a
motion M of the plane is “orientation preserving” if for every three noncollinear points
A, B, and C the ordered pairs of basis vectors (AB,AC) and (M(A)M(B),M(A)M(C))
determine the same orientation of R?. See Figure 2.11. This definition would be messy
to work with and so we take a different approach.

Let M be a motion in R"”. By Theorem 2.2.4.2 we can write M uniquely in the form
M = TMy, where T is a translation and M, is a motion that fixes the origin. Theorem
2.2.4.1 implies that My is a linear transformation.

Definition. The motion M is said to be orientation preserving if My is. Otherwise, M
is said to be orientation reversing.

2.2.6.3. Theorem.

(1) A motion M is orientation preserving if and only if M~ is orientation
preserving.

(2) The composition MM’ of two motions M and M’ is orientation preserving if and
only if either both are orientation preserving or both are orientation reversing.

(3) The composition M;M; . .. My of motions M; is orientation preserving if and
only if the number of orientation-reversing motions M; is even.

Proof. The proof is left as an exercise. It makes heavy use of Theorem 2.2.4.2 to
switch translations from one side of a motion that fixes the origin to the other.

¢ M(B)

M(C)

Figure 2.11. An orientation-preserving motion. M(A)
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2.2.6.4. Theorem.

(1) Translations and rotations of the plane are orientation-preserving motions.
(2) Reflections are orientation-reversing motions.

Proof. The fact that translations are orientation-preserving motions follows imme-
diately from the definition since the identity map is certainly orientation preserving.
To prove that rotations are orientation preserving, it suffices to show, by Theorem
2.2.6.3, that any rotation R about the origin is orientation preserving since an arbi-
trary rotation is a composition of translations and a rotation about the origin. The
fact that such an R is orientation preserving follows from Theorems 1.6.6 and 2.2.2.1
and the fact that the matrix for the linear transformation R has determinant +1. This
proves (1).

To prove (2) note that the reflection Sy about the x-axis is a linear transformation
with equation (2.12) that clearly has determinant —1 and hence is orientation revers-
ing. Next, Theorem 2.2.3.6 showed that an arbitrary reflection can be written in the
form T-'R!S,RT, where T is a translation and R is a rotation about the origin. Prop-
erty (2) now follows from (1) and Theorem 2.2.6.3.

We can also justify Theorem 2.2.6.4(2) geometrically based on the intuitive idea
mentioned earlier that a motion of the plane is orientation reversing if for some three
noncollinear points A, B, and C the ordered pairs of basis vectors (AB,AC) and
(M(A)M(B),M(A)M(C)) determine opposite orientations for R?. To see this we shall
use the same notation as in the definition of a reflection in Section 2.2.3. If P is a
point not on L, then clearly AQ and QP form a basis for R? and

T(A)TQ)=AQ =1-AQ+ 0-QP
TQ)T®P)=QP’'=0-AQ+(-1)-QP.
The determinant of the matrix of coefficients that relates the original basis to the
transformed one is —1. This means that the two bases are in opposite orientation

classes.

2.2.6.5. Theorem. A motion of the plane is orientation preserving if and only if it
is a rigid motion.

Proof. Exercise.

Although it takes three points to specify a general motion of the plane, two points
suffice in the special case of rigid motions.

2.2.6.6. Theorem. If M is a rigid motion of the plane and if M fixes two distinct
points, then M is the identity.

Proof. This theorem is an immediate consequence of Theorems 2.2.5.7 and 2.2.6.4.

2.2.6.7. Corollary. Two rigid motions of the plane that agree on two distinct points
must be identical.
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Proof. The proof of this corollary is similar to the proof of Corollary 2.2.5.5.

2.2.6.8. Corollary. If two orientation-reversing motions of the plane agree on two
distinct points, then they must be identical.

Proof. If M and M’ are the two orientation-reversing motions, then M’ M is a rigid
motion that fixes two distinct points and hence is the identity map. It follows that
M=M".

2.2.6.9. Theorem. A rigid motion of the plane that has a fixed point p is a rotation
about p.

Proof. Exercise.

2.2.7 Summary for Motions in the Plane

We have defined motions and have shown that a motion of the plane is completely
specified by what it does to three noncollinear points and that it can be described in
terms of three very simple motions, namely, translations, rotations, and reflections.
To understand such motions it suffices to have a good understanding of these three
primitive types.

Planar motions are either orientation preserving or orientation reversing with
rigid motions being the orientation-preserving ones. Reflections are orientation
reversing. Another way to describe a planar motion is as a rigid motion or the com-
position of a rigid motion and a single reflection. In fact, we may assume that the
reflection, if it is needed, is just the reflection about the x-axis.

Combining various facts we know, it is now very easy to describe the equation of
an arbitrary motion of the plane.

2.2.7.1. Theorem. Every motion M of the plane is defined by equations of the form

x'=ax+by+c
y' =+(-bx +ay)+d, (2.19)

where a? + b? = 1. Conversely, every such pair of equations defines a motion.

Proof. Let M(0) = (c,d) and define a translation T by T(P) = P + (c,d). Let M’ =
T' M. Then M = TM’ and M’ fixes the origin.

Case 1. M is orientation preserving.

In this case M’ is orientation preserving and must be a rotation about the origin
through some angle 6 (Theorem 2.2.6.9). Let a = cos0 and b = - sin 0. Clearly the equa-
tion for M has the desired form.

Case 2. M is orientation reversing.
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Let S be the reflection about the x-axis, that is, S(x,y) = (x,—y). Since M’ is orien-
tation reversing, it follows that the motion R = SM’ is orientation preserving, but R
also fixes the origin. Therefore, R must be a rotation about the origin through some
angle 0. Note that SR = SSM’ = M’. Define a and b as in Case 1. It is again easy to see
that the equation for M = TM’ = TSR has the desired form.

This proves the first part of Theorem 2.2.7.1. The second part is Exercise 2.2.7.1.
See also the next example.

2.2.7.2. Example. Let us show directly, without using Theorem 2.2.7.1, that the
transformation M defined by the equations

x’—£x+ 1 +5
"2 2"
'= lx—ﬁ +7

y=5 5 Y

is a motion.

Solution. Define a translation T by T(x,y) = (x,y) + (5,7). Let R be the rotation about
the origin through the angle —1/6 and let S be the reflection about the x-axis. It is easy
to see that M = TSR and hence is a motion since it is a composite of motions.

Theorem 2.2.7.1 shows that motions can be represented by five real numbers (the
a, b, ¢, d, and +1 depending on the sign). Rigid motions can be represented by four
real numbers. Chapter 20 in [AgoMO05] describes a very compact way to represent
motions in terms of quaternions. The fact that a motion is defined by five numbers
leads to another way to solve for a motion when it is given in terms of some points
and their images. One simply solves the equations in Theorem 2.2.7.1 for the unknown
coefficients. Solving for five unknowns turns out to be not as complicated as it may
sound in this case.

Next, we would like to give a more complete geometric characterization of
motions than that given in Corollary 2.2.5.6.

2.2.7.3. Lemma. Every orientation-reversing motion M that fixes the origin is a
reflection about a line through the origin.

Proof. Let p be a nonzero point. If M fixes p, then Theorem 2.2.5.7 implies that M
is the reflection about the line through the origin and p and we are done. Assume
therefore that p” = M(p) # p. Let q be the midpoint of the segment [p,p’] and let S be
the reflection about the line through the origin and q. Clearly, S and M agree on 0
and p. By Corollary 2.2.6.8 they are the same map.

Definition. A glide reflection is the composite of a reflection about a line L followed
by a translation with nonzero translation vector parallel to L. (See Figure 2.12.)

2.2.7.4. Theorem. Every orientation-reversing motion M is a reflection or a glide
reflection.

Proof. If M fixes the origin, then the theorem is true by Lemma 2.2.7.3. Assume
therefore that M(0) = p is distinct from the origin and let T be the translation that
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Figure 2.12. A glide reflection.

A

sends the origin to p. Let M’ = T"!M. Then M’ is an orientation-reversing motion that
fixes the origin and hence a reflection by Lemma 2.2.7.3. Since M = TM’, M is a glide
reflection and we are done.

2.2.7.5. Theorem. Every motion M is either a translation, rotation, reflection, or
glide reflection.

Proof. If M is a rigid motion, then M is a translation or rotation by Theorem 2.2.6.2.
If M is not a rigid motion, that is, if it is orientation reversing, then M is a reflection
or glide reflection by Theorem 2.2.7.4.

One final word about why the term “congruent transformation” is sometimes used
instead of “motion.” The reader may recall the notion of “congruent figures” from
his/her Euclidean geometry course in high school, which most likely was never given
a really precise definition. Well, we can do so now.

Definition. Two figures are said to be congruent if there is a motion that carries one
into the other.

2.2.8 Frames in the Plane

Before leaving the subject of motions in the plane we want to discuss another
approach to defining them - one that will be especially powerful in higher dimen-
sions.

Definition. A frame in R?is a tuple F = (u;,uy,p), where p is a point and u; and u,
define an orthonormal basis of R?. If the ordered basis (u;,u;) induces the standard
orientation, then we shall call the frame an oriented frame. The lines determined by
p and the direction vectors u; and u; are called the x-, respectively, y-axis of the frame
F. The point p is called the origin of the frame F. (ey,e,,0) is called the standard frame
of R? To simplify the notation, we sometimes use (u;,u;) to denote the frame (u;,u5,0).

Frames can be thought of as defining a new coordinate system. See Figure 2.13.
They can also be associated to a transformation in a natural way. If F = (uy,u,,p) is a
frame and if w; = (uj;,u;2) and p = (m,n), then define a map Tr by the equations

X' =upXx+uzy+m

y, =UuX+upy+n. (220)
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y Figure 2.13. Frames in the plane.
u, up

N\

p
€

€

In matrix form, Tg is the map

Tr(x,y) = (x,y)(zljm. (2.21)
2

Claim 1. TF is a motion.
Proof. Since (uj,u,) is an orthonormal basis, we have that
u121 +u122 =1= u%l + u%z and ujjuy; +ujul =0.

If follows easily from this that the equations (2.20) have the form of the equations in
Theorem 2.2.7.1, proving the claim.

If we think of a frame as defining a new coordinate system, then we can coordi-
natize the points in the plane with respect to it.

Definition. The coordinates of a point with respect to a frame are called the frame
coordinates. The frame coordinates with respect to the standard frame are called world
coordinates.

Since Tr maps the origin (0,0) to p, (1,0) to p + uy, and (0,1) to p + up, we can
think of Tr as mapping frame coordinates to world coordinates.

There is a converse to Claim 1. Let M be a motion defined by the equations

x’=ax+by+m
y' =cx+dy+n.

Let u; = (a,c), uz = (b,d), and p = (m,n).

Claim 2. (uj,u;) is an orthonormal basis and (uy,u,,p) is a frame.
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Proof. This also follows from Theorem 2.2.7.1 since by that theorem ¢ = —-kb and
d = ka for some k = +1 and a? + b? = 1.

Claims 1 and 2 can be summarized by saying that there is a one-to-one corre-
spondence between frames and motions. The special case where p = 0 shows that
there is a one-to-one correspondence between orthonormal bases and motions that
fix 0.

2.2.8.1. Example. Consider the rotation R about the origin defined by

SO .
“5%75Y
'—ix+—

Y =gx+3y

3 4 4 3
The vectors u; = (g,—g) and w, = (g,g) clearly form an orthonormal basis.

Definition. The motion T, usually simply denoted by F, is called the motion defined
by F.

Using “F” to denote both the frame F and the motion Tf should not cause any
confusion since it will always be clear from the context as to whether we are talking
about the frame or the map.

The observations above lead to a simple way to get the inverse of a motion.
Consider equations (2.20) again. Let R be the motion

Rexy) =y |

uz
and T, the translation
T(q) = q + (m, n).

(Note that R is actually a rotation if the frame is oriented.) Then, as maps, F = TR
and F'=R7!T-!. But it is easy to check that

(%l wf) = ewp=( 7

up 01

which shows that the inverses of the matrices

(ulj and (uf uj)

u

are just their transposes. Considering Example 2.2.8.1 again, note that the transpose of
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ul|

vl u|w
Ul W

is its inverse. Therefore, F~! is the map defined by
F(x, y) = ((xy)-p) (uf u3), (2.22)
or, in terms of equations,

X’ =uy (x—m)+up2(y - n)
y = (x—m)+ux(y—n) (2.23)
Equations (2.20)—(2.23) are fundamental and worth remembering. They summarize

the main relationship between frames and motions.
We finish this discussion of frames with several examples.

2.2.8.2. Example. To find the equations for the rotation about the origin which
rotates the point A = (2,0) into B = (173).

Solution. All we have to do is to normalize B to

s2)
=272

and combine this vector with the orthogonal vector

-3)
w=\-——,=
2 2

(chosen so that the pair induces the standard orientation) to get the frame F = (uj,uy).
This frame defines the desired rotation.

2.2.8.3. Example. To find a motion M that sends the origin to the point A = (3,0)
and the directed x-axis to the directed line L; shown in Figure 2.14.

Solution. Define a frame F = (uj,u,A) by
w =B _ (L i)
""AB| \V5'V5)
_ (_i L)
uz = @;@ .

Then M = F does the job. In fact, M is a rigid motion.
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y Figure 2.14. Using frames to move lines.
y+2x-3=0 [ y-2x+6=0
L2 Wy Ll
C(0,3)
W1
B(4.2)
D(1,1)
u, Uy
t + X
\/A(S,O)

Example 2.2.8.3 easily generalizes to finding a motion that maps the x-axis and
the origin to any other line and point. By taking the inverse of this map we can map
an arbitrary line to the x-axis. We can go a step further:

2.2.8.4. Example. Again consider Figure 2.14. We find a motion M that sends the
point A = (3,0) to the point C = (0,3) and the directed line L; to the directed line L,.

Solution. Following the approach used in Example 2.2.8.3 we can map the x-axis to
the line L; using the map G, where G is the frame (wy,w>,C) and

_CD_(I _2)

"1 =iep T\V5 TV )
_(LL)

W2\ Vs )

If F is the frame defined in Example 2.2.8.3, then M = GF ! is a rigid motion that will
do what we want. In terms of equations we have

1 2
1. s L ER
F': x'= «/E(X 3)+€y
b2 a1
y = @(X 3)+@y,
oL o2
G: x'= €X+@y
y’:—%sx+%5y+3, and
3 4 9
M: =X t+—vy+=
X 5x+5y+5
.43 27
y=-ox-Cy+—
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Looking over the solution for Example 2.2.8.4, a reader might wonder if there was
a special reason for choosing the particular orthonormal bases (uj,u;) and (wy,w>).
Not really. The important observation is that no matter what the choice, the three
points A, A + uy, and A + u, will get sent to the points C, C + wy, and C + w;. The line
determined by the points A and A + u; will get sent to the line determined by C and
C + wi. We could have replaced the bases by (uj, tu;) and (wy, +w;) or (-uy, tu,) and
(-w1, ¥w;) and we would have gotten an answer to our problem. On the other hand,
if we want to get a rigid motion then things are not quite so arbitrary. We still have
choices, but the bases must induce the same orientation of the plane. In particular,
we would not be able to pick (uj,u;) and (wi,—w>), for example.

It is easy to see from Example 2.2.8.4 that frames can easily be used to solve the
general problem of mapping one directed line and point to another directed line and
point. The user should compare this approach to how the problem would be solved
without frames. The underlying mathematics is really the same. The orthonormal
bases have the cosines of angles that are used for the rotation contained in them
implicitly. Recall that the components of a unit vector are just direction cosines. Nev-
ertheless, with frames one simply has to build orthonormal bases and this is easier
than messing with angles directly.

Finally, one can also use frames to define motions that send three points to another
three points. For example, suppose that we want to define a motion M that sends
points A, B, and C to points A’, B’, and C’, respectively. See Figure 2.15. Let
F = (uj,u3,A) be the frame obtained from the normalized AB and the orthogonal
complement of AC with respect to AB. Let F = (uy’,uy’,A’) be the frame obtained in
a similar way from A’, B, and C’. Then M = F'F..

2.2.8.5. Example. To find the motion M that sends A(-2,1), B(0,2), C(-2,4) to
A’(4,0), B’(6,-1), C’(4,-3), respectively.

Solution. See Figure 2.16. The first task is to define the frames F = (uy,u;,A) and
F’ = (u)’,uy’,A”) so that M = F'F~!. To get the orthonormal bases we apply the Gram-

Schmidt algorithm to the bases (AB,AC) and (A’B’,A’C’). We leave this as an exercise
for the reader. One gets

1 1
ug =T5(2’ D), u= TS(—L 2)

u

B’ Figure 2.15. Using frames to define motions.
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Figure 2.16. Example 2.2.8.5. y
C(-24)e
2 +B(0.2)
Uy
AGZD 1 A'(4,0)
——t e X
u;’/\ U’ e B/(6,-1)
o C'(4,-3)
and
W= L@, uwh=(-1,2)
1= \/g » 1 2= \/g ’ .
Equations (2.22) and (2.21) imply that
2 _1
Flay=e2y-0f P 35
V5 5
2 _1
F'(x,y)=(x,y) “F? ? +A,
V5 45
and
2 1yz2 _1
x,y)=MEx,y)=x+2,y-1) \/15 ;/E ﬁ ? +(4,0).
V5 V5 NV5 45
This leads to the following equations for M:
X'=x+6

vy =-y+1
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It is easy to check that this motion sends the points A, B, C to A’, B’, C’.

The astute reader may have noticed just by looking at Figure 2.16 that there are
easier ways to solve Problem 2.2.8.5. For example, the motion M can also be obtained
by translating A to A’ and then reflecting about the x-axis. However, to emphasize a
point made earlier, using frames is a systematic approach that can be programmed
on a computer. Computers cannot “look.”

2.3 Similarities

Definition. A map S:R" -R"is called a similarity transformation, or simply a sin-
ilarity, if

IS(p)S(q)| =rlpql
for all p, q € R"” and some fixed positive constant r.
Clearly, motions are similarities, because they correspond to the case where r is
1 in the definition. On the other hand, the map S(p) = 2p is a similarity but not a

motion. In fact, S an example of a simple but important class of similarities.

Definition. A map R:R" —»R" of the form R(p) = rp, r > 0, is called a radial
transformation.

2.3.1. Theorem. Radial transformations are similarities.
Proof. Exercise.

The next theorem shows that similarities are not much more complicated than
motions.

2.3.2. Theorem. If S is a similarity, then S = MR, where M is a motion and R is a
radial transformation. Conversely, any map of the form MR, where M is a motion and
R is a radial transformation, is a similarity.

Proof. This is easy because if we use the notation in the definitions for a similarity
and a radial transformation, then R7!S is a motion M.

2.3.3. Corollary. Every similarity in the plane can be expressed by equations of the form
x'=ax+by+m

y’=+(-bx+ay)+n, (2.24)

where (a,b) # (0,0). (The r in the definition of a similarity is Ya?+b? in this case.)
Conversely, every map defined by such equations is a similarity.

2.3.4. Theorem. Similarity transformations
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(1) preserve the betweenness relation,

(2) preserve collinearity and noncollinearity,

(3) map lines onto lines, and

(4) are one-to-one transformations of R” onto itself.
Proof. This theorem follows from Theorem 2.3.2 and some obvious facts about
radial transformations. In the planar case, it can also be proved directly like it was
done in the case of motions.

2.3.5. Theorem. The similarity transformations form a group that contains the
group of motions as a subgroup.

Proof. Obvious.

2.3.6. Theorem. A similarity transformation in the plane is completely specified by
its action on three noncollinear points.

Proof. Use Theorem 2.3.2.
2.3.7. Theorem. Similarity transformations in the plane preserve angles.

Proof. By Theorem 2.3.2, since motions preserve angles, it suffices to show that
radial transformations preserve angles, which is easy.

2.4 Affine Transformations

Definition. A one-to-one and onto mapping T:R" — R” that maps lines onto lines
is called an affine transformation.

Actually, one can characterize affine transformations in a slightly stronger fashion.

2.4.1. Theorem. Any one-to-one and onto map of R" onto itself that preserves
collinearity is an affine transformation.

Proof. The only thing that needs to be shown is that lines get mapped onto lines.
This is shown in a way similar to what was done in the proof of Lemma 2.2.4 and left
as an exercise.

2.4.2. Theorem. The set of affine transformations in R" forms a group that con-
tains the similarities as a subgroup.

Proof. Exercise.
Affine transformations, like motions and similarities, have a simple analytic

description. Before we get to the main result for these maps in the plane, we analyze
transformations with equations of the form
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x’=ax+by+m

y'=cx+dy+n (2.25a)
where
a bl (2.25b)
c d

2.4.3. Theorem. The set of transformations defined by equations (2.25) form a
group under composition.

Proof. This is straightforward. The main observation is that since the determinant
in (2.25b) is nonzero, the transformations have inverses. It is also easy to show that
the inverses are defined by equations of the same form.

The transformations defined by equations (2.25) clearly include the motions and
similarities. It is worth noting that they are simply the composition of a linear trans-
formation of the plane followed by a translation. There are two other interesting
special cases.

Definition. The linear transformation of the plane defined by the equations
X’ =ax
y = dy, ad=0, (2.26)

is called a (local) scaling transformation. It is a global scaling transformation if a = d.

Note that the scaling transformation defined by equations (2.26) is orientation
reversing if ad < 0. It will be a similarity if a=d > 0. It is easy to check that the inverse
of the scaling transformation above is the scaling transformation

x’ =(1/a)x
y' = (1/d)y.

Definition. A linear transformation of the plane defined by equations

X =X

y' =cx+y (2.27a)
is called a shear in the x-direction. A linear transformation defined by equations

x'=x+by
y= Y (2.27a)

is called a shear in the y-direction.

It is easy to show that the inverse of a shear is a shear. See Exercise 2.4.1.
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2.4.4. Theorem. Every transformation of the plane defined by equations (2.25) is a
composition of translations, rotations, shears, and/or scaling transformations. Con-
versely, every composition of such maps can be described by equations of the form
(2.25).

Proof. Let M be defined by equations (2.25) and set My = TM, where T is the trans-
lation with translation vector (-m,—n). Then My(0) = 0 and My is a nonsingular linear
transformation. Let r = IMg(ey)l, let R be the rotation about the origin that rotates
the unit vector (1/r)Mg(e) into e, and let My = RMy. It follows that M; is defined by
equations

Mi(e;) =v; =re;

M;(e,) = v, =se; +te,.
Define a linear transformation S by
S(vi)=wvy
S(v2) =(v2 *e;)er = w; =tes.

Since a linear transformation is completely defined once it is defined on a basis, S is
well defined. In fact, it is easy to show that S is a shear in the x-direction defined by
equations

' = EX+
y = t y.

Figure 2.17 shows the effect of the maps R and S. The map M, = SM; is now the
scaling transformation defined by

y = Sy.

To summarize, M = T'R™!'S™'M, and the first part of the theorem is proved. Since the
converse of the theorem is obvious, Theorem 2.4.4 is proved.

vy =Mj(ey)

w2

vi=M,(e))

—_— —
e . vy
1 rotation shear
R S

Figure 2.17. The rotation and shear in the proof of Theorem 2.4.4.
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B’ Figure 2.18. Proving Theorem 2.4.5.

A
c
B,

2.4.5. Theorem. Any three noncollinear points in the plane can be mapped into any
other three noncollinear points by a unique transformation M with equations (2.25).

Proof. Let (A,B,C) and (A’,B’,C’) be two triples of noncollinear points. Let Ty and T
be the translations that send A and A’, respectively, to the origin 0. Let T;(A,B,C) =
(0,B1,Cy) and T,(A’,B’,C’) = (0,B,,C;). See Figure 2.18. Since the vectors B; and C; and
the vectors B, and C, are bases for R?, there is a linear transformation M, with
My(B1,C1) = (B3,C,). The map M = T5'MT; does what we want.

To prove the uniqueness of M, suppose there is another such map M’, then
M'M’(A,B,C) = (A,B,C). As usual, it therefore suffices to show that any map T defined
by equations (2.25) that fixes three noncollinear points A, B, and C is the identity map.
There are many ways to prove this. For example, we may assume that A = 0, so that
T is linear transformation. Then B and C are a basis for the plane and since T is
defined by what it does on a basis, it must be the identity everywhere.

We return to affine transformations.

2.4.6. Theorem. An affine transformation of the plane that fixes three noncollinear
points is the identity map.

Sketch of proof. Suppose that the affine transformation T fixes the noncollinear
points A, B, and C. The property of T we shall use over and over again is that if P and
Q are distinct points, then T maps the line through P and Q into the line through T(P)
and T(Q). Let Lg be the line through B that is parallel to the line through A and
C. Let L¢ be the line through C that is parallel to the line through A and B. See
Figure 2.19. Then T(Lg) < Lg and T(L¢c) < Lc¢ because parallelism is preserved. It
follows that if D is the intersection of the lines Lg and L¢, then T(D) = D. Next, let L
be the line through D that is parallel to the line through B and C and let E be the
intersection of L and the line through A and B. Clearly, E = A + 2AB. By an argument
similar to the one that showed that T fixes D, we must have T(E) = E. It is easy to
continue this type of argument to show that T fixes all points in the form A + mAB +
nAC, m, n € Z. From here it is only a small step to show that T fixes all points in the
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Figure 2.19. Proving Theorem 2.4.6.

form A + rAB + sAC for all rational numbers r and s. These points are a dense set of
points in the plane. The final step handles the points where r or s are irrational. See
[Gans69].

2.4.7. Corollary. An affine transformation of the plane is completely determined by
what it does to three noncollinear points.

Proof. Showing that the corollary follows from Theorem 2.4.6 uses an, by now stan-
dard, argument that is left as an exercise for the reader.

We are ready to state and prove a fundamental theorem about affine maps.

2.4.8. Theorem. Every affine transformation of the plane can be described uniquely
by equations of the form (2.25). The determinant in (2.25b) is called the determinant
of the affine transformation. Conversely, every such pair of equations defines an affine
transformation.

Proof. We start with the converse. A transformation T defined by equations (2.25)
has an inverse that is again defined by linear equations of the same form. Let f(x,y)
= 0 be the equation of a line L. Then the set L’ = T(L) is defined by the equation
f(T-'(x,y)) = 0. This shows that L’ is a line and that T is an affine map.

Next, let T be an affine map and choose three noncollinear points. By Theorem
2.4.5 there is a map M defined by equations (2.25) that agrees with T on those points.
Since we just showed that T is an affine map, we have two affine maps that act the
same on three noncollinear points. By Corollary 2.4.7, T = M and the theorem is
proved.

Because of Theorem 2.4.8 everything proved for the maps defined by equations
(2.25) holds for affine maps. We restate these properties to emphasize their validity
for affine maps.

(1) Every affine map in the plane is a composition of translations, rotations,
shears, and/or scaling transformations. Conversely, every composition of such
maps is an affine map.

(2) There is a unique affine transformation in the plane that maps three non-
collinear points into any other three noncollinear points.
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2.4.9. Theorem. The only affine transformations of the plane that preserve angles
are similarities.

Sketch of proof. Let T be an affine transformation that preserves angles. Choose
noncollinear points A, B, and C. If T(A,B,C) = (A’,B’,C’), then one can show that

|A'B’|=1/AB|, [B’C|=1rBC|, and |A’C’|=r1]AC]|

for some r > 0. Let U be the radial transformation U(p) = (1/r)p and let (A”,B”,C") =
(UT)(A,B,C). There is a unique motion M such that (A”,B”,C”) = M(A,B,C). Now S =
U™'M is a similarity that agrees with T on A, B, and C. By Corollary 2.4.7, T and S
must be the same transformations.

Definition. The ratio of division of three distinct points A, B, and P on an oriented
line L in R", denoted by (AB,P), is defined by

IAP]
(AB,P)= ——.
IPBJ

(IAPIl and IIPBIl are the signed distances on the oriented line L.)

2.4.10. Proposition. Let A, B, and P be distinct points on an oriented line L. If
P=A+tAB = (1 - t)A + tB, then

t
AB,P)=—.
(AB,P)=-—

In particular, (AB,P) is independent of the orientation of L.

Proof. See Figure 2.20. The proof is a straightforward consequence of the fact that
AP = tAB and PB = (1 - t)AB.

Using Proposition 2.4.10 it is easy to show that the ratio of division (AB,P) is
positive if P belongs to the segment [A,B] and negative otherwise.

2.4.11. Proposition. Let T be an affine transformation of the plane. If AB € R?,
then

[IPBII

%jt)AB

[IAPII

tAB
Figure 2.20. The ratio of division.
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T(A-t)A+tB)=(1-t)T(A)+tT(B)
for all t.

Proof. By Theorem 2.4.8, there is a nonsingular 2 x 2 matrix M and a point P,
so that T(Q) = QM + P for all Q. Now all one has to do is use this formula for T to
evaluate both sides of the equation and show that they are equal.

2.4.12. Theorem. Affine transformations of the plane preserve the ratio of division.
Proof. The theorem is an easy consequence of Propositions 2.4.10 and 2.4.11.

2.4.13. Theorem. Affine transformations in the plane multiply area by the absolute
value of their determinant.

Proof. See [Gans69].

Theorem 2.4.13 points out one of the main intuitions one should have about deter-
minants, namely, that they are intrinsically connected with how transformations
expand or shrink area, volume, etc. A precise definition of volume will be given in
Chapter 4.

Definition. The equiaffine or equiareal group is the group of affine transformations
with determinant +1.

Recall our earlier comments how geometric properties are intimately connected
to certain groups of transformations. Here are three groups, the “metric” groups, and
their associated “metric” properties:

motions similarities equiaffine

g g g

distance angle size area

Definition. Affine properties are properties preserved only by affine transformations
(and not by projective transformations, which we will define shortly).

Some affine properties are betweenness, the ratio of division, parallelism, and the
concurrence of lines.

Definition. Two figures F and F’ are affinely equivalent if there is an affine transfor-
mation T with T(F) = F’.

Any two segments, angles, triangles, parallelograms, lines, parabolas, ellipses, and
hyperbolas are affinely equivalent. This means that one can use special simple figures
to prove things about general figures!

2.4.14. Example. To prove that the midpoints of all parallel chords of a parabola
X are collinear and lie on a line parallel to the axis. See Figure 2.21(a).
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y=mx+b

midpoints

o parallel
chords

() (b)

Figure 2.21. Midpoints of parallel chords for parabola are parallel to axis.

Solution. Since all parabolas are affinely equivalent we may restrict ourselves to the
special case of the parabola defined by the equation y = x*> and the family of chords
determined by the lines y = mx + b, where m is fixed and b > 0. See Figure 2.21(b).
To find the intersection of the lines with the parabola, we must solve the equation
mx + b = x2. The two solutions are

m+vVm? +4b m-vm? +4b
X1 :f and X2 :f.

The midpoint Q = (u,v) of such a chord is defined by

X1 +X> m

2 2

and

v mx; +b+mxy+b m? +2b
B 2 2

which proves the result.

Finally, note that one could have developed affine geometry without first coordi-
natizing points. We could make points, lines, etc., undefined terms and use axioms to
define their properties. This is the synthetic geometry approach. Coordinates could be
introduced at a later stage. The point is that, in the context of affine geometry, the
exact lengths of geometric figures are not important. At most it is relative size that
counts, that is, the ratios of segments.

241 Parallel Projections

Definition. Let v be a nonzero vector in R™ and let Q be the family of parallel lines
with direction vector v. Let L, denote the line in Q through the point p. If X is a
hyperplane in R" not parallel to v, then define a map
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no: R* =X
by
no(p) =Ly nX.

The map g is called the parallel projection of R" onto the plane X parallel to v. If v is
orthogonal to X, then mq is called the orthogonal or orthographic projection of R" onto
the plane X; otherwise, it is called an obligue parallel projection. In general, if X and
Y are any subsets of R", then the map that sends p in X to L, N Y in Y (wherever it
is defined) is called the parallel projection of X to Y.

Figure 2.22 shows a parallel projection of a line L onto a line L’ and Figure 2.23,
a parallel projection of a plane X onto a plane X’. Note that the ratio of distances is
preserved in the case of parallel projections of a line onto another line. What this
means is that, referring to Figure 2.22, the ratio

AB|
A'B’|

is independent of A and B. This is not the case for parallel projections of one plane
onto another. For example, in Figure 2.23 the ratios

Figure 2.22. A parallel projection between
lines.

Figure 2.23. A parallel projection between
planes.
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|AB| [BC|
r 7| an 7 7|
|A’B’| B"C’|

are probably not the same.

2.4.1.1. Example. To find the parallel projection T of R? onto the plane X defined
by the equation

X—-2y+z=3
parallel to v = (3,1,1).

Solution. Clearly, given a point p, if t is chosen so that p + tv belongs to X, then
T(p) = p + tv. Let p = (x,y,z). Solving

x+3t)-2(y+t)+(z+t)=3

for t, gives t = (1/2) (—x + 2y — z). It follows that T is defined by the equations

X'=-——x+3 —§Z+2
TR,
y':—zx+2y——z+%
, 1 1
Z/=——X+ y+-z+=
2 22

2.4.1.2. Theorem. A parallel projection between two hyperplanes in R" preserves
parallelism, concurrence, betweenness, and the ratio of division.

Proof. Easy.

2.4.1.3. Theorem. Any map of the plane onto itself that is a composition of
parallel projections is an affine map. Conversely, every affine map in the plane is a
composite of parallel projections.

Sketch of proof. The first statement follows from the fact that lines are preserved.
Now let T be an affine map. Assume that A, B, and C are noncollinear points with
T(A,B,C) = (A’,B’,C). First, project R2toa plane X that contains A and B so that C
gets sent to a point C;. Next, project X back to R? in such a way as to send C; to C.
It follows that the composite of these two projections sends A to A, B to B, and C to
C’. Repeat this process on A” and B’. See Figure 2.24.

The construction in the proof of Theorem 2.4.1.3 shows that any affine map can
be realized as a composite of at most six projections.
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Figure 2.24. Affine maps as composites

of parallel projections. X
Cl\\ 4 2
oA B A’ R
"\
g \¥ | \\‘o
c - c
., //
A B ///

2.5 Beyond the Plane

Up to now, although some things applied to R", most of the details were specifically
about transformations in the plane. The fact is that much of what we did generalizes
to higher dimensions.

We start with motions of R".

2.5.1. Theorem. Every motion M:R" — R" can be expressed by equations of the
form

Xi =aX;tapXy+...+apXy +C

X'z =az1X]taxpXy+...+axXy +C

X;l =anp1X]tanp2Xo+...+appXn +Cn (229)

where Ay = (ajj) is an orthogonal matrix. Conversely, every such system of equations
defines a motion.

Proof. The discussion in Section 2.2.8 on frames showed that the theorem is valid
for motions in the plane. For the general case, assume without loss of generality that
M(0) = 0. The key facts are Theorem 2.2.4.1, which says that M is a linear trans-
formation (and hence is defined by a matrix), and Lemma 2.2.4.3, which says that
M(u) e M(v) = uev, for all vectors u and v. The rest of the proof simply involves ana-
lyzing the conditions M(e;) ® M(e;) = e; ® e; = &;; and is left as an exercise (Exercise 2.5.1).

In studying motions in the plane we made use of some important special motions,
such as translations, rotations, and reflections. Translations already have a general
definition. The natural generalization of the definition of a reflection is to replace lines
by hyperplanes.

Definition. Let X be a hyperplane in R". Define a map S:R” — R", called the reflec-
tion about the hyperplane X, as follows: Let A be a point in X and let N be a normal
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p Figure 2.25. Defining a reflection in
higher dimensions.

N

A

P’

vector for X. If P is any point in R, then S(P) = P + 2PQ, where PQ is the orthogo-
nal projection of PA on N. See Figure 2.25.

2.5.2. Theorem. Let S be a reflection about a hyperplane X.

(1) The definition of S depends only on the hyperplane and not on the point A
and normal vector N that are chosen for it in the definition.

(2) If t is chosen so that P + tN is the point where the line through P with direc-
tion vector N meets the plane X, then S(P) = P + 2tN.

(3) The fixed points of S are just the points of X.

(4) If L’ is a line orthogonal to X, then S(L") = L".

(5) Reflections about hyperplanes are motions.

Proof. The details of the proof are left as an exercise for the reader because it is
essentially the same as the proof of Theorem 2.2.3.1. That proof did not really use the
fact that vectors were two-dimensional.

2.5.3. Example. To find the reflection S about the plane X defined by the equation
X —2y—-2z=3.
Solution. Let A be any point in X. Since N = (1,-2,-2) is a normal vector for
X, if P is any point, then it is easy to show that the orthogonal projection of
PA on N is just tN, where t is chosen so that P + tN lies in X. Let P = (x,y,2).
Solving
x+t)—-2(y-2t)-2(z-2t)=3

for t, gives

t=(1/9)(—x + 2y + 2z + 3).

Since S(P) = P + 2tN, it follows that S has equations
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Generalizing the concept of a rotation is a little less obvious. The simplest way to
get a definition is in a roundabout way by defining a rigid motion first and then use
the orientation-preserving nature of these maps.

Definition. Let M be a motion of R™ and suppose the equations for M are as shown
in Theorem 2.5.1. The motion M is said to be a rigid motion if the matrix (a;) is a
special orthogonal matrix.

In analogy to the planar case we get

2.5.4. Theorem. A rigid motion of R" is an orientation-preserving map. Conversely,
every orientation-preserving motion of R" is a rigid motion.

Proof. Exercise.

Definition. A rigid motion R of R" that fixes some point p is called a rotation. In
that case, we say that R is a rotation about p. The point p is called a center of the
rotation.

Is this definition of a rotation really what we want and does it generalize the intu-
itively simple notion of a rotation in the plane? Theorem 2.2.6.9 certainly shows that
the new definition is compatible with the old one.

2.5.5. Theorem. (The Principal Axis Theorem) Every rotation R in R%is a “rotation
about some line.” More precisely, with respect to some appropriate coordinate system,
R is just the rotation about the z-axis through an angle 6, that is, the equations for R
in that coordinate system are just

x’=xcos0—-ysin0

y'=Xxsin®+ycos6

7z = Z. (2.30)
In general, if R is a rotation in R", then we can choose a coordinate system

with respect to which the n x n matrix of coefficients in the equation for R has the
form
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cos0; —sin0; 0
sin®; cos0;

cos 0 —sin Oy 2.31)
sin@; cos Oy )

0 +1
Conversely, every transformation of R" whose equation has such a matrix of coeffi-
cients is a rotation.

Proof. See [Lips68]. Note that rotations about the origin are linear transformations
so that one can talk about their associated matrices.

Theorem 2.5.5 suggests that the expression “rotation about a point” is perhaps
misleading in higher dimensions. Although it might be better to say “rotation about
a line,” we shall keep it in order to have a uniform terminology since it makes per-
fectly good sense in the plane. Actually, we shall see shortly in the next section that
one should really talk about directed lines here because the expression “rotation about
a line through an angle 6” is ambiguous.

The main theorems about motions in R" can now be stated. Their proofs are very
similar to the proofs of the corresponding theorems about motions in the plane and
are omitted.

2.5.6. Theorem.

(1) A motion in R"is completely determined by what it does to n + 1 linearly inde-
pendent points.

(2) A rigid motion in R" is completely determined by what it does to n linearly
independent points.

(3) Every motion in R" can be described as a composition of a translation, a rota-
tion about the origin, and/or a reflection.

(4) Every rigid motion in R" is a composition of a translation and/or a rotation
about the origin.

Proof. Exercise.

Facts about similarities and affine maps in the plane also generalize to R".
2.5.7. Theorem. Every similarity transformation can be expressed by equations of
the form (2.29) where (ajj) = (dbj;), d > 0, and (by;) is an orthogonal matrix. Conversely,

every such system of equations defines a similarity.

Proof. Exercise.
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2.5.8. Theorem.
(1) Every affine transformation T in R" can be expressed uniquely in the form
T(p)=pA+v,

where A is an n X n nonsingular matrix and v is a fixed vector in R". The deter-
minant of A is called the determinant of the affine transformation. Conversely,
every such equation defines an affine transformation.

(2) An affine transformation is completely specified by its action on n + 1 linearly
independent points.

(3) The similarity transformations are the angle-preserving affine maps of R"™.

(4) Affine transformations in R"™ multiply volume by the absolute value of their
determinant.

Proof. Exercise.

Definition. A map T:R" — R" is said to preserve barycentric coordinates if, for all
vi € R" and real numbers a;,

k k k
T(Zaivi)= ZaiT(vi) whenever Zai =1. (2.28)
i=0

i=0 i=0

2.5.9. Theorem. Affine maps in R" preserve barycentric coordinates. Conversely,
any one-to-one and onto transformation that preserves barycentric coordinates is an
affine map.

Proof. We prove the first part. Let T be an affine map. By Theorem 2.5.8(1),
T(p)=pA+v,
where A is an n X n matrix. It follows that

i=0

k k
= Zai(viA)+ Zaiv

i i=0

Il
(=}

[
M=

a;(v;A+v)

1

Il
[=}

a iT(Vi).

Ve

I
(=}

1

2.5.10. Corollary. Affine maps in R" preserve the ratio of division.
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Proof. This follows form Proposition 2.4.10 and Theorem 2.5.9.

Definition. If A = (a;) is an n x n nonsingular diagonal matrix, then the transfor-
mation T:R" — R" defined by

T(p) = pA

is called a (local) scaling transformation. It is a global scaling transformation if all the
diagonal elements in A are equal, that is, a;; =ax, =...=ay,.

Note that a scaling transformation is orientation reversing if |Al < 0. It will be a
similarity if a;; = az; =...=an, > 0. It is easy to check that the inverse of a scaling
transformation is a scaling transformation.

Facts about parallel projections, such as Theorems 2.4.1.2 and 2.4.1.3, also gen-
eralize to R". Finally, we generalize frames. See Figure 2.26. These will be especially
helpful in higher dimensions as we shall see in Section 2.5.2.

Definition. A frame in R" is a tuple F = (uj,uy, . . . ,u,,p), where p is a point and the
u; define an orthonormal basis of R™. If the ordered basis (uj,uy, . .. ,u,) induces the
standard orientation of R®, then we call the frame an oriented frame. The oriented line
through the point p with direction vector u; is called the wu;-axis of the frame F. In the
case of 3-space, the oriented lines through the point p with direction vectors u;,u;, and
us are also called the x-, y-, and z-axis of F, respectively. The point p is called the origin
of the frame F. (ey,e,, . .. ,e,, 0) is called the standard frame of R". Again, to simplify
the notation, we sometimes use (uj,uy, . . . ,u,) to denote the frame (ug,uy, . . . ,u,,0).

Sometimes one wants to transform frames.

Definition. Let F = (uj,uy, ... ,u,,p) be a frame in R". If M is a motion of R", define
the transformed frame M(F) by

M(F) = (M(u;) - M(0), M(uz) - M(0), ..., M(uy) — M(0), M(p)).

uz
z Uz
\A’ u;
P

€3
€

€

Figure 2.26. Frames in R®.



2.5 Beyond the Plane M

A transformed frame is clearly a frame. The following generalization to planes is
also useful.

Definition. A frame for a k-dimensional plane X in R™ is a tuple F = (uj,uy, . . . ,ux,p),
where p € X and uy, uy, ..., and ug are an orthonormal basis for X.

Just like in the two-dimensional case, frames can be thought of as defining a coor-
dinate system for a space and we can coordinatize its points with respect to it. We
shall again call the coordinates of a point with respect to a frame the frame coordi-
nates. The frame coordinates with respect to the standard frame of R" are called world
coordinates. Frames can also be thought of as motions.

Definition. Let F = (uj,uy, ... ,u,,p) be a frame in R". Define a motion Tg, called the
motion defined by F and usually simply denoted by F, by

uy

Tr(@=q| " |[+P. (2.32)

Up

Like in the earlier two-dimensional case, using “F” to denote both the frame F and
the motion Tf should not cause any confusion since it will always be clear from the
context as to whether we are talking about the frame or the map.

Clearly, Tr is a motion. In fact, if T is the translation with translation vector p and
if R is the motion that is the linear transformation with matrix

uy
up

’

Un

then Tr = TR. If the frame F is oriented, then R is a rotation because of our
hypothesis that the ordered basis uj, uy, ..., u, determines the standard orien-
tation. Furthermore, since we are dealing with motions and orthonormal bases,
the matrix of the inverse of R is just the inverse of the matrix for R. It follows
that

Tr'(@ =(q-p)(uf ul ...ul), (2.33)

Note. In the context of frames as coordinate systems we could have also allowed for
nonorthogonal frames, that is, tuples (vq,vs, ... ,vi,p) where we only require that the
vectors are linearly independent. This would correspond to skew coordinate systems
and might be a useful concept in certain situations. The only complication is that
finding inverses is no longer as trivial as it is for an orthogonal matrix. Other than
that, though, there is nothing new.
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251 Motions in 3-Space

In this section we look at the mechanics of transforming objects in 3-space. This may
not seem as easy as it was in the plane, but if we break the general problem into a
sequence of simple primitive ones, then it will become easy again.

Rigid motions are composites of rotations and/or translations. Is is useful to have
some alternate characterizations of rotations. The first characterization comes from
the Principal Axis Theorem (Theorem 2.5.5), which says that every rotation is a rota-
tion about an axis. Before we can make use of this way of looking at a rotation we
must resolve an ambiguity that we alluded to in a comment immediately following
Theorem 2.5.5. Suppose that v is a direction vector for the axis. If we consider a plane
orthogonal to the axis of the rotation, the notion of counterclockwise for this plane,
which is what is normally used to define the positive direction for an angle, will
depend on whether we are looking down on this plane from a point on the axis in the
v or —v direction. The only way that this ambiguity in the expression “a rotation about
a line through a given angle” can be avoided is by requiring the line to be oriented.

The axis-angle representation of a rotation: Here we represent a rotation by a
triple (p,u,0), where the point p and unit (direction) vector u specify the axis and 0
is the angle of rotation determined according to the following rule:

The rotation orientation rule: Think of u as being the z-axis for a coordinate
system at p. Stand at p + u and look towards the “origin” p. The counterclockwise
direction in the “x-y plane” of this coordinate system will then determine the positive
direction for an angle. See Figure 2.27. More precisely, choose vectors u; and u; so
that (uj,up,u) forms an orthonormal basis for R? that induces the standard orienta-
tion. Then (uj,u;) induces the desired orientation on the x-y plane of the coordinate
system from which “clockwise” and “counterclockwise” are determined. The rule can
also be expressed in terms of the so-called “right-hand rule,” that is, if one lets the
thumb of one’s right hand point in the direction of u, then the curl of the fingers will
specify the positive direction of angles. See Figure 2.27 again.

L view

/ direction

T~

Figure 2.27. The orientation of a rotation angle using the right-hand rule.
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Note that the direction vector u that is chosen for the axis matters because
(p,_U,e) = (p)ur_e)

Definition. The rotation defined by the triple (p,u,0) is called the rotation about the
directed line defined by the point p and direction vector u through the angle 9.

We can represent a rotation more compactly by incorporating the angle of the
rotation in the length of the direction vector for the axis.

A compact axis-angle representation of a rotation: Here a pair (p,v) represents
the rotation whose axis-angle representation is (p,v/Ivl,lvl).

The next two characterizations of rotations are in terms of rotating about coor-
dinate axes. Fortunately, when it comes to rotations we only need to know the equa-
tions of the rotations about the coordinate axes by heart. It is therefore worthwhile
to summarize those before moving on since the equations for all other rotations can
be derived from them.

The equations and matrices for the rotations about the coordinate axes:

rotation about x-axis rotation about y-axis rotation about z-axis
x'=x x"=xcos® +zsin6 x"'=xcosO—-ysin0
y'= ycosB-zsin6 y = y y’ =xsin0+zcos 0
z’= ysin®+zcosO 7z’ =-xsin® +zcos® 7' = z (2.34)
cos® sin® 0 cos® 0 -sin6 1 0 0
-sin® cos® 0 0 1 0 0 cos® sin®| (2.35)
0 0 1 sin® 0 cos® 0 —sin® cos6

Note that the minus sign in the equation and matrix of a rotation about the y-axis is
different from the other rotations. The reason is that we are expressing things in world
coordinates and when looking down the y-axis, the x-axis is pointing to the left which is
the wrong direction because angles are oriented according to the basis (—ey,e3).

2.5.1.1. Theorem. Consider a coordinate system specified by a frame F =
(uy,uz,u3,p). If R is a rotation about p, then R is the composite of a rotation R; about
the x-axis of F through an angle o, a rotation R, about the y-axis of F through an
angle B, and finally a rotation R3 about the z-axis of F through an angle 7.

Proof. Assume first that we are rotating about the origin and F is the standard frame.
With this hypothesis, R is a linear transformation and has matrix
a11 apr a3
azy azxp az;| (2.36)
a3y azz ass

The rotations R;, R, and Rz would also be linear transformations and we know their
matrices from (2.35). Therefore, using the abbreviations
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cT=cosT, st=sinT, cf=cosP, sp=sinP, cao =cosca, and so=sina,
the matrix for R3R,R; would be

ctcP st cP —sp
ctsPpso—stco ctsPso+ctco cPsa | (2.37)
ctsPeco+stso ctsfpca—crso cPca

To prove the theorem, all we have to do is set the matrices in (2.36) and (2.37) equal
to each other and solve for o, B, and t. This is not hard using the first row and last
column. If cf # 0, then

o =atan2(a»3,ass), (2.38a)
B =atan2(aj3,va?, +ad,), (2.38b)
t=atan2(az, a11), (2.38¢)

where atan2(y,x) is basically the arctangent tan~!(y/x), except that the sign of both x
and y are used to determine into which quadrant the angle falls. See Appendix A for
a precise definition.

The case of an arbitrary frame F is an easy consequence of this case that we leave
as an exercise. The theorem is proved.

Note. In the proof of Theorem 2.5.1.1, only one choice had to be made in defining
o, B, and 1 and that was the choice of the positive square root of the sum of squares
of a;; and a,;. This amounts to restricting B to lying in the interval [-n/2,m/2]. With
this restriction, the o, B, and t are uniquely determined for R.

Definition. Given a rotation R, the angles o, B, and 1 in Theorem 2.5.1.1 are called
the roll, pitch, and yaw angles of R, respectively. The tuple [o,B,t,p] is called a roll-
pitch-yaw representation of the rotation R (with respect to the frame F). [o,,7] will
denote the roll-pitch-yaw representation in the case where p is the origin.

The terminology of “roll,” “pitch,” and “yaw” comes from aviation and navigation.
Roll is the twisting motion about the lengthwise axis of a ship or airplane. Pitch is
the dipping or rising motion of the bow or nose. Yaw is the side-to-side twisting
motion in its horizontal plane about a vertical axis. The note following the theorem
above shows that the roll, pitch, and yaw angles are unique if the pitch angle lies in
the interval [-n/2,7/2].

Instead of rotating about the axes of a fixed coordinate system as is done in
the case of the roll-pitch-yaw representation of a rotation we can do our rotations
about axes in each successive new coordinate system. The choice of axes is up
to us.

2.5.1.2. Theorem. Consider a coordinate system specified by a frame F =
(uy,uz,u3,p). If R is a rotation about p, then R is the composite of a rotation S; about
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the x-axis of F through an angle o, a rotation S, about the y-axis of S;(F) through an
angle B, and finally a rotation about the z-axis of S;(S;(F)) through an angle t.

Proof. We shall again only consider the case where F is the standard frame and p
is the origin. If Ry, R,, and Rj are the rotations about the standard coordinate axes
defined in Theorem 2.5.1.1, then

S1 =Ry,
S; =S1R,S;,
S3= stle(stl)_I,

so that S3S,S; = RiR,R;. Note that this composition is in the opposite order of the
composition of the maps in Theorem 2.5.1.1, but the matrix for S3S,S; will be similar
to the one shown in (2.37). Therefore we can set this matrix equal to the matrix for
R and solve for the angles just like in Theorem 2.5.1.1.

Definition. Given a rotation R, the angles o, B, and 1 in Theorem 2.5.1.2 are called
the X-Y-Z Euler angles of R. The tuple [o,B,7,p] is called an Euler angle representation
of the rotation R (with respect to the frame F). [o,B,t1] will denote the Euler angle
representation in the case where p is the origin.

The term Euler angles is also used in the case of any other choice of axes. For
example, if one were to rotate about the z-, y-, and z-axis, then one would get the
Z-Y-Z Euler angles for a rotation, and so on. We shall only look at Euler angles in
the X-Y-Z case. The others are similar. The proofs of Theorems 2.5.1.1 and 2.5.1.2
show us how to compute the roll, pitch, yaw or Euler angles of a rotation. We
shall not pursue the subject here. These angles are often used to describe motions in
robotics.

Let us return to the main subject matter of this section, which is how to derive
equations for rigid motions. Since translations are trivial, we now work through an
example to show how one typically computes equations for geometrically defined
rotations. The idea is to express an arbitrary rotation in terms of rotations about the
X-, y-, and z-axis.

2.5.1.3. Example. To show that any nonzero vector v can be rotated into one of the
coordinate axes by a composition of two rotations about coordinate axes.

Solution. We sketch the construction in case we want to rotate v into the z-axis.
Rotating into the x- or y-axis would be done in a similar way. Let w by the orthogo-
nal projection of v onto the y-z plane. See Figure 2.28(a). A rotation R; about the x-
axis through an angle o, where o is the angle that w makes with the z-axis (or e3),
will move v into a vector v’ in the x-z plane. See Figure 2.28(b). A second rotation R,
about the y-axis through the angle B, where B is the angle that v makes with the z-
axis, will rotate v’ into the z-axis. The composition R,R; then does what we want,
namely, move v into the z-axis.

2.5.1.4. Example. To find the rotation R that rotates the plane X defined by
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(a) (b)

Figure 2.28. Rotating a vector into the z-axis.

B(0,1,-3) .

e AQOS3) Figure 2.29. Example 2.5.1.4.

%X+3y+z=0

to the x-y plane.

Solution. See Figure 2.29. The idea is to express R as a composite of our basic rota-
tions about the coordinate axes. Recall that motions map planes to planes and so to
define R we only need to define an R that does the right thing on three noncollinear
points in X. We shall use O = (0,0,0), A = (2,0,-3), and B = (0,1,-3) and deal with the
points A and B one at a time. Let Ry be the rotation about the y-axis through an angle
01 defined by

cosel=%3 and sin61=%3.

The matrix for R is
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2,3
V13 V13
o 1 0 |
3, 2
V13 V13

It follows that

9 6
B, =R.(B) (ﬁlﬁ)

Let R, be the rotation about the x-axis through an angle 6, where

i3
00592=# and sinezzg.

R, will move B to the x-y plane and leave A fixed. Finally, R = R;R; will be the rota-
tion we are looking for because R leaves the origin fixed and maps the points A and
B to the x-y plane. The matrix for R, is

1 0 0
o Y36
7 7 0
o 6 M3
7 7
and so the matrix for R is
2 18 3
V13 713 7
V13 6
0 — =
7 7
3 12 2
v13 7v13 7

Before leaving this problem, let us look at another possible question. What is the
equation for the plane X; = Ry(X)? Note that, by definition, (x1,y1,z;) belongs to
X, if and only if Ri'(x;,y1,z;) belongs to X. Therefore, since the matrix for
Ri'is

2,3
V13 V13
o 1 0
3, 2
V13 V13
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substituting into the equation for X gives that

é[ix+iz}+3 +[—ix+ 2 z}—o
203 TV Y T s T T s T
that is,

3*/Ey+%z =0,

is the equation for X;. This shows that X; contains the x-axis and is orthogonal to the
y-z plane, justifying our construction. This finishes Example 2.5.1.4.

25.2 Frames Revisited

The last section described what might be called the geometric approach to defining
motions in R3. Some of the computations got rather complicated. The power of frames
comes from their ability to define a motion M in terms of an orthonormal basis, which
is typically easier to define than the rotations and reflections that might describe M
if we were to use the approach from the last section. We saw some of this in Section
2.2.8, but it is especially going to pay off here. As our first example we redo Example
2.5.1.4.

2.5.2.1. Example. To find the rotation R that rotates the plane X defined by
3
—Xx+3y+z=0
SX+3y+z

to the x-y plane.

Solution. We use the same notation as in Example 2.5.1.4. See Figure 2.29. Apply-
ing the Gram-Schmidt algorithm to the basis A(2,0,—3) and B(0,1,-3) for X gives us
an orthonormal basis

1

1
w :T3(2’0’_3)’ and w, = 3 (-18,13,-12).

The equation for X tells us that n = (3/2,3,1) is a normal vector for the plane. Let

n 1
=—==(3,6,2),
us ] 7( )
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and consider the frame F = (uj,uz,u3). The rotation R defined by F~! then solves the
problem. The matrix for R is the same one as we got before, namely,

2 18 3
V13 7713 7
Vi3 6

0 — 2|
7 7

3. 12 2

N13 713 7

Actually, the fact that we got the same answer is accidental since the problem is under-
constrained and there are many rotations that rotate X to the x-y plane.

2.5.2.2. Example. To find the rotation R which rotates the plane X defined by the
equation y — z = 0 to the x-y plane.

Solution. By inspection it is clear that the vectors

1 1 1 1
u1=(1,0,0), uZZ(l,TZ,sz, and u3=(0,—Tz,sz

are an orthonormal basis of R® with u; and u, a basis for X. See Figure 2.30. Define
the orthogonal matrix A by

1 0 0

T ;T ,,T 1 1
, L1

V2 2

A is matrix for the rotation R we are looking for. It is easy to check that w;A = e;. Note
that

Uy

u3

oy

Figure 2.30. Example 2.5.2.2.
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z Figure 2.31. Example 2.5.2.3.

w) [1 0 0
A'=lu|=j0 L L
2 2

us3 1 1
"% %

and that eA™! = u,.
The approach used in the last two examples generalizes.

2.5.2.3. Example. To find a rigid motion M that moves the origin to the point p =
(0,0,1) and the x-y plane to the plane X defined by x + y + 2z = 2. See Figure 2.31.

Solution. All we have to do is to find an orthonormal basis (u;,u,,u3), so that u; and
u; are a basis for X. Then the motion defined by the frame F = (u;,u,us,p) will do the
job. The equation for X tells us that n =(1,1,2) is a normal vector for X. There are many
ways to find a basis for X. Clearly, (2,0,-1) is a vector orthogonal to n. Therefore, let

n 1 1 1
uz = H - _6(171)2)1 w = TS(ZIO)_I)) and U =u3z Xuy = ﬁ(_ll 5)_2)

2.5.2.4. Example. To find a rigid motion M which moves the point p = (0,0,1) to
the point q = (0,—1,0) and the plane X defined by x + y + 2z = 2 to the plane Y defined
by x-y+z=1.

Solution. Let F be the frame defined in Example 2.5.2.3. The motion F~! will map
the plane X to the x-y plane and p to the origin. We simply need to define a frame
G = (wy,w,w3,q) that will send the x-y plane to the plane Y and the origin to q and
set M = GF!. This is another problem like the one in Example 2.5.2.3. Let

wi= Lol w2000, and wa=ws xwi = =121
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It follows that

2 1oy, 1
V5 V30 Ve | V2 V2
' g _ _ R P L M
(X ;y’Z)_M(X;y)Z)_(X’YIZ 1) O '\/% ,\/g % % ’\/g +(0’ 1,0)
o2 o2 1 1l
V5 N30 YeAN V¥3 V3 43

For emphasis, we note that the solutions to the last four examples are not unique.
For example, to define M in Example 2.5.2.4 we could have picked any orthonormal
basis (uj,u;) for X. It is essential however that one picks an orthonormal basis,
namely, a basis that consists of unit vectors that are mutually orthogonal. If either
of these conditions does not hold, then answers will be wrong.

2.6 EXERCISES

Section 2.2

2.2.1. Prove Theorem 2.2.1(2) and (3).
2.2.2. Prove that motions send triangles to triangles.

2.2.3. Prove that motions send rays to rays.

Section 2.2.1

2.2.1.1. Prove Theorem 2.2.1.1.
2.2.1.2. Prove Proposition 2.2.1.2(2).

Section 2.2.2

2.2.2.1. Prove Proposition 2.2.2.7(1).
2.2.2.2. Find the rotation about the point (1,2) through an angle of w/6.

2.2.2.3. Let R be a rotation about the origin through an angle n/3. Let L be the line determined
by the two points (2,4) and (4,4-213). Show by direct computation that the angles
that L and L’ = R(L) make with the x-axis differ by /3.

2.2.2.4. Find the rotation R about the point (2,3) that sends (6,3) to (4,3 + V3).

2.2.2.5. Let R be the rotation about (-1,2) through an angle of —n/6. Let L be the line deter-
mined by the points (2,4) and (5,1). Find the equation for L’ = R(L).

2.2.2.6. 1If R is the rotation about the origin through an angle of ©/3 degrees and if T is the
translation with translation vector (-1,2), then find the equation for RT and describe
the map in geometric terms as precisely as possible.
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Section 2.2.3
2.2.3.1. Prove Theorem 2.2.3.1.
2.2.3.2. Find the reflection S about the line L defined by the equation 2x + y = 2. Find S(-5,0)
and S(0,4).
(a) Solve the problem using the definition like in Examples 2.2.3.2 and 2.2.3.3 but
check your answer using Proposition 2.2.3.4.
(b) Solve the problem using the reductive method like in Example 2.2.3.7.
2.2.3.3. Let S be the reflection about the line L through the points (2,3) and (4,1). Find the
equation for S like you were asked to do in Exercise 2.2.3.2.
2.2.3.4. Suppose that Rj and R; are reflections about the lines Ly and L,, respectively. Let R =
RyR;.
(a) IfL;andL;intersect in a point A, show that R is a rotation about A. Find the rela-
tionship between the angle of this rotation and the angle between the two lines.
(b) If L; is parallel to L,, show that R is a translation.
Section 2.2.4
2.2.4.1. Prove Theorem 2.2.4.6.
Section 2.2.7
2.2.7.1. Prove the converse to Theorem 2.2.7.1.
2.2.7.2. Which of the transformations M below are motions? Explain your answers. In par-
ticular, express those that are in the form of a composite of a translation, rotation,
and/or reflection:
,_ 3.4 V5 1
a) i xX'= =x+—=-y-6 Cx =2 -
(a) SX+zY (b) M: x X+ 2y+1
1 V5
y=-cx+zy+l ‘= —X-——y+3
y 2 X > y
’ 1 ’
(c) M: x =—x+5y (d) M: x =—x+§y+7
’—lx—l 5 , 1X 8
y 2 > y y = 3 3 y
2.2.7.3. (a) Find the equation for the rigid motion M which sends A(2,-1), B(4,1) to A’(-3,3),
B’(-1,1), respectively. Use only translations, rotations, and/or reflections.
(b) Find the equation of another motion that sends A and B to A’ and B,
respectively.
2.2.7.4. Find the equation of the motion M that sends A(-2,1), B(0,2), and C(-2,4) to A’(4,0),

B’(6,-1), and C’(4,-3), respectively. Use only translations, rotations, and/or reflections.
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2.2.7.5. Show that any motion of the form
M: x’=ax+by
y’=bx—ay, where a?+b?=1,
is a reflection about a line through the origin.
2.2.7.6. Explain why
, 3
M: x'=-—x+ 3 y+6
, 4
y= —x+-y+1
is an orientation reversing motion that is not a reflection. On the other hand, M has
a fixed line. Find it.
2.2.7.7. Show that every orientation reversing motion is a composite of a rigid motion and a
single reflection.
2.2.7.8. Prove the following:
(a) Every motion can be expressed as a composition of at most three reflections.
(b) Every motion with one fixed point is the composite of at most two reflections.
Section 2.2.8
2.2.8.1. Use frames to find a motion that sends the line L through A(2,1) and B(3,3) to the
x-axis and the point A to the origin.
2.2.8.2. Use frames to find a motion which sends the line 2x + 3y = 5 to the line x —
2y = 3.
2.2.8.3. Solve Exercise 2.2.7.3 using frames.
2.2.8.4. Use frames to find the equations of the motion that sends the points A(-1,3), B(0,1),
and C(-2,1) to A’(3,2), B’(2,0), and C’(1,2), respectively.
2.2.8.5. Consider the lines

Li: x+3y=9 and L;: 3x-y=7.

Assuming that the lines are oriented to the right, find the transformation that con-
verts from world coordinates to the coordinate system where Ly and L; are the x- and
y-axis, respectively.

Section 2.3

2.3.1.

Find the equations of the similarity S that sends the points A(-1,3), B(0,1), and C(-2,1)
to A’(0,6), B’(2,2), and C’(4,6), respectively.
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Section 2.4

2.4.1. Prove that the inverse of the shear
X'= X
y =cx+y

is a shear and find its equations.

2.4.2. Find the affine map that sends A(1,0), B(0,3), and C(4,2) to A’(-1,2), B’(0,1), and C’(1,3),
respectively.

Section 2.4.1

2.4.1.1. Let X be the plane defined by x — 2y + z = 1.

(a) Define the orthogonal projection of R? onto X.
(b) Define the parallel projection of R? onto X parallel to v = (1,0,2).

Section 2.5

2.5.1. Fill in the missing details in the proof of Theorem 2.5.1.

2.5.2. Using the definition, find the equation of the reflection S about the plane x — 2y +
2z =1.

Section 2.5.1

2.5.1.1. Show that the following motion is a rotation and find its axis and angle of rotation:

X' = lx+ (i+l) +(—L+ljz
- 6 6 6/ UT6 3
’—( 2 + )x+ 1 + (L+l)z

Y% s 6” " (V63

7z = (L+l)x+(—L+lj + zz
- %73 6 3/ 3

2.5.1.2. Using translations and rotations about the coordinate axes, find the equation of
a rigid motion that sends the plane X defined by 2x — 3y + 2z = 1 to the x-y
plane.

2.5.1.3. Given a unit cube with one corner at (0,0,0) and the opposite corner at (1,1,1), derive
the transformations necessary to rotate the cube by 8 degrees about the main diago-
nal (from (0,0,0) to (1,1,1)) in the counterclockwise direction when looking along the
diagonal toward the origin. Use rotations about the coordinate axes.
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2.5.1.4. Show that the motion
X' = lx+L +=z-2
-2 RY
oL X+ L z
Y= 2
7z = lx—L +lz—2
22T
is a screw motion, where
Definition. A motion in R? of the form RT, where R is a rotation that is not the iden-
tity map and T is a translation with translation vector parallel to the line that R is
rotating about, is called a screw motion.
2.5.1.5. Find the equations for the rotation whose roll-pitch-yaw representation is (1/2,n/3,1).
2.5.1.6. Find the equations for the rotation whose X-Y-Z Euler angle representation is
(n/2,m/3,1).
Section 2.5.2
2.5.2.1. Solve Exercise 2.5.1.2 using frames.
2.5.2.2. Solve Exercise 2.5.1.3 using frames.
2.5.2.3. Use frames to find the equations of the motion that sends the points A(1,0,0), B(0,1,0),

C(0,0,1), and D(1,2,1) to

2 2 1 1 3 3
A’ 0,1,__ y B, __)21_ » C, _;ly_ » d DI _r3r0 »
( «/_13,) ( 3 «/’13) ( 3 13) an («/_13 )

respectively.




CHAPTER 3

Projective Geometry

3.1 Overview

The last chapter outlined some of the basic elements of affine geometry. This chapter
looks at projective geometry. Some general references that look at the subject in more
detail than we are able to here are [Ayre67], [Gans69], and [PenP86].

Like in the last chapter, we shall start with dimension two (Sections 3.2-3.4) and
only get to higher dimensions in Section 3.5. In order to motivate the transition from
affine geometry to projective geometry we begin by studying projective transforma-
tions in affine space. Section 3.2 starts off by looking at central projections and leads
up to a definition of a projective transformation of the plane. We shall quickly see
that, in contrast to affine geometry, we have to deal with certain exceptional cases that
make the statement of definitions and theorems rather awkward. Mathematicians do
not like having to deal with results on a case-by-case basis. Furthermore, the exis-
tence of special cases often is a sign that one does not have a complete understand-
ing of what is going on and that there is still some underlying general principle left
to be discovered. In fact, it will become clear that Euclidean affine space is not the
appropriate space to look at when one wants to study projective transformations and
that one should really look at a larger space called projective space. This will allow
us to deal with our new geometric problems in a uniform way.

Projective space itself can be introduced in different ways. One can start with a syn-
thetic and axiomatic point of view or one using coordinates. Lack of space prevents us
from discussing both approaches and so we choose the latter because it is more prac-
tical. In Section 3.3 we introduce homogeneous coordinates after a new look at points
and lines that motivates the point of view that projective space is a natural coordinate
system extension of Euclidean space. This leads to a definition and discussion of the
projective plane P? in Section 3.4. Some of its important analytic properties are
described in Section 3.4.1. Sections 3.4.2 and 3.4.3 define projective transformations
of P? and show how affine transformations are just special cases if one uses homoge-
neous coordinates. We then generalize to higher dimensions in Section 3.5. The impor-
tant special case of 3-dimensional projective transformations is considered in Section
3.5.1. Next we study conics (Sections 3.6 and 3.6.1) and quadric surfaces (Section 3.7).
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We finish the chapter with several special topics. Section 3.8 discusses a generalization
of the usual central projection. Section 3.9 describes the beautiful theorem of Pascal
and some applications. The last topic of the chapter is the stereographic projection.
Section 3.10 describes some of its main properties.

3.2 Central Projections and Perspectivities

Definition. Let O be a fixed point of R". For every point p of R" distinct from O, let
L, denote the line through O and p. If Y is a hyperplane in R" not containing O, then
define a map

To:R"—>Y
by

no(p)=L, NnY, if L, intersects Y in a single point,

=undefined, otherwise.

The map 7o is called the central projection with center O of R" to the plane Y. If X is
another hyperplane in R", then the restriction of ©g to X, molX:X — Y, is called the
perspective transformation or perspectivity from X to Y with center O.

Note that our terminology makes a slight distinction between central projections
and perspectivities. Both send points to a plane, but the former is defined on all of
Euclidean space, whereas the latter is only defined on a plane; however, they clearly
are closely related.

Clearly, from the point of view of formulas, one would not expect our new maps
to be complicated because they simply involve finding the intersection of a line with
a hyperplane. Let us look at some simple examples to get a feel for what geometric
properties these maps possess. First, consider perspectivities between lines in R2.
Figure 3.1 shows the case where the two lines parallel. In this case, the ratio of the
distance between points and the distance between their images is constant. The per-
spectivity is one-to-one and onto. It preserves parallelism, concurrence, ratio of divi-
sion, and betweenness.

What happens when the two lines are not parallel? See Figure 3.2. The point V
on L has no image and the point W on L’ has no preimage. These points are called
vanishing points. Betweenness is not preserved as is demonstrated by the points A,
B, and C in Figure 3.2. Furthermore, the fact that betweenness is not preserved leads
to other properties not being preserved. In particular, segments, rays, and ratios of
division are not preserved, and distances are distorted by different constants.

Next, consider perspectivities between planes. When the planes are parallel, things
behave pretty well just like for parallel lines. The interesting case is when the planes
are not parallel. Consider a perspectivity with center O from a plane X, which we shall
call the object plane, to another plane Y, which we shall call the view plane. The fol-
lowing facts are noteworthy.
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(0]
A B C L
1L’
/A’ B \C

s B’ L W
(vanishing
point on L)

vanishing line

horizon

(a)

Figure 3.1. A perspectivity between parallel

lines.

Figure 3.2. A perspectivity between
skew lines.

(b)

Figure 3.3. A perspectivity between skew planes.

See Figure 3.3(a).

(1) The rectangle ABCD in the object plane gets mapped to the trapezoid A’'B’C’'D’
and the lines L; and L, through A,C and B,D, respectively, get mapped to the lines L;’

and L,” through A’,C’ and B’,D".

(2) The parallel lines L; and L, get mapped to lines that intersect at a point E’ in
the view plane. The point E’ has the property that OE’ is parallel to the object plane.
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The point E’ is called a vanishing point. The horizon plane, which is the plane through
OE’ parallel to the object plane, intersects the view plane in a line called a vanishing
line or horizon. Note that the perspectivity is undefined at every point of the vanish-
ing line.

(3) Not only E’ but each point of the vanishing line is called a vanishing point.
One can show that every such vanishing point comes from the projection of a family
of parallel lines. Another way to put this is that a perspectivity between nonparallel
planes maps parallel lines into intersecting lines.

For the next facts, see Figure 3.3(b).

(4) The intersecting lines L3 and L4 through F,J and G,J, respectively, map to par-
allel lines L3” and L4 in the view plane. The point J has the property that OJ is par-
allel to the view plane. The point J is also called a vanishing point. The plane through
0OJ parallel to the view plane, intersects the object plane in a line also called a van-
ishing line. Not only J but each point of this vanishing line is called a vanishing point.
Note that the perspectivity maps no point of R" onto any point of the vanishing line
in the object plane.

(5) One can show that every collection of lines in the object plane that intersect
in a point on the vanishing line map to parallel lines in the view plane. Again, another
way to put this is that a perspectivity between nonparallel planes maps every family
of lines that intersect on the vanishing line in the object plane into a family of par-
allel lines.

(6) Closed figures can go to open figures and vice versa. For example, the trian-
gle FGJ gets mapped to an unbounded region in the view plane bounded by the
segment [F,G] and the lines L’; and L'4.

Another fact that is true but not explicitly shown in Figure 3.3 is:

(7) Circles can project onto ellipses, parabolas onto hyperbolas; in fact, every non-
degenerate conic can project into any other nondegenerate conic (see Section 3.6.1
and Theorem 3.6.1.1).

As an interesting aside, a consequence of the above is that the reason that we
see a “horizon” when looking out over the ocean has nothing to do with the fact
that the earth is round. We would see this even if the earth were flat. The only
difference is that, in our case of a round earth, one sees the mast of an approaching
ship on the horizon before one sees its hull. This would not happen if the earth were
flat.

Perspectivities are a special case of what are called projective transformations. A
quick definition of these would be to say that they are composites of perspectivities,
but, keeping in line with the way we developed the affine transformations, we shall
make this a theorem and phrase our definition in terms of invariant properties. Fur-
thermore, in this section the goal will be to outline the theory of projective transfor-
mations within affine space (R"). Let us see how far we can go.

Definition. Properties that are preserved by parallel and central projections are
called projective properties or projective invariants.
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The figures above pointed out aspects of some specific perspectivities. What are
the abstract invariant properties that characterize such maps in general? Earlier we
mentioned some geometric properties that perspectivities between lines do not pre-
serve. Is there anything that all perspectivities preserve? Yes, there is, and it is called
the cross-ratio.

Definition. Let A, B, C, and D be distinct collinear points on an oriented line L.
The cross-ratio in which B and C divide A and D, denoted by (AD,BC), is defined to
be the following quotient of ratios of division:

(AD,B) IIABIlI /IIACII _IABIl lICDII

AD,BC) = - - . ,
( )=ap,0) " IBDII/ I'cDIl ~ 1BDI TACI

where Il Il denotes the signed distance between points of the oriented line L.

Although developed by the ancient Greeks, the modern development of the cross-
ratio is due to A.F. Moebius (Der Barycentrische Calcul, 1827) and independently to
M. Chasles (various publications from 1829-1865). The term “cross-ratio” was coined
by W.K. Clifford in 1878.

Because the ratios of division are independent of the orientation of the line, so is
the cross-ratio. The cross-ratio can be (and is often) defined for points A, B, C, and
D, where only three of those four points are distinct if one defines it to be « in the
duplicate point case. We shall not do so here.

To explain the somewhat mysterious concept of cross-ratio, we first look at the
case of four numbers a, b, ¢, and d. See Figure 3.4. By definition

b-a /c-a b-ad-c

adbe)= /4 e T dbosa’

(3.1)

Figure 3.4(a) shows the intervals involved in the formula. Figure 3.4(b) shows some
values of (ad,bc), where we fixed a, ¢, and d and let b vary. We see that the cross-ratio
changes from (d — ¢)/(c — a) to 0 as b increases from —o to a. It then increases from
0 to = as b increases from a to d. The cross-ratio decreases from (d — ¢)/(c — a) to —
as b decreases from + to d. In general, if one fixes three distinct points A, C, and D
on a line L, then the function

value of (ad,bc) for different b

b-a d-b
d-c d-c
d c—-a 0 1 oo c—a
- | oo
; ; ; ; —oo - - - +o0
a b ¢ d a c d

(a) (b)

Figure 3.4. The cross-ratio for four numbers.
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(AD,-C): L-{D} >R
B — (AD,BC)

is a one-to-one, onto, and continuous function. This fact is easily deduced from
equation (3.1).

Now, it is easy to check that the formula on the right-hand side of equation (3.1)
is invariant under affine maps. Although the x-axis may seem like a very special line,
all lines look like it once they are parameterized. We prove the following fundamental
theorem of projective geometry.

3.2.1. Theorem. Both parallel projections and perspectivities between hyperplanes
preserve the cross-ratio.

Proof. By Theorem 2.4.1.2 parallel projections preserve the ratio of division. There-
fore, parallel projections preserve the cross-ratio. Before we get to a proof of the
theorem in the case of perspectivities, we derive a formula for the ratio of division.
Assume that we have points A, B, and D on an oriented line L and that O is a point
not on the line. See Figure 3.5(a). If ny and np are unit vectors that are orthogonal to
the vectors OA and OD, respectively, then

AB'HA ZOB°I‘1A, (32)
and
BD'I]]) ZBO'I‘ID, (33)
because the quantities in equations (3.2) and (3.3) are just the signed lengths of the
perpendiculars dropped from B to the lines through O, A, and O, D, respectively.
Next, let u be a unit direction vector for L that induces its orientation. Define real

numbers a and b by

AB=au, (3.4)

() (b)

Figure 3.5. Perspectivities preserve the cross-ratio.
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and
BD = bu. (3.5)

Note that a and b are just the signed distances between A, B, and B, D, respectively.
Equations (3.4) and (3.5) imply that

ABenj, —auenj (3.6)
and
BDenp=buenyp. (3.7)
Finally, let vg be the unit vector in direction OB, that is,
OB =|0B|vg. (3.8)

Equations (3.2), (3.3), (3.6), (3.7), and (3.8) lead to the following formula for the ratio
of division (AD,B):

(AD’B):EZ(ABOnA)(UOnD):OBOnA uenp _ vpemny uOnD. (3.9)
b (BDenp)uen,) BOenp uen, Vg enp ueny

This formula shows why the ratio of division is not a projective invariant. It depends
on the direction vector u of the line L containing the points.
We return to the proof of Theorem 3.2.1. Consider Figure 3.5(b). We need to show
that (AD,BC) = (A’'D’,B’C’). If we define
AC=cu, CD=du, and OC=|0Clvc,

then a derivation similar to the one that led to equation (3.9) shows that

vcena u*np

(AD,C)== =Y Oa V0D (3.10)
d Vcenp u*ny
Equations (3.9) and (3.10) show that
(AD,BC) = ADB) _ Vg *ms ve °np (3.11)

(AD,C) vgenp vcena’

The right-hand side of equation (3.11) depends only on angles defined by the rays
through O (actually the sines of the angles between the rays) and not on where the
points lie on the rays. Dividing the two ratios of division eliminated the other depend-
encies. Therefore, we would get the same value for (A'D’,B’C’), specifically because
vg = vg’ and v¢ = v¢'. Theorem 3.2.1 is proved.

There is an important and computationally useful consequence of the projective
invariance of the cross-ratio. See Figure 3.6. If A(x1,y1), B(x2,y2), C(x3,y3), and D(x4,y4)
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Figure 3.6. Computing the cross-ratios from y
x-coordinates.

A B’ (o D’

are distinct collinear points that have distinct x-coordinates, then one can compute
their cross-ratio from their x-coordinate values. In other words, if A’(x1,0), B’(x3,0),
C’(x3,0), and D’(x4,0) are the projections of the points on the x-axis, then

(AD,BC) = (A’'D’,B'C’) = X2 —X1 /X3 — X1 _ X2—X1 X4 —X3

X4—X2/ X4—X3 X4—X2 X3—X1
Similarly, one can use the y-coordinates if those are distinct.

3.2.2. Example. To compute the cross-ratio of the points A(2,0), B(0,-1), C(6,2),
and D(8,3) on the line L defined by the equation x — 2y — 2 = 0, assuming that L is
oriented to the right.

Solution. By definition of the cross-ratio, we have that

J5 _s5
(AD’BC):IIABII.IICDIIZ 5 51
IBDIl IACII 2v5 4v5 8

Since the x-coordinates 2, 0, 6, and 8 of the points are distinct, an easier way to
compute the cross-ratio is to use these values and formula (3.1):

o
N

8—

1

8-6
6-2 8

(=)

The answer is the same.

We point out another interesting geometric consequence of Theorem 3.2.1. Since
the cross-ratio is preserved by a perspectivity, it follows that the view of four collinear
points is completely determined once one knows the position of three of those points
in the view. For example, consider a railroad track that consists of two rails and
equally spaced ties or a ladder with equally spaced rungs. What are the possible per-
spective views of this track or ladder? Well, the position and relative spacing of any
three of these ties or rungs in the view can be quite arbitrary except for some minor
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z Figure 3.7. The view of three railroad
‘ ties determines the rest.
eye
y

Y

C/

B’

A

’ \ yC/D i

view
plane

constraints, but from then on the relative spacing of the remaining ties or rungs in
the view is fixed. See Figure 3.7.

Returning to our analysis of parallel and central projections, the next definition
is the best we can do in the context of affine geometry.

Definition. A projective transformation or projectivity of a plane X to itself is a “map”
T such that

(a) The domain of T is either X or X minus a line L. The range of T is either X
or X minus a line L’.

(b) T is one-to-one.

(c) T preserves collinearity when defined.

(d) T preserves the cross-ratio when defined.

3.2.3. Theorem. A projective transformation has the following properties:

(1) Ordinary lines go to ordinary lines.

(2) The map sets up a natural one-to-one correspondence between lines.

(3) A family of concurrent lines goes into a family of concurrent lines or a family
of parallel lines.

(4) A family of parallel lines goes into a family of parallel lines or a family of con-
current lines.

(5) Conics go to conics. More precisely, any nondegenerate conic may be mapped
onto any other nondegenerate conic by a projective transformation.

Proof. See [Gans69]. Theorem 3.2.3 can be proved directly or deduced from
Theorem 3.2.5 below.

3.2.4. Theorem. There is a unique projective transformation in which a given line
L has no image and which sends given noncollinear points A, B, and C into given
noncollinear points A’, B’, and C’, respectively.

Proof. See [Gans69].
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Figure 3.8. A similarity produced by two y
central projections.
342
v
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The next theorem gives a nice geometric characterization of projective transfor-
mations and generalizes Theorem 2.4.1.2.

3.2.5. Theorem. Every projective transformation is the composite of a sequence of
parallel or central projections not more than one of which is central. Conversely, every
transformation of the plane that is a composite of parallel and central projections is
a projective transformation.

Proof. See [Gans69].

In other words, projective transformations are the transformations that preserve
projective properties.

3.2.6. Example. The similarity T: R = R defined by T(x) = 3x is a composite of two
central projections with centers at P; = (0,—1) and P, = (0,3). See Figure 3.8.

3.2.7. Theorem. (The Fundamental Theorem of Projective Geometry for the Plane)
There is a unique projective transformation that sends four given points A, B, C, and
D into another four given points A’, B’, C’, and D’, respectively, if no three in either
set are collinear.

Proof. See [Gans69].

Finally, there is the question as to what the equations for a projective transfor-
mation might look like.

Definition. A transformation of the plane of the form

’ ’

_ajx+azy+as _ bix+byy+bs

cix+coy+cs CciX+coy+c3

where
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ai; apz as
b1 bz b3 #0
¢t C2 C3

is called a fractional transformation.

3.2.8. Theorem. Every projective transformation is a fractional transformation and
conversely.

Proof. See [Gans69].

3.2.9. Theorem. The set of all projective transformations is a group containing the
planar affine transformations as a subgroup.

Proof. This is obvious. The planar affine transformations correspond to the frac-
tional transformations above where ¢; = ¢, =0 and c3 = 1.

This is as far as we shall take things in affine space. Clearly, one of the unpleasant
aspects of perspectivities in this context is that they are not defined everywhere, nor are
they onto. Basically, there are “missing” points. We shall have more to say about that
shortly, but a few comments are appropriate now because it prepares the reader for the
concept of “ideal point” and we also want to relate perspectivities to parallel projec-
tions. We know what the missing points are in the case of a perspectivity of the type
shown in Figure 3.3. We need to add some points, both to the view plane and the object
plane. Suppose we add a new point to a plane for each of its families of parallel lines.
If L is a line, then let L” denote this new point associated to the family of lines paral-
lel to L. L~ will be called an ideal point. With these new points, we could extend our
definition of the perspectivity by saying that the point J in Figure 3.3(b) should map to
L3 and L should map to E’ in Figure 3.3(a). This would give us a one-to-one and onto
map between these extended planes, which are ordinary planes together with their
ideal points. In addition, with these new points we could consider parallel projections
between hyperplanes as a special case of perspectivities if we allow the center of
projection to be an ideal point.

3.3 Homogeneous Coordinates

One of the key ideas in the study of analytic projective geometry is that of homoge-
neous coordinates. The standard Cartesian coordinates are sometimes referred to as
“nonhomogeneous” coordinates and are simply one of many ways to specify points
in space with real numbers. Other ways are polar coordinates in the plane and cylin-
drical and spherical coordinates in 3-space. Barycentric coordinates are a type of
“homogeneous” coordinates. They specify points relative to a fixed set of points.

Out of the many ways that one can coordinatize points, which is the most con-
venient depends completely on the type of problem we are trying to solve. Homoge-
neous coordinates are just another way of coordinatizing points. Historically they find
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their roots in Moebius’ work on barycentric coordinates (Der Barycentrische Calcul,
1827) and the fact that they are useful with central projections. Here we motivate
their definition by looking at the relationship between points and solutions to linear
equations.

We shall start with the real line R. What we are about to do may seem a little silly
at first, but if the reader will bear with us, it should make more sense in the end.
Linear equations in R have the form

ax+b=0, with a=0. (3.12)

We can think of R as the set of solutions to all equations of the form (3.12). Equation
(3.12) is homogeneous in a and b, but not in x. We can achieve more symmetry by
introducing another variable Y and consider the equation

aX+bY =0, with (a,b)#(0,0). (3.13)

The trivial solution (X,Y) = (0,0) is uninteresting and will be excluded from consider-
ation. Note that if we have a solution x to equation (3.12), then we have a solution
(x,1) to equation (3.13). In fact, (kx,k) will also be a solution to (3.13) for all k # 0.
Conversely, if (X,Y) is a solution to (3.13), then X/Y is a solution to (3.12) if Y # 0. In
short, each solution x to (3.12) gives rise to a class of solutions (kx,k), k # 0, to (3.13)
and each class of solutions (kX,kY) to (3.13) with k# 0 and Y # 0 gives rise to a unique
solution X/Y to (3.12).

Definition. Let x € R and let (X,Y) be any pair of real numbers with Y # 0. If
x = X/Y, then X and Y are called homogeneous coordinates for x. One typically uses
the expression “(X,Y) are homogeneous coordinates for x” in that case.

Note that if (X,Y) are homogeneous coordinates for a real number x, then so are

(kX,kY) for any k # 0.

3.3.1. Example. (-2,1), (-4,2), and (8,—4) are all homogeneous coordinates for the
real number -2.

What about the solutions to (3.13) with Y = 0? Since X # 0 in that case, they are
all multiples of (1,0). In conclusion, all the solutions to (3.13) fall into classes each of
which corresponds to a unique solution to (3.12) except for the one extra class of solu-
tions (k,0). We can think of these classes as points. The set of these “points” will be
called the “projective line.” It can be thought of as consisting of the real numbers with
one additional point added (the one corresponding to Y = 0). The extra point is called
an ideal point. All this will be formalized in the next section.

Next, we look at the more interesting case of the plane. The essential ingredients
in the analytic development of the affine (Cartesian) plane are points, which are pairs
(x,y), and lines, which are the set of solutions (x,y) to an equation of the form

ax+by+c=0, with (a,b)=(0,0). (3.14)

Note the following semi-duality in this context:
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(a) Points on a line are the solutions (x,y) to equation (3.14) keeping a, b, and ¢
fixed.

(b) Lines (through the fixed point (x,y)) are the solutions (a,b,c) to equation (3.14)
keeping (x,y) fixed.

In (a) we are dealing with nonhomogeneous solutions and in (b) they are homoge-
neous. We can make the solutions homogeneous in both cases by introducing a new
variable Z. Furthermore, to obtain complete symmetry, we restate the equation (3.14)
in the form

aX+bY+cZ=0, with (a,b,c)=(0,0,0). (3.15)

Because equation (3.15) always has the trivial solution (0,0,0), and because this solu-
tion is uninteresting, we shall always exclude it from any discussion.

Clearly, if (X,Y,Z) is a solution to (3.15) with Z # 0, then (X/Z,Y/Z) is a solution
to (3.14). Conversely, if (x,y) is a solutions to (3.14), then (x,y,1) is a solution to
(3.15), as is (kx,ky,k) for any real k. What this discussion is leading up to is that instead
of thinking of points as coordinatized by pairs (x,y) of real numbers we can think of
them as coordinatized by triples (X,Y,Z), or rather by classes of triples.

Definition. Let p be any point in the plane R% Let (X,Y,Z) be any triple of real
numbers with Z # 0. If x = X/Z and y = Y/Z are the Cartesian coordinates for p, then
X, Y, and Z are called homogeneous coordinates for p. One typically uses the expres-
sion “(X,Y,Z) are homogeneous coordinates for p” in that case.

Note that if (X,Y,Z) are homogeneous coordinates for a point (x,y), then so are

(KX, kY,kZ) for any k # 0.

3.3.2. Example. (-1,2,1), (2,-4,-2), and (—4,8,4) are all homogeneous coordinates
for the Cartesian point (-1,2).

So far in our correspondence between the solutions to (3.14) and (3.15) we
excluded the solutions to (3.15) that have Z = 0. What about these solutions?
Suppose that (X,Y,0) is a solution to (3.15) and that (a,b) = (0,0).

Case 1. a#0:IfY=0, then X =0. Since the solution (0,0,0) is not allowed, we must
have Y # 0 and X = (-b/a)Y. In other words, every solution has the
form ((-b/a)Y,Y,0).

Case 2. b # 0: This time we can solve for Y and every solution has the form
(X,(-a/b)X,0), with X # 0.

We can combine cases 1 and 2 to conclude that every solution must have the form
(-bt,at,0) for some t # 0. Alternatively, we could have deduced this from the observa-
tion that the only vectors (X,Y) that are orthogonal to (a,b) are scalar multiples of
(-b,a). In any case, we see that there is only one extra class of solutions. Let us call
each class of solutions (X,Y,Z) to (3.15) informally a point and the set of these
“points.” the “projective plane.” (Precise definitions are given in the next section.). The
extra points where Z = 0 will be called ideal points.
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Recall that equations for lines are not unique. Also, if L is the line defined by equa-
tion (3.14), then the family of lines parallel to L is obtained as solutions to equations
where we fix a and b in (3.14) but let ¢ vary (Exercise 1.5.7(b)). Looking at this another
way, what we have just shown is that there is a one-to-one correspondence between
families of parallel lines in the plane and ideal points, namely, to the family of lines
parallel to L we associate the ideal point that is the class of solutions to (3.15) deter-
mined by (-b,a,0). That such a correspondence exists was foreshadowed in the dis-
cussion at the end of Section 3.2.

Finally, the equations in (3.14) give rise to all of the equations in (3.15) except
the equation cZ =0, that is, Z = 0. Thus there is only one equation in (3.15) not arising
from a line in the plane, but this is precisely the equation that defines the ideal points.
It should not be surprising if, as we shall do in the next section, one defines a “line”
in the projective plane to mean a set of points determined by the solutions to a linear
equation of the form shown in (3.15). Then lines in the projective plane will corre-
spond to solutions to linear equations just like in the Euclidean plane.

3.4 The Projective Plane

The informal discussion of linear equations and their solutions in the previous section
led to homogeneous coordinates and suggested a new way of looking at points in the
plane. We shall now develop these observations more rigorously. Although we are only
interested in the projective line and plane for a while, we start off with some general
definitions so that we do not have to repeat them for each dimension.

3.4.1. Lemma. The relation ~ defined on the points p of R*! — 0 by p ~ cp, for ¢ #
0, is an equivalence relation.

Proof. This is an easy exercise.

Definition. The set of equivalence classes of R™! — 0 with respect to the relation ~
defined in Lemma 3.4.1 is called the n-dimensional (real) projective space P". In more
compact notation (see Section 5.4 and the definition of a quotient space),

P" = (R™!-0)/-~.

The special cases P' and P? are called the projective line and projective plane, respec-
tively. If P € P" and P =[xy, X2,..., Xn+1], then the numbers xi, x5,..., Xy are called
homogeneous coordinates of P. One again typically uses the expression “(x1,Xz, ..., Xnt1)
are homogeneous coordinates for P” in that case.

Note that P consists of the single point [1]. We can think of points in P! or P? as
equivalence classes of solutions to (3.13) or (3.15), or alternatively, as the set of lines
through the origin in R? or R?, respectively. Other characterizations of the abstract
spaces P™ will be given in Section 5.9. There are actually many ways to introduce coor-
dinates for their points. In the next section we shall see how this can be done for P!
and P2,

It is easy to check that the maps
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\J

PO pr, P S P?
(X] — [0,X] X, Y] - [X,0Y]

and

R - P! , 1: RZ —» p?

x = [x1] xy) = [xy1]

are one-to-one. Therefore, by identifying the corresponding points, we shall think of
these maps as inclusion maps and get a commutative diagram

P’ c P! c P?
I U v
R°cR!cR2,

The “inclusion” maps 1 above are called the standard imbeddings of R in P! and R? in
P2. In particular, we shall consider the Euclidean plane as a subset of the projective
plane.

The two notions of “homogeneous coordinates” and “projective space” are really
quite inseparable. Homogeneous coordinates define the natural coordinate systems
for projective space. Even if they are only used to coordinatize points of Euclidean
space, one is dealing with projective space at least implicitly.

Definition. The points of P" — R" are called ideal points. All the other points are
called real points.

The projective line P! has only one ideal point [1,0], which we shall denote by e
and so, as a set, P! can be identified with the union R U {c}. Furthermore, with the
natural topology, the real points of the space that “converge” to e as numbers would
converge to the ideal point c. In other words, P! is a circle topologically.

The projective plane P? is another space that is probably new to the reader. What
does it really “look” like topologically? We shall postpone a careful answer to this ques-
tion to Chapter 5 because this chapter has different goals. However, note that the ideal
points of P? are the points of the form [X,Y,0]. There is a natural correspondence
between those points and the points [X,Y] of P!, that is, the set of ideal points in the
projective plane look like a copy of the projective line. To put it another way, a good
way to think of the projective plane is as the standard Euclidean plane with a circle
added at infinity. As sets, P> = R U P!. In Section 5.9 we shall give some other defi-
nitions that produce spaces topologically equivalent to the space P? defined above.
For example, we shall see that we can think of the projective plane as a disk with
antipodal points on its boundary identified. The points derived from the boundary
correspond to the ideal points. See Figure 3.9(a). This also leads to another way of
thinking of P?, namely, as the union of a Moebius strip and a disk with the two bound-
aries (both are circles) glued together. See Figure 3.9(b). In this chapter, however, we
are not interested in the projective plane from the point of view of topology but in
terms of its algebraic and analytic structure. As an analogy, note that R looks like an
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a Moebius
strip

-
disk with antipodal boundary disk glued to Moebius strip
points identified along their boundary

(a) (b)

Figure 3.9. Visualizing the projective plane.

open disk topologically, but that is not a useful way of looking at it if one wants to
use its vector space structure.

It should be pointed out that there is actually nothing special about ideal
points even though their name would suggest otherwise. From an intrinsic point
of view, every point of P" looks like every other point of P". The reader needs to
understand what really happened here. Projective spaces are abstract sets (sets of
equivalence classes) and we decided to coordinatize their points, that is, we decided
to associate a tuple of numbers with each point. Although our choice of coordinates
is a natural one, it is only one out of infinitely many ways that one can assign coor-
dinates to the points of these abstract sets. In the case of P?, our chosen coordinates
imbedded R? in P? in a special way. Which points end up being called ideal points
is totally a function of how R? is imbedded. Their special nature is purely an artifact
of the construction. For example, one can think of a sphere as the Euclidean plane
with one extra point “at infinity” added. This would seem to make this one point
special, but it is only special because of the particular representation. A sphere,
thought of in the abstract, has all points and their neighborhoods looking the same.
We shall return to the issue of coordinates in the next section and Sections 8.13 and
10.3.

Notation. If € is the line in the plane defined by equation (3.14), let €~ denote the
ideal point [-b,a,0].

It follows from the discussion in the previous section that the association of €~
with the family of lines parallel to € sets up a one-to-one correspondence between
ideal points and families of parallel lines in the plane.

Definition. A line in P? is any subset L of P? of the form
L={X,Y,Z]|aX+bY+cZ=0 forfixed (a,b,c)=(0,0,0)}.

Points of P? that lie on a line are said to be collinear.

The tuple (a,b,c) that defines the line L above is not unique because any non-
zero multiple defines the same line. On the other hand, it is easy to show that the
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correspondence between L and [a,b,c] sets up a one-to-one and onto correspondence
between lines L in P? and points [a,b,c] in P2

Notation. Given a line € in R? defined by the equation
ax+by+c=0
or a line L in P? defined by the equation
aX+bY+cZ=0,
we shall let [€] and [L] denote the point [a,b,c] in P2.

With this notation, consider a line L and assume that [L] = [a], where a € R3. It
follows that L is just the set of all points [p] in P?, so that

aep=0. (3.16)

This gives us a complete duality between points on a line and lines on a point in P2.
This observation was already implicit in our discussion earlier of equation (3.15). We
make this duality a little more explicit.

Definition. Given a statement concerning the projective plane, the dual of that state-
ment is the statement where every occurrence of the words “point” or “collinear” is
replaced by “line” or “concurrent,” respectively, and vice versa.

The principle of duality in the projective plane: Given any theorem for the
projective plane, its dual is also a theorem.

The duality principle is very useful in the study of projective geometry. Even
though it will only get an occasional mention in this book, it is worth being aware of
it.

All lines are alike in P? (topologically they are circles), but with our imbedding of
R? in P?, we can distinguish between two types of lines.

Definition. An ordinary line L in P? is a line that consists of an ordinary line € in
the Euclidean plane with an ideal point adjoined, that is, a line of the form L = € u{€*}.
(See Exercise 3.4.1.) The line defined by the equation Z = 0, which consists of the set
of ideal points, is called the ideal line.

Note that there is no such thing as “parallel” lines in the projective plane.
3.4.2. Theorem. Every pair of distinct lines in P? intersects in a point.
Proof. Since every line has an ideal point, every line intersects the ideal line. It
suffices to show that two ordinary lines intersect. The only possible problem could

come from two lines whose real parts in R? are parallel, but those will intersect in
their common ideal point.
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Theorem 3.4.2 is nice because arguments therefore do not have to contain special
cases to deal with nonintersecting lines.

3.41 Analytic Properties of the Projective Plane
This section describes some analytic properties of P2,

3.4.1.1. Theorem. Three distinct points [X;,Y1,Z1], [X5,Y2,Z>], and [X3,Y3,Z3] of P?
are collinear if and only if

Xy YT 74
X2 Y2 Z,/=0. (3.17)
X3 Ys Z3

Proof. We basically have to find numbers a, b, and c, not all zero, so that
aXj +ij +cZ; =0, i=1,2,3.

The theorem is now an easy consequence of basic facts about when such systems of
equations admit nontrivial solutions.

3.4.1.2. Corollary. The line in P? determined by two distinct points [X;,Y1,Z1] and
[X,,Y>,Z,] has equation

Y, Zy
Y, Z;

7 X
7> X2

Xi Y
X2 Y2

X + Y + 7 =0. (3.18)

Proof. Simply apply Theorem 3.4.1.1 to points [X,Y,Z], [X1,Y1,Z1], and [X5,Y>,Z]
and expand the determinant in the theorem by minors using the top row of the matrix.

3.4.1.3. Theorem. If the lines L; in P? defined by equations
a;X+biY+¢Z=0, i=1,2,
are distinct, then they intersect in the point [(aj,by,c1) X (az,bs,c2)].

Proof. This follows from the fact that the cross product of two vectors is
orthogonal to both of the vectors.

3.4.1.4. Theorem. Let L be the line in P? determined by two distinct points
P, = [pi] and P, = [p,], pi € R’.

(1) Every point of L can be written in the form P = [sp; + tp,] for some real
numbers s and t that are not both zero. Furthermore, Py, P,, and P are distinct points
if st # 0. If P = [s'p; + t'p2], then (s,t") = c(s,t), for some nonzero constant c.
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(2) Every point of L other than P; can be expressed uniquely in the form
[sp:1 + p2]. By allowing s to equal « and using the convention that [sp; + p.] = P; when
s = =, we shall say in the future that every point of L can be so expressed. Similarly,
every point of L can be expressed uniquely in the form [p; + tp,], where the point for
t = o is identified with P,.

Proof. The fact that every point Q = [q] of L can be written in the form [sp; + tp>]
follows form the fact that the vector q must be a linear combination of the vectors p;
and p; because the determinant (3.17) is zero. Showing that Py, P,, and P are distinct
points if st # 0 is straightforward. Applying Theorem 3.4.1.1 to those three points
implies that they lie on L because the fact that the bottom row is a linear combina-
tion of the top two rows means that the determinant in the theorem is zero. This basi-
cally proves (1). The existence part of (2) follows easily from (1). The uniqueness part
of (2) is easily checked.

Note that identifying [sp; + p2] with P; when s = « is reasonable because

[sp1 +p2] = [S(Pl +§P2ﬂ =[P1 +§Pz} —[p1] as s— oo

The same argument justifies identifying [p; + tp,] with P, when t = <.

Theorem 3.4.1.4(2) can be interpreted as saying that every line in P? can be para-
meterized by the extended reals R*. In the first parameterization we have in effect
made P; the new ideal point. P, is the new ideal point for the second. The parame-
terizations are not unique because they depend on the choice the two distinct points
with respect to which they are defined. More importantly, the next example shows
that it also depends on the representatives p; and p, we have chosen.

3.4.1.5. Example. Consider the line L defined by the points P; = [1,3,2] and
P, =[-1,0,4]. By Theorem 3.4.1.4(2),

L={[s-13s,2s+4]|seR}u{[-1,0,4]}.

The point Q =[0,3,6] on L would be assigned the parameter s = 1. On the other hand,
P, =[2,6,4] and choosing the representative (2,6,4) for P; would have represented L as

{[2s-1,6s,4s+4]| se R} U {[-1,0,4]},
and assigned the parameter 1/2 to Q.

Next, we would like to define the cross-ratio for four points on a line in P2. One
approach would be to take advantage of our earlier definition of the cross-ratio for
points in R%. The only complication is that one of the points might be an ideal point
and one would have to give special definitions in those cases. It would be nice to give
a more intrinsic definition. Although a metric-free definition was given by C.G. von
Staudt (Beitrige zur Geometrie der Lage, 1847), the modern approach is based on
metric considerations. We shall use a coordinate-based approach using homogeneous
coordinates. In the end, one would of course want to check that all definitions agree.
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An inherent problem when using coordinates is that one has to show that different
coordinatizations give the same answer.

Let A, B, C, and D be four distinct points on a line L in P2. We shall denote the
cross-ratio in which B and C divide A and D by (AD,BC). Here are two definitions for
it:

Definition 1. Assume that A = [a] and D = [d] and express B and C in the form
[a + kd] and [a + k’d], respectively, for some nonzero k and k’. Define

(AD,BC) = % (3.19)

Definition 2. Let P = [p] and Q = [q] be any distinct points of L and express A,
B, C, and D in the form [p + aq], [p + bql, [p + cql, and [p + dq], respectively.
Define

(a—b)(d-c)

(AD,BC) = @_od_b)’

(3.20)

3.4.1.6. Theorem. The two definitions in equations (3.19) and (3.20) of the cross-
ratio (AD,BC) of four distinct points A, B, C, and D on a line in the projective plane
are well defined and agree.

Proof. The proof consists of some straightforward computations.
To prove that Definition 1 is well defined, let A = [sa] and D = [td] and let
B =[(sa) + m(td)] and C = [(sa) + m’(td)]. We must show that

Now, (sa) + m(td) = e(a + kd) and (sa) + m’(td) = f(a + k'd) for nonzero constants
e and f. It follows that

(s—e)a=(ek-mt)d and (s—-fa=(>1k -mt)d.

Since the vectors a and d are linearly independent, s = e = f, ek = mt, and fk" = m't,
which easily implies that our two ratios are the same.

To prove that Definition 2 is well defined, one needs to show that it depends
neither on the choice of P and Q nor on their representatives. The independence of
their representatives is easy to show. For the rest, first replace Pby P’ =[p’ ], p"=p
+ sq, express the points A, B, C, and D in terms of P’ and Q as [p’ + a’q], [p” + b'q],
[p’ + c’ql, and [p” + d’q], respectively, and compare the new expressions with the old
ones. One will find that a=s + a’, b=s + b, etc., so that it is easy to check that

(@’=b’)(d"-c’) (a-b)d-c)
(@ -c)d’-b) (a-c)d-b)’
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B Figure 3.10. Defining when a point
is between two points.

(a) (b)

Similarly, one shows that replacing Q by Q" will preserve formula (3.20). Let Q" =[q’],
q’ =p + tq. Express the points A, B, C, and D in terms of P and Q’ and relate the new
expressions with the old ones. The details are left to the reader.

Finally, to show that Definition 1 and 2 agree, choose P = A and Q = D. In this
case, a = 0 and d = . These values imply that the quotient in (3.20) is just b/c, the
same value that Definition 1 asserts. This proves the theorem.

We shall give a third definition of the cross-ratio shortly. First, we study the
problem of coordinatizing the points of the projective line and plane. Let us start with
lines. The standard way that one assigns coordinates (real numbers) to a line in
Euclidean space (thought of as an abstract set of vectors without coordinates) is to
decide on a unit of distance, pick a start point o (the “zero”), and pick a direction for
the line that defines which half with respect to o will get positive numbers and which
will get negative numbers. We can accomplish this by picking two points: the start
point o and another point u (the “+1”) that is a unit distance form o. See Figure
3.10(a). Each point p of the line is then assigned the number t, where p — o0 = t(u -
0). Note how o and u get assigned the numbers 0 and 1, respectively. What is differ-
ent about a line in P? is that it is topologically a circle. Picking two points on a circle
does not orient it. In Figure 3.10(b), which of the points A or B is “between” O and
U? Figure 3.10(a) shows that this is not a problem for a line in R?. For a circle or pro-
jective line we have to pick three points, but it is convenient to pick them in a special
way. This will also restore the dependency on representations of points that we lost
in Theorem 3.4.1.4. The next lemma is the basic property we need.

3.4.1.7. Lemma. LetI = [i{] = [i»], O = [01] = [02], and U = [u;] = [u,] be three
distinct points on a line in P2, If

ij+oj=u;, j=12, (3.21)
then i; = ci,, 01 = c0,, and u; = cuyp, for some ¢ # 0.
Proof. Let i; = aiy, 01 = boy, and u; = cu,. Equations (3.21) imply that
ai; +boy =cuy =c(i; +0;) =ciy +co,.
Since the vectors i, and 0, are linearly independent, we must have a=b = c.

The importance of Lemma 3.4.1.7 is the following:
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3.4.1.8. Corollary. Using the notation in Theorem 3.4.1.4, if we require the repre-
sentatives p; and p, to always add up to a representative of a fixed point, then the
parameterization described in part (2) of that theorem will depend only on the points
P; and P, but not on their representatives.

Consider the projective line P! and the three special points [1,0], [0,1], and [1,1]
that correspond to the points o, 0, and 1. Note how the coordinates of the standard
representatives of the first two points add up to the coordinates of the representative
of the third. We are ready to coordinatize points in projective space.

Definition. Let L be a line in P? and let I, O, and U be three distinct points on L.
Choose representations I = [i], O = [o], and U = [u] for the points so thati + 0 = u.
The map

¢: P' 5L
defined by
o(X,Y])=[Xi+Yo]

is called the standard parameterization of L with respect to the points I, O, and U. Using
the standard identification of P! and R* we shall also describe the map ¢ with the
formulas

ox)=[xi+0] and @(=)=1,

3.4.1.9. Theorem. The standard parameterization of a line L with respect to three
of its points is a one-to-one and onto map that depends only on the points and not
on their representatives.

Proof. The theorem follows from Corollary 3.4.1.8.

Definition. Let ¢ be the standard parameterization of a line L in P? with respect to
points I, 0, and U. If P € L and if ¢"!(P) = [X,Y], then (X,Y) will be called the hono-
geneous coordinates of P with respect to the coordinate system defined by I, O, and U.
Let x = X/Y or o depending on whether Y # 0 or Y = 0. The number x will be called
the (extended real or affine) coordinate of P with respect to the given coordinate system.
The points [1,0], [0,1], and [1,1] define the standard coordinate system for P' and the
coordinates with respect to it are called the standard coordinates.

Let
or: P'>L (3.22a)
be the standard parameterization of a line L with respect to the coordinate system
defined by points Iy, Ok, and Uy on L, k = 1,2. Express Ix, Ok, and Uy in the form

I = [ix], Ok = [ox], and Uy = [ug] with ix + ox = ux. By Theorem 3.4.1.4 there are con-
stants a, b, ¢, and d, so that
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i1 = ai2 +COy,
0] = biz +d02. (3.22b)

3.4.1.10. Theorem. Given the parameterizations @i in (3.22a) and the constants a,
b, ¢, and d in equations (3.22b), the map

v=05l¢;: P! 5 P!

has the form

y([X,Y]) =[aX+bY,cX+dY] with b #0. (3.22¢)

(&

If we identify P! with R* and consider ¥ as a map from R* to R¥, then the map ¥
has on the form

ax+b
cx+d’

y(x) = (3.22d)

Proof. The theorem follows from the following string of equalities:

o1((X,Y]) =[Xi; + Yoq]
=[X(ai, +coy)+ Y(bi, +do,)]
=[(aX+bY)i, +(cX+dY)o,]
- ¢>([aX + bY,cX +dY)).

The determinant in (3.22¢) is nonzero because i; and 0; are linearly independent.
Equation (3.22d) is obtained by factoring out a Y and making the substitution x = X/Y.

Theorem 3.4.1.10 should be taken as a statement about how coordinates change
as one moves from one coordinate system for a projective line to another. Specifically,
we have

3.4.1.11. Corollary. Using the notation in Theorem 3.4.1.10, the map

b0, (3.23)

a c . a
(XY)—>(XY)(b d) with J

maps the homogeneous coordinates (X,Y) of a point of the line L with respect to the
coordinate system defined by Ij, Oy, and U; to the homogeneous coordinates of the
same point with respect to the coordinate system defined by I, 0, and U,. Conversely,
every such map corresponds to a change of coordinates.

3.4.1.12. Example. Suppose the standard coordinates for a point P in P! are
5 =[5,1]. What are the coordinates of P with respect to the coordinate system defined
byI=2=[2,11,0=3=[3,1],and U=7=[7,1]?
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Solution. First of all, we must find representatives i and o for I and O, respectively,
so that i + 0 = (7,1). Since the equation

a2,)+b3,1)=(7,1)

has solution a = -4 and b = 5, we can let i = (-8,—4) and o = (15,5). Next, the standard
parameterization @ of P! with respect to the given I, O, and U is defined by

—8x+15

o(x) =[x(-8,-4)+(15,5)] =[-8x+15,-4x +5] = Taxis

Since ¢(5/6) = 5, it follows that 5/6 are the coordinates of P in the new coordinate
system. Alternatively, we could follow the proof of Theorem 3.4.1.10 and solve the
system of equations

(1,0) =a(-8,-4) +c(15,5)
(0,1) =b(-8,-4)+d(15,5)

fora, b, c,and d to get a = 1/4, b=-3/4, ¢ = 1/5, and d = -2/5. Then

1

4 s_léj 5
(51)_§ _g —(2 5 <—>6

4 5

which leads to the same answer.

We are ready for the third definition of the cross-ratio (AD,BC) of four distinct
points A, B, C, and D on a line L in P?.

Definition 3. Let ¢ be the standard parameterization of L with respect to a coordi-
nate system I, O, and U. If ¢([a1,a2]) = A, ¢([b1,b2]) = B, ¢([c1,c2]) = C, and ¢([d;,d2])
=D, then define

a; ajz d1 dz

(AD,BC) = 21_baler cal, (3.24)
d1 d2 a; az
b1 bz Ci C»

3.4.1.13. Theorem. The definition of the cross-ratio (AD,BC) of four distinct points
A, B, C, and D on a line L in the projective plane via equation (3.24) is well defined
and agrees with those in equations (3.19) and (3.20).

Proof. To show that the definition is independent of the coordinate system one only
needs to show that the right-hand side of equation (3.24) is unchanged under a trans-
formation of the form in equation (3.23). A straightforward computation does that.
Next, it suffices to show agreement with Definition 1. Let ¢ be the standard parame-



150 3 Projective Geometry

terization of L with respect to the points A =[a], D =[d], and C=[c] witha +d =c.
Then ¢(1,0) = A, ¢(0,1) =D, ¢(1,1) = C, and the right-hand side of equation (3.24) eval-
uates to by/b;. Now, ¢(by,by) = B = [a + kd] = ¢(1,k), which implies that k = by/b;. In
the notation of Definition 1, the cross-ratio (AD,BC) was defined to be k/k’, but k' = 1
here, so that the theorem is proved.

For yet another derivation and explanation of the projective invariance of the
cross-ratio see [Blin98].

We now move on to parameterizing points in the projective plane. What we did
for a projective line will generalize in a natural way. Three points were enough to
determine a coordinate system for R?. We need a fourth for P2.

Definition. Let I, J, O, and U be four points of P2 no three of which are collinear.
Choose representations I = [i], J = [j], O = [o], and U = [u] for the points so that
i+j+ o =u The map

¢o:P?> > P2
defined by
o(X,Y,Z]) =[Xi+Yj+Zo]

is called the standard parameterization of P? with respect to the coordinate system I, J,
0, and U. Using the standard inclusion of R? in P? we shall also describe the map ¢
with the formulas

o(x,y)=[xi+yj+o] and o(x,y,0])=[xi+yjl,

3.4.1.14. Theorem. The standard parameterization of P?> with respect to four of its
points is a one-to-one and onto map that depends only on the points and not on their
representatives.

Proof. The theorem follows from the natural analogs of Theorem 3.4.1.4, Lemma
3.4.1.7, and Corollary 3.4.1.8, whose proofs are left as exercises for the reader.

Definition. Let ¢ be the standard parameterization of P? with respect to points I, J,
0, and U. If P € P? and if (p_l(P) = [X,Y,Z], then (X,Y,Z) will be called the homoge-
neous coordinates of P with respect to the coordinate system defined by 1, J, O, and U.
For those points P for which Z # 0, let x = X/Z and y = Y/Z and call the pair (x,y) the
(affine) coordinates of P with respect to the given coordinate system. The points [1,0,0],
[0,1,0], [0,0,1], and [1,1,1] define the standard coordinate system for P?> and the coor-
dinates with respect to it are called the standard coordinates.

3.4.1.15. Example. Suppose the standard coordinates for a point P in P? are
(1,2) =[1,2,1]. What are the coordinates of P with respect to the coordinate system
defined by I = (-3,0) = [-3,0,1], J = (0,-2) = [0,-2,1], O = (-1,-1) = [-1,-1,1], and
U=(-2-1)=[-2,-1,1]?
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Solution. The representatives i = (-3,0,1), j = (0,-2,1), and o = (1,1,-1) for I, J, and
0, respectively, have the property that they add up to a representative for U. The stan-
dard parameterization ¢ of P? with respect to the given I, J, O, and U is defined by

ox,y)=[x(-3,0,1)+ y(0,-2,1)+ (1,1,-1)]
=[(-3x+1,-2y+1,1)] (& (-3x+1,-2y+1)).

Solving the equation @(x,y) = (1,2) for x and y gives that x = 0 and y = —1/2. Therefore,
P has coordinates (0,—1/2) with respect to the given coordinate system.

Let
o : P2 > P2, (3.25a)

be the standard parameterization of P? with respect to the coordinate system defined
by I, Jx O, and Uy, k = 1,2. Express I, Jx Ok, and Uy in the form Iy = [ix], Jx = [jil,
O = [ok], and Uy = [uy] with ik + jx + ox = ux. Because the vectors iy, jx, and oy are
linearly independent, there are constants a;, b;, and c;, so that

i1 = a1i2 +b1j2 +C102,

ji =aziz +byjs + 202,

0] = a3i2 +b3j2 +C30). (325b)
3.4.1.16. Theorem. Given the parameterizations @ in (3.25a) and the constants a;,
b;, and ¢; in equations (3.25b), the map

-1
yv=¢; ¢ : P25 P?

has the form

\V([X,Y,Z]) = [alX +aY + a3Z,b1X + sz + b3Z,C1X +co Y+ C3Z], (3250)
ar a2 as
with |b;y by bs[#0.
¢ C2 C3

With respect to the standard inclusion of R? in P? the map ¥ has on the form

alx+a2y+a3 b1X+b2y+b3j (3 25d)

CiX+cCay+cC3  CiX+Coy+C3

w(x,y) = (

Proof. The proof is a straightforward computation similar to the proof of Theorem
3.4.1.10.

Like Theorem 3.4.1.10, Theorem 3.4.1.16 should be taken as a statement about
how coordinates change as one moves from one coordinate system of the projective
plane to another. In other words, we have
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3.4.1.17. Corollary. Using the notation in Theorem 3.4.1.16, the map

ap by o a; ap; ajz
XYZ)-»(XYZ)|ay by c» with |by b, bs|#0 (3.26)
as b3 C3 Ci C2 C3

maps the homogeneous coordinates (X,Y,Z) of a point of P? with respect to the coor-
dinate system defined by I, J;, Oy, and U; to the homogeneous coordinates of the
same point with respect to the coordinate system defined by I, J,, O;, and U,. Con-
versely, every such map corresponds to a change of coordinates.

3.4.2 Two-dimensional Projective Transformations

This section defines the natural transformations associated to the projective plane
and discusses some of their analytic properties. The next definition is in the spirit
of the definitions of the affine transformations in Chapter 2 and the approach in
Section 3.2.

Definition. A projective transformation or projectivity of P? is any one-to-one and
onto map T : P> — P? that preserves collinearity and the cross-ratio of points.

Compare this definition with the one in Section 3.2 and note that we no longer
have to add provisions about things being defined. Our definition has become much
cleaner. However, to make working with such transformations easy we need to derive
their analytic form.

Recall the fractional transformations of the plane defined in Section 3.2. Trans-
lating them into equations dealing with homogeneous rather than Cartesian coordi-
nates leads to the following homogeneous system of equations:

x'=ajx+azy+asz a; a aj
y ' =bix+byy+bsz, where [b; b, bsz|#0. (3.27)
Z’=C1X+C2y+C3Z Ci C2 C3

3.4.2.1. Theorem. The system of equations in (3.27) determines a well-defined one-
to-one and onto transformation T: P?> — P?, which preserves collinearity and the cross-
ratio. In other words, the system in (3.27) determines a projectivity. Conversely, every
projectivity of P? can be described via a system of equations as in (3.27).

Proof. The first part of the theorem is fairly straightforward. For the second, see
[Gans69].

Definition. The matrix

a; b o
a by o
a3 bz c3
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will be called a matrix for the projective transformation defined by (3.27). (We choose
this matrix rather than the transpose because we shall let vectors operate on the left
to be consistent with what we do with matrices for linear transformations.)

Note that the coefficients in the system of equations in (3.27) are not uniquely
determined by the projective transformation. If one were to multiply every coefficient
by some fixed nonzero number, the new coefficients would define the same transfor-
mation. This is why we defined a matrix for a projective transformation rather than
the matrix. The entries of the matrix are unique up to such a common multiple
however.

3.4.2.2. Theorem. The projectivities of P? form a group under composition.
Proof. This is straightforward.

Next, let us relate the projectivities defined here with the transformations defined
in Chapter 2. First of all, it is clear that the projectivities defined in Section 3.2 are
just the projectivities of P? restricted to R?.

Definition. An affine transformation of P? is any projectivity T of P? with the prop-
erty that T(R?) c R?.

One can show that the set of affine transformations forms a subgroup of the group
of projective transformations. Also, if T is an affine transformation, then T must nec-
essarily send ideal points to ideal points. In other words, if T ([x,y,z]) = [X",y’,2], then
z = 0 implies that z” = 0. Using the notation in (3.27) this means that c¢;x + ¢,y = 0 for
all x and y. The only way that this can be true is if ¢; = ¢; = 0. This shows that the
equations for an affine transformation have the form

X' =ajx+azy+asz a; ap as
y' =bix+byy+bsz, where [b; b, bsz|#0. (3.28a)
7z = C3Z 0 0 «c3

and that they have matrices of the form

ai b1 0
ap bz 0 (328b)
as by c3

Note that we could have normalized the c3 in (3.28a) and (3.28b) to be 1.

The equations show that the affine transformations of P? are just the extensions
of the affine transformations of R? as defined in Chapter 2. (Simply translate the equa-
tions found in Chapter 2 into equations using homogeneous coordinates.) In particu-
lar, the similarities and motions of R? extend to transformations of P?. The equations
for motions in terms of homogeneous coordinates have the form
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4

x"= ax+by+cz
y' =-bx+ay+dz
7z = Z, (3.29)

where a? + b? = 1.

Comparing the results of Section 3.2 with the corresponding results for the pro-
jective plane, it is clear that the projective plane has simplified the mathematics. Aside
from theoretical gains though, of what practical value is all of this?

3.4.3 Planar Maps and Homogeneous Coordinates

This section shows how homogeneous coordinates can simplify defining maps in
the plane, in particular central projections and perspectivities. The reason is that all
(projective) transformations can be expressed uniformly via matrices. Matrices are
convenient from the point of view of computations and it is advantageous to be able
to represent the composition of transformations by matrix products. This is not pos-
sible with Cartesian coordinates. The problem is that translations cannot be expressed
as matrices when one uses Cartesian coordinates.
Consider the projective transformation

U,: P2 5P?

defined by the matrix

10
MU,)={0 1
00

—_ o O

This is a very special projectivity that is closely related to the central projection of the
plane onto the x-axis from the point (0,—1/a) on the y-axis. The latter sends the point
(x,y) in the plane to the point (x/(ay + 1),0) on the x-axis. To see this, consider Figure
3.11 and note that by similarity of triangles

(x.y)

—1/a

Figure 3.11. A standard central projection.
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ay+1

On the other hand,

Ua (v 1) = [(,y,) MUW)] = [x,y,ay +1] = [ay"ﬂ #1}

This shows that the central projection
C.:R?>R

onto the x-axis from the point (0,—1/a) on the y-axis can be represented by the matrix
1 00
M,={0 0 a|,
0 01
as long as one uses the homogeneous coordinate representation for points. This means

that one can also use matrix algebra to deal with central projections.

3.4.3.1. Example. Find the central projection C of the plane onto the line L defined
by the equation x —y = 2 from the point P = (5,1). Show that C(5,4) = (5,3).

Solution. See Figure 3.12. Since we now know how compute central projection onto
the x-axis from points on the y-axis, the idea will be to reduce this problem to one of
that type. One way to achieve this situation is to translate P to (1,-1) and then to
rotate about the origin through an angle of —n/4. Let T be this translation and R the
rotation. Then P’ = RT(P) = (0,—v2) and C = T'R"!SRT, where S = Cy,,3 is the central

L

54 /
(5.3)

P

Figure 3.12. A central projection example. /
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projection from the point P’ onto the x-axis. The matrices for these maps with respect
to homogeneous coordinates are:

1 0 0 100 10(1)
Tl 0 10 T!'e|0 10 SHOOT
2
-4 21 4 2 1 00 1
11 11,
N2 A2 N2 A2
Re| 1L 1 ) Rl'el 1 1 4
V2 2 V2 V2
0 0 1 0 0 1

In other words, C is defined by the equations

—§x+§ +5 —lx+é +1
o272 TR SY
—1x+1 +2) —lx+1 +2
27727 25727
Since
31
2 2 2
sofs 3 OHE LY
2 2 2
5 1 2
and

159 3
[7}5:5} - [5:3;1]1

it follows that C(5,4) = (5,3). We could also have deduced this by substituting 5 for x
and 3 for y in the equations above.
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Frames could also be used to solve problems like the one in Example 3.4.3.1. See
Section 3.5.1.
There is another interesting aspect to the projectivity U,. Consider the lines

1 1
mx+y=-— and mx-y=—
a a

through (0,—1/a) and with slope m. Note that
(x,y,2) Ma =(x,y,ay +2).

In particular,

(0’_1’1) Ma =(O)_lr0);
a a

(x,—l—mx,l)Ma=(X,—l—mx,—amx)=— 1 (——,l+ 21 ,1), and
a a amx\ am a a?mx

1 1 1 1 1 1
X,——+mx,1 | M, =| X,——+mx,amx | = _—— 1
a a amx\am a a’mx

This shows that the center (0,—1/a) of the central projection has been mapped to “infin-
ity” and the two lines have been mapped to the lines

1 1
X'=—— and x'=—1,
am am

respectively. See Figure 3.13. In general, lines through (0,—1/a) are mapped to verti-
cal lines through their intersection with the x-axis. Furthermore, the central projec-
tion from (0,—1/a) has been transformed into an orthogonal projection of R? onto the
x-axis. Dually, the vertical lines x = ¢ are mapped to lines through (c¢,0), which inter-

X'=-1/ma X'= 1/ma
mx+y=-l/a| mx-y=1I/a

—1/ma 1/ma

eye —1/a

Figure 3.13. The geometry
of a central
projection. (@) (b)

eye at —oo
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1/a

(@ (b)

Figure 3.14. A vanishing point.

sect in (0,1/a). See Figure 3.14. The point (0,1/a) is called a vanishing point. The reader
should recall the discussion of vanishing points in Section 3.2.

The last observation about the map U, is that it is a well-defined map on all of
projective space even though the affine central projection with center (0,-1/a) is not,
since it is not defined for the points on the line y = —1/a. The simple-minded expla-
nation for this discrepancy is that affine central projections involve a division, so that
one has to worry about zero denominators, whereas the associated projective trans-
formations do not.

Finally, consider the projective transformation U, ;, : P> — P? defined by the matrix

10
0 1 (3.30)
00

- o ®

The affine map T that it induces also has a simple geometric description. Let Ty be
the parallel projection in direction e; of the x-y plane onto the plane X defined by

ax+by—-z=0.
Let T, be the perspectivity with center (0,0,—1) from X back to the x-y plane. It is easy

to show that T = T,T;. See Figure 3.15. The point P in the figure gets mapped to Q in
the plane X by T; and then to P’ by T,.

3.5 Beyond the Plane

Central projections, perspectivities, projective transformations, fractional transfor-
mations, and homogeneous coordinates can all be defined in a straight forward
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Figure 3.15. A geometric explanation of z b

the transformation defined by z=by Q(x.y.ax+by)
(3.30).

X
N,
ax+by—z=0 —| zEax
y
P(x,y,0)

P’(x/(ax+by+1),y/(ax+by+1,0)
+-1

manner for R”, but restricting ourselves to R” would lead to the same shortcomings
that we saw for R2. The proper setting for all these maps is again projective space.
N-dimensional projective space P" was defined in Section 3.4. This section briefly
describes how the definitions and results of the last few sections extend.

First of all, in analogy with P?, one can think of P" as the set of lines through the
origin in R™!. Furthermore, there is again a natural imbedding of R" into P".

Definition. The map
t:R" > P"
defined by
uX1,X2,...,Xn) =[X1,X2,...,Xp,1]

is called the standard imbedding of R" in P".

Identifying a point p of Euclidean space with its image (p) in projective space
allows us to consider R™ as a subset of P". We shall do so from now on and consider as
an inclusion map. Also, by identifying [x1,X2, ..., X;,X; + 1] in P* with [x1,%,, ..., X;,0,Xj41] in
P!, we get natural inclusions P' < P! and a commutative diagram

P°c P cPlc..c P cpPn
Il U U U U
R°cR'cR?c...cR™ cR".

Definition. The points of P" — R" are called ideal points. All the other points are
called real points.

The ideal points in P" are the points of the form [xj,..., x,, 0]. They can also be
thought of as corresponding to families of parallel lines in R". Lines, planes, etc., in
P” are defined in terms of solutions to appropriate sets of homogeneous equations.
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Definition. A (projective) hyperplane in P" is any subset of P" of the form
{IX1, Xz, Xnullar Xy +22Xp + - +anuXnu =0, for fixed (ar,az,...,an41)#0}
Definition. A k-dimensional projective plane in P" is any subset of P" of the form

X1, X0, .., Xnall  anXi+ apXo+-+ a1 paXna =0,
aynXi+ apXo+-+  anuXnpa =0,

an-k1X1 +an-k2X2 +* +an_kns1 Xna =0}

where (aj1,ai2,...,8in+1), 1= 1,...,n — k, are a fixed set of n — k linearly independent
vectors. A one-dimensional projective plane in P" is called a (projective) line.

One can show that a projective hyperplane in P" is just an (n — 1)-dimensional
projective plane. A k-dimensional projective plane should be thought of as an imbed-
ded P* (see Corollary 3.5.2 below). The ideal points in P" form a hyperplane defined
by the equation

Xnt1 =0.

A projective line either consists entirely of ideal points or is an ordinary lines in R"
together with the single ideal point associated to the family of lines in R" parallel to
that ordinary line.

Define a map

n: P" —ideal points — R".
X1 X2 Xn
[XIIXZ)""XH+1]%( ) IR )
Xn+1 Xn+l Xn+1

Definition. The map = is called the standard projection of P" onto R".

Note that the map = is not defined on all of P". It corresponds to finding the inter-
section of the line through the origin and (x, X5, .. ., Xn41) in R™! with the plane x,;; = 1.

Like in the projective plane, there are many ways to coordinatize the points of P".
One can also define the cross-ratio of four points on a projective line.

Definition. A projective transformation or projectivity of P" is any one-to-one and
onto map T : P" — P" that preserves collinearity and the cross-ratio of points.

One can prove that projective transformation of P" are defined by means of
homogeneous equations in n + 1 variables and can be described by means of
(n + 1) x (n + 1) nonsingular matrices.

Definition. Two figures F and F’ are projectively equivalent if there is an projective
transformation T with T(F) = F'.
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3.5.1. Theorem. (The Fundamental Theorem of Projective Geometry for P*) Given
two sets {P;} and {P;’} of n + 2 points in P" with the property that no n + 1 points of
either set lies in a hyperplane, then there is a unique projective transformation T of
P"” that sends P; to Py.

Proof. The proof is analogous to what we did for P?.

3.5.2. Corollary. Given two k-dimensional projective planes X and Y in P", there is
a projective transformation T of P" that sends X onto Y.

The reader should remember two fundamental ideas: One is that, as was pointed
out earlier, whenever one works with homogeneous coordinates one is really dealing
with projective space, whether one is consciously thinking about that or not, because
those coordinates are the natural coordinates for projective space. Second, if one has
to deal with (projective) transformations of R", then it is often simpler to translate
the problem into one involving P", to solve the corresponding problem in that space,
and finally to map the answer back down to R" (equivalently, solve the problem using
homogeneous coordinates first). This idea can be expressed very compactly by the
commutative diagram

F
P - P"
1 Tu udn

Rn—>Rn
f

If one needs to deal with a transformation f, then deal with its lift F to P" instead,
where F is defined by the equation f = nFt with 1 and & the standard inclusion and
projection, respectively. (Recall that &t is actually not defined on all of P".)

3,51 Homogeneous Coordinates and Maps in 3-Space

The homogeneous coordinates of a point (x,y,z) in R? are a 4-tuple
(X,Y,Z,W), where W#0andx=X/W, y=Y/W, andz=Z/W.

Every projective transformation of R? is an affine transformation or a composite of
an affine transformation and a single perspectivity. The affine part can in turn be
decomposed into a composition of translations, rotations, reflections, shearings, or
local scaling. Using homogeneous coordinates, we can express such a map either as
a product of 4 x 4 matrices that correspond to the maps in that composition or via a
single 4 x 4 matrix whose parts can be described as shown below:
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rotation, reflection

: ) perspective
shearing, local scaling
K—H
ary A A3 | Ay
L)1 By A3 | Ay
a3 a3 A3 | A3
a1 A Ay | Ay
-
translation global scaling

The above matrix for a projective transformation is not unique. One can always mul-
tiply each entry by a fixed nonzero constant and the resultant matrix will also repre-
sent the same transformation.

As before, there is one matrix that is of particular interest. Consider the matrix

S O © O
— D O O

oS O = O

This matrix represents a map C, : R*> — R? that is the central projection of R® onto
the x-y plane from the point (0,0,—1/a) on the z-axis (the analog of the planar map C,
in Section 3.4.3). To see this, note that

[xyzlM, =[xy 0 az+1].

In other words,

Caly=( )

az+1’az+1

which agrees with what this particular central projection should do.

3.5.1.1. Example. Find the central projection S of R? from the origin onto the plane
X defined by the equation 2x —y + z = 6.

Solution. We shall solve this problem in three different ways. The first and most
trivial solution is simply to find the intersection of lines through the origin with the
plane X. Now the parametric equation of the line L through the origin and the point
(x,y,2) are
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4

X" =Xt,
y =yt
7z’ = 7t.

But (x,y",2) belongs to X if and only if
2xt —yt+7zt =6,
that is,

6
t=/———"—.
2Xx—y+7z

In other words, S is defined by the equations

. 6x , by 5= 6z
S 2x-y+z’ Y S 2x-y+z’ C2x-y+z

’

X

163

A second way to solve the problem is to transform the problem into simpler ones.
The y-, x-, and z intercepts of X are the points A(0,-6,0), B(3,0,0), and C(0,0,6), respec-
tively. See Figure 3.16. To find the map S, we shall reduce this problem to one we can
handle by describing S as a composition of three maps for which we already know
how to derive the equations. First of all, let T be the linear transformation of R3, which
sends A to A’(0,-6,6), B to B’(3,0,6), and C to C’ = C. It is easy to see that T sends the
plane X to the plane defined by z = 6. Next, let R be the translation that translates this
plane to the x-y coordinate plane. Then RT sends the origin to (0,0,—6). It follows that
S =T 'R7!C4RT. The maps have the following matrices (with respect to homogeneous

coordinates):
1 0 2 0 10 =20
Tes 01 -10 T o 01 1 0
00 1 O 00 1 0
00 0 1 00 0 1

z

C(0,0,6)

B(3,0,0)

Figure 3.16. The plane in Example 3.5.1.1. A(0,-6,0)
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10 0 O 1 000 1000
01 0 0 0100 0100
R & R ! Cie <& 1
00 1 0 0010 000 -
0 0 -6 1 0 0 6 1 000 1

Multiplying these matrices together (in the opposite order from the maps) we get that
S has matrix

100 L
3
010 -1
5l (3.31)
001 L
6
000 O

This means that the homogeneous equations for S are

’

X =X

y'=y

7' =z

w’—lx 1 +lz
376776

Dividing through by w’ leads to the same nonhomogeneous equations for S as before.
Note that these equations give the right results for the points A, B, and C.

A third solution to the problem uses strictly rigid motions and frames. (The trans-
formation T above is not a rigid motion.) Our first goal is to find an orthonormal basis
u;, up, and us for 3-space so that the first two vectors are an orthonormal basis for
X. To find u; and u, we use the Gram-Schmidt algorithm on any basis of X. Using
the basis AB and AC leads to

1 1
u; = TS(I,Z,O) and u; = W(—Z,I,S).
Since the equation for X implies that (2,-1,1) is a normal vector for X we can let
us = ——(2,-1,1)
3= 48 ’ ).

Let F be the frame (uj,u,u3). Then F! transforms a point (x,y,z) into F-coordinates
(x,y’,Z"). In this coordinate system the plane X becomes the plane X’ defined by
the equation z’ = V6. (X was a distance V6 from the origin.) In other words, if R is
the translation with translation vector (0,0,~V6), then
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S=FR'Cy/gRF .

In homogeneous coordinates the matrices for F' and F are

a2 2, 1 2 4
V5 Y30 V6 V5 ~5
2 1 2 s
V5 430 e and | <30 V30 30 |
o > L 2 11,
V30 Ve R
0 0 0 1 0 0 0 1
respectively. Since the homogeneous matrix for R™'CygR is
1 00 O
010 O
1|
0 01 7
000 O

a simple multiplication of matrices gives us the same homogeneous matrix for S as
in (3.31). This shows that our new answer to the problem agrees with the two previ-
Ous answers.

If all one wants is the equations for S in Cartesian coordinates, then clearly the
first solution to this problem is the simplest. The second solution was given mainly
to emphasize the fact that any transformation can be used in solving such problems
as long as they preserve the relevant aspects of the problem, in this case lines and
intersections of lines. Affine maps clearly do that. However, sometimes, as in com-
puter graphics applications, one is really after the equations for the central projection
in frame F coordinates. This amounts to finding the equations for the transformation
R7'Cy,ygRF! above. In that case the approach taken in the third solution needs to be
followed and this is what one must fully understand since the first two approaches
are not relevant here.

3.5.1.2. Example. Use frames to find the central projection C of the x-y plane onto
the line L defined by the equation x — y = 2 from the point p = (5,1).

Solution. See Figure 3.17. This is the same problem as in Example 3.4.3.1. We want

a frame F = (uy,uy,p) so that u; is a basis for L and u; is normal to L and points from
p “to” L. A natural choice is

1 1
ul:TZ(Ll) and ur ZTZ(—l,l).

The direction of u; does not matter here. Since the distance from p to L is V2, if we
let T be the translation with translation vector —v2, then
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y Figure 3.17. Using frames for central
projections.

C=FT'CywTF .

It is easy to check that our answer agrees with the one in Example 3.4.3.1.

3.6 Conic Sections

This section defines the classic conic sections or conics and discusses their geometry.
We analyze the equations that define them and derive the well-known formulas that
are used to classify them. An excellent general reference on the geometry of these
curves is [HilC99]. All our points and sets in this section are assumed to lie in R>.

Definition. Let X be a plane, C a circle in X, and p a point not contained in X. The
union of all the lines through p and a point of the circle C is called a (circular) cone.
The point p is called the vertex of the cone. The line through p and the center of the
circle C is called the axis of the cone. If the axis of the cone is orthogonal to X, then
the cone is called a right circular cone; otherwise it is called an oblique circular cone.

Note. We are using very common terminology here, but we should point out that
the term “cone” is being used here in the sense of a “cone of lines.” In other contexts
like topology a more accurate term for what we are calling a “cone” would be “double
cone.” See Section 5.4.

Definition. A conic section is any set of points obtained as the intersection of a cir-
cular cone and a plane. It the plane passes through the vertex of the cone, then the
conic section is called degenerate; if not, the conic section is called nondegenerate.

See Figure 3.18 for examples of some conic sections. The next theorem is helpful
in deriving an analytic version of the definition of a conic section.

3.6.1. Theorem. Every nondegenerate conic section is a set of points in a plane that
is either a circle with positive radius or a set with the property that the ratio e of the
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Figure 3.18. Conic sections.
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Figure 3.19. Some notation for conics. L

distance of each of its points from a fixed point p to the distance of the point from a
fixed line L not passing through p is constant.

Proof. See [Eise39].

Definition. Using the notation in Theorem 3.6.1 with respect to some noncircular,
nondegenerate conic section C, the fixed point p is called the focus, the fixed line L
is called the directrix, and the constant e is called the eccentricity of C. The conic
section is called an ellipse, parabola, or hyperbola depending on whethere < 1, e =1,
or e > 1, respectively. Ellipses and hyperbolas are often called central conic sections.
Define the focus of a circle to be its center and its eccentricity to be 0. (We can make
the definition of a circle match that of the other conic sections completely by think-
ing of the directrix of a circle as a line at infinity and the limiting case for an ellipse
where we let its directrix move further and further away from the focus.)

See Figure 3.19. Conic sections can also be constructed via string constructions.
See [HilC99]. For example, we can trace out an ellipse by tying the two ends of a string
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Figure 3.20. Pencil and string construction for an
ellipse.

of fixed length to the foci, stretching the string tightly with a pencil, and drawing all
the points that can be reached by the pencil in that way. See Figure 3.20. The next
theorem expresses this geometric characterization and related ones for the hyperbola
and parabola mathematically.

3.6.2 Theorem

(1) An ellipse can be defined as a set of points such that the sum of their distances
to two fixed points is constant. The two points are the foci of the ellipse.

(2) A hyperbola can be defined as a set of points such that the difference of their
distances to two fixed points is constant. The two points are the foci of the
hyperbola.

(3) A parabola can be defined as a set of points such that the sum of their dis-
tances to a fixed point and a fixed line is constant.

Proof. See [Eise39] or [Full73].

Definition. Two central conic sections in the plane are said to be confocal if they
have the same foci.

One can show that the family of confocal ellipses for two fixed foci covers the
plane with each point in the plane belonging to a unique ellipse in the family. A similar
fact holds for confocal hyperbolas. See [HilC99]. Furthermore, if an ellipse and a
hyperbola have the same foci, then the two curves intersect orthogonally.

Definition. The points of a conic section where it intersects the line through the
focus that is orthogonal to the directrix are called the vertices of that conic section.

It is easy to show that parabolas have one vertex and ellipses and hyperbolas have
two vertices. Now let C be a conic section and let Ly be the line through its focus p
that is orthogonal to the directrix. Define a point O as follows: If C is a parabola, then
O is its vertex, otherwise, we have two vertices and O is the midpoint of the segment
that has them as end points. Let L; be the line through O orthogonal to L;. The orthog-
onal lines L; and L, determine a natural coordinate system for our conic section. Let
u; = Op/IOpl, and let u, be a unit direction vector for L.

Definition. The coordinate system for the plane containing the conic section C
determined by the frame (u;,u;,0) is called the natural coordinate system for the conic
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Figure 3.21. The natural coordinate systems for conic sections.

section. If C is a parabola, then L; is called its axis. If C is an ellipse, then L; and L,
will be called the major and minor (coordinate) axis of C, respectively. If C is a
hyperbola, then L; and L, will be called the transverse and conjugate (coordinate) axis
of C, respectively. In the case of either an ellipse or hyperbola the point O is called its
center.

Figure 3.21 shows the coordinate systems and coordinate axes for parabolas,
ellipses, and hyperbolas. Ellipses and hyperbolas are called central conic sections
because they have a center. One can show that the conic sections are symmetric about
their axes, meaning that if a point belongs to them, then the reflected point about
their axes will belong to them also.

In the case of the plane R?, we can use Theorem 3.6.1 and write out the constraints
on the distances of points from the focus and directrix in terms of an equation. It is
easily seen to be a quadratic equation. Let us look at the equations for some special
well-known cases in their natural coordinate system.

The parabola:  y? = 4ax (3.32)
Focus: (a,0),a>0
Directrix: X=-a
Eccentricity: e=1
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2
The ellipse: X—2+y—2 =1, a=b>0 (3.33)
a- b
Focus: (c, 0)
2
Directrix: X = a (ifc>0)
c

. c
Eccentricity: e=—, where ¢ > 0 and cz=a%-b?
a

The segments [(—a,0),(a,0)] and [(0,-b),(0,b)] are also sometimes called the major
and minor axis of the ellipse, respectively, or simply the principal axes.

2 y?
The hyperbola: —-5=1 a,b>0 (3.34)
a- b
Focus: (c, 0)
a2
Directrix: X=—
c

. . C
Eccentricity: e=—, where ¢? = a? + b?
a

The segments [(—a,0),(a,0)] and [(0,-b),(0,b)] are also sometimes called the trans-
verse and conjugate axis of the hyperbola, respectively. The asymptotes of the
hyperbola are the lines y = tbx/a.

Because of the symmetry present in the case of a hyperbola and ellipse, they actu-
ally have two foci and directrices. The second of the pair is obtained by reflecting the
ones given above about the y-axis.

The discussion above shows that conic sections are solutions to quadratic equa-
tions. To connect the two we start from the other direction.

Definition. An (affine) conic is any subset of R? defined by an equation of the
form

ax? +bxy+cy? +dx+ey+f=0,

where (a,b,c) # (0,0,0).

Our object is to show that the terms “conic” and “conic section” refer essentially
to the same geometric spaces. To that end it is convenient to rewrite the equation
defining a conic in the form

ax? +2hxy + by? + 2fx + 2gy + ¢ = 0. (3.35)
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Although this may look a little artificial right now, it prevents a factor of 2 from enter-
ing equations at a later stage and so we shall use this form of the equation from now
on. In any case, to understand the solution set of our quadratic equation, the idea will
be to transform it into a simpler one. We shall show that in the nondegenerate cases
a simple change in coordinate systems will change the general quadratic equation
(3.35) into one of the equations (3.32), (3.33), or (3.34). The main problem is finding
a change in coordinates that will eliminate the xy term.

We start off by describing two straightforward simple-minded but ad hoc
approaches to solve our problem. The second is actually good enough to give us the
formulas that one uses to convert (3.35) to one of the standard forms. However, there
are also some well-defined invariants associated to (3.35), which can tell us right away
what sort of curve one has without actually transforming the equation. To be able to
prove that these invariants work as specified is what motivates us to present a third,
more elegant approach to analyzing (3.35) using homogeneous coordinates and the
theory of quadratic forms.

The first simple-minded approach uses a form of “completing the square.” Prob-
ably the most straightforward way to do this is to rewrite the equation as

2 _h2
[a1x+£y} +ﬁy2+2fx+2gy+c:0
ai a

where a; satisfier a = af. The substitution

X' =ax——y
a1

’

y = y

will then produce an equation in x” and y’ that has no x’y’ term. Although this sub-
stitution is satisfactory in some applications and produces simple formulas, it has the
disadvantage that the linear transformation of coordinates to which it corresponds is
not a rigid motion and may deform shapes in undesirable ways. Thus, since the xy
term arises from a rotation of the axes of the conic, a second and “better” way to
eliminate this term is via a rotation about the origin. Consider the substitution

X =x"cosO—y’sin0

y=y’sin®+y’cosO
which corresponds to rotating the conic about the origin through an angle —6. This
substitution will transform equation (3.35) into an equation in x” and y’ for which the
coefficient of the x’y’ term is

2(b-a)sinBcosO +2h(cos? O —sin? 0).

Setting this expression to zero and using some simple trigonometric identities gives
the equation
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(b—a)sin26+2hcos26 =0.

If a = b, then cos 20 = 0, which means that 6 is 45 degrees. If a # b, then the solution
can be written either as

tan20 = a2_h (3.36a)
or
—a+A(b- 2 2
tanp = 22 EN(b-a) +4h7 (3.36b)

2h

Note that if 6; and 0, are angles satisfying (3.36b) where we use the + and — sign,
respectively, in the formula, then

tan0; tan6; = -1,

which shows that the angles differ by 90 degrees. We shall see that this basically
affirms that the “axes” of the conic are perpendicular. In any case, there is an angle 6
which will eliminate the X'y’ cross-term in equation (3.35). Thus, we end up with an
equation of the form

a’x’? +by? +2fx" +2g'y’ +c’ =0. (3.37)

The rest of the steps involved in analyzing equation (3.35) are very simple. Equa-
tion (3.37) still has some linear terms that need to be eliminated if the corresponding
quadratic term is present. This is done by completing the square in the standard way.
For example, if a” # 0, then make the substitution

From this one sees that, in the nondegenerate case, equation (3.38) splits into two
cases. If a’b” = 0, then (3.35) represents a parabola; otherwise, (3.35) represents an
ellipse or hyperbola depending on whether the sign of a’b’ is positive or negative.

In summary, we have shown how some simple manipulations of equation (3.35)
enable us to determine the geometry of the solution set. However, we have glossed
over some degenerate cases. For example, a degenerate case of equation (3.35) occurs
when it factors into two linear terms, that is, that it can be written in the form

(a1x+b1y+c1)(azx+b2y+cz):O. (338)

In this case the equation represents a pair of lines. To be able to detect the special
cases, and all the other cases for that matter, in a nice simple way, we need to make
use of some more powerful tools. In particular, we need to switch to homogeneous
coordinates and projective space.
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Definition. A conic in the projective plane, or a projective conic, is a set of points in
P? whose homogeneous coordinates (x,y,z) satisfy a quadratic equation of the form

ax? +by? +cz? +dxy +exz+fyz =0, (3.39)
where (a,b,d) # (0,0,0).

First, projective conics are well defined in the sense that if one homogeneous coor-
dinate representative of a point in P? satisfies equation (3.39), then they all do. Second,
every conic in the plane defines a unique projective conic because, switching to homo-
geneous coordinates, equation (3.35) changes into

ax? + 2hxy + by? + 2fxz + 2gyz + cz? = 0. (3.40)

Third, the condition that at least one of the values a, b, and d be nonzero is simply
the analog of the condition on the coefficients of an affine conic. It is an extremely
artificial condition at the projective level. The fact is that when someone says “conic”
one thinks of ellipses, hyperbolas, and parabolas. We were trying to exclude grossly
degenerate cases of equation (3.39) such as 0 = 0, which would have all of P? as its
solution. The projective conics we are after are the “nondegenerate” ones that are
defined below. Our condition on the coefficients happens to capture (with foresight)
the equation form of the conic sections. Having said this, the fact that one can give a
complete analysis of the solutions to the general quadratic equation (3.39) is inter-
esting on its own, independent of any relation to conic sections. This equation-solving
mindset is the context in which we will be working right now.

Now equation (3.40) is also the convenient form for projective conics. Consider
the quadratic form

q1(x,y,z) = ax? + 2hxy + by? + 2fxz + 2gyz + cz?

and its matrix

A=

- o

h f
b gl (3.41)
g C

Note that equation (3.40) can be rewritten in matrix form as
(x,y,2)A(x,y,2)" =0. (3.42)

Conversely, equation (3.42) defines a projective conic for any symmetric 3 x 3 matrix
A satisfying (a,b,h) # (0,0,0). The next theorem shows that projective conics are actu-
ally very easy to describe if one chooses the correct coordinate system.

3.6.3. Theorem. We can coordinatize projective space P? in such a way that in the
new coordinate system the equation of the projective conic defined by equation (3.40)
has one of the following forms:
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72=0 (3.43a)
x2+72=0 (3.43b)
x?+y2+z2=0 (3.43¢)

Proof. By Theorem 1.9.11, any symmetric matrix, the matrix A in (3.41) in particu-
lar, is congruent to a diagonal matrix with +1 or 0 along the diagonal. This clearly
implies the result since A is not the zero matrix. Note that since we are working in
projective space here the change of coordinates transformations that produce equa-
tions (3.43) are projective and not affine transformation in general.

Translating things back to Euclidean space, it is easy to see that equations (3.43a)
and (3.43b) correspond to cases where the solution set to (3.35) is either empty or
consists of lines. Equations (3.43c) is the case where A is nonsingular.

Definition. The affine conic defined by equation (3.35) or the projective conic
defined by equation (3.40) is said to be nondegenerate if the matrix A in (3.41) is non-
singular; otherwise it is said to be degenerate.

Note. The definition of a nondegenerate conic has the advantage of simplicity but
has a perhaps undesirable aspect to it, at least at first glance. If A is nonsingular, then
one possibility for equation (3.43c¢) is

X2+ y2 +72=0 (or X%+ y2 +1=0 wusing Cartesian Coordinates).

This equation has no real nonzero solutions. Therefore, a “nondegenerate” conic
could be the empty set. For that reason, some authors add the condition that a conic
be nonempty before calling it nondegenerate. On the other hand, we would get a non-
empty set if we were to allow complex numbers and we were talking about conics in
the complex plane. See Section 10.2.

We have just seen that matrix A in (3.41) determines one important invariant for
conics, but there is another. Consider the quadratic form that is the homogeneous
part of equation (3.35), namely,

q2(x,y) =ax? + 2hxy + by?. (3.44)
Let
a h
B= 3.45
o) @49

be the matrix associated to q;. By Theorem 1.9.10 there is a change of basis that will
diagonalize B, that is, in the new coordinate system g, will have the form
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Q2(X',y') — a/X/Z +b,y,2.

The numbers a” and b’ are just the eigenvalues of the transformation associated to B
and are the roots of the characteristic polynomial for B. Since the change corresponds
to a linear change of variables, in this new coordinate system equation (3.35) will
have been transformed into an equation of the form (3.37). We now have all the pieces
of the puzzle.

3.6.4. Theorem. Define numbers A, D, and I for equation (3.35) by

a h f h
A=lh b g, D:a ‘:ab—hz, and I=a+b.
h b
f g c

(1) The quantities A, D, and I are invariant under a change of coordinates via a
rigid motion (translation or rotation).
(2) If A # 0, then equation (3.35) defines a nondegenerate conic. More precisely,

(a) D > 0: We have an ellipse if IA < 0 and the empty set otherwise.
(Note that since a and b have the same sign in this case, the sign
of TA is the same as the sign of bA or aA.)

(b) D < 0: We have a hyperbola.

(c) D =0: We have a parabola.

(3) If A =0, then equation (3.35) factors into two factors of degree one (the con-
verse is also true) and defines the empty set, a point, or a pair of lines. The
pair of lines may be parallel, intersecting, or coincident. More precisely,

(a) D> 0: We get a single point.
(b) D < 0: We get two intersecting lines.
(c) D=0:

b # 0: There are three cases depending on E = g — bc.

E > 0: We get two parallel lines.
E < 0: We get the empty set.
E = 0: We get a single line.

b = 0: Then h = 0. There are three cases depending on F = f2 — ac.

F > 0: We get two parallel lines.
F < 0: We get the empty set.
F = 0: We get a single line.

Proof. Part (1) follows from properties of the determinant and the trace function (I
is the trace of the matrix B). The main ideas behind the proof of (2) have been sketched
above. The condition on the product IA in (2)(a) is equivalent to saying that I and A
have opposite signs. The effect that the signs of I and A have on the conic is best seen
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by looking at the matrices after they have been diagonalized. The details of the rest
of the proof are lengthy and messy but not hard. They basically only involve rewrit-
ing equation (3.35) and solving for various conditions. See [Eise39].

Theorem 3.6.4 tells us the conic that equation (3.35) represents but does not
directly tell us the transformation that transforms it to our standard equations. The
basic steps in finding this transformation were sketched earlier. We summarize the
results along with some additional details below. They are divided into three cases
that subdivide into the subcases in Theorem 3.6.4. Again see [Eise39]. For a slightly
different approach, see [RogA90].

Let C be the conic defined by equation (3.35). Our object is to find a rigid motion M
so hat M(C) is defined by the standard equation for a conic. The transformation M will
have the form RT, where T is a translation and R is a rotation about the origin.

Case 1: D # 0 (the central conics if A # 0)

The “center” of the conic is at

_hg-bf

__hf-ag
T =—.

o) (3.46)

X0 Yo

Let T be the translation that sends (xq,yo) to the origin. The conic C" = T(C) will have
its center at the origin. It follows that replacing x by x + xo and y by y + yo will elim-
inate the linear terms in (3.35) and give us an equation for C’ of the form

ax? + 2hxy + by? + constant = 0. (3.47)

Let 6 be an angle defined by equations (3.36) and let R be the rotation about the origin
through the angle —0. This will rotate an axis of the conic into the x-axis. The equa-
tion for C” = R(C’) is obtained by replacing x by x cos6 — y sin® and y by x sin® + y
cos 6 in equation (3.47). We will get

A
a’x?+b’y"? t5 = 0. (3.48)

In fact, a’ and b’ are the roots of
x?-Ix+D=0, (3.49)

that is,

a,_a+b+«/(a—b)2+4h2

> and b’

_a+b-v(a—-b)’ +4h?
- : ,

(3.50)

Equation (3.49) is actually the characteristic equation for the matrix B in (3.45)
(Theorem C.4.8(3)), so that a” and b” are the eigenvalues of B. In other words, instead of
dealing with angles directly, find an orthonormal pairu; and u; of eigenvectors for B. Let

v =ty ) (3.51)

2
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and substitute the x and y that one gets from equation (3.51) into equation (3.47).
This will also produce equation (3.48).

Case 2: D =0 and A # 0 (parabola)

One can show that the vertex of the parabola is at (xg,yo), where x¢ and yy are the
solution to the equations

axo +hyo + 708 (3.52)
and
(f+fb_1hgjx0 +(g+ag;hf]y0 +c=0. (3.53)
Furthermore,
(a+b)(hx+by)+fth+gb=0 (3.54)

is the equation of the axis of the parabola. Therefore, translate the origin to the vertex
of the parabola and then rotate about that point through an angle -6, where

tanez—%:—%. (3.55)

These transformations will change equation (3.35) into

y'? =2px/, (3.56a)
where
ag—hf
S - e (3.56b)
IVa? +h?

Case 3: D =0 and A = 0 (degenerate cases)

If b # 0, then equation (3.35) reduces to

y= —(hx+g)+vg? -bc
= 5 .

(3.57)

If b = 0 (and also h = 0), then we get

_ —f+Vf?-ac

a

(3.58)

X
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Alternatively, rotate about the origin through the angle -6, where 6 is defined by
equation (3.55). This changes equation (3.35) into

af +hg

Iy? 42—
y vaZ +b?

y' +c=0. (3.59)

If there are real roots to this equation, then we get a factorization
(v =y)y’' -y2) =0,
which corresponds to one or two straight lines.

3.6.5. Example. To transform

52x% —72xy +73y? +8x — 294y + 333 =0 (3.60)
into standard form.
Solution. We have
52 -36 4 I
A=|-36 73 -147| and B:( 1 73).
4 -147 333 B

Therefore, I =125, A =det (A) =-250000, and D = det (B) = 2500 and we fall into Case
1. In fact, D > 0, A # 0, and IA < 0 means that we have an ellipse. After translating the
center of the ellipse, defined by equation (3.46), to the origin, we can finish the reduc-
tion of equation (3.60) in two ways: we can rotate through the angle specified by equa-
tions (3.36), or we could use the eigenvector approach indicated by equation (3.51).
Of course, we could also just simply use equations (3.48) and (3.50), but, although
this may seem simpler, the advantage of the other two methods is that they also give
us the coordinate transformation that transforms the standard coordinate system
into the one in which the curve has the standard form. One often needs to know this
transformation.

We start with the angle approach. Using equation (3.46), the center (xo,yo) of the
curve turns out to be (2,3). Substituting x + 2 and y + 3 for x and y in equation (3.60) gives

52x% —72xy +73y? =100 =0. (3.61)

We now want to rotate the coordinate axes through an angle -8, where, using formula
(3.36b),

4 3
tan6f=—-—— or —.
3 4

We arbitrarily choose 3/4, so that



3.6 Conic Sections 179

4 3
0=— d sinb=—,
cosb= and sinb=_

and the equation for the rotation R about the origin through the angle -6 is

Let C be the curve defined by (3.60). Then the curve C” = RT(C) has equation

and we are done.
Next, we use the eigenvalue approach. The eigenvalues are the roots of equation
(3.49), which reduces to

x2 —125x+2500 = (x - 25)(x =100) = 0
in this case. To solve for the eigenvectors for eigenvalues 25 and 100 we must solve
(xy)(251>-B)=0 and (xy)(100I*-B)=0,

that is,

(2800 s (8 2o

respectively. The solutions for the first equation are x = (4/3)y, so that u; = (4/5,3/5) is
a unit eigenvector for eigenvalue 25. The solutions for the second equation are x =
(=3/4)y, so that u, = (-3/5,4/5) is a unit eigenvector for eigenvalue 100. The sub-
stitution specified by equation (3.51) would then again give us equation (3.62). It
corresponds to the same rotation R described above.

One point that one needs to be aware of when using the eigenvalue approach is
that there is some leeway as to our choice of eigenvectors. Our only real constraint is
that the orthonormal basis (uj,u;) induce the standard orientation of the plane
because we want a rigid motion, specifically, a rotation. On the other hand, (u,,—u;)
would have been a legitimate alternative choice. This would have reduced our conic
equation to

4x? +y? -4 =0.
But then, there are always basically two standard forms to which a general conic equa-

tion can be reduced. Which one we get depends on our choice of which axis we call
the x- and y-axis.
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3.6.6. Example. To transform

16x2 +24xy +9y2 -100=0 (3.63)
into standard form.
Solution. We have
16 12 0 16 12
A=[12 9 0 and B=(12 9).
0O 0 -100

Therefore, I =25, A=det (A) =0, and D = det (B) = 0. By Theorem 3.5.1.3(3.c) we are
dealing with two parallel lines since E = 0% — 16(-100) = 1600. Equation (3.59) implies
that (3.63) can be transformed into

25y2-100=0

via a rotation through an angle -8, where tan6 = —4/3 .
Note that equation (3.57) implies that (3.63) is equivalent to

4,10
A
which can easily be checked.

This finishes our discussion of the main results about quadratic equations in two
variables. In the process we have proved the following:

3.6.7. Theorem. Every nonempty conic is a conic section. Conversely, if we coor-
dinatize the intersecting plane in the definition of a conic section, then the conic
section is defined by an equation of the form (3.35) in that coordinate system, that is,
it is a conic.

Theorem 3.6.7 justifies the fact that the term “conic” and “conic section” are used
interchangeably.
3.6.1 Projective Properties of Conics

This section looks at some projective properties of conics. There is an important corol-
lary to Theorem 3.6.3.

3.6.1.1. Theorem. All nonempty nondegenerate (affine) conics are projectively
equivalent.

Proof. Since the conic is nonempty and nondegenerate, Theorem 3.6.3 implies that
it is projectively equivalent to a conic with equation
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x?+y?-7z2=0 (orx?+y?-1=0 using Cartesian coordinates).

This shows that every such conic is projectively equivalent to the unit circle and we
are done.

3.6.1.2. Example. To show that the conic y = x? is projectively equivalent to the unit
circle.

Solution. Passing to homogeneous coordinates, the conic is defined by the equation

x?-yz=0 (3.64)
with associated symmetric matrix
1 O1
A=|0 1 >t
0 -3 0

Using elementary matrices, we shall now show that A is congruent to a diagonal
matrix. First of all, if E is the elementary matrix E,3(—1), then

1 0 O
A =EAET=|0 1 —%.
1
0 —— 0
2

Next, let F be the elementary matrix E3,(1/2). Then

10 0
A,=FAF'=|0 1 0 |
00 1
Finally, if G is the elementary matrix E33(2), then
10 0
A;=GA,GT=|0 1 0|
0 0 -1

It follows that if
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1 0 0
M=GFE=|0 1 -1}
01 1

then MAM! is the diagonal matrix As, that is, our conic is projectively equivalent to
the unit circle

and we are done.

Example 3.6.1.2 leads us to some observations about the relationship between a
conic in R? and the associated projective conic in P?. Consider the solutions to equa-
tion (3.64). One of the solutions (in P?) is the ideal point which has z = 0. Substitut-
ing this value into (3.64) defines the line x = 0 in R?. In other words, the parabola y
= x? corresponds to the conic in P?, which contains the same real points and has one
additional ideal point corresponding to the line x = 0. As another example, consider

the hyperbola

X2 y?
I 1. (3.65)
The homogeneous equation for this conic is
2 2
Yy 2
—-=—=-7z"=0. (3.66)
a? b2

The ideal points with z = 0 lead to the equations

y=2y (3.67a)
a
and
y=-Py (3.67b)
a

which define two lines in R?. It follows that the conic in P? defined by (3.66) is topo-
logically a circle that consists of the points defined by the real roots of equation (3.65)
together with two extra (ideal) points associated to the lines in (3.67a) and (3.67b).
Intuitively, if we were to walk along points (x,y) on the curve (3.65) where these points
approach either (+oo0,+c0) or (—eo,—) we would in either case approach the ideal point
associated to the line defined by equation (3.67a). Letting x and y approach either
(—o0,+00) Or (+e0,—) would bring us to the ideal point associated to the line defined by
equation (3.67b).
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3.6.1.3. Theorem. A conic can be found that passes through any given five points.
It is unique if no four of these points is collinear.

Proof. We use homogeneous coordinates and need to show that we can always find
a nondegenerate equation of the form

ax? +by? +cz? +dxy +exz +fyz =0,

which is satisfied for the points. One such equation is

X2 y2 Z2 Xy XZ yz

X12 Y12 Z12 X1y1 X1Z1 Yizi

X% y% Z% X2y2 X2Zp Y272 ~0
X% Y§ Z% X3y3 X3Z3 Y3Z3 '
Xzzl YAZ; ZAZ; X4Y4 X4Zy Y4Z4

X% y% Z% Xs5ys5 Xs5Zs5  Ys5Zs

For the rest, see [PenP86].

Next, we look at some problems dealing with fitting conics to given data. The
following fact is used in justifying the constructions.

3.6.1.4. Lemma. If C; and C; are affine conics with equations Ci(x,y) = 0 and
Cy(x,y) =0, then

Ci(x,y) =ACi(x,y) +(1 -A)Ca(x,y) =0
or
C..(x,y) =Ci(x,y) - C2(x,y) =0

is the equation of a conic C, that passes through the intersection points of the two
given conics. If C; and C, have exactly four points of intersection, then the family C,,
A € R¥, of conics consists of all the conics through these four points and each one is
completely determined by specifying a fifth point on it.

Proof. See [PenP&6].

Our design problems will also involve tangent lines and so we need to define those.
Tangent lines play an important role when studying the geometry of curves. There are
different ways to define them depending on whether one is looking at the curve from
a topological or algebraic point of view. The definition we give here is specialized to
conics. More general definitions will be encountered in Chapter 8 and 10. Our present
definition is based on the fact that, at a point of a nondegenerate conic, the line that
we would want to call the tangent line has the property that it is the only line through
that point that meets the conic in only that point.
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Figure 3.22. Possible line/circle intersections.

3.6.1.5. Theorem. Let C be a nondegenerate conic in P?. Any line L in P? intersects
Cin 0, 1, or 2 points. Given any point p on C, there is one and only one line that inter-
sects C in that single point.

Proof. This fact is easily checked if C is a circle. See Figure 3.22. The general case
follows from the fact that any nonempty nondegenerate conic is projectively equiva-
lent to a circle.

Definition. If a line L meets a nondegenerate conic C in a single point p, then L is
called the tangent line to C at p. This definition applies to both the affine and projec-

tive conics.

3.6.1.6. Theorem. If a nondegenerate conic is defined in homogeneous coordinates
by the equation

pQp’ =0,

then, in terms of homogeneous coordinates, the equation of the tangent line L to the
conic at a point Py is

pQpo" =0. (3.68)
In particular, [L] = [poQ].
Proof. The line defined by equation (3.68) clearly contains [py]. It therefore suffices
to show that if another point satisfied equation (3.68), then the conic would be degen-

erate. See [PenP86].

3.6.1.7. Corollary. The equation of the tangent line at a point (x¢,yo) of a conic
defined by equation (3.35) is

(axo +hyo +)x + (hxo + byo + g)y +fxo + gyo +c =0.

Proof. Obvious.
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P3 o P3
I’ P4
. 4 .
o P4
P2 b
L L
P1 P1 P2 P3 P L
(a) Valid case (b) Disallowed case (c) Disallowed case

Figure 3.23. Conic design problem 1.

We now describe solutions to five conic design problems in the plane R?. The fact
that the solutions are indeed correct follows easily from the above, in particular by
repeated use of Lemma 3.6.1.4. See [PenP86] for details.

Conic design problem 1: To find the equation of the conic passing through
four points pi, p2, p3, and ps that has a given line L through one of these points
as tangent line. Assume that at least two of the points do not lie on L. If three points
lie off L, then no two of them are allowed to be collinear with the fourth. See Figure
3.23.

Solution. Assume that L is the tangent line at p; and that p, and p3; do not lie on
L. Let L, be the line through p; and p,, let L3 be the line through p; and ps, and let

L, be the line through p, and ps. Let [L] = [a,b,c] and [L;] = [a;,b;,c;]. Define symmetric
3 x 3 matrices Q; and Q; by

1
Q1 =5 ((@b,0)" (@4,bs,ca)+(as,bs,c0) (@ b,0)) and

1
Q: =5((az,bz,Cz)T(a3,b3,03)+(a3,b3,03)T(az,bz,Cz))-

Let Ci(x,y) = 0 be the quadratic equation associated to Q;. Let ps = (X4,y4). If
Ca(x,y) =ACi(x,y) + (1 = 1)C2(x,y),

then there is a unique A so that Cj(x4,y4) = 0 and that is the equation of the conic we
want.

3.6.1.8. Example. To find the conic that passes through the points py, p2 = (2,-2),
ps = (2,2), p4 = (5,0), and that has tangent line L at p; for the case where p; and L
have the values

(@p1=(-1,0),L: x+1=0 (b)p1=(3,0),L: x-3=0

Solution for (a): See Figure 3.24(a). We have the following equations for the lines
Lii
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LY L, Ly y L, L

P4 T ' pr

Pi k‘
] P2

() (d)

Figure 3.24. The conics that solve Example 3.6.1.6.

Ly: 2x+3y+2=0
L3: 2x-3y+2=0
Ls: x-2=0

Therefore,
Cr(x,y) =Ax+1D(x-2)+1-1)2x+3y +2)2x — 3y +2).
Solving C,(5,0) = 0 for A gives A = 8/7, so that our conic is the ellipse
Cy7(x,y)=4(x—2)" +9y2 —36=0.

Solution for (b): See Figure 3.24(b). We have the following equations for the lines
Lil

Ly: 2x4+y-6=0
L3: 2x-y—-6=0
L;: x-2=0

This time
Cr(x,y)=AMx=-3)(x-2)+1-2N)2x+y-6)2x -y —6).
Solving C,(5,0) = 0 for A gives A = 8/5, so that our conic is the hyperbola
Cy/s(x,y) = —4(x—4)" +3y> +4=0.
Conic design problem 2: To find the equation of the conic passing through three

points p1, p2, and ps3 that has two given lines L; and L, through two of these points
as tangent lines. Assume that the three points are not collinear and that the intersec-
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Ps L, b3 L P3 L,
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Figure 3.25. Conic design problem 2.

tion of the two lines is neither of the points where L and L, are tangent to the conic.
See Figure 3.25.

Solution. Assume that L; and L, are tangent lines at p; and p,, respectively. Let Ls

be the line through p; and p; and let [L;] = [a;,b;,ci]. Define symmetric 3 x 3 matrices
Q; and Q; by

1
Q1=5((31,b1yC1)T(az.b2yCz)+(azybz,Cz)T(al,b1,01)) and Q, =(a3bs,c3) (@3, bs,ca).

Let Ci(x,y) = 0 be the quadratic equation associated to Q;. Let p3 = (x3,y3). If
Ca(x,y) =ACi(x,y) + (1 -1)Ca(x,y),

then there is a unique A so that Cy(x3,y3) = 0 and that is the equation of the conic we
want. Equivalently, if

Qy =AQ; +(1-1)Q2,
then there is unique A so that (x3,y3,1)Qx(x3,y3,1) = 0.

3.6.1.9. Example. To find the conic that passes through the points p; = (4,-4) and
p2 = (4,4), has tangent lines

Li: x-2y+4=0,
Ly: x+2y+4=0,

at those points, and also passes through the point
(a) p3 = (0,0) (b) p3 = (1)0) (C) p3 = (_110)
Solution. First note that the line L3 through p; and p, is clearly defined by

L32 x—4=0
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Figure 3.26. The conics that solve Example 3.6.1.7.

and
Cr(x,y) = Mx =2y + ) (x + 2y +4) + (1 - )(x - 4)".
Case p;=(0,0): See Figure 3.26(a). The equation C;(0,0) = 0 leads to the impos-
sible condition 1 = 0. This corresponds to the case A = . Therefore, the conic we are
looking for is the parabola

Cax,y) = (x =2y + 4)(x+2y +4) = (x—4)" =y — 4x.

Case p;3; = (1,0): See Figure 3.26(b). The equation C;(1,0) = 0 leads to the solu-
tion A = —9/16. This time our conic is the ellipse

Coois(x,y) = 4x? - 68x+9y? + 64 =0.

Case p;3=(-1,0): See Figure 3.26(c). The equation C)(-1,0) = 0 leads to the solu-
tion A = 25/16. This time our conic is the hyperbola
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Cas/16(x,y) = 4x% + 68x — 25y% + 64 =0.

The next three design problems continue to decrease the number of specified
points and increase the number of specified lines. Rather than solving them directly
as we did for the first two problems, we shall note the duality of points and lines in
projective space (as shown by equation (3.16) in Section 3.4) and essentially get our
new solutions from those above using this duality. There will be little new that has to
be proved. Mainly, we have to translate facts about points appropriately.

Definition. A line conic in the projective plane is a set of lines L that satisfy the
equation

aQa' =0,
where [L] = [a] and Q is a symmetric 3 X 3 matrix.

3.6.1.10. Theorem. The set of tangent lines L to the nondegenerate point conic
defined by

pOp" =0

is the line conic defined by

aQ'aT =0,
where [L] = [a].
Proof. This theorem is an easy consequence of Theorem 3.6.1.5. We have replaced
the point [p] by the line [a], where a = pQ, which is tangent to the conic at p. Turning
this around, the point [aQ™'] corresponds to the line [a].
Conic design problem 3: To find the equation of the conic that passes through two
points and is tangent to three lines, such that one of the lines passes through the first
point, another passes through the second point, and the third line is arbitrary. The
lines are not allowed to be concurrent and the neither of the first two lines can contain
both points. See Figure 3.27(a).
Solution. We dualize the solution to design problem 2. Assume that the conic passes
through p; and p, and has tangent lines L; and L, at those points. Let L3 be the other

tangent line. Let p; be the intersection of L; and L, and let p; have homogeneous
coordinates [x;,y;,zi]. Define symmetric 3 x 3 matrices Q; and Q, by

1 T T T
QO :5((X1,YLZI) (x2,¥2,22)+(X2,¥2,22) (Xlr}’l;Zl)) and Q; =(x3,y3,23) (X3,¥3,23).

Let [L3] = [asz,bs,c3]. If

Qj =2Q; +(1-A)Q2,
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Figure 3.27. Conic design problems 3, 4, and 5.

then there is a unique A so that (as,bs,c3)Q;(as,bs,c3)T = 0 and Q3! is the symmetric
matrix that defines the (point) conic we want.

We leave the solutions of the next two design problems as exercises for the reader

(Exercise 3.6.1.6 and 3.6.1.7). Note however that the requirements are stronger than
for the point analog because we need Q!. See [PenP86].
Conic design problem 4: To find the equation of the conic that passes through one
point, is tangent to a line through this point, and is also tangent to three other lines.
None of the last three lines may contain the given point and no three of the four lines
are allowed to be concurrent. See Figure 3.27(b).

Conic design problem 5: To find the equation of the conic that is tangent to five
lines, no three of which are allowed to be concurrent. See Figure 3.27(c).

3.7 Quadric Surfaces

This section defines quadric surfaces and discusses the equations that define them.

Definition. A guadratic surface is a set S of points in R" whose coordinates satisfy
an equation

a(xi,X2,...,Xn) =0,
where q is a quadratic polynomial function in n variables and not all the coefficients
of the monomial terms in q of total degree 2 vanish. A quadratic surface in R3 is called

a quadric surface.

By definition, quadric surfaces are the solution sets of arbitrary quadratic equa-
tion in three variables of the form

ax? +by? +cz? +dxy +exz +fyz+ gx +hy +iz+j=0. (3.69)
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where at least one of the six coefficients a, b, ¢, d, e, or f is nonzero. Such equations
define surfaces in general.

In trying to analyze the type of surface that equation (3.69) can give rise to, the
hard part is getting rid of the xy, xz, and yz cross terms. One can, like in the 2-
variable case, use a rotation to change the coordinate system to one in which the
equation has the form

a’x?+b'y?+c’z? +g'x’+h’y’ +i'z’+§ =0. (3.70)
One could, for example, use the roll-pitch-yaw representation for a rotation about the
origin. This involves three unknowns. Substituting the rotated points into (3.69) and
then setting the coefficients of the cross terms to 0, would give three equations in three
unknowns which could be solved, but this is starting to get too complicated and messy.

The more elegant way to eliminate the cross terms in equation (3.69) or quadratic
equation in any number of variables is to use the theory of quadratic forms. Like in
the 2-variable case let

q(x,y,z) =ax? + by? +cz? +dxy +exz +fyz

be the associated quadratic form. It follows again from Theorem 1.9.10 that q is
diagonalizable and there is a suitable coordinate system in which equation (3.69) has
the form (3.70). If any quadratic term is present in (3.70), then the corresponding
linear term, if there is one, can be eliminated by completing the square similar to the
way it was done in Section 3.6. The analysis depends on whether a’, b’, or ¢’ are zero,
and if not, on whether they are positive or negative. The resulting cases are easy to
analyze and lead to the following theorem.

3.7.1. Theorem. Any equation of the form (3.69) can be transformed via a rigid
motion into one of the following fourteen types of equations (equivalently, there is a
coordinate system, called the natural coordinate system for the quadric, with respect
to which equation (3.69) has the following form):

o 2 y2 g2
(1) Ellipsoid: ;+%+C—2:1
' 2y oz
(2) Hyperboloid of one sheet: —S+t5-—5=1
a’ b?> 2
X2y 72
(3) Hyperboloid of two sheets: -5 -—5=1
a? b? 2
2 2 2
X: y° oz
4) Empty set: S A S |
(4) Empty 2 2
2 2 2
. X z
(5) Point: a—2+z—2+c—2=0
2 2 2
X zZ
(6) Cone: a_2+%_c_2=0
o . g XY
(7) Elliptic or hyperbolic paraboloid: —+ el cz, where c#0
a
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2 2
(8) Elliptic or hyperbolic cylinder: X y—z =1
a
2 2
(9) Empty set: 2 % =1
. x2 y?
(10) Line: ;+§=O
2 y?
(11) Two intersecting planes: ——5=0
a? b?
2
arabolic cylinder: — =by, where b #
(12) Parabolic cylind ~_ = by, where b#0
a
(13) One or two parallel planes: x? =a’
(14) Empty set: x?> = —a%, where a # 0

Proof. See [Divi75] for more details.

Figure 3.28 shows a few of the types of solutions to equation (3.69). Most of the
solutions are nice quadratic surfaces, but some solutions are degenerate.

Definition. The coordinate planes of a quadric in its natural coordinate system
that are planes of symmetry for the quadric are called the principal planes of the
quadric.

Ellipsoids and hyperboloids of one or two sheets have three principal planes. The
elliptic paraboloid has two. Below are some geometric properties of quadrics. See
[HilC99].

(1) A quadric and a plane always intersect in a conic curve.

(2) If a =b for the surfaces (1)-(3), (6), the elliptic paraboloid in (7), and the ellip-
tic cylinder in (8) of Theorem 3.7.1, then we get surfaces of revolution. For example,
the ellipsoid is then just an ellipse revolved about its major or minor axis. The hyper-
boloid of two sheets is obtained by revolving a hyperbola about its axis. The hyper-
boloid of one sheet is obtained by revolving a hyperbola about the perpendicular
bisector of the segment between its two foci. This type of surface can also be obtained
by rotating a line skew with the axis of revolution about that axis. The general case
of the just mentioned surfaces where a # b is gotten by starting with a surface of rev-
olution of that type, fixing a plane through its axis, and pulling all the points of the
surface away from that plane in such a way that the distances of the points from the
plane change by a fixed ratio.

(3) The elliptic, hyperbolic, and parabolic cylinders, the hyperboloid of one sheet,
and the hyperbolic paraboloid are ruled surfaces in that they are swept out by a family
of straight lines. (See Chapter 9 for more on ruled surfaces.) The last two are doubly
ruled surfaces, that is, they are swept out by two distinct families of straight lines.

(4) There is a string construction for the ellipsoid. We use an ellipse and hyper-
bola in orthogonal planes, where the foci F; and F; of the ellipse are the vertices of
the hyperbola and the foci of the hyperbola are the vertices V; and V; of the ellipse.
See Figure 3.29. Tie a string to one of the vertices of the ellipse, say V. Now loop the
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Figure 3.28. Some quadric surfaces.

Figure 3.29. A string construction for the ellipsoid.
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string around the near branch of the hyperbola with vertex F; (at point A in the figure),
then around the outside of the ellipse (at point B in the figure), and finally attach it
to F,. If we pull the string tight at some point P, then the locus of those points P will
trace out one quarter of an ellipsoid. By attaching the string at corresponding differ-
ent locations we can get the rest of the ellipsoid. Because of the similarity of this con-
struction with that for the ellipse, one makes the following definitions.

Definition. The ellipse and hyperbola used to construct the ellipsoid are called the
focal curves (the focal ellipse and focal hyperbola) of the ellipsoid. In general, given any
quadric, we say that two conics in orthogonal principal planes for this quadric are
focal curves for the quadric if they are confocal with the intersection of the principal
planes with the quadric. Two quadric surfaces with the same focal curves are called
confocal.

Only ellipsoids and hyperboloids of one or two sheets have focal curves. The family
of all confocal quadrics of one of those three types that have a fixed pair of focal curves
fill up all of space. The tangent planes of the three just-mentioned confocal families
are mutually orthogonal at a point of intersection. (For a precise definition of a
tangent plane see Chapter 8.)

Next, we state the analog of Theorem 3.6.4 for the surface case. We rewrite
equation (3.69) as

ax? +by? +cz? + 2hxy + 2fyz + 2gzx + 2Ix + 2my + 2nz +d = 0. (3.71)
Define matrices A and B by

a h
A:h b
f g
I m

5 o0 0o =

a h f
and B=lh b g| (3.72)
f g ¢

3.7.2. Theorem. Define A, D, I, and J for equation (3.71) by

; 1; £ a h f

A =det(A) = & M p_detB)=h b g,
f g ¢ n

f g ¢
] m n f

I=trB)=a+b+c, and J=bc+ca+ab-f?>—-g?>—h2.

(1) The quantities A, D, I, and J are invariant under a change of coordinates via
rigid motions (translations and/or rotations).

(2) If D # 0, then let ry, 13, and 13 be the nonzero eigenvalues of the matrix B in
(3.72).
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(a) A<O:

ID>0,J>0: We have an ellipsoid.
Not both I D > 0 and J > 0: We have an hyperboloid of two sheets.

(b) A>0:

ID>0,J>0: The empty set.
Not both I D > 0 and J > 0: We have an hyperboloid of one sheet.

(c) A=0:
ID>0,J>0: A single point.
Not bothIJ >0 and J > 0: We have a cone.

In case (a) and (b), equation (3.71) can be reduced to
2 2 2, A
nx-+ny- +mnz +B=0.

and in case (c) to

rx% + r2y2 +132° =0.

If D = 0, then equation (3.71) defines a paraboloid or cylindrical surface gen-
erated by a conic in a plane (types (8) and (12) in Theorem 3.7.1) unless the
surface is degenerate. More precisely, let r; be the nonzero eigenvalues of the
matrix B in (3.72).

(a) A#0:
Equation (3.71) can be reduced to

I -A
rx>2 +r2y2 +2.]—z=0.
nr

A <0, J > 0: We have an elliptic paraboloid.
A >0, J < 0: We have an hyperbolic paraboloid.

(b) A=0:
If
a h 1] Ja f I |[b g m
h b m|=f ¢ nj={g c¢ n|=0,
l m d| |l n d m n d

then the surface is degenerate and reduces to a plane or a pair of planes.
Otherwise, it is a cylindrical surface of one of the following types:

J > 0: a real elliptic cylinder or the empty set.
J < 0: a hyperbolic cylinder.
J = 0: a parabolic cylinder.

Alternatively, let k be the number of nonzero eigenvalues of the matrix B
in (3.72). Then equation (3.71) can be reduced to one of the following:
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k=1: rix’+2my=0 (parabolic cylinder) , or
rix’+d=0 (two planes)

k=2: rix>+1,y°+d=0
(If solutions exist, then we get an elliptic or hyperbolic
cylinder if d#0 and two planes if d=0.)

Proof. See [Eise39].

3.7.3. Theorem. The equation of the tangent plane to a quadric surface at a point
(X0,¥0,20) defined by equation (3.71) is

(axg +hyo +fzo + )x + (byo + hxo + gzo + m)y + (czo +fxo + gyo +n)z
+1xg +mygo +nzy +d =0.

Proof. See [Eise39]. (We again refer the reader to Chapter 8 for a precise definition
of a tangent plane).

For a classification of quadratic surfaces in R" see [PetR98].

3.8 Generalized Central Projections

The standard central projections as defined in Section 3.2 have a center that is a point.
When dealing with higher-dimensional spaces it is sometimes convenient to allow the
“center” to be an arbitrary plane.

Definition. Let 0" be a fixed (n — k — 1)-dimensional plane in R™. If Y* is a k-
dimensional plane in R", define a map

mTo: R =Y
by

o (p) =aff(0,p) N Y, if aff(O,p) intersects Y in a single point,
=undefined, otherwise.

The map o is called the generalized central projection with center O of R" to the plane
Y. If X¥ is another k-dimensional plane in R", then the restriction of mg to X, molX :
X —'Y, is called the generalized perspective transformation or generalized perspectivity
from X to Y with center O.

3.8.1. Theorem. The generalized perspectivity nglX from X to Y with center O is a
projective transformation.

Proof. Tt is not hard to show that molX is a composition of ordinary central projec-
tions and parallel projections.
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Our next task is to show that working with generalized central projections is just
as easy as with ordinary central projections. We extend the notion of a frame and
borrow some of the next terminology from computer graphics.

Definition. A generalized frame in R" is a tuple F = (uj,uy,...,ux1,p), where the
u; form an orthonormal set of vectors in R" and p is point of R". The (n — k — 1)-
dimensional plane B for which F is a point-normals representation is called the base
plane of F and denoted by base(F). If uy,,, uyy3, ..., and u, are an orthonormal basis for
B, then the frame G = (uj,uy, ... ,u,,p) is called an augmented frame for F. The vector
uy.; is called the view direction of F. Any k-dimensional plane V that passes through a
point 0 =p + duy, 1, for some d > 0, and has basis uy, us, ..., and uy is called a view plane
for F. The view plane V is said to be a distance d in front of B. The frame (uy,uy, ..., ux,0)
is called the view plane coordinate system and the point o is called the origin of the view
plane.

Before moving on to the general case, it is helpful to work out the computational
details in the special case of R3. Assume that p = (0,~1/a,0), F = (e,e,,p), and that the
view plane V is the x-axis and has origin 0. See Figure 3.30. By an argument similar
to the one in Section 3.5.1 one can easily show that the generalized central projection
with respect to F and V

C.: R®°>V

iS deﬁned by
C (X y Z) = (X’ O O) = (— O 0)
a Ve Y 1) ’ N

The map C, can also be described as an orthogonal projection parallel to the z-axis
to the x-y plane followed by an ordinary central projection of R? onto the x-axis from

(x.y,2)

(x,y,0)

\' X
(x',0,0)

(0,-1/a,0)

Figure 3.30. A basic generalized central
projection in R3.
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Figure 3.31. A generalized central projection in R®.

the point (0,-1/a,0). In other words, using homogeneous coordinates the map C, is
defined by the matrix

oS O O O
S O © O
- O & O

Now for an arbitrary generalized frame F = (u;,u,,p) in R3, let V be a view plane for
F that is a distance d in front of B = base(F) and that has origin o. See Figure 3.31.
Let ©t be the generalized central projection of R? on V with center p. Suppose that we
would like to determine a formula for n(p) in view plane coordinates for an arbi-
trary point p € R>. Choose an orthonormal basis uz for B and let G = (u;,u,,us,p) be
the corresponding augmented frame for F. The map G~! maps world coordinates into
the coordinates of the frame G. Let T be the translation q — q — (0,d,0). Then © =
C14TG™. If we use homogeneous coordinates, the © can be expressed in terms of a
matrix, like in Section 3.5.1. Actually, because of all the zeros in the matrix M,, the
computations can be simplified. To compute n(q) we only need to compute the dot
product of q with u; and keep track of that. More precisely,

_(d@-p)ew
ma) _( (q-p)eu; ’0’0)'

Now back to the general problem in R". Given a generalized frame F = (u,u,,...,
u.1,p) in R, the problem that interests us is to determine the generalized central pro-
jection 1t with center B = base(F) of R" to a view plane V that is a distance d in front of
B. There is again the important special case where p = (-1/a)ex.1, F = (ey,ez, . ..,ex1,p),
and the view plane V is R with origin 0. Using homogeneous coordinates the general-
ized central projection C, in this case is defined by the matrix
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Kk
10
0 o0
01
M, = 0 e a
00
0 -0
00
0O 0 o0 1

The general case 7 is reduced to this special case using a motion like before. Choose
an orthonormal basis for B and let G = (uj,u,,...,u,,p) be the corresponding aug-
mented frame for F. The map G™! maps world coordinates into the coordinates of the
frame G. Let T be the translation q — q — dey;;. Then n = C,gTG!. The affine version
of the map is

(4, (g-p)euy (q-p)eux
n(q)_(d (@Q—-p)*uks ""’d(p—p)-uk+1 ’0""’0)'

3.9 The Theorems of Pascal and Brianchon

It did not seem appropriate to leave the subject of projective geometry without men-
tioning two well-known and beautiful theorems.

3.9.1. Theorem.

(1) (Pascal’s Theorem) If the vertices A, B, C, D, E, and F of a hexagon in P2, no
three of which are collinear, lie on a nondegenerate conic, then the pairs of
opposite sides intersect in collinear points, that is, the intersection points

X=LagNnLpe, Y=Lgc "Lgg, and Z =LarNLcp
are collinear, where Lpg is the line through points P and Q. See Figure 3.32.
(2) Conversely, if the pairs of opposite sides of a hexagon in P?, no three of whose
vertices are collinear, intersect in collinear points, then the vertices of the
hexagon lie on a nondegenerate conic.

Proof. See [Gans69] or [Fari95].

Pascal proved his theorem in 1640. There are affine versions of these theorems
but they are not as elegant because one has to add assumptions that intersections
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Figure 3.33. Points on a conic given
three points and two
tangents.

exist. The book [HilC99] has a nice discussion about the connection between Pascal’s
theorem and other results.

The converse of Pascal’s theorem is actually more interesting because it allows
one to construct any number of points on a conic through five points no three of which
are collinear. Also, by letting the points A and F and the points C and D coalesce we
get a construction for the points on a conic given three points and the tangent lines
at the first two points. For example, in Figure 3.33 (which uses notation compatible
with that in Theorem 3.9.1) we are given the three points A = F, C = D, and B and
tangent lines Lar and Lcp at the points A and C, respectively. The figure shows how
an arbitrary line L through the intersection of Lag and L¢p determines a unique new
point E on the conic. Note that since the line L can be parameterized by the angle
that it makes with the line Laf, our construction also produces a parameterization of
the points on the conic.

The dual of Pascal’s Theorem is called Brianchon’s Theorem after C.J. Brianchon,
who proved it in 1806 before the principle of duality in P> was formulated. Of course,
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given that principle, there would have been nothing to prove. The dual of Theorem
3.9.1(2) holds also, again by the principle of duality.

3.10 The Stereographic Projection

The subject matter of this last section is not really part of projective geometry as such
but of geometry in a general sense. The map we shall describe shows up in many
places, including topology and complex analysis. It has many interesting properties
but we shall only take time to discuss those that are relevant to this book. A good ref-
erence for more information is [HilC99].

Definition. The stereographic projection of the n-sphere
pn: 8" —{enu}—>R"

is defined by

X1 X2 Xn
pn(XI;XZ»---;XnH): ’ PRI .
1- Xn+1 1- Xn+l 1- Xn+l

Note that p,/S"™! is the identity map on $"!. The map p, can be described geo-

metrically as follows: If x € S" —{e,,1} and if Ly is the ray that starts at e, and passes

through x, then py(x) is the point that is the intersection of Ly with R". See Figure

3.34 for the case n = 2. It is easy to check that p, is one-to-one and onto, so that we
may think of S as

RL =R" U {e},
where oo is the “point of R™ at infinity.” Using terminology introduced later in Chapter

5, S™ can be thought of as the one-point compactification of R". The map p, extends
to a one-to-one and onto map

pa(a)

Figure 3.34. The stereographic projection.
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pn: S">RL
by mapping ep; to . This map is also called the stereographic projection of the
n-sphere.

The identification of the two space S™ and RZ using p, gives us a one-to-one cor-
respondence between maps of S™ and RZ. Specifically, for any map

h: 8" » 8"
define
pn(h): R - R2
by
pn(h) = pnohopy!.

Alternatively, pp(h) is the unique map that makes the following diagram
commutative:

h

st —_— st
pn 4 ! pn.
R, —— R2
pn(h)

3.10.1. Theorem.

(1) If X is an k-dimensional sphere in S" that misses the point e,,;, then X" =
pu(X) is a k-dimensional sphere in R".

(2) If X is an k-dimensional sphere in S" through the point ey, then X’ = p,(X)
is a k-dimensional plane in R".

Proof. Consider the case of circles and n = 2. The argument for part (1) proceeds as
follows. Let X be a circle in S§? that does not pass through e;. Figure 3.35 shows a ver-
tical slice of the three-dimensional picture. The points A and B are points of X and
A’ and B’ are the image of A and B, respectively, under the stereographic projection.
The tangent planes at the points of X envelop a cone with vertex C. One can show
that the image C’ of C under the stereographic projection is then the center of the
circle X’. See [HilC99]. Part (2) follows from the fact that a circle through e; is the
intersection of a plane with the sphere. The general case of spheres and arbitrary k-
dimensional spheres is proved in a similar fashion.

If we consider a plane as a “sphere through infinity,” then Theorem 3.10.1 can be
interpreted as saying that the stereographic projection takes spheres to spheres. With
this terminology we can now also talk about sphere-preserving transformations of both
S™ and RZ. (Note that in R" these would be the maps that send a sphere to a sphere
or a plane and a plane to a plane or a sphere. We would have had a problem talking
about such “sphere-preserving” transformations in R” because we would have to allow
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Figure 3.35. The stereo-
graphic projection maps
circles to circles. A

these transformations to not be defined at a point and not onto a point. We had a
similar problem with affine projective transformations.) The sphere-preserving trans-
formations of R% are easy to characterize. First, any similarity of R” extends to a map
of R2 to itself by sending o to . Call such a map of R% an extended similarity.

3.10.2. Theorem.

(1) An extended similarity of R% is a sphere-preserving map. Conversely, every
sphere-preserving maps of R2 that leave o fixed is an extended similarity.

(2) An arbitrary sphere-preserving maps of R% is a composition of an extended
similarity and/or a map p,, (h), where h is a rotation of 8" around a great circle
through en,;.

Proof. See [HilC99].

Another interesting and important property of the stereographic projection is that
there is a sense in which it preserves angles. Let p be any point of S" other than e,;.
Let u and v be linearly independent tangent vector to S™ at p. See Figure 3.36. Tangent
vectors will be defined in Chapter 8. For now, aside from the intuitive meaning, take
this to mean that u and v are tangent to circles C, and C,, respectively, in S" through
p and that “tangent at a point p of a circle with center ¢” means a vector in the plane
containing the circle that is orthogonal to the vector ¢p. Let p’, C,/, and C;” in R" be
the images of p, C4, and C,, respectively, under the stereographic projection. The
vectors u and v induce an orientation of the circles C, and C, (think of u and v as
velocity vectors of someone walking along the circles) and these orientations induce
orientations of the circles C,” and C,’ via the stereographic projection. Choose tangent
vectors u’ and Vv’ to the circles C,” and C,’ at p” that match their orientation. Let 6 be
the angle between the vectors u and v and 6’ the angle between u’” and v'.

3.10.3. Theorem. The stereographic projection is an angle-preserving or conformal
map, that is, 6 = 0"
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Figure 3.36. The stereographic
projection preserves
angles.

Proof. See [HilC99].
3.10.4. Corollary. All sphere-preserving maps of R% are angle preserving.
Proof. This is an immediate consequence of Theorems 3.10.2 and 3.10.3.

Now let X be a (n — 1)-sphere in R” with center ¢ and radius r. Let X’ be the sphere
in S" that is mapped onto X by the stereographic projection. Choose a point p on X
and let p’ be the point of §" (in X’) that maps onto p. Let 6 be the rotation of S"
around the great circle through p’ and e, that maps p’ to epy;. Then Y = 6(X’) is a
sphere through e, and its projection to R" is a plane Y. Let R be the reflection of
R" about Y.
Definition. The map

w=pn(c7)Rpy(c): REL —RD

is called an n-dimensional inversion of RZ with respect to the sphere X, or simply an
inversion in a sphere.

3.10.5. Theorem. The map U is defined analytically as follows:
(1) plc) = oo
(2) Let p e R, p # c. Let q be the point on X where the ray Z from ¢ through p
intersects X. Then p(p) is that unique point z on Z defined by the equation

2
lcplez| = leq|” = 1.

Proof. See Figure 3.37. For a proof see [HilC99].
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Figure 3.37. An inversion of a sphere maps z
p to z.

lepl lezl = r2

3.10.6. Theorem. Every circle-preserving map of R% is the composite of at most
three inversions.

Proof. See [HilC99].

Finally, there is an interesting connection between the stereographic projection
and Poincaré’s model of the hyperbolic plane. To learn about this we again refer the
reader to [HilC99]. Recall that one of the big developments in geometry in the 19
century was the discovery of non-Euclidean geometry. The big issue was whether the
axiom of parallels was a consequence of the other axioms of Euclidean geometry. The
axiom of parallels asserts that given a line and a point not on the line, there is a unique
line through the point that is parallel to the line, that is, does not intersect it. This
axiom does not hold in other geometries. In the plane of elliptic geometry there is no
parallel line because all lines intersect. In hyperbolic geometry there are an infinite
number of lines through a point that are parallel to a given line.

3.11 EXERCISES

Section 3.4
3.4.1.  Let £ be an ordinary line in R?. Carefully prove that the set
L=ru{r}

in P? is in fact a line in P?.

Section 3.4.1

3.4.1.1. Find the equation of the line in P? through the points [2,-3,1] and [1,0,1].

3.4.1.2. Find the intersection of the lines

-X+2Y-Z=0 and 2X+Z=0

in P2.
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3.4.1.3. Find the cross-ratio of the points [1,0,1], [0,1,1], [2,-1,3], and [3,1,2] in P2.
3.4.1.4. The points I=[0,1,-1], 0 =[1,0,-2], and U = [2,4,0] belong to a line L in P2,

(a) Find the coordinates of the point [1,2,-4] on L with respect to I, O, and U.

(b) Find the coordinates of the point [1,2,-4] with respect to I’ = [1,0,-2], O’ =
[0,1,-1], and U’ =[1,1,-3].

(c) Find the transformation ¢ that maps the coordinates with respect to I, O, and U
to the coordinates with respect to I’, O’, and U’.

3.4.1.5. Consider the points I =[0,1,-1], ¥=[1,0,1], O = [1,0,-2], and U = [2,-4,0] in P2

(a) Find the coordinates of the point [1,2,—4] with respect to I, J, O, and U.

(b) Find the coordinates of the point [1,2,—4] with respect to I’ =[1,0,-2], J* =[3,1,1],
0’ =[0,1-1], and U’ =[1,1,-3].

(c) Find the transformation ¢ that maps the coordinates with respect to I, J, O, and
U to the coordinates with respect to I’, J’, 0’, and U’.

Section 3.4.3

3.4.3.1. Let T be the central projection that projects R? onto the line L defined by 2x — 3y + 6
= 0 from the point p = (5,1).
(a) Find the equation for T in two ways:

(1) Using homogeneous coordinates and projective transformations
(2) Finding the intersection of lines from p with L

(b) Find T(7,1) and T(3,4).

Section 3.5.1

3.5.1.1. Let T be the central projection that projects R? onto the plane X defined by x +y + z
=1 from the point p = (-1,0,0).
(a) Find the equations for T in three ways:

(1) Using the usual composites of rigid motions and central projections and
homogeneous coordinates

(2) Via the method of frames

(3) Finding the intersections of lines through p with the plane

(b) Find T(9,0,0) and T(4,0,5).
Section 3.6

3.6.1.  Consider the conic defined by the equation

31x% —103xy + 21y + (10v3 —124)x + (203 - 42)y - 20¥3 +1=0.

(a) Is the conic an ellipse, hyperbola, or parabola?
(b) Find its natural coordinate system.
(c) Determine its focus and directrix.
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Section 3.6.1
3.6.1.1. Find the projective transformation (like in Example 3.6.1.2) that transforms the conic

Xy+2y? —x+y+3=0

into the unit circle.
3.6.1.2. Find the tangent line to the conic in Exercise 3.6.1.1 at the point (0,1).

3.6.1.3. Find the equation of the conic through the points p; = (1,1), p> = (2,1+(3/2)W/§),
p:=0G5,1), psa= (4,1—(3/2)*/5) and that has tangent line x — 1 = 0 at the point p;.

3.6.1.4. Find the equation of the conic through the points p; = (1,2), p» = (-3,2), and
ps; = (-1,1) and which has tangent lines y —x — 1 =0 and x + y + 1 = 0 at the point
p: and p», respectively.

3.6.1.5. Find the equation of the conic through the points p; = (2,-1) and p, = (4,-2) that has
tangent lines y = -1 and x + y — 2 = 0 at those points, respectively, and is also tangent
to the line 2x —y -1 =0.

3.6.1.6. Solve conic design problem 4.
3.6.1.7. Solve conic design problem 5.

Section 3.7
3.7.1.  Consider the following quadric surface

x2+y%+27% - 2xy —v2x =2y -2=0.

(a) Determine its type.
(b) Find its tangent plane at the point (0,0,1).

Section 3.10
3.10.1. Show that the inverse

pn :R* > 8" —{eq}

of the stereographic projection is defined by

. 1
pa'(y) = —5—(2¥1,2y2,...,2yn Iy’ - 1), y eR™.
lyl”+1




CHAPTER 4

Advanced Calculus Topics

4.1 Introduction

The object of this chapter is to introduce basic topological concepts as they apply to
R" and to cover some important topics in advanced calculus. The reader is assumed
to have had the basic three-semester sequence of calculus and it is not our intent to
redo that material here. Our emphasis will be on multivariable functions and their
properties, the assumption being that the reader has a reasonable understanding of
functions of a single variable. Proofs are given in those cases where it was thought
to be helpful in understanding some new ideas or if they involved some geometric
insights.

Section 4.2 introduces the topological concepts. We limit the discussion to those
that are specifically needed for advanced calculus and leave the more general study
of topology to Chapter 5. Section 4.3 describes the derivative of vector-valued func-
tions of several variables and related results that generalize well-known properties of
real-valued functions of a single variable. The inverse function theorem and the
implicit function theorem are discussed in Section 4.4. These are such important the-
orems and get used so often that we give a fairly detailed outline of their proofs. Many
results in differential topology and algebraic geometry would be impossible without
them. Next, Section 4.5 develops the basic results regarding critical points of func-
tions and this leads to Morse theory, which is described in Section 4.6. The problem
of finding zeros of functions is addressed in Section 4.7. Section 4.8 reviews basic
facts about integrating functions of several variables. Finally, in Sections 4.9 and 4.9.1,
we start a brief overview of the topic of differential forms and their integrals that will
be continued in Section 8.12.

4.2 The Topology of Euclidean Space

Topology is the study of the most basic properties of point sets such as, what is meant
by a neighborhood of a point, what open and closed sets are, and what makes a func-



4.2 The Topology of Euclidean Space 209

tion continuous. It is the foundation of calculus, analysis, and any sort of geometric
investigations. In this section we look only at some of the important definitions
as they apply to Euclidean space. Chapter 5 will study abstract topological spaces.
Because we shall encounter many of the same definitions there in a more general
context, we shall postpone some proofs and results to that chapter to avoid stating
and proving theorems twice. By and large, this section is simply a collection of defi-
nitions and essentially immediate consequences. By carefully asking “what does this
mean?” the reader should have little difficulty in proving most theorems.

Unless stated otherwise, all points and sets in this section belong to R" for some
fixed but arbitrary n.

Definition. A set N is said to be a neighborhood of a point p if it contains an open
ball about p, that is, there exists an € > 0 such that B"(p,e) < N.

The important part of the neighborhood N is that it contains some open ball about
p. We do not care whether it contains some other “junk.” For example, the open inter-
val (-1,1) together with the set {-100,23,5} would be called a neighborhood of the
origin in R. Note also that this definition and many others depend on the dimension
of the Euclidean space with respect to which we are making the definition. For
instance, the interval (-1,1) is a neighborhood of the origin for R but not for R?. The
open unit ball B?, on the other hand, is a neighborhood of the origin for R2.

Definition. A subset X of R" is called an open set if for all points p in X there is
an € > 0 such that B(p,e) < X. X is said to be a closed set if the complement of X,
R" - X, is open.

Specifying the open sets of a set is what defines its “topology.” (A precise
definition of the term “topology” is given in Chapter 5). “Open” and “closed” are dual
concepts. The open interval (0,1) is an open set in R and the closed interval [0,1] is a
closed set. Our definitions are compatible with the old usage of the terms. A set does
not have to be either open or closed. For example, the “half-open” (“half-closed”) inter-
val (0,1] is neither. The set R" is both open and closed as is the empty set ¢ but these
are the only subsets of R" that are both open and closed. A single point is always a
closed set. In practice, sets tend to be open if the “<” relation is used in their defini-
tion and closed if the “<” relation is used.

4.2.1. Proposition

(1) The arbitrary union of open sets is an open set.

(2) A finite intersection of open sets is open.

(3) The arbitrary intersection of closed sets is a closed set.
(4) A finite union of closed sets is closed.

Proof. Part (1) is easy. To prove (2), let Oy, O, ..., Ok be open sets and let p be a
point in their intersection. Since each O; is an open set, there exists an g; > 0, so that
B"(p,&i) c O;. If

¢ =min{e,&5,...,ek},
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then the open ball B"(p,¢) is contained in all the sets O; and hence in their intersec-
tion, proving (2). Parts (3) and (4) follow from parts (1) and (2) and the identity

-

1l
—_

k
(R"-0;)=R"-JO..
i=1

1

The identities

ﬁ(—%%) =0 and |J [%1—%} ~0.)

n=1 n=2

show that arbitrary intersections of open sets need not be open and arbitrary unions
of closed sets need not be closed.

Definition. A point p is a limit or accumulation point of a set X if every neighbor-
hood of p meets X in a point other than p. More precisely, for every € > 0,

(B"(p,e) - {p}) " X # ¢.

An isolated point of X is a point of X that has a neighborhood containing no point of
X other than itself (that is, it is not a limit point).

For example, 1 is a limit point of (0,1), but 1.0001 is not because
B'!(1.0001,0.00005) is disjoint from (0,1). A point p in the set X is not necessarily a
limit point of X. Only those points whose neighborhoods contain infinitely many

points of X are. For example, if X =[0,1] U {2}, then 2 is an isolated point and not a
limit point of X, but every point in [0,1] is a limit point of X.

Definition. The closure of a set X, denoted by cl(X), is defined by
c(X) =X u {p|p is a limit point of X}
For example,
cl((0,1))=[0,1] and cl(0,1]) =[0,1].

The closure of the set of rationals in the reals is the reals.

4.2.2. Proposition

(1) For every set X, cl(X) is a closed set.
(2) If X is closed, then cl(X) = X.

Proof. We prove (1) and leave (2) as an exercise (Exercise 4.2.4). We need to show
that

Y=R"-cl(X)
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is an open set. Let p € Y. See Figure 4.1. Since p ¢ cl(X), there is an € > 0, so
that B*(p,e) N X = ¢. To show that B"(p,e) does not contain any limit point of X, let
q € B"(p,e) and let r = € — |pq|. Then

B"(qr)c B"(p,e) cR" -X,
so that q is not a limit point of X.

Definition. Let X c R". The boundary of X, denoted by bdry(X), is defined by

bdry(X) = {p | every neighborhood N of p meets both X and its complement,
that is, Nn X # ¢ and NN (R" - X) # ¢).

The interior of X, denoted by int(X), is defined by
int(X) = {p € X | p has a neighborhood N with N ¢ X}.
See Figure 4.2. For example, if n = 1, then
bdry((0,1)) ={0,1} and int([0,1]) =(0,1).
Note that boundary points of a set do not necessarily belong to the set. The bound-

ary of the set of rationals in the reals is all of the reals and the interior of this set is
empty. For “nice” sets the boundary and the interior are the obvious sets; however,

B'(pe)

Figure 4.1. Proving that cl(X) is a closed set.

Figure 4.2. A boundary point p and an interior point
q of a set X.
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Exercise 4.2.6 shows that the definitions may have some unexpected consequences in
certain cases.

The boundary and interior of a set change if we change the containing space R".
For example, the boundary of [0,1] in R? is all of [0,1] and its interior is the empty
set.

4.2.3. Proposition

(1) The boundary of a set is a closed set.

(2) If X ¢ R", then bdry(R" — X) = bdry(X).

(3) A set X is closed if and only if bdry(X) c X.
(4) The interior of a set is an open set.

(5) int(X) = X — bdry(X).

Proof. Easy.

Definition. A subset X of R" is called a bounded set if X < B"(r) for some r > 0. If
X is not bounded, then it is said to be unbounded.

For example, the set of integers is an unbounded set in R. Of course, the whole
set R is an unbounded subset of R. The interval [-1,10] is a bounded set because it
is contained in (-50,50) = B!(50).

Definition. Let X be a subset of R". If S = {U,} is a collection of subsets of R" whose
union contains X, then S is called a cover of X. If all the U, are open sets in R", then
S is called an open cover of X. If all the U, are closed sets in R", then S is called a
closed cover of X.

For example, {(1/n,1 — 1/n) | n=2, 3,...}is an open cover of the subset (0,1) of
R.

Definition. A subset X of R" is said to be compact if every open cover of X has a
finite subcover, that is, there is a finite collection of sets from the cover that already
cover X.

4.2.4. Theorem. (The Heine-Borel-Lebesque Theorem) A subset X of R" is compact
if and only if it is closed and bounded.

Proof. We shall prove half of the theorem, namely, that a compact set is closed and
bounded, and leave the converse to the next chapter (Theorem 5.5.6). One reason for
proving at least part of the theorem here is to show how the property of covers having
finite subcovers gets used. Basically, when one has a finite collection of objects, e.g.,
numbers, then one can talk about the smallest or largest. This is not possible with
infinite collections.

Assume that X is a compact subset of R". To prove that X is closed we need to
show that R" — X is open. Let p € R" — X. For every x € X there is a ball neighbor-
hood Uy and Vy of p and x, respectively, such that Uy n Vy = ¢. See Figure 4.3. The
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Figure 4.3. Proving that compact sets are closed.

&

collection {V,} is an open cover of X. Since X is compact, there is a finite subcover
{Vx J1<i<k- Tt follows that

U=[\Ux

i=1

is an open neighborhood of p contained in R" — X and so R" — X is open.

Next, we show that X is bounded. For every x € X, the ball By = B*(|x| + 1)
contains x in its interior. Let {By}i<i<k be a finite subcover of the open cover {By].
If r = maxi<< {|xi| + 1}, then X < B"(r).

The Heine-Borel-Lebesque theorem is one of the fundamental theorems in analy-
sis because it abstracts an essential property of sets that is needed to make many
results dealing with continuous functions valid. Although the “correct” definition of
compactness is in terms of open covers of sets, the theorem is often used to justify
defining a set to be compact if it is closed and bounded. This definition is certainly
easier to understand if one is not very familiar with analysis. Since the concepts are
equivalent, it does not matter much from a practical point of view. At any rate, it
follows that all closed intervals [a,b], all disks D"(p,r), and all spheres S™ are compact.

The definitions above were all relative to a fixed Euclidean space R". For example,
if we were to say that a set is open, then we really are, more accurately, saying that
it is open in R"™. It is important to have a version of these definitions that is relative
to other spaces besides R". Specifically, we want to be able to talk about sets that are
open in X with respect to any other given space X.

Definition. A subset A of a set X in R" is said to be open in X, or relatively open, if
there is an open set O in R" with the property that A = O n X. A is said to be closed
in X, or relatively closed, if X — A is open in X.

For example, the subset
: T
A= {(cose,sme) ‘ 0<6< 5}

of the plane is not open in the plane, but it is open in the unit circle S! because A is
the intersection of S' with the open set
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o :{(rcose,rsine)‘ %<r <2 and 0<#9 <g}

See Figure 4.4.

It is easy to show that the relative concepts of open and closed do not depend on
R". Specifically, if X is also a subset of R™, then A will be open/closed in X with respect
to R™ if and only if it is open/closed with respect to R™. Although we shall not give
the formal definitions, we now also get the obvious relative concepts of limit point of
A in X, closure of A in X, and boundary of A in X.

Next, we turn to the topology of continuity. Invariably, whenever one defines some
structure in mathematics it is useful to define maps (“morphisms”) that preserve this
structure. Since the only topological structure that we have on R" at the moment is
that of open sets, it is natural to define these maps in terms of them. We begin with
a notion of limits.

Definition. We say that a sequence of points pi, pa2, - . . has a limit point p, and write
limp; =p,
i—eo

if for every € > 0 there is an N so that i > N implies that

Ipi —pl<e.

When it comes to functions, it is assumed that the reader has seen the usual €-8
type definition for continuity, at least in the case of real-valued functions of one vari-
able. That definition extends to functions of more variables almost verbatim.

Let X cR™and Y ¢ R™.

Definition. Let f:X — Y and let p € X. We say that the function { has a limit L at p
and write

lim f(q) =L,

a-—p

if L € Y and for every € > 0 there is a 8 > 0 so that 0 < |q — p| < 6 and q € X implies
that

Figure 4.4. An open set in the circle.
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|f(q)-L|<e.
The function is said to be continuous at p if
lim f(q) = f(p).
q-p
This leads to the classical definition of a continuous function.

First definition of a continuous function. The function £:X — Y is said to be
continuous if it is continuous at every point of X.

There are conceptually better and cleaner definitions. The motivation for our new
definitions lies in the fact that one can rewrite the definition of continuity of a func-
tion f at a point p as follows:

For every € > 0 there is a 6 > 0 so that f(Bm(p,S) 8 X) cB"(f(p),e)n Y. 4.1)

Second definition of a continuous function. A function f:X — Y is said to be
continuous if £1(V) is open in X for every open set V in Y.

Third definition of a continuous function. A function f:X — Y is said to be
continuous if f1(V) is closed in X for every closed set V in Y.

The second and third definitions are the “right” definitions, which extend to
abstract topological spaces as will be seen in Chapter 5. The second is actually the
most common. Since the next theorem shows that the three definitions are in fact
equivalent, we shall not distinguish between them.

4.2.5. Theorem. The three definitions of continuity are equivalent.

Proof. We show that the first and second definitions are equivalent and leave the
rest as an exercise for the reader. Assume that f is continuous with respect to the
first definition. Let V be an open set in Y. We need to show that U = f"}(V) is open in
X. See Figure 4.5. Let p be any point in U and let q = f(p). Choose € > 0 so that
04 = B'(q,e) N Y c V. By statement (4.1), there is a § > 0 so that f(Op) ¢ Oq, where
O, = B"(p,8) N X. Therefore, p belongs to an open subset O, of X that is contained
in U. Since p was an arbitrary point of U, we have shown that U is an open set in X.

Conversely, assume that f is continuous with respect to the second definition of
continuity. Let p € X and set q = f(p). Let € > 0. Then Oq = B"(q,6) N Y is an open set

Y

Figure 4.5. Understanding continuous
functions.
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inYand U= f_l(Oq) is open in X. Therefore, there is a § > 0, so that O, = B™(p,5) N
X c U. Clearly, f(Op) < Oq. In other words, f is continuous at p. We are done.

4.2.6. Proposition. The composition of continuous maps is continuous.
Proof. The proof is easy using the second or third definition of continuity.

Definition. If a function f:X — Y is not continuous at a point p but

L = lim f(q)

a-p

exists, then the point p is called a removable discontinuity of the function f (because
we could make f continuous at p simply by redefining f to equal L at p). Any other
point p where f is discontinuous is called an essential discontinuity.

For example, consider the functions f, g:R — R defined by

f(x)=1, forx#0, f(0)=2, and
g(x) =sin(l/x), forx=0, g(0)=2.

The function f has a removable discontinuity at 0, whereas the function g has an essen-
tial discontinuity there.

If a function f:X — Y is continuous it is continuous at every point. If € > 0, then
the first definition of continuity gives us a 8 > 0 so that points within § of a point p
will get mapped to a point within € of f(p). However, it is important to realize that the
8 depends on p. It may change from point to point. A nice situation is one where one
can choose a 4 that will work for all points.

Definition. A function f:X — Y is said to be uniformly continuous if for every € > 0
there is a & > 0 so that for all p, q € X with |q — p| < & we have that |f(q) — f(p)| < &.

Uniform continuity is a very important concept in analysis.

4.2.7. Example. It is not hard to show that the function
f: (01> R, f(x)=1/x,
is continuous but not uniformly continuous. For a fixed ¢, the § that works at a point

x gets smaller and smaller as x approaches 0. The core problem is that (0,1] is not
compact.

4.2.8. Theorem. If f:X — Y is a continuous function and if X is compact, then f is
uniformly continuous.

Proof. See [Buck78] or [Eise74]. See also Theorem 5.5.13.

The following property is weaker than uniform continuity but is sometimes
adequate:
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Definition. A function f:X — Y is said to satisfy a Lipschitz condition on X if there
is constant M > 0, so that |f(q) — f(p)| < M | p — q| for all p, q € X.

Definition. A function f:X — Y is said to be a homeomorphism if it is one-to-one
and onto and both it and its inverse are continuous.

To a topologist all homeomorphic spaces look alike and the main problem is to
classify spaces up to homeomorphism.

Definition. A set X is said to be connected if X cannot be written as the union of
two subsets A and B that are nonempty disjoint open sets in X.

4.2.9. Theorem. Every connected subset of R is either R itself or an interval of the
form [a;b]) (a;b)) (a;b]) [a;b)) (—oo’a], (—oo’a), [aroo); or (a’oo)_

Proof. See [Eise74].
A more intuitive notion of connectedness is the following:

Definition. A set X is said to be path-connected if for all points p and q in X there
is a continuous function f:[0,1] — X with f(0) = p and f(1) = q.

4.2.10. Proposition. A path-connected space is connected.
Proof. See [Eise74].

The converse of Proposition 4.2.10 is not necessarily true.
Definition. A component of a set is a maximal connected subset.

Next, we describe some properties that are preserved by continuous maps.

4.2.11. Theorem. The continuous image of a compact set is compact.

Proof. Let X be a compact set and let f: X — Y be a continuous onto map. Let {0}
be an open cover of Y and let O, = £1(0}). By continuity of f, each O, is open in X.
In fact, {0} is an open cover of X. Since X is compact, there is a finite subcover
[0y )i<ick- Clearly, {Og] is a finite cover of Y and the theorem is proved. See also
Theorem 5.5.8.

4.2.12. Theorem. The continuous image of a connected set is connected.

Proof. Let X be a connected set and let f: X — Y be a continuous map which is onto
Y. Suppose that Y is not connected. Then Y = O; U O,, where O; is open in Y and
0O; N 0, = ¢. But then X would be a disjoint union of open sets f"!(0;) and f1(0,),
which would contradict the connectedness of X. Note that since f is onto, neither
f1(0)) nor £1(0,) is empty.
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y Figure 4.6. The support of a function.

f(x)

W X

support of f

Definition. The support of a function f:R"™ — R is the closure of the set of points
where f is nonzero. (See Figure 4.6.)

4.3 Derivatives

Given a function f:R — R, the usual definition of the derivative for f at a point a is

f(a+h)-f(a)

h , (4.2)

o =Jim

if the limit exists. This works fine for functions of one variable, but just like the single
number “slope” cannot capture the direction of vectors in dimension larger than two,
we need a different definition of derivative in higher dimensions.

Definition. Let U be an open subset of R". A function f:U — R™ is said to be
differentiable at p € U if there is linear transformation T:R" — R™ such that

iy E@+ 1) —£(p) = T(h)| _
h—0 |h|

0. (4.3)

In that case, T will be called the derivative of f at p and will be denoted by Df(p).

See Figure 4.7. Note that if n = m = 1, then equation (4.3) is simply a rewrite of
the equation in (4.2) if we define T(h) = f'(a)h. In other words, in arbitrary dimen-
sions, the derivative needs to be replaced by a linear transformation rather than
having it simply be a real number. The fact that a linear transformation from the reals
to the reals could be specified by a real number obscured what was really going on.

4.3.1. Proposition. The linear transformation T in equation (4.3) is unique if it
exists.

Proof. Suppose that S is another linear transformation satisfying equation (4.3)
where T is replaced by S. Then
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Figure 4.7. The geometry of the Xn+1
derivative. f(p) + T(h)
f(p +h)

f(p)

/ T(h)
Rll

p p+h

i SO =T _ . [S(h) = (£p + h) = £p)+ E(p-+ h) — E(p) — T(h)
h—0 |h | h—0 |1’l |
i IS0 = (D +B) - ()], [+ 1)~ [(p) - T(h)|
h—0 |h| h—0 |h|
=0.

Now tp — 0 as t — 0, for any p € R". Therefore, if p # 0, then we can let tp play the
role of h above to get

0= lim ISP = TP _ [S(p) - T(p)|
-0 Itp| Ip|

so that S(p) = T(p).
One should think of the derivative as the linearization of a function. No one linear

transformation approximates f. Instead, there are lots of linear transformations, one
at every point, which locally approximate f. The linear map T, defined by

Tp(q) = f(p) + Df(p)q-p), (4.4)
whose graph is a plane, is what approximates the graph of f in a neighborhood of p.
Definition. The graph of the linear transformation T, :R" — R™ defined by equation
(4.4) is called the tangent plane to the graph of f at the point (p,f(p)) in R" x R™. If

n =m = 1, then it is usually called the tangent line.

The current notion of a tangent plane is rather special. We shall have much more
to say about tangent planes and begin to see their importance in Chapter 8.

4.3.2. Example. The derivative of f(x) = x? at a is defined by Df(a)(x) = 2ax.

Proof. Let
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y y=x2 T,(x) Figure 4.8. Example 4.3.2.
Df(1)(x)

1+ (1,1)

A

L —lim |f(a+h)—f(a)—2ah|‘
h—0 |h|

We must show that the limit L exists and is zero. But

|@+h)”* —a? - 2ah| R
S I iy =l -

Figure 4.8 shows the graph of the linear map Df(1)(x), which is the derivative of f at
1, and the graph of the linear function T;(x) defined by equation (4.4), which defines
that tangent line to f at (1,1).

4.3.3. Example. The derivative of f(x,y) = x* at (a,b) is defined by Df(a,b)(x,y) = 2ax.

Proof. We must show that

|f(a + Ax, b+ Ay) — f(a,b) — 2aAx|

L= m =0.
(Ax,Ay)-0 (Ax, Ay)|
But
2_ 2
|(a +Ax)" —a‘ - 2an| Ax2
L= lim - lim —=%
(A%, Ay)—0 VAX? + Ay? (Ax,Ay)-0 o/ Ax2 + Ay?

because

Ax? _Ax 2
JAX? + Ay? |AX|

=|Ax]

Example 4.3.3 highlights one problem for those readers who are new to the
definition of vector-valued function derivatives. The notation Df(a,b)(x,y) looks very
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complicated because it contains so many variables. One needs to look beyond the
notation. We are simply defining a linear map T(x,y), but one that varies as we move
from one point (a,b) to another. If the reader will bear with us, we shall soon intro-
duce a more common and more compact notation for the derivative, namely the
Jacobian matrix of partial derivatives, that will eliminate the excess of symbols.
The advantage of the current notation however is that there is absolutely no ambi-
guity about it whereas the same cannot be said about some instances of the partial
derivative notation.

Now, since we clearly do not want to compute derivatives via limits, we need some
basic facts that will aid in their computation.

4.3.4. Proposition

(1) If f is a constant map, then Df = 0.

(2) If f is a linear transformations, then Df = f.

(3) The derivative at the point (a,b) of the map f(x,y) = xy is defined by Df(a,b)(x,y)
= bx + ay.

(4) If f and g are two differentiable functions with the same domain and range,
then f + g is differentiable and D(f + g) = Df + Dg.

Proof. The proposition follows in a straightforward manner from the definition of
the derivative and is left as an exercise (Exercise 4.3.1).

The next proposition reduces the problem of finding the derivative of a vector-
valued function to finding the derivative of real-valued functions of several variables.

4.3.5. Proposition. Let U be an open subset of R" and let f:U — R™. If f(p) =
(f1(p), . . . ,fm(p)), where f;:R™ — R, then f is differentiable at p if and only if each f;
is and

Df(p)(h) = (Dfi(p)(h), ..., Dim (p)(h)).

Proof. This is again straightforward. See [Spiv65].

4.3.6. Theorem. (The Chain Rule) Let U and V be open sets in R" and R™, respec-
tively. Suppose that we have maps f:U — R™, g:V — R¥ and that f(U) ¢ V. If f is
differentiable at p in U and g is differentiable at q = f(p), then the composite
gof:R™ — RX is differentiable at p and

D(g - f)(p) = Dg(q) - Df(p).
Proof. See [Spiv65]. The proof is similar to the one for functions of one variable.

It is very important that one understands the chain rule for derivatives. Not only
does it lead to many differentiation formulas (starting with only a few basic ones) but
it gets used over and over again in practical problems. Lots of nice formulas would
be impossible without it. One immediate corollary is that the derivative of vector-
valued functions satisfies the usual properties of a derivative.
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4.3.7. Corollary. Let U be an open set in R" and let f, g:U — R be functions that
are differentiable at p € U.

(1) D(f + g)(p) = Df(p) + Dg(p)
(2) D(fg)(p) = f(p)Dg(p) + g(p)Di(p)
(3) If g(p) # 0, then
D(f/2)(p) = EPLIP) = {(P)De(p)
g(p)’

Proof. We prove (1) to show how the chain rule gets used. The rest are left as an
exercise. Define functions p(p) = (f(p),g(p)) and o(p,q) = p + q. Clearly, (f + g)(p) =
o(u(p)). Therefore, the chain rule, Proposition 4.3.4(2), and Proposition 4.3.5 and
imply that

D(f +g)(p) = D(c o p)(p) = Do(w(p)) - Du(p) = 6 - (Df(p), Dg(p)) = Df(p) + Dg(p).

4.3.8. Example. Let f(u) = (sinu,u?), g(x,y) = x> + 3xy, and G(u) = g(f(u)). Find the
derivative DG.

Solution. In this problem, it is of course easy to compose the functions f and g to
get

G(u) =sin® u+3u?sinu
and
G’(u) = 2sinucosu + 3u? cosu + 6usinu.

On the other hand, using the chain rule we do not need to compute G(u) directly. Note
that

Df(a)(h) = ((cosa)h,(2a)h)
and
Dg(c,d)(h, k) = 2ch + (3dh + 3ck).
It follows that
DG(a)(h) = Dg(sina,a?)((cosa)h,(2a)h)
=(2sinacosa)h +(3a%cosa)h + (6asina)h,

which agrees with the first answer.

Although the chain rule lets us compute the derivatives of many functions, its
direct use is rather messy. To make computations still easier, we use the chain rule to
determine the matrix for the linear transformation Df(p).
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Let f:R" > R and let p € R™.
Definition. The limit

lim (@ +he) —f(p) . fPr,.. it pi+hpict, .., pn) ~fp1,... . pn)
h—0 h h—0 h

if it exists, is called the ith partial derivative of { of order I at p and denoted by Dif(p)
or Jf/ox;(p).

Note that the ith partial derivative is just the ordinary derivative h’(0) of the
composite function h(t) = f(g(t)), where g(t) = p + te;.

Since partial derivatives are again functions, one can take partial derivatives of
those to get the higher partial derivatives.

Definition. If k > 1, then define the (mixed) partial derivative D;
recursively by:

i f(p) of order k

,,,,,

Di,, .. i f(P) = Di, Dy, i, D)D)
Does it matter in which order the partial derivatives are taken? Usually not.

4.3.9. Theorem. If D;;f and D;;f are continuous in an open neighborhood contain-
ing p, then

D; jf(p) = D;,if(p).
Proof. See [Spiv65].

Some common notation for partial derivatives is:

a—f, a—f, and E)_f or fy, £y, and f, for Dif, D,f, and Dsf, respectively.
ox’ dy 0z

If f:R — R, then one does not usually write g—i but reverts to % or f'(x).

2 2
a—f,a—f, or fyy,fyy, ... for Dif, Dyif, ...
ox?’ 9xdy
Finally, the following notation often comes in handy to simplify expressions.
Notation. Let f:R" — R™ be differentiable. If f(x) = (f;(x),5:(x), . . . ,fm(x)), then

of

X

will denote ( ofi of Ofr j

8xi'8xi""'axi

Definition. Let A be an open set in R"” and let f:A — R. If f is continuous, it is said
to be of class C°. Let k > 1. The function f is said to be of class C* if its partial deriv-
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atives of order r exist and are continuous for 1 < R < k. The set of such functions is
denoted by CXA). If f:A — R™, then f is said to be of class C* if all the component
functions are of class C*. C! functions are often called continuously differentiable
functions. If f is of class C¥ for all k, then we say that f is of class C*. A C function
is also called a smooth function.

4.3.10. Theorem. Let U be an open subset of R If f: U — R™ is differentiable at p,
then the jth partial derivatives Difi(p) exist for all i and the m x n matrix (Djfi(p)) is
the transpose of what we have called the matrix for the linear transformation Df(p)
with respect to the standard bases of R" and R™.

Proof. This is an easy consequence of the definitions and the chain rule. See [Spiv65]
for details.

Definition. With the notation and hypotheses of Theorem 4.3.10, the matrix (Djfi(p))
is called the Jacobian matrix and will be denoted by f’(p). Using the more common
partial derivative notation,

oo an
ox; 0X,  0Xp
o, ob ob

£ = a_x1 E ox, |
CI S
oX; 0X»  0Xq

If m = n, then the determinant of the n x n Jacobian matrix f'(p) is called the Jaco-
bian of f at p. If m = 1, then it is often convenient to treat the 1 x n matrix f’(p) as a
vector in R™.

Note. With our definition, the matrix f’(p), thought of as a transformation, will act
on vectors on the right and not on the left as is the case everywhere else in this book.
The reason for departing from our usual convention regarding the matrix of a linear
transformation and using the transpose here is to be compatible with how most people
define the Jacobian matrix in terms of partials. If m = n = 1, the new notation f'(p)
will also be compatible with the old notation for the derivative of a function of one
variable if we think of a number as a 1 x 1 matrix.

4.3.11. Theorem. Let U be an open subset of R” and let f: U — R™ and assume that
each Dif; exists in a neighborhood of a point p and is continuous at p. Then f is
differentiable at p.

Proof. See [Spiv65].
Assuming that one can take partial derivatives of ordinary real-valued functions,

we now show via some examples how easy it is to find derivatives of vector-valued
functions and how the derivatives really do correspond to approximating the func-
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tions by linear functions. In the three examples below, the functions should be thought
of intuitively as parameterizations of certain sets. The derivative will then correspond
to the tangent line or plane at the appropriate points of those sets.

4.3.12. Example. To find the derivative of p(6) = (cos0,sin6) at 6 = w/4.

Solution. By Theorem 4.3.10

o =( 275

cosa

Therefore,

Dp(a)(h) = (~hsina,hcosa) and Dp(%)(h) - (—%h,%h).

The graph of the function

0= 5 -l 3]

is in fact the tangent line to the circle at p(n/4).

4.3.13. Example. To find the derivative of f(x,y) = x> + y? at (x,y) = (1,0).
Solution. By Theorem 4.3.10, f’(a,b) = (2a,2b). Therefore,
Df(a,b)(h,k) =2ah+2bk and Df(1,0)(h,k)=2h.
The graph of
T(x,y)=f(1,0)+2(x-1)=2x-1

is the tangent plane to the graph of f at (1,0).

4.3.14. Example. To find the derivative of £(6,z) = (cos6,sin®,z) at (0,2).

Solution. By Theorem 4.3.10

—sina O
f’(a,b)=| cosa 0],
0 1

so that Df(a,b)(h,k) = ((-=sina)h,(cosa)h,k). Clearly, the map
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T(0,z)=(1,0,2)+(0,6,z)

is the tangent plane at (1,0,2) to the cylinder of radius 1 centered on the z-axis, which
is the surface parameterized by f.

Up to now we have been dealing with the derivative of a function as a linear map
(which is what it is), but the reader probably has also noticed that this is a little
cumbersome and we end up with complicated looking expressions even if we use the
Jacobian matrix. This is not how most people deal with derivatives. To get more of
the look and feel of how most people really work, we use the following consequence
of the chain rule.

4.3.15. Theorem. Letg, ..., gn:R* = R, f:R™ — R be functions that are contin-
uously differentiable at a € R™ and (gi(a), .. ., gm(a)) € R™, respectively. Define F:R"
— R by F(x) = f(g1(x), . .., gn(x)). Then

D;F(a)= Y Dif(gi(a), ..., gm(a)Digj(a). (4.5)
j=1

Proof. See [Spiv65].

Equation (4.5), which is really just the chain rule, comes in very handy when
computing derivatives and is usually written informally as

of dy;
ZayJ o (4.6)

ax1

Nevertheless, one needs to be aware of the fact that the Df notation of a derivative in
equation (4.5) is more precise and one should always return to that if one has any
problems carrying out a computation. Specifically, although notation of the type
of/ox is the more common notation for the ith partial derivative it can sometimes
be ambiguous whereas the other notation D;if(p) is not. A typical case where ambi-
guities can arise is in the application of the chain rule like in equation (4.6). For
example, if f(u,v) is a function and u = g(x,y) and v = h(x,y), then equation (4.6) turns
into

of of ou du  of of ov
ox au ox  ov ox’

Although this way of writing the chain rule makes it easy to remember the rule, the
formula must be interpreted carefully. For one thing, the f's appearing on the right
hand side of the equation are different from the f on the left hand side. In the first
case, we are considering f to be a function of u and v and, in the second, we are
considering f to be a function of x and y. One should really write

JoF of du Ju  of of ov
0x  oudx  ovox’
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where F(x,y) = f(u(x,y),v(x,y)). Sloppiness may be acceptable, but only as long as one
knows how to express things correctly when needed.

4.3.16. Example. Given z = x?> + 3xy, X = sinu, and y = u?, to find dz/du. Note that
this is really just a restatement of the problem in Example 4.3.8.

Solution. We have

Jz _ 92 0x %ﬂ—(2x+3y)cosu+(3x)2u:25inucosu+3uzcosu+6sinu.

du 9x du dy du
This answer clearly agrees with the earlier one.
4.3.17. Example. Let u=f(x — ct) + g(x + ct). To show that

ox2 o2

Solution. Define r(x,t) = x — ct and s(x,t) = x + ct. Then u(x,t) = f(r(x,t)) + g(s(x,t)).
The result follows from the following computations:

a—“(x,t) = P, 05 (6,0 + /(6 1) 2 (5,0 = Flr(, )+ €/, 0)
(x t) =1'(r(x, t)) (X t)+g'(r(x, t)) (x t) = —f’(r(x,1)) + cg’(r(x,t))
and

—(X t) =1"(r(x, t)) (X t)+g"(r(x, t))—(X t) =1"(r(x, 1) + g"(r(x,1))

?)z—z(x t) = —cf”(r(x, t)) (X t)+cg”(r(x, t)) (x t) = 7 (r(x,1) + c2g”(r(x,t))

Definition. Let f:R" — R be a function that is differentiable at a point p. Then the
gradient of f at p, denoted by VT (p), is defined to be the Jacobian matrix f'(p), that is,

Vi(p) = (Dif(p), ..., Duf(p)).
A generalization of partial derivatives is the directional derivative.

Definition. Let U be an open subset of R* and let f:U — R. Let v be an arbitrary
nonzero vector. If p € U and if the limit

lim f(p +hv) —f(p)
h—0 h



228 4 Advanced Calculus Topics

e+l \ Figure 4.9. The directional derivative.
: f(p)
f(p+hv)

\
—

/

R

L

exists, then that limit is called the directional derivative of f in the direction v and is
denoted by Dyf(p).

The directional derivative at a point p is essentially the derivative of the curve
obtained by intersecting the graph of f with a vertical plane through p. See Figure 4.9.
Some books require that v be a unit vector. Although this is a natural requirement in
some application (see Examples 4.3.19 and 4.3.20 below), there is no reason to assume
this in the definition. In fact, part (2) of the next proposition shows a useful linear
relationship in the general case.

4.3.18. Proposition

of

E)xi
(2) The directional derivative is a linear function of its direction vector, that is, if
v, we R"and a, b € R, then

(1) Dyf(p) = Vi(p) e v. In particular, D, f(p) = D;if(p) = (p).

Dav+bwf = aDyf + bDy, f.
Proof. To prove part (1), define functions t and g by
tth)=p+hv and g(h)="f(t(h)) =f(p+hv).
The chain rule implies that
g'(h) = Vi(z(h)) e v'(h) = Vi(z(h)) e v.
But D.f(p) is just g’(0) and so we are done. Part (2) follows easily from (1) because

Davibwl = Vi e(av+bw)=aVfev+bVfiew =aD,f +bDy,f.
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4.3.19. Example. To find D,f when v = (-1,2) and f(x,y) = x’y + e¥.
Solution. Since Vf (x,y) = (2xy + ye¥,x? + xe), it follows that
Di1pf(x,y) = (2xy +ye™,x% + Xe"y) e(-1,2) = —2xy — ye™ +2x2 + 2xe™.
4.3.20. Example. To find the directional derivative for
F(x,y) =e*coxy
at (0,0) in the direction making an angle of 60 degrees with the x-axis.

Solution. The unit direction we want is v = (1/2)(1,4/3). Since VFE(x,y) = (e*cosy,—e*
siny), it follows that

1 V3) 1
DyF(0,0) = VF(0,0)ev =(1,0)¢| —,— |==.
0.0=VFO.0+v=0.00(3.5 ]
4.3.21. Example. To find the directional derivative of
F(x,y,z) = x’yz*

along the curve y(u) = (¢™,2sinu + 1,u — cosu) at the point y(0) on the curve.

Solution. What we are after is the directional derivative of F in the direction of the
unit tangent vector to the curve y(u) at 0. We shall see in Section 8.4 that the tangent
vector v(u) to the curve at u can be obtained by differentiating the component func-
tions of the curve, so that v(u) = (-e",2cosu,1+sinu) and v(0) = (-1,2,1). Let u be
the unit vector in the direction v(0). Since VF(x,y,z) = (2xyz>x*z%,3x%yz?) and y(0) =
(1,1,-1), our answer is

1
D,F(1,1,-1)=VF(1,1,-1)eu=(-2,-1,3)e Té(—l,Z,l) = \E
Here are two more basic theorems for vector-valued functions that extend well-

known results from the case of ordinary functions of one variable.

4.3.22. Theorem. (The Generalized Mean Value Theorem) Let f:R™ — R™ be a
differentiable function. If p, q € R, then

f(q@) - f(p) = Df(p*)(q - p)
for some p* € [p,ql.
Proof. See [Buck78].

The next theorem is a generalization of Taylor’s theorem. We shall only state it for
the 2-variable case. First, it is convenient to define a differential operator
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which, when applied to a real-valued function f(x,y), gives
of of
a_(Xry) + b_(X»Y)-
ox dy

For example,

o*f
0xdy

2 oY , 9f
(a o +b ayj Hx,y)=a o (x,y)+2ab

o*f
(X,y) + b2 F(X,y).

Definition. Let f(x,y) be of class C"in a neighborhood of a point (xg,yo). Then
n, g 9 7"
e(x,y) =f(xO,yo>+k2_1;![<x—xO>a—X+<y—yo)$} BXx,y)

is called the Taylor polynomial of f of degree n at x,.

4.3.23. Example. To find the Taylor polynomial g(x,y) of degree 2 at (1,2) for the
function

f(x,y) = 2x3 +5xy2.
Solution. Now

of

Fo

2 2 2
g—f:10><y, ﬂ:12X, o°f =0, and ﬁlex,
y

6x2, —
ox? 0xdy oy?

so that
o(x,y) = 18+6(x—1)+20(y—2)+%[12(x—1)2 +2:0-(x~1)(y -2)+10(y -2)*]

4.3.24. Theorem. (The Taylor Polynomial Theorem) Let f(x,y) be of class C**! in a
neighborhood of a point (x¢,yo). Then

nq P 2
f(X,y)=f(Xo,YO)Jrkz_ia[(X—Xo)ng(y—YO)g} (D(x,y)+Rot,

where

1 p n+1 .
R =gy | (5 o)t (6o | ()
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for some point (x*,y*) on the line segment from (xq,yo) to (x,y).
Proof. Let p = (x,y), po = (X0,Y0), and define
F(t) = f(po + t(p — po)), t €[0,1].

The theorem follows easily from the chain rule and the basic Taylor polynomial for
functions of one variable applied to F (Theorem D.2.3). See [Buck78] .

So far in this section differentiability was a notion that was defined only for a
function f whose domain A was an open set; however, one can define the derivative
of a function also in cases where its domain is a more general set. Basically, all one
has to be able to do is extend the function f to a function F defined on an open set
containing A. One then defines the derivative of f to be the derivative of F and shows
that this value does not depend on the extension F one has chosen. In fact, one only
really needs local extensions, that is, for every point in A we need to be able to extend
f to a differentiable function on a neighborhood of that point.

Definition 1. Let A be an arbitrary subset of R". A map f:A — R™ is said to be of
cllizss CFor a C* map on A if there exists an open neighborhood U of A in R” and a
C* map

F: U->R™

that extends f, that is, f = F | (U n A). If k > 1, then the rank of { at a point p is the
rank of DF at p.

Deﬁnltlon 2. Let A be an arbitrary subset of R". A map f:A — R™ is said to be of
class C* or a C* map at a point p in A if there exists a neighborhood U, of pin R"
and a C* map

Fp: U, > R™

that extends f | (Up m A). If k 2 1, then the rank of f at the pomt p is the rank of DF at
p. The map fis a C map if it is of class CKat every point p in A.

4.3.25. Theorem. The definitions of CX maps on a set or at a point are well defined.
The two definitions of C¥ maps on a set are equivalent. The notion of rank is well
defined in all cases. If the set A is open, then the definitions agree with the earlier
definition of differentiability and rank.

Proof. For details see [Munk61].

Notice that neither definition actually defined a derivative although we did define
the rank of the map. Since the extensions F are not unique, it is not possible to define
a derivative in general. In certain common cases, such as rectangles or disks where
boundary points have nice “half-space” neighborhoods, the derivative is defined
uniquely. Actually, in such cases, one could simply define the derivative at such a point
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as “one-sided” limits, extending the idea of the derivative at the endpoints of a
function defined on a closed interval [a,b]. All the theorems and definitions in this
section will be applicable.

4.4 The Inverse and Implicit Function Theorem

Definition. Let U and V be open subsets of R”. A Cxmap f:U >V, k=work >1,
that has a CX inverse is called a C* diffeomorphism of U onto V. A C* diffeomorphism
will be called simply a diffeomorphism.

Because diffeomorphisms are one-to-one and onto maps, one can think of them
as defining a change of coordinates. Another definition that often comes in handy is
the following:

Definition. Let U be an open subset of R” and let f:U — R™. If p € U, then f is called
a local (C*) diffeomorphism at p if f is a (C¥) diffeomorphism of an open neighborhood
of p onto an open neighborhood of f(p).

4.4.1. Lemma. If a differentiable map f:B"(r) — R" satisfies

of

<b, foralliand j,
an

then it satisfies the Lipschitz condition
|f(x) - f(y)|<bn|x—y| forall x,yeB".
Proof. Use Taylor series and the mean-value theorem.

4.4.2. Theorem. (The Inverse Function Theorem) Let U be an open subset of
R". Let f: U — R” be a C¥ function, k > 1, and assume that Df(xo) is nonsingular at xg
€ U. Then f is a local C* diffeomorphism.

Outline of proof. By composing f with linear maps if necessary one may assume
that xo = f(x¢) = 0 and that Df(xp) is the identity map. Next, let g(x) = f(x) — x. It follows
that Dg(0) is the zero map and since f is at least C!, there is a small neighborhood
B"(r) about the origin so that

1
<

S50

9gi
an

Claim. For each y € B"(1r/2) there is a unique x € B"(r) such that f(x) =y.

See Figure 4.10. To prove the existence of x note that Lemma 4.4.1 implies
that
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Figure 4.10. Proving the inverse func-
tion theorem. B"(1/2)

B"(r) f
—
~—

U f—l

1200 - elxo)| € 3%~ %0 4.7)

for x € B"(r). Define xo = 0, x; =y, and Xpy1 =y — €(Xm), for m > 1. Our hypotheses
imply that

1
_ < _
)
|Xm Xm—ll—zlxm—Z Xm—ll

and so x| < 2ly| for all k. It follows that the x,, converge to a point x with |x| < 2]y|,
that is, x € B™(r). Furthermore, x = y — g(x), so that f(x) = y. To prove that x is unique,
assume that f(x;) = y. Then

1
X —Xi =g(X1)—g(X)SEIX—X1 l

so that x — x; = 0. The claim is proved.
The claim shows that

£ BH(E) - B(1)
2
exists. The map f! is continuous because
1
I£(x) = £(x0)| 2 [x = x1 | = |g(x) — g(x1)| = Elx -x|

implies that
ly -yl |[f1(y) - £ (y1)|.

We still need to show that f!is differentiable in addition to being continuous.
Since f is differentiable, we have that

f(x) =f(x;)+DIf(x1)(x — x1)+ h(x,x1), (4.8)

where
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h(x,x1)

|x — x|

-0 as x-—ox.

We must show that an equation similar to (4.8) holds for f!. The obvious candidate
for Df ! is A = (Df)~!. Applying A to both sides of equation (4.8) gives

Aly —y0)+Athi(y,y) = (y) £ (y1),
where hy(y,y1) = -h(f"'(y),7(y1)). Now

hi(y,y1) :_h1(y,y1) Ix — x4
ly —yil Ix—x1] [y —yil

and the right-hand side of this equation goes to zero (the first term goes to zero and
the second is bounded by 2). This shows that ! is differentiable. The continuity of
D(f™!) follows from the fact that the matrix for this map is defined by the composite
of the maps

GL(n,R),

r
B (5) £ B® (r) matrix for Df GL(nl R)

matrix inversion

where we identify the space GL(n,R) of nonsingular real n x n matrices with R™.
If f is of class C¥, then one can show in a similar fashion that f! is also.

To prove the first application of the inverse function theorem we need two lemmas.

4.4.3. Lemma. Let U be an open subset of R" that contains the origin. Let f:U —
R™ n < m, be a CX map with f(0) = 0 and k > 1. Assume that Df(0) has rank n. Then
there is a CX diffeomorphism g of one neighborhood of the origin in R™ onto another
with g(0) = 0 and such that

g(f(Xb e an)) = (Xl) . rXIl’O’ . ,O)
holds in some neighborhood of the origin in R".

Proof. The hypothesis that Df(0) has rank n means that the n x m Jacobian matrix
(0fi/dxj) has rank n. Because we can interchange coordinates if necessary, there is no
loss in generality if we assume that

rank( afi_ ) =n.

Xj

1<i,j<n
Consider the map F:U x R™™ — R™ defined by
F(x1,...,Xm)=f(x1,...,x0)+(0,...,0,Xns1, ..., Xm)-

Since F(xy,...,Xn,0,...,0) = f(x1,...,Xn), F is an extension of f. Furthermore, the
determinant of (JFi/0x;) is just the determinant of
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(5)
0x;j lsi,an’

which is nonzero. The inverse function theorem now implies that F has a local inverse
g that is a C* diffeomorphism of one neighborhood of the origin in R™ onto another.
Therefore,

g(f(xq,...,xn)) = g(F(x1,...,X,,0,...,0))

:(le’ .. an)y

and the Lemma is proved.

4.4.4. Lemma. Let U be an open subset of R that contains the origin. Let f:U —
R™ n > m, be a CX map with f(0) = 0 and k > 1. Assume that Df(0) has rank m. Then
there is a C* diffeomorphism h of one neighborhood of the origin in R™ onto another
with h(0) = 0 and such that

fh(xy,...,xn))=(X1,...,Xm)
holds in some neighborhood of the origin in R".

Proof. Again, by interchanging coordinates if necessary, we may assume that

rank( of; j =m.

an

1<i,j<m
Define F:U — R" by
F(x1,...,Xn) =(fi(x), ..., fn(X), Xms1, - - - Xn).

Our hypothesis implies that F has a nonsingular Jacobian matrix at the origin and
hence a local inverse h. Let g be the natural projection of R" onto R™, which sends

(X1, ...,Xxg) onto (X1, ...,Xy). Then f = gF and
f(h(xi, ..., xn)) = g(F(h(xy,...,xn))
:g(x1r"';xn)
=(X1,...,Xm)

This proves the Lemma.

The next theorem can be interpreted as saying that up to change of curvilinear
coordinates maps f:R" — R™ basically look like the natural projection (xy, ... ,x5) —
(x1, .. .,X,0, ...,0) for appropriate k. Compare this result with Theorem 1.11.7, which
deals with linear maps.

4.4.5. Theorem. Let U be an open subset of R" that contains the origin. Let f: U —
R™ be a C* map with f(0) = 0 and s > 1. Assume that Df(x) has rank k for all x in U.
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Then there exist C* diffeomorphisms h and g of neighborhoods of the origins in R"
and R™, respectively, such that

g(f(h(xy,...,xn)) =(x1,...,Xx,0,...,0)
in some neighborhood of the origin in R".
Proof. The proof divides into two cases.
Case 1. n>m.

Let m:R™ — RX be the natural projection. We may assume without loss of gener-
ality that the matrix
5)
0X; 1<i,j<k

is nonsingular on U. It follows from Lemma 4.4.4 (applied to 7 of) that there is a C*
diffeomorphism h such that

f(h(xy,...,xn)=&1, ..., Xk, 01(X1, .., Xn), o o o, Om-k (X1, ... ,Xn)).

Since the rank of D(feh) is k, we must have d¢i/0xj = 0 for j > k. It follows that the ¢;
are independent of Xy, . .., X,. Now define a map f; :REK - R™ by

fi(xg, ..., xk)=(x1, ..., XKk, 01 (X1, ..., %%,0,...,0), ..., 0k (X1, ..., Xk,0,...,0))
and apply Lemma 4.4.3.
Case 2. n<m.
This is proved similarly to Case 1 and is left as an exercise.

One aspect worth noting about the hypotheses of Theorem 4.4.5 is that it is not
enough to simply assume that the map f has rank k at the origin. One needs to know
that this holds in a neighborhood of the origin. In the special case where Df has
maximal rank, then the assumption of rank k at the origin is enough because this by
itself implies that Df will have maximal rank in a neighborhood. This explains the
slight difference in hypotheses between Lemmas 4.4.3 and 4.4.4 and Theorem 4.4.5.
It is worth summarizing an aspect of these observations.

4.4.6. Theorem. Let U be an open subset of R". Let f:U — R™, n < m, be a CX map,
k> 1. Let p be a point of U and assume that Df(p) has rank n. Then there is a neigh-
borhood of V of p in U so that f|V is one-to-one.

Implicit function theorems are another major application of the inverse function
theorem. They have to do with solving equations of the form

f(x,y)=0 (4.9)
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for x or y in terms of the other variable. We can think of equation (4.9) defining either
x or y in terms of the other implicitly. The obvious question is under what conditions
we can in fact think of x as a function of y or, conversely, y a function of x. A good
example is

f(x,y)=x*+y?> -1 (4.10)

in which case equation (4.9) defines the unit circle. A neighborhood of the point
A =(0,1) on the circle is clearly the graph of the function

y(x) =v1-x2. (4.11)

The variable x is not a function of y in any such neighborhood because functions are
single-valued. On the other hand, a neighborhood of the point B = (1,0) on the circle
is clearly the graph of the function

x(y) =v1-y2. (4.12)

Here, the variable y is not a function of x in any neighborhood. The point C =
(1/4/2,1/4/2) is much nicer because we can solve for either x or y. See Figure 4.11. The
difference between these points is that the tangent line at A and B is horizontal and
vertical, respectively. The tangent line at C is neither. In fact, near C each point cor-
responds to a unique x and y value and the functions y(x) and x(y) given by equa-
tions (4.11) and (4.12), respectively, which are the local solutions to (4.9), are inverses
of each other.

So what is a possible criterion that will guarantee that one can solve for one of
the variables in equation (4.9)? Well, it is at points like C that have nonvertical tan-
gents that we can guarantee both solutions. It is there that we can guarantee a unique
x and y value for nearby points. For the points A and B, which have horizontal or ver-
tical tangents (equivalently, derivatives of functions vanish or do not exist), we can at
most guarantee one solution. Our theorem will only give us sufficient but not neces-
sary conditions and not much can be said in general at points where appropriate deriv-
atives vanish. They would have to be analyzed in special ways. Note that horizontal
tangents are not necessarily bad because the curve

A(0,1)

B(1,0)
2+ y271 =0

graph of

Figure 4.11. Solving for implicitly defined
functions. y(x)=VI1-x2 or x(y)=VI-y2
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y-x>=0

has a horizontal tangent at (0,0) but still can also be solved for both x and y in a neigh-
borhood of that point.

4.4.7. Theorem. (The Implicit Function Theorem) Let
f: R" xR™ - R™

be a continuously differentiable function in an open set about a point (a,b) and
assume that

f(a,b)=0.
If the m x m matrix

M = (Dy.ifj(a, b))

1<i,j<m

is nonsingular, then there exists an open neighborhood A about a in R", an open neigh-
borhood B about b in R™, and a differentiable function

g:A—>B
with the property that
f(x,g(x)) =0
for all x in A.
Proof. Define a function
F: R®* xR™ - R" xR™

by

F(x,y) = (x,f(x,y)).
Our hypotheses imply that F is a continuously differentiable function whose deriva-
tive DF is nonsingular at (a,b) because det DF(a,b) = det M. The inverse function
theorem (Theorem 4.4.2) now implies that F has an inverse G in an open neighbor-
hood of (a,0) = F(a,b), which we may assume to have the form A x B. It is easy
to check that G has the form G(x,y) = (x,k(x,y)) for some differentiable function k.
Let

m:R" xR™ - R™

be the natural projection. Then neF = f and
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f(x,k(x,y)) = (f- G)(x,y)
=((moF)oG)(x,y)
=(mo(FoG))(x,y)
=n(x,y)
=y.

Letting g(x) = k(x,0) proves the theorem.

Note that the chain rule for differentiation could easily be used to compute the
derivative of the function g in Theorem 4.4.7.

Let us see how the implicit function theorem applies to our earlier example
dealing with the unit circle and the function f in equation (4.10). We have that

of of
—=2 — =2y.
o X and 3y y

Evaluating df/ox and df/dy at the points A, B, and C and checking when the values are
nonzero will show that the implicit function theorem gives us the same answers as
before.

Finally, it is important to realize that the implicit function theorem says nothing
about the existence of solutions to equations

f(x,y)=0,

but rather is typically used to assert that the solution set, if it exists, can be parame-
terized locally by

x — (x,g(x))
using some function g.
4.4.8. Example. Consider the set of points C in R? defined by the equations

x2+yz+1=0
x2-y2+2z2+2=0.

To show that a neighborhood of the point p = (1,2,-1) on C is a curve that can be
parameterized by a function y(x).

Solution. Define a function
f: RxR? > R?
by

f(x,y,2) = (x> +yz+1,x> —y? +7% +2).
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Then the matrix of partials

o o
dy oz (Z y)
M: =
oh | Ay 22
dy 0z

is nonsingular at p. The set C can now be parameterized by the function
Y(x) = (x,8(x)),

where g:A — R? is the function defined on a neighborhood A of 1 in R guaranteed to
exist by the implicit function theorem.

45 Critical Points

In this section we review some basic results about maxima and minima of functions,
in particular, for functions of one or two variables.

4.5.1. Theorem. Let X c R" and let £:X — R be a continuous function. If X is
compact, then f assumes both a minimum and maximum value on X, that is, there
are p; and p; in X so that

f(p1) <f(p) <f(p2)
for all p in X.

Proof. By Theorem 4.2.11, the set Y = f(X) is compact. By Theorem 4.2.4,Y is closed
and bounded, so that both inf Y and sup Y belong to Y. Choose any p; and p, in X
with inf Y = f(py) and sup Y = f(p»).

Definition. Let X ¢ R" be an open set and let :X — R be a differentiable function.
Let p € X. If Df(p) = 0, then p is called a critical point of f and f(p) is called a critical
value.

Note that from a practical point of view, to check whether a point p is a critical
point of f one simply checks if all the partials of f vanish at p.

Definition. Let X < R" and let f:X — R. The function f is said to have a local
maximum at a point p in X if f(q) < f(p) for all q in a neighborhood of p. The func-
tion f is said to have a local minimum at p if f(q) > f(p) for all q in a neighborhood
of p. A point p is a local extremum if it is either a local maximum or local minimum.
A point p in X is a (global) maximum for f if f(q) < f(p) for all q in X. The point p is
a (global) minimum for f if f(q) > f(p) for all q in X. An extremum for f is either a
maximum or minimum for f.
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4.5.2. Theorem. LetX c R"and let f:X — R be a differentiable function. If a point
p in the interior of X is a relative extremum for f, then p is a critical point of f.

Proof. We give a proof for the case where p is a local maximum. In that case, f(q)
< p for all points q sufficiently close to p. The definition of the directional derivative
implies that Dyf(p) < 0 for all directions v. In particular, Dyf(p) < 0 and D_f(p) < 0.
This and Proposition 4.3.18(1) clearly imply that Dyf(p) = 0, so that Vf(p) = 0.

4.5.3. Theorem. Let f:[a,b] > R be a C? function and assume that c in (a,b) is a
critical point of f.

(1) If f”(c) < 0, then c is a local maximum for f.

(2) If ”(c) > 0, then c is a local minimum for f.

(3) If f”(c) = 0, then nothing can be concluded from this test.
Proof. The easiest way to prove (1) and (2) is to use the Taylor expansion for f. See
[Buck78]. The canonical examples for (1) and (2) are the functions —x? and x?, respec-
tively. Their graphs are shown in Figure 4.12(a). To prove (3), simply consider the
functions x*, —x*, and x* (Figure 4.12(b)). This finishes the proof of Theorem 4.5.3.

The graph of the function x> shows another property of graphs.

Definition. A point c is called an inflection point of a function f(x) if there is an
e > 0, so that either

f”(x)<0forxe(c—¢g,c) and f”(x)>0forxe(c,c+¢)
or

f”(x)>0forxe(c—¢,c) and f”(x)<0forxe(c,c+eg).

f(x) = x> f(x) = —x2 f(x) = x>

(a) (b)

Figure 4.12. Some canonical cases of Theorem 4.5.3.
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f(x,y) = X%+ y2 f(x,y) = —x2- y2 f(x,y) = X2 - y
(@) (b) (©)

Figure 4.13. Extrema for functions of two variables.

An inflection point is a place where the “concavity” of the graph of a function
changes from “concave upward” to “concave downward” or vice versa. The derivative
does not have to vanish at an inflection point. The origin is an inflection point of the
function x3. See Figure 4.12(b).

Theorem 4.5.3 is not the end of the story for finding extrema for functions of one
variable. One must still check a function on its endpoints. For example, the function
f(x) = x defined on [0,1] does not have any critical points on [0,1] but obviously has
a maximum and a minimum, but these come on the endpoints of the interval.

Next, we want to extend the results about functions of one variable to functions
of two variables. The canonical examples are the functions —x? — y? and x? + y?, which
have a local maximum and a local minimum, respectively, at the origin (see Figure
4.13(a) and (b)), but there is one more possibility. Consider the function

f(x,y)=x%-y2. (4.13)

See Figure 4.13(c). Although the origin is a critical point for f, it is a minimum along
the x-axis and a maximum along the y-axis, that is, it is not a relative extremum but
a “saddle point.”

Definition. A critical point of a function that is not a relative extremum is called a
saddle point.

4.5.4. Theorem. Let X c R? and let f:X — R be a C? function. Assume that p is a
critical point for f that lies in the interior of X. Let

D = (fadyy — £y ).

(1) If D > 0, then p is a relative extremum for f that is a relative maximum if
fi(p) < 0 and a relative minimum if f(p) > 0.

(2) If D < 0, then p is a saddle point.

(3) If D = 0, then nothing can be concluded from this test.
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Proof. The Taylor expansion for functions of two variables can be used to prove (1)
and (2). See [Buck78]. It is easy to check that the functions in Figure 4.13(a) and (b)
fall into case (1) and that the function in Figure 4.13(c) (equation (4.13)) falls into
case (2). To prove (3), consider the functions

(a) f(xy)=x*+y*
(b) gxy) =-(x*+yH
(0) h(xy) =x* = 5xy” + 4y* = (x — y))(x — 4y?)

Each of these functions has D = 0. The function f has a minimum at (0,0) and g has
a maximum at (0,0). The function h has a saddle point at (0,0). See Figure 4.14(a).
The “+” and “~” in the figure indicate the regions where the function is strictly posi-
tive or strictly negative, respectively. On the other hand, note that h(x,y) has a local
minimum along any line through the origin. To see this, define
s(x) = h(x,mx) = (x - m?x?)(x — 4m?x?) = x* - 5m?x> + 4m*x*.

The function s(x) describes h(x,y) along the line y = mx. A direct computation shows
that s(0) = 0 and s”(0) = 2, proving the claim. Along the y-axis we have that h(0,y) = 4y*,
and so we also have a local minimum at 0. This finishes the proof of Theorem 4.5.4,
but before we move on, consider another interesting function that has D = 0, namely,

k(x,y) =1-x? +4xy — 4y? =1—(X—2y)2.

See Figure 4.14(b). Here we have a function that is constant along every line of the
form x — 2y = c. Every point on the line x — 2y = 0 is a critical point.

As in the case of functions of one variable, there is more to finding relative extrema
of functions of two variables than just Theorem 4.5.4. We must always check the func-
tion on the boundary of its domain separately. This basically reduces to finding the
relative extrema of a function of one variable, a problem we have already handled.

+

h(xy) = (x =y?)(x - 4y?) k(x,y) =1 - (x -2y)?
(a) (b
Figure 4.14. Case (3) of Theorem 4.5.4.
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4.5.5. Example. To analyze the extrema of the function
f(x,y) = x%y?
on the unit disk.

Solution. Looking for critical points alone will find its minimum at (0,0) but not its
maximum, which lies on the boundary of the unit disk. To find that, make the sub-
stitutions x = cos® and y = sin6 and define a function

2(6) = cos? 0sin? 6 = (1/4)sin? 26.
We only need to find the maxima of the function g(0) for 6 € [0,2n]. Now
g’(6) = sin20cos26 = (1/2)sin 46.

Therefore, g’(6) = 0 implies that 6 = k(n/4), for k = 0,1, ...,7. The second derivative
test shows that g takes on its maximum values when 6 = k(n/4), for k = 1,3,5, and 7.

Another common type of extremum problem is finding extrema subject to certain
constraints.

4.5.6. Example. Maximize the function f(x,y) = xy subject to the condition that
2,2
x“+y =1.

The straighforward way to solve this problem would be to solve for y in the
constraint equation and then substitute this into the formula for f thereby reducing
the problem to a problem about extrema of functions of one variable. Unfortunately,
this is not always feasible since the constraints may be much more complicated.
We therefore want to briefly mention another popular approach to these types of
problems. We begin with two facts that motivate the approach. We shall see the
second, Proposition 4.5.8, again in Chapter 8 when we discuss tangent vectors to
surfaces.

4.5.7. Proposition. Let X ¢ R" be an open set and assume that f:X — R and y:[a,b]
— X are differentiable functions. If p = y(c) is an extremum of f along y for some ¢ in
(a,b), then Vf(p)ey'(c) = 0.

Proof. Consider the function g(t) = f(y(t)). Since ¢ is an extremum for g, it follows
that g’(c) = 0. The result now follows from the chain rule, which says that

g'(t) = VE(y(D) ¢ v'(0).

4.5.8. Proposition. Let g:R™ — R be a differentiable function. If y:[a,b] — g '(0) is
a differentiable function, then Vgey’ = 0.

Proof. Consider the function h(t) = g(y(t)). By hypothesis, h(t) = 0 for all t. There-
fore, h’(t) = 0 and the chain rule gives the result.
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Let us now restate our new extremum problem as follows:

The constrained extremum problem: Find the extrema of a function f(xj, . . . ,x,) subject
to a constraint g(xy, ... ,Xy) = 0.

Note first that the set Z = g7'(0) of zeros of g is intuitively an (n — 1)-dimensional
space with unique normal line. Therefore, Propositions 4.5.7 and 4.5.8 suggest that
Vf and Vg must be parallel on Z since they are vectors that are both perpendicular to
all curves in Z. This observation leads to the following:

The method of Lagrange multipliers: Find the extrema of f subject to a con-
straint g by solving the equation

V(f-ig)=0.
for A.
We shall demonstrate the use of the Lagrange method with two examples.
Solution to Example 4.5.6. If
F(x,y) = xy - A(x* +y° -1),
then

a—F=y—27»x and a—F=x—27»y.
ox y

Setting dF/dx to zero, implies A = y/(2x). If we substitute this A into the equation

dF/dy = 0 and solve for x, then we will get that x = y. Now substitute +y for x in the
constraint equation and solve for y. It follows that local extrema occur at

4.5.9. Example. To show that of all the triangles inscribed in a fixed circle, the equi-
lateral triangle has the largest perimeter.

Solution. See Figure 4.15. The length of the side subtended by angle o is 2R sin (0/2).
A similar formula holds for the other sides. Therefore,

f(o,B,y) = ZR(sin% + sin% +sin %)

is the formula for the perimeter with the constraint

glo,B,y)=a+p+y-2n=0.
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\ Figure 4.15. Inscribing a triangle in a circle.

If
F((X)Br Y) = f(OC,B, Y) - 7\'g(OC)BI Y);

then

oF o

o R cos; -\

oF E B

B =R cos 5 A

B_F =R cosl -\

oY 2

Setting the partials to zero, it follows that
cos= =cos =cos .
2 2

In other words, o= = .

Next, we describe an application of directional derivatives to the extremum
problem and an application of Proposition 4.5.8.

4.5.10. Theorem. The greatest rate of change of a function f:R" — R at a point p
takes place in the direction of and has the magnitude of the vector Vf(p).

Proof. We are looking for the direction in which the directional derivative has a
maximum. Let u be a unit vector. From Proposition 4.3.18(1) we know that

Duf = VI eu =|Vf|u|cos6 =|Vf|cosH,

where 0 is the angle between u and Vf. Clearly, this value will be a maximum when 6
is 0 or m.

4.5.11. Theorem. Given a differentiable function f:R" — R, to move along a
contour f(p) = ¢, one should move in a direction which is orthogonal to Vf.
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Proof. Apply Proposition 4.5.8 to the function g(p) = f(p) — c. Note that Vg = Vf.

We finish this section with two applications about the existence and uniqueness
of closest points between planes.

4.5.12. Theorem. LetX be a k-dimensional plane in R". For any point p in R" there
is a unique point x in X that is closest to p. The point x is defined by the condition
that the vector px is orthogonal to X.

Proof. Let xo € X and assume that uj, u, . .., ux are an orthonormal basis for X.
Parameterize the points of X with the function ¢:R* — X defined by

o(ty,t2,...,t) =Xo +tjug +toup +... +tug.
Define differentiable functions 6:R® — R and d:R* — R by
o(x) =xp e xp
and
d(t) = o(e(t)) = (p — o(t) * (p — ¢(t)).

Clearly, finding a point x in X that is closest to p is equivalent to finding a minimum
of the function d.

Our first observation is that d does achieve a minimum and that this minimum is
a critical point of d. This follows from Theorems 4.5.1 and 4.5.2. The domain of d,
RK, is of course not a compact set, but we can apply the theorems to the function d
restricted to some large closed disk in R¥ with the property that d is larger at every
point on the boundary of that disk than at some point on its interior. This will guar-
antee that a relative extremum will occur in the interior of the disk. Such a disk clearly
exists because d(t) goes to infinity as [t| goes to infinity.

Next, we show that d has a unique minimum, one defined by the stated orthogo-
nality condition. The chain rule applied to d gives that

od
E)_ti(t) =-2u; ¢ (p—@(t)).

Since the critical points t of d are the points where all of these partials vanish, we see
that solving for those points is equivalent to solving for those points x = ¢(t) in X sat-
isfying u;exp = 0, for all i, which shows that xp must be orthogonal to X.

Finally, we need to show that a point of X defined by such orthogonality condi-
tions is unique. See Figure 4.16. Let x’ = ¢(t") and assume that u;ex’p = 0, for all i.
This would imply that u; ¢ xx” = 0, for all i. Since xx” is a vector in the plane X and the
u; form a basis for X, we must have that xx” = 0, that is, x = x’. The theorem is proved.

Theorem 4.5.12 is a special case of the next theorem. We sketched the proof in
this special case because, being simpler, it brought out more clearly the essential steps
in the proof of these types of theorems.
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Figure 4.16. Uniqueness of closest point
x in plane.

4.5.13. Theorem. If X and Y are transverse planes in R" with
dimX+dimY <n,
then there are unique points x € X and y € Y, so that
dist(x,y) =|xy| = dist(X,Y).

The points x and y are defined by the condition that the vector xy is orthogonal to
both X and Y.

Proof. Tt is easy to show that proving the theorem reduces to proving the following
two cases:

Case 1: dimX +dimY=n
Case 2: dimX +dimY=n-1

In Case 1 the planes intersect in a single point. We sketch the proof for Case 2
and leave the rest to the reader (Exercise 4.5.4). Case 2 applies to skew lines in R,
for example. The fact that there are points x and y at which the distance between X
and Y is minimized and the fact that xy is orthogonal to X and Y is proved just like
in Theorem 4.5.12 by parameterizing points of X and Y via tuples s and t, expressing
the distance between points of X and Y as a function d(s,t) of the variables s and t,
and looking for the critical points of that function by setting the partial derivatives of
d(s,t) to zero. It remains to show that the orthogonality condition defines x and y
uniquely.

Assume that there are other points x’ € X and y’ € Y with the property that the
vector X'y’ is orthogonal to both X and Y. See Figure 4.17. Our hypothesis about the
dimensions of X and Y implies that all vectors that are orthogonal to both X and Y
are multiples of each other. Therefore, xy and x’y” are parallel. If (x,y) # (x",y"), then
the points x, y, X', and y’ lie in a two-dimensional plane Z. Assume that x # x” and y
#y and consider the line L through x and x” and the line L’ through y and y’. (The
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Figure 4.17. Uniqueness of closest
points x and y.

special cases where either x = x" or y =y’ is left as an exercise for the reader.) Now
the lines L and L’ are parallel in Z because they are both orthogonal to the vector xy.
On the other hand, L and L’ lie in X and Y, respectively, which would imply that X
and Y would have a common basis vector. This contradicts the fact that X and Y are
transverse planes. This contradiction proves the theorem for Case 2.

46 Morse Theory

The object of this section is to analyze functions in a neighborhood of a critical point.
The results will have important applications in Chapter 8.
Let X < R" be an open set and let f: X — R be a C” function. Let p € X.

Definition. The n x n matrix of second partials

o*f
(aXian (p))

is called the Hessian matrix of f at p. Its determinant is called the Hessian of f at p.

Definition. A critical point p of f is called a nondegenerate critical point if the Hessian
matrix of f at p is nonsingular. Otherwise, it is called degenerate.

4.6.1. Examples.
(1) The origin is a nondegenerate critical point for f(x) = x?, g(x,y) = x* + y?, and
h(X;Y) = Xz - yz‘

e origin 1s a degenerate critical point for I(x) = X° and g(x,y) = X" +y".
(2) The origin is a d itical point for f(x) = x*> and g(x,y) = X2 + y°

4.6.2. Lemma. Let f be a real-valued C” function defined in a convex neighborhood
V of 0 in R™ with f(0) = 0. Then

n
f(x1,X2, ..., Xn) = D Xigi (X1,X2, ..., Xn),
i=1
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where the g; are C” functions defined on V with g;(0) = df/0x;(0).

Proof. Consider the function t — f(txy,tx5, . . . ,tx,). By the Fundamental Theorem of
Calculus

f(x1,X2,...,Xp) = J;j—f(txl,txz, . txg)dt

-[3

We can therefore define the functions g; by

of (tX1 Xo, ... ,tXn)Xi:|dt.
8xi

of
aXi

1
gi(Xl,Xz,---,Xn)=J0 (txq,tX2,...,txy)dt

and the lemma is proved. (One needs C” here because if f is only C', then the g; will
not be C" in general.)

The main result of this section is the next theorem.

4.6.3. Theorem. (The Morse Lemma) Let f be a real-valued C* function defined in
a neighborhood of a point p in R™. If p is a nondegenerate critical point for f, then
there is a local diffeomorphism ¢ from a neighborhood V of p onto a neighborhood
U of 0 in R" so that

(foo™)y1,y2,. -, yn)=f@)-yi —..— Ve + Vi +... + V2

on U. The integer k is well defined and called the index of p.

Proof. Without loss of generality assume that p = 0 and f(p) = 0. By Lemma 4.6.2
we can write f as

n
f(X],Xz, e er’l) = ingi(XI;XZ; v ;Xn)‘
i=1
Since p is a critical point of f,

of
aXi

gi(0)=——(0)=0.
This means that we can apply Lemma 4.6.2 to the g; to get

n
gi(x1,X2,...,Xp) = Zthij(XLXz, .o Xn).
j=1
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for some C” functions hj;. Hence

n
f(x1,X2,...,Xn) = X, XiXjhyj(x1,X2, ..., Xp)-
i,j=1

By replacing h;j by (1/2)(hj; + h;), if necessary, we may assume that hj; = h;; in some
neighborhood of 0. Furthermore, the matrix (h;j(0)) is just the Hessian matrix of f.
Since this matrix is assumed to be nonsingular, we can copy the diagonalization proof
for quadratic forms given in Theorem 1.9.11 (see also [Miln63]) to finish the result.

4.6.4. Corollary. Nondegenerate critical points of functions are isolated.

The Morse Lemma and its corollary show that one has a good understanding of
what the graph of functions look like near a nondegenerate critical point. The situa-
tion is much more complicated in the degenerate case.

4.6.5. Example. Consider the functions

(1) f(x) = e sinX(1/x) (Figure 4.18(a))
(2) f(xy) =x* (Figure 4.18(b))
(3) f(xy) =x%? (Figure 4.18(c))

All these functions have the origin as a nonisolated degenerate critical point. The func-
tion in (1) has a sequence of nondegenerate critical points converging to the origin.
All the points on the y-axis are degenerate critical points for the function in (2). All
the points on both the x- and y-axis are degenerate critical points of the function in

(3.

We shall see later in Chapter 8 that one can tell a lot about the topology of a space
from the nondegenerate critical points of functions defined on them.

f(x) = oI sin%(1/x) f(x,y) = x f(x,y) = x2y?
() (b) (©)

Figure 4.18. Examples of nonisolated degenerate critical points.
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4.7 Zeros of Functions

Many problems can be reduced to the problem of finding the zeros or roots of a func-
tion. This section discusses some basic approaches to solving this problem.

The Problem: Given a function f:R®* — R™, find a solution to

f(x)=0. (4.14)
The Newton-Raphson method: We begin with the case where n = m = 1. Pick a
guess Xg for a root. If this is not correct, then from the Taylor expansion formula we
know that

f(x) = f(xq) +f'(x0)(x — X¢) + higher-order terms.

Forgetting the higher-order terms means that, as an approximation, we are looking
for an x so that

0 = f(x0) +f"(x0)(x — Xo).
In other words,

_ f(xo)
f'(x0)

X =X

We use this x as the next guess at a solution to f(x) = 0. If we still do not have a root
we repeat this process, thereby generating a sequence of points xg, X1, Xz, . . ., where
in general,

Xkt = Xk — o)
T i)

This sequence hopefully converges to a root. Figure 4.19 shows what is going on geo-
metrically. If x is not a root, then find the intersection of the tangent line to the graph
of f(x) at (xi,f(xx)) with the x-axis. This point becomes our next guess Xi.1.

(Xp-f(xg))

ka

Figure 4.19. The Newton-Raphson method.
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Xk+1

Xk Xk Xk

(a) (b) (©)

Figure 4.20. Problems with the Newton-Raphson method.

The Newton-Raphson method is pretty good. There are theorems about when and
how fast the sequence of points it generates converges (it basically has quadratic con-
vergence) and upper bounds for errors. (See any text on numerical analysis.) There
are some well-known problems however:

(1) Near critical points, even if we ignore the problem of numerical instability
since we are dividing by a very small quantity, points of the sequence may
move far away from the actual root (see Figure 4.20(a)).

(2) The sequence of points can home in on a more distant and “wrong” root (see
Figure 4.20(b)).

(3) The points of the sequence may oscillate and not converge (see Figure 4.20(c)).

(4) Near multiple roots (where f'(x) approaches 0 as f(x) does), we may have slow
convergence.

More sophisticated methods that overcome some of these problems are known, nev-
ertheless, the method is widely used because it is so simple to implement. It seems to
converge very rapidly in practice and one often has very high accuracy for the root
after only several iterations. In any case though, it always helps if one knows some-
thing about the function f. If one can make a good initial estimate, then one is usually
in good shape. Of course, choosing a good initial estimate is often a major problem
with using the method. Some bounds for the location of zeros are known. The reader
will find more information in most books on numerical methods. For an interesting
history of how the method got its name see [Alex96]. Finally, note that what we have
just said about real functions also applies to complex functions f:C — C.

The Newton-Raphson method generalizes to higher dimensions and functions of
several variables because there is a similar Taylor expansion

f(x) = f(xx ) + Df(xx )(x — xx ) + higher-order terms.

In other words, the only difference between what we have now and what we had before
is that now we need to solve a system of linear equations

f(xy)+(x—x )" (xk)=0 (4.15)



254 4 Advanced Calculus Topics

for x. We shall work out the case where n is 2 as an example.
4.7.1. Example. To find a root to the system of equations

f(x,y)=0
g(x,y)=0.
Solution. We define a sequence of points (xy,yx) that converge to the root. Suppose

that we already have defined the kth point (xy,yx). The Taylor expansions for f and g
around (xg,yx) are

£(x,y) = F(xx, yi) + Ee (xk, yiO)(x = x10) + £ (X, yi)(y = yie) +. .
2(x,y) = g(xX1, yi) + 2x (X, yiO)X = Xi) + 2y (X1, yiO)(y = yi) +. ...

Truncating higher order terms means that we want to solve

£ (i, yi)(x = x10) + £y (X1, YOy = yi) = (X, yi)
gx (XK, ¥i)(X — xi) + gy (X, YOy — yk) = —2(Xk, Yk )-

Cramer’s rule implies that

—fg, +gf
Xioy = X + 22T EY
J
—of, +1;
yk+1=yk+%,

where J = fyg, — g.f, and all the partials are evaluated at (x,yi). If (xo,y0) is an approx-
imation to a root (a,b), then one can show that convergence to (a,b), if any, is quad-
ratic. Conditions that are sufficient to guarantee such convergence assuming that
(X0,¥0) is “close enough” to (a,b) are of the type:

(1) The derivatives of f and g up to order 2 are continuous and bounded in a
neighborhood U of (a,b).
(2) The Jacobian J does not vanish in U.

See [ConD72].

Now methods for finding zeros of functions have a much wider application than
simply that specific problem. Many other problems can be rephrased in those terms.
Specifically, problems that involve finding the inverse of a function are often rephrased
in terms of finding solutions to an equation of the form (4.14). As an example of that
type of problem, suppose that one is given a function p:R? — R?, a point q € R?, and
one wants to find values x and y so that p(x,y) = q. This problem can be expressed in
terms of finding a zero of the function

f(x,y) =q-px,y). (4.16)
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The Newton-Raphson approach would start with a guess zg = (Xo,y0) and then, using
equation (4.15), generate a sequence of points zx = (xg,yx) satisfying

(zx+1 —21)p"(zK) = 9 — p(zk), (4.17)

where p’(z) is the Jacobian matrix
p'(z)=

If p’(z) had an inverse, the one could solve equation (4.17) for zy,; and one would then
have a nice formula for generating the sequence of points zy,;, which would hopefully
converge to a solution to equation (4.16). Unfortunately, the 2 x 3 matrix p’(z) obvi-
ously does not have an inverse, but one can use the Moore-Penrose inverse instead to
get the equation

2 — 21 = (p— p(z))p T @)D ()P T (21) ) (4.18)

For an application of this approach to determine the intersection of two surfaces see
[AbdY96].

Next, how do we detect and deal with problems encountered by the Newton-
Raphson method? In general, one case where we have problems is when the gradient
of a function f is zero. In that case, we would really need to analyze the Hessian of f.
To avoid some of these difficulties, many other iterative methods have been developed.
The basic situation is the following: We are trying to generate a sequence of points
xi, where

Xk = Xk — Akdk.

In other words, the approach involved

(1) choosing a direction of search dy, and
(2) carrying out a linear search in that direction (specified by Ay).

This is a “hill-climbing”’-type problem. Looking at it that way leads to a steepest
descent method (Cauchy, 1847) which chooses

dk = Kka(Xk), 7&1( > 0. (4.19)

This method is recommended when x; is far from the root or a local critical point
and then to use the Newton-Raphson iteration on

Vi=0

when one gets close.
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Finally, in the above discussion we have assumed that f was defined everywhere.
However, if f has a restricted domain D, then additional problems arise, namely, what
do we do when the new point xy,; falls outside this domain? One needs to “clip” the
point somehow. A guideline for handling such a situation when the domain is a rec-
tangle is the following:

If our current guess is on the boundary of D and the next forces us to go outside,
then one should suspect a critical point on the boundary and deal with this as a
special case. One uses as initial guess the corners and center of the rectangle.

4.8 Integration

This section will sketch how one can define integrals for functions of several variables
and state several of the most important theorems. Proofs are omitted and can be found
in [Spiv65] or [Buck78].

Let A c R" and f:A — R. To define the integral of f we shall follow the sequence
of steps below:

(1) We define the integral for the case where A is a rectangular set by using upper
and lower sums for partitions of that set.

(2) We prove that the integral exists if the points of discontinuity of f are a set of
measure zero.

(3) We extend the definition of the integral to arbitrary bounded sets A whose
boundaries are sets of measure zero.

Definition. A subset A of R" of the form [a;,bi] X [az,bz] X. .. x [ay,ba] with b; > a;,
i=1,2,...,n, is called an n-rectangle or simply a rectangle if n is clear from the
context. The boundary of an n-rectangle consists of 2n planar pieces called the faces
of the n-rectangle. The volume of A, denoted by vol(A), is defined by

vol(A) = ﬁ(bi —aj).

i=1

Ifbj—aj=by—-a,=...=b, —a,, then A is called an n-dimensional cube or n-cube or
simply cube.

Definition. A partition of a rectangle A = [a;,by] X [a3,bs] X...X [ap,b,] in R is a
sequence P = (Py,P,, . .. ,P,) where Pj is a partition of the interval [a;,b;]. A subrectan-
gle of the partition P is a rectangle [c1,di] X [cz,d2] X ... x [cy,dy] where [¢;,di] is a
subinterval of the partition P;. The norm of the partition P, denoted by |P|, is defined
by

|P|=max{|P||i=1,2,...,n}.
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Figure 4.21. Subrectangles of a rectangle subrectangle [sy, so,]x[to, t3]
partition. S
ol 72
t 4+
ay=ty+
ay I= S0 sll s=2 by I= $3

Py ={s0, 51, 52, 83}

Py = {tg, ty, tp, t3, t4}

A refinement of the partition P is a partition P’ = (P{",P,’, ... ,Py") of A where Py is a
refinement of P;. See Fig 4.21.

Definition. Given a bounded function f:X — R, define miny (f) and maxx (f) by

minx () =inf {f(x)| x e X},
maxx (f) =sup {f(x) | x e X}.

Let A be a rectangle in R" and consider a function f:A — R.

Definition. If P is a partition of A, then

L({,P)= Z ming(f)vol(B)

subrectangle B of P

and

U(,P) = Z maxg (f)vol(B)

subrectangle B of P
are called the lower and upper sum for f over A with respect to P, respectively.

One can show that refining partitions increases the lower sums and decreases the
upper sums and that upper sums are always larger than or equal to lower sums. This
enables one to make the following definition.

Definition. The function f is said to be integrable on A if f is bounded on A and

sup {L(f,P)| P is a partition of A} =inf {U(f,P)| P is a partition of A}.

The common value is called the integral of f over A and is denoted by JAf.
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Having defined the integral, the next obvious task is to determine when it exists.
One can show that continuous functions are integrable, but there is a more general
condition. We shall not take the time to define the general concept of the measure
(“volume”) of a set. All we will need here is the following:

Definition. A subset X of R" has measure zero if, for every € > 0, it can be covered
by a sequence of n-rectangles A; so that

i vol(A;) <e.

i=1

It is easy to see that every finite set has measure zero. But countable sets {p;}2;
(like the rational numbers) also have measure zero because the ith one can be con-
tained in a small rectangle of volume €/2' and these volumes sum to €. The boundary
of “nice” sets, such as rectangles or closed disks, have measure zero. More generally,
“k-dimensional” subsets of R™ have measure zero when k < n. For example, Figure
4.22 shows why a segment is a set of measure zero in R?. We can cover the segment
[(a,c),(b,d)] with n rectangles that have width (b — a)/n and height (d — ¢)/n. The total
area of these rectangles is

b-ad-c (b-a)d-c)
n =

n n n

and we can clearly make this area as small as desired by increasing n.

4.8.1. Theorem. Let A be rectangle in R". A bounded function f:A — R is integrable
if and only if the set

{ aeAlfis discontinuous at a }
has measure zero.
Proof. See [Spiv65] or [Buck78].
Theorem 4.8.1 is a good result for functions defined on rectangles, but what if the

domain of a function is not a rectangle. Let X be a bounded subset of R” and f:X —
R. Define F:R" — R by

(b.d)

x Figure 4.22. A segment is a set of measure zero
a b in the plane.
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Fx)=f(x) if xeX
=0 if xeR"-X.
and choose a rectangle A that contains X.

Definition. The integral of f over X, denoted by Ixf, is defined to be the integral IAF,
provided that integral is defined. If the integral of f exists, we say that f is integrable
over X.

One can show that whether or not f is integrable on X is independent of the rec-

tangle A that is chosen.
There is another way to phrase the problem of integrating over an arbitrary set.

Definition. Let X ¢ R". The function
xx :R" >R
defined by

yx(x)=1 if xeX
=0 if xeR"-X. (4.20)

is called the characteristic function of X.
If the function f above was actually defined over a rectangle A, but one simply

wanted to integrate over a smaller set X in A, then an equivalent definition for the
integral of f over X would be to define it to be [5fyx (if that integral exists).

Definition. A bounded set in R" is said to be Jordan-measurable if its boundary is a
set of measure 0.

4.8.2. Theorem. Let X be a Jordan-measurable subset of R" and f:X — R. If f is
bounded on X and continuous on X except at possibly a set of measure zero, then f
is integrable on X.

Proof. See [Spiv65] or [Buck78].

4.8.3. Corollary. If X is a bounded set in R", then the characteristic function yx of
X is integrable over X if and only if X is a Jordan-measurable set.

We can use Theorem 4.8.2 (or its corollary) to define the volume of a set in R".

Definition. Let X be a Jordan-measurable set in R". Define the volume of X, denoted
by vol(X), by

vol(X) = jxlx.
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Although we now know what it means for a function to be integrable, we still need
a convenient way to compute the integral.

4.8.4. Theorem. (Fubini's Theorem) Let A ¢ R® and B < R' be rectangles and
assume that f:A x B — R is integrable. Define functions gy:A — R and hy:B — R by

gy(x) = f(x,y) and hy(y) = f(x,y). If gy(x) is integrable except possibly at a finite number
of y, then

jAXBf - jB jA gy = jB (jAf(x,y)dx)dy. (4.21a)

Similarly, if hy(y) is integrable except possibly at a finite number of x, then

[ont =l Johs = [ ([, y)dy)dx. (4.21b)

Proof. See [Spiv65] or [Buck78].
The integrals in equations (4.21a) and (4.21b) are called iterated integrals. One
common situation where Fubini’s theorem applies is when f is continuous.

It is worth restating Fubini’'s theorem in the special case where f:[a,b] x [c,d] —
R. Equations (4.21a) and (4.21b) then become

J‘[a,b]x[c,d]f - j: (f fGx,y) dy)dx

- jd( J:f(x,y)dx)dy. (4.22)

We can also apply Fubini’s theorem to integrate over nonrectangular regions. We
state one variant of those types of integrals. Suppose that X < [a,b] x [c¢,d] and that
X is bounded by the lines x = a, y = b, and the graphs of functions a(x) and B(x) defined
over [a,b] with o(x) < B(x). Then

£ = L (0 s vy (4.23)

Figure 4.23 shows the geometry. We are thinking of the right-hand side of equation
(4.23) as an integral of the areas of the vertical slices.

4.8.5. Example. Let X be the region in the plane bounded by curves
x=2, x=5 y:1+(x—3)2, and y:6—(X—4)2.

See Figure 4.24. If f(x,y) =y, then

Jot= LI vy Jax =5 lo- -7 o9 Jox =3
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Figure 4.23. The iterated integral in z
equation (4.23).

Figure 4.24. Example 4.8.5.

Finally, there is change of variable theorem for higher-dimensional integrals just
like for real-valued functions of one variable.
4.8.6. Theorem. (The Generalized Change of Variables Theorem) Let A c R” be an
open bounded subset and g:A — R" a one-to-one and continuously differentiable

function. Assume that the Jacobian matrix g’ has a nonzero determinant at all points
of A. If f:g (A) — R is an integrable function, then

[n = Eogldete’l (4.24)
Proof. See [Spiv65] or [Buck78].
4.8.7. Example. Consider the map g:R?> — R? defined by

X =rcos6

y =1sin6
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f % \ -

B' C' A

/ ) . N
X=TCOST X=T1 = r
y=rsinr y=0 T
0<r<m O<r<m =0

(@) (b)

Figure 4.25. Change of variable Example 4.8.7.

which transforms from polar coordinates to Cartesian coordinates. The Jacobian
matrix

cos® -rsind
¢0)= )

sin® rcos6

has determinant r. Therefore, if Y  R? is a region in polar coordinate space and X =
g(Y) is the corresponding region in Cartesian space, then equation (4.24) turns into

jxf(x,y)dxdy = ij(rcose,rsine)rdrde.

As a special case, consider the region Y shown in Figure 4.25(b), which is bounded
by the lines r =7, r =0, and 6 = 0. This region is mapped by g into the region X shown
in Figure 4.25(a). If we were asked to compute an integral of a function f defined on
the complicated region X, then, using our change of coordinate map g, we can trans-
late the problem into computing a simple iterated integral over the region Y, that is,

-[x f(x,y)dxdy = '[: r(_[or f(rcos®,rsin G)dG)dr.

Theorem 4.8.6 proves two well-known facts. It demonstrates the geometric
meaning of the determinant of a linear transformation as the factor by which volumes
are changed. It also proves a formula for computing the volume of a parallelotope in
R" (Corollary 4.8.9 below).

4.8.8. Corollary. Let T:R" — R" be a linear transformation. If A c R" is an open
bounded subset, then

vol(T(A)) = |det(T)|vol(A).

Proof. The definition of volume, Theorem 4.8.6, and the fact that the derivative of
T is constant imply that
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volT(A) = [| | trca) = [, [det T'| = [det T'|], 14 =det(T)lvol(A)

Note. Some, but not all, proofs of Theorem 4.8.6, like the one given by Spivak
([Spiv65]), rely on having proved Corollary 4.8.8 as a special case when A is an open
rectangle, so that the corollary would have to be proved separately. This is not hard
to do. One can prove Corollary 4.8.8 by choosing some very simple linear transfor-
mations for which the result is trivial to prove and which have the property that any
linear transformation is a composite of them. See [Spiv65].

Definition. Let p, vq, v,..., vy € R™ Assume that the vectors v; are linearly inde-
pendent. The set X in R" defined by

k
X ={p+2aivi

i=1

OSaiSI}

is called a parallelotope or parallelopiped based at p and spanned by the v;. If the ref-
erence to p is omitted, then it is assumed that p is 0. If k = 2, then X is also called a
parallelogram. See Figure 4.26.

4.8.9. Corollary. Let X be a parallelotope in R" based at p and spanned by some
vectors vi, Va, . .., Vu. Then

A\l
vol(X) = |det Vf
Vn

Proof. Because translation does not change volume, we may assume that p = 0.
Define a linear transformation T:R" — R" by T(e;) = v;. Clearly, T maps the unit cube,
that is, the parallelotope based at 0 and spanned by ey, €5, ..., e, to X. Since the
volume of the interior of the parallelotope is the same as the volume of the paral-
lelotope, the result now follows from Corollary 4.8.8.

y z
y

v V3

2 / X

/X/ v

— A 2

1
Vi
X X

(a) parallelogram in R? (b) parallelotope in R3

Figure 4.26. Parallelotopes X at the origin.



264 4 Advanced Calculus Topics

49 Differential Forms

The object of this section, the next section, and Section 8.12 is to try and make some
sense out of differential symbols, such as “dx” and “dxdy”, and to formalize the rules
that the algebra of these differentials satisfies.

Most likely, the reader encountered such symbols very early in his or her calcu-
lus course. A common place is in integrals like

[ feodx.

What really is the meaning of “dx”? Of course, in the integral above it probably was
just pure notation. One could equally well just have written

[t

The typical reason for including the “dx” is to enable one to apply the chain rule more
easily by reducing it to a formal symbol manipulating process: Given x = g(u) one sub-
stitutes g(u) for x and g’(u)du for dx.

In two dimensions, things get more complicated. One often writes double inte-
grals as

H f(x,y)dxdy.
X

But just like the one-dimensional integrals, orientation plays a role and

[[fGe,y)dydx = = [[£(x, y)dxdy.
X

X

In terms of manipulating differentials, one can express this algebraically by saying
that dydx = —dxdy.
Another place where one encounters the “dx” notation is in expressions such as

for functions f(x,y). This again has its uses, like the classical notation dy/dx for the
derivative that is handy for changes of variables, but there come times, as the author
himself found out on occasions as a student, when things get more complicated and
such simple-minded notation involving differentials can get confusing. One ends up
making some transformations that one has seen someone else make and that may be
correct if one is lucky, but which one does not really understand. It therefore is useful
to make sense of symbols such as “dx” in a rigorous way. Doing this will also help
prevent mistakes in imprecise manipulations of these symbols. The “casual user” of
differentials will gain nothing from this section and the next and probably should skip
them. At the end we shall simply have justified the classic notation and manipulation
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of differentials. However, by having expressed everything carefully, the reader who
wants to use the notation in a serious way is less likely to make mistakes with it.

A limited and specialized development of differential forms for dimensions 1, 2,
and 3 can be found in various advanced calculus books like [Buck78]. Such develop-
ments do not show the complete picture, however, and are more along the lines of
applications or examples. A thorough discussion of differential forms is based on the
“exterior algebra” of differential forms. Unfortunately, this involves a fair amount of
abstract algebra, especially if one starts with an axiomatic approach to tensor and
exterior algebras. We outline this approach in Appendix C. No matter how one devel-
ops the subject, the reader is forced to “suffer” through a large number of definitions
and theorems. Although most of the theorems follow trivially from the definitions, it
takes a while before one gets to the applications. The subject is actually a good
example where the right mathematical definitions lead in the end to significant con-
sequences, consequences that, because of the definitions, are trivial to prove. Many
books on differentiable manifolds have a section on differential forms but most
readers would probably find their presentations hard reading. In the opinion of the
author, good references for differential forms are [Flan63], [Spiv65], and [Spiv70a].
Flanders does not prove everything but covers the subject and a great many applica-
tions well. He starts with an axiomatic formulation of the properties that one wants
the exterior algebra to posses. The advantage to his approach is that one quickly starts
using the usual notation associated with differential forms. Spivak has more limited
goals but does prove all his results and does a good job in presenting the subject in
a completely self-contained manner. He starts by defining the “tensor algebra” of mul-
tilinear maps and derives the exterior algebra from this. This more computational
approach avoids the existence proofs and requires less familiarity with advanced alge-
braic concepts, but still forces a reader to wade through quite a few definitions and
proofs of simple consequences before one gets to the actual differential forms them-
selves. By and large, our approach here will follow Spivak’s, except that some of the
algebraic preliminaries have been off-loaded to Appendix C. Another book worth
looking at is [GuiP74]. This book also follows Spivak’s approach. The reader who is
overwhelmed by the many definitions and abstract concepts should look ahead to the
end of this section and Section 8.12 to see that it will all be worth it.

Differential forms are derived from the exterior or Grassmann algebra E(R"*) of
the dual space R™*. This algebra can be identified with the algebra A(R") of exterior
forms on R". The theoretical basis of these algebras is developed in Section C.6
and will not be reproduced here, but we summarize the essential aspects of the latter.
The reader who is not interested in the mathematical details that justify our asser-
tions can simply take them as axioms that specify a language of forms and how the
symbols in that language are manipulated. All future properties will be deduced from
these.

Let V be an n-dimensional vector space over the reals and V* its dual.

Notation. Let k > 0. The vector space of alternating multilinear maps (also called
exterior k-forms of V)

®:VE=VXxVx...xVo>R.

| S —
k
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is denoted by AK(V). By convention, V° = 0 and A%(V) = R. There is an exterior or wedge
product

ATAT(V) X A (V) > A™3(V)

that is distributive and associative. (The classical notation such as dxdy is really an
abbreviation of dxady.) Define

A(V) = i AR (V). (4.252)
k=0

Vector addition and the product A make A(V) into an algebra called the algebra of
exterior forms on V,

The defining properties of the algebra of exterior forms on V:
(1) If ® e A"(V) and n € A%(V), then
oArn=D"nArw. (4.25b)
In fact, for any permutation ¢ of {1,2, ...k} and o € AY(V), we have that
Olo(1) AOlg(2) A ... AOg(k) =(SIENC)O A T2 A ... A O. (4.25¢)
(2) Let 04, 0, ..., and o, form a basis for V*. If 1 < k < n, then the set of all

i, A0y A...A04 ,1<1 <ip<...<ix €n,

is a basis for AX(V). It follows that A¥(V) has dimension (nj
(3) If o4 € V*, then the element oyAOoA . . . Acx € AN(V) satisﬁle{s
(0 A0 AL A0V, V2, ..., Vi) = det(o (V) (4.25d)
for all vj € V.
(4) If T:V —» W is a linear transformation, then the induced map T*:W* — V*
on dual spaces defines an induced map
T*: AK(W) = AK(V), (4.25¢)
satisfying
T*()(v1,V2,...,vk) = a(T(vy), T(v2),...,T(vy)), o € AX(W), v; € V (4.25f)
T*(o A B) =T*() A T*(B), o € A"(W), B € A*(W). (4.25g)

We summarize a few basic consequences of the above for emphasis.
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4.9.1. Proposition.
(1) A%V) =R and AY(V) = V*.
(2) If 04, 0, ..., and o, are a basis for V*, then the element ojA0LA . .. A0y s a
basis for A®(V). In particular,
A*(V)=R.
(3) The determinant map
det:R" - R

is a basis for A"(R"). More generally, the maps

Vi
(vq,V3, ... V)= determinant of some fixed k x k minor of v:z ,vieR™,
v.k
are a basis for AKRM).
4) AK (V) =0, for k > n.

(5) ara =0 for all o e AXV). If o, B e AY(V), then AP = —Baa. In particular, the
product A is not commutative.

Proof. The listed facts are easy consequences of the definitions and Properties
(1)=(3) of A. We shall only prove fact (3). Specializing fact (2) to R" implies that if we
pick any basis o, 0y, ..., and o, for R™*, then

det=coy A0 A...A Oy,

for some c € R. Now if we choose a4, oy, . .., and o, to be the dual basis for a basis
Vi, Va, ..., and v, for R", then Property (3) of A implies that
(0 A0 AL.. A0V, V2, ...,Vy)=1.

Choosing v; = e;, shows that
det(er,es,...,en)=c(0tf A0 A...AOp)e],€2,...,€,)=c1.

In other words, ¢ = 1 and the first part of fact (3) is proved. The second part is proved
in a similar fashion.

Proposition 4.9.1(4) explains why the summation in (4.25a) stops at n, since all
the other spaces are 0.

Returning to R", it is convenient to think of A(R") as the exterior form algebra
associated to the origin of R", because the coefficients of the elements are just reals.
We would like to extend the exterior algebra notion by allowing functions f:R"* — R
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to be the coefficients in the sense that we would be specifying a collection of elements
of A(R"), one for each point of R". The element that we get at any point in R" is the
one where we replace the function coefficient with the real number that is the value
of the function at that point. This would be an adequate approach if one was only
interested in defining differential forms for R", but because we have the generaliza-
tion to manifolds in mind (Section 8.12) we shall take a different approach. Rather
than having global functions induce “local” elements of A(R"), we shall build up a
global structure from local ones.
For p € R" define

Tp(Rn) = {(p,v) | ve Rn}. (4.26)
We endow the set Tp(R") with the natural vector space structure defined by
(p,v)+(p,v)=(p,v+Vv’),v,v ' eR",
and
c(p,v)=(p,cv),ceR,veR",

Definition. The vector space Tp(R") is called the tangent space to R" at the point p.
The vector (p,v) in Tp(R"), often denoted by vy, is called a tangent vector to R™ at p.

The space Tp(R") is simply a way of formalizing the notion of each point of R"
having its own copy of R" thought of as the tangent vectors at that point. One can
think of the vector v, as a vector “starting” at p. See Figure 4.27. In that sense, the
tangent spaces also formalize the way one usually deals with vectors as arrows that
seem to float around in space. We shall have lots more to say about tangent vectors
and tangent spaces in the more general setting of curves, surfaces, and manifolds in
Chapter 8.

Differentiable maps induce maps on tangent spaces.

Definition. Let f:R" — R™ be a differentiable function. For each p € R", the deriv-
ative of f defines a linear transformation Df(p):R" — R™. The linear transformation

f.: Tp(R") = Te(p)(R™)

defined by

/L

Figure 4.27. Vectors starting at different points.
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f:’:(Vp) = (Df(p)(v))[(p).
is called the induced map on tangent spaces.

Definition. A vector field on R" is a map F defined on R" that sends p € R" to an
element of Tp(R"). If we express F in the form

F(p)= Y. E(p)e:),, 4.27)
i=1
then the real-valued functions Fi(p) are called the component functions of F.

Definition. A differential k-form on R", or simply k-form or differential form, is a map
o defined on R" that sends p € R" to an element w(p) € Ak(Tp(Rn)).

The set of k-forms on R" actually forms a vector space if we define the addition
and scalar multiplication in a pointwise fashion. Note that differential 0-forms are
just functions R" — R. Also, given a differentiable function f:R" — R, Df(p) is linear
transformation from R" to R. As such it can be considered an element of A!/(R?), in
fact, an element of A'(Tp(R™)).

Definition. The differential of a function f:R"™ — R, denoted by df, is the differential
1-form in A'(R™) defined by

df(p)(vp) = DE(p)(v). (4.28)

As a special case, consider the projection functions m;: R" — R defined by mi(x1,X,,
.o Xn) = X

Notation. In order to arrive at the classical notation for differential forms we shall
abuse the notation and write dx; instead of dm;.

Now, if v = (vq,v2, .. .,vn), then
dx;(p)(vp) = Dx;(p)(v) = v;.
Therefore, the linear maps dxi(p) are just the dual basis of the standard basis (e1)p,

(e2)p, . . ., (en)p of Tp(R™), so that every differential k-form ® can be expressed in the
form

0= 2 mi1...ikdxi1 /\.../\dXik, (4.29)

1<ij<...<ik<n
for functions o, _; :R™ — R. In particular, every n-form o has the form
o=fdx; Adx; A...AdX,, (4.30)

for some function f:R® — R.



270 4 Advanced Calculus Topics

Definition. The differential form w is called continuous, differentiable, C*, etc., if the
functions o;,_; are continuous, differentiable, C~, etc., respectively.

We shall always assume that differentiable forms are C” in order to avoid
problems with functions not being differentiable enough.

Notation. The vector space of C~ differential k-forms on R" will be denoted by
QK(R™). (We do not use the notation AK(R") because that already refers to the alter-
nating multilinear maps of the vector space R", which is something quite different.)

The next theorem expands on the result expressed by equation (4.29) by describ-
ing the expansion in more detail for the case of differentials of functions.

4.9.2. Theorem. If f:R"™ — R is a differentiable function, then
df=D1de1 +D2de2 +. ..+an an,
that is, using the classical notation,

df:a—fdxl+a—de2+...+a—den. (4313»)
x4 X5 0Xn

In particular, the differential df can be expressed in terms of the directional deriva-
tive by the formula

df(p)(vp) = Dyf(p). (4.31b)
Proof. Simply note that
df(p)(vp) = Df(p)(v) = Y viDif(p) = . dx; (p)(v,)Dif (p)
i=1 i=1

and

Y viDif(p) = VE(p) e v = D,f(p).
i=1

Next, consider a differentiable map f:R" — R™. The map f induces a map f, on
tangent spaces and its dual map

£ Tip) (R™)* — Ty (R™)*
leads to the induced map

£ A (T (R™)) — AX (T, (RD)). (4.32)
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Definition. The map
f*: Q¢ (R™) - Q(R")
defined by

(t*o)(p) = *(w(t(p)), (4.33)

is called the induced map on differential forms. (The map f* on the right-hand side of
equation (4.33) is the induced map referred to by expression (4.32).) The form f* is
often called the pullback to R" of the form ® on R™.

Using equation (4.25f), the action of the induced map f* on differential k-forms
can be described in more detail as follows: Let v; € R". Then

E@)PN(V1)y, (V2)p, - -+, (Vi) = of@)E£((vD),) £4((v2)y, ), Eul(vi), ). (4.34)

The next theorem lists the main properties of the induced map f* that enables us
to compute the map easily.

4.9.3. Theorem. If f:R" — R™ is a differentiable function, then the induced map
f*: Q¢ (R™) - Q(R")
on differentiable forms satisfies

(1) (o1 + @) = (o) + F(wn)
(2) *(gw) = (go-Hf*w

3) (o AMm) = A f*n

4) f*dx;) = iDjfi de = iid){j

i1 i=1 0X;

(5) f*(gdxy Adxa AL .. Adxy) = (gof)(det ) dx; A dxo AL .. Adxy

Proof. The proofs of (1)—-(4) are simply a case of expanding all the expressions using
their definitions. As an example, (4) is proved by the following equalities:

f(dx)(P)(vp) = dx; EE)(E+(vp))

= dXi(f(P))(sz D fi (p), ZV]‘ Dif(p), ... ,ZVJ‘ Djfm(p)J
=1

=1 =1

= z D fi(p) dx j(p)(vp).

For a proof of (5), see [Spiv65].
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Next, we generalize the differential of a function as defined by equation (4.31a)
to a differential of an arbitrary differential form.

Definition. Given a k-form

0= z mil...ikdxil /\.../\dXik

1<ij<.. <ik<n

define a (k + 1)-form dm, called the differential of ®, by

do = Z dmil...ik /\ClXil /\.../\ClXik

1<ii<.. <ik<n

= Z ZDj((oilujk)dxj/\dxil /\.../\dXik.

1<ij<...<ix<n j=1
The map w — do is called the differential operator d for differential forms.

Note that if we consider a function f:R"™ — R as a 0-form, then the new defini-
tion of the differential of f agrees with our earlier one.

4.9.4. Theorem.

(1) If ® and n are two k-forms, then d(®w + 1) = do + dn.
(2) If ® is an r-form and m is an s-form, then

dlwArn)=doan+(-1)"odn.

3) d(dw) =0
(4) If £:R™ —» R™ is differentiable and o is a k-form, then f*(dw) = d(f*w).

Proof. For fact (2), check the formula first on the 1-forms dx; and their wedge
products. Fact (3) is proved by direct computation using formula (4.25b) that will
cause terms to cancel. Fact (4) is proved by induction on k. See [Spiv65].

One can show that Theorem 4.9.4(1)-(3) and equation (4.31a) can be considered
axioms for the differential operator d that define it uniquely.

We now know all the basic facts we need to know about differential forms and
are ready to move on to the important integration applications. Before we do though,
we finish this section with definitions of several well-known concepts.

Definition. Let F be a vector field on R" with component functions F;. The diver-
gence of F, denoted by div F, is defined by

n
div F = ) D;F.
i=1

If n = 3, then the curl of F, denoted by curl F, is the vector field on R? defined by
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(curl F)(p) = (DF; — D3F)(e1),, + (D3Fi — DiFs)(e2),, + (DiF> — D2Fi)(es),,.

In classical notation,

n aFl
divF = =VeF
1v g{ aXi L4

curl F=V xF.

The comment earlier and Exercises 4.9.4 and 4.9.5 basically show that the
gradient, curl, and divergence operators are just the differential operator d.

491 Differential Forms and Integration

The last section developed the basic framework of differential forms. In this section,
and then later in Section 8.12, we show how differential forms are related to inte-
gration. Here we shall deal with integration on open subsets of R". Section 8.12 will
deal with integration on manifolds. We will have to plow through a lot of definitions
and technical facts, but at the end it will all be worth it because some important the-
orems like Stokes’ theorem will become trivialities! We shall follow the presentation
given in [Spiv65] and [Spiv70al].

Although all definitions and results were stated with respect to R" in the last
section, this was done only to simplify the discussion. It is easy to check that every-
thing applies to open subsets. We shall need this more general context now. In fact,
we shall also feel free to talk about differential forms on cubes [0,1]°. Although the
latter are closed sets, they are very nice sets and when it comes to differentiability
issues one can either take one-sided derivatives or assume without any problem that
functions are defined on an open neighborhood of the cube.

Let A be an open subset of R".

Definition. A singular k-cube in A is a C* function c:[0,1]¥ — A.

As usual, we chose singular k-cubes to be C” so that we do not have to mess with
differentiability questions. A singular 0-cube can be thought of as a point and a sin-
gular 1-cube is just a parametric curve. We shall need to talk about boundaries of
cubes and so we need some more notation.

Definition. The inclusion map I*:[0,1]" — R", I"(p) = p, is called the standard
singular n-cube. The (i,j)-faces of T" are the singular (n — 1)-cubes

Igj):[o,l]“‘1 —[0,1]", 1<i<n and j=0orl,
defined by
I&j)(XLXz,---,Xn—1)=(X1,X2,---,Xi—1,j,Xi,---,Xn—1)- (4.35)

Given a singular k-cube c: [0,17* — A, define the singular (n — 1)-cube c;;, called the
(i,j)-face of c, by
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y Figure 4.28. The faces of I.

122,1)

12 2
12(1,0) I#(1,1)

12(2,0)

= colk
cij=cely .

See Figure 4.28 for the (i,0)- and (i,1)-faces of I>. The arrows on the edges show
the orientations that the functions I%;j induce on the edges.

Definition. A formal linear combinations of singular k-cubes for an open set A is
called a singular k-chain and the set of these is denoted by I'k(A).

We do not give a precise definition of “formal linear combinations” here. We basi-
cally want to write formal expressions such as 2c¢; — 3c; + ¢3, where ¢y, ¢;, and c3 are
singular k-cubes. The interested reader can look ahead to Section 7.2.1 where we give

a precise definition for a similar concept in the context of chain groups Cy(K) for a
simplicial complex K.

Definition. Given a singular k-cube c:[0,1 — A, define the singular (k — 1)-chain
ac, called the boundary of ¢, by

k 1 .
dc=> Y (1)"c;. (4.36)
i=1 j=0
More generally, define the boundary operator
d: T\ (A) = T (A)

by

B(Zaici) =2aiaci. (4.37)

The signs associated to the faces in the boundary expression (4.36) of a cube
should be interpreted as indicating the orientation that the cube induces on the face.
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Consider Figure 4.28 again. The standard orientation of I? induces a counter-
clockwise orientation on the edges. Formula (4.36) implies that

—12

2
+1 1)

2
+1 (2,0)

2__12
oI” =-1 1)

(1,0)

which specifies that same orientation.
4.9.1.1. Lemma. dcd=0.
Proof. This is a straightforward computation.

Lemma 4.9.1.1 is only an aside remark for us here, but it actually is the founda-
tion of an important theory. To do this theory justice would take us far afield and take
too much time. Our objectives in this section are much more limited. Nevertheless,
the reader should return here after reading Chapter 7. We are basically describing a
homology theory for open sets A similar to the homology theory for simplicial com-
plexes that will be developed in Chapter 7. The main difference is that we are using
singular k-cubes rather than k-simplices.

With these preliminaries out of the way, we return to the question of integration.
Suppose that o is a k-form on [0,1]5. In this case we know that

o=f{dx; Adx; A... Adxy,
for some unique function f:[0,1]* - R.

Definition. Define the integral of  over [0,11° by

I[o,uk"’ = [yt (4.38)

Of course, the integral on the right-hand side of equation (4.38) is the standard

advanced calculus integral that was defined in Section 4.8. Note how similar all of the
notation is, that is, we are saying that

J[OllkdeH\dXz/\m/\ka:J.

0 l]k f dX1dX2 e ka.

Finally,

Definition. Let k > 0. If ® is a k-form on A and if ¢:[0,1] > Ais a singular k-cube,
then define the integral of w over ¢ by

Lw - j[ o1 €O (4.392)

If ® is a O-form on A, then o is just a function f:A — R. Therefore, if c:0 > A is a
singular 0-cube, then define
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JLo=a(c0). (4.39b)

The integral of w over singular k-chain
c= Zaici
is defined by
Jo= ;aijci ®. (4.39¢)

Again, if one writes out the expressions in detail they will not seem much dis-
similar from those of advanced calculus.

4.9.1.2. Example. Integrals of singular 1-cubes are nothing but what are called line

integrals. To see this, assume that A ¢ R? and consider a 1-form ® on A. We can write
o in the form

w=adx+bdy,
for some functions a, b:A — R. In classical language, the integral of ® along (over)

a singular 1-cube (curve) c:[0,1] — A is called a line integral along the curve c.
Furthermore, if c(t) = (c(t),ca(t)), then

JLo= ], 0O = [ ol ©

= [} lalc(®)ei (1) + ble()es (D1dt.

Line integrals are often used in physics. For example, one might want to integrate a
force field along curve.

4.9.1.3. Example. Consider integrals of 2-cubes, which correspond to classical
surface integrals. Assume that A ¢ R3 and consider a 2-form ® on A. Let ¢:[0,1]*> —
A be a singular 2-cube in A.

f[Lo=[fycr0 =] [ olcqeydxdy,

where

C _a_c and c¢ _a_c
T ox Yooy

We can write o in the form

w=adxady+bdxadz+cdyadz,
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but repeating what we did in Example 4.9.1.2 would now get very messy and so we
shall not attempt to do so.

4.9.1.4. Theorem. (Stokes’ Theorem) Let A c R™ If wis a (k — 1)-form on A and if
c is a k-chain on A, then

L do = —[Bc .

Proof. See [Spiv65]. The proof is really not very hard and boils down mainly to using
the definitions of the various quantities that are involved and showing that both sides
of the equation are the same, starting first with the special case ¢ = I*.

If one writes out what Theorem 4.9.1.4 says in the case of the 1-chain I! in R, one
will see that what one has is just the classical Fundamental Theorem of Calculus
(Theorem D.1.3). (Actually, the proof of Theorem 4.9.1.4 uses that special case and
assumes that it has been proved separately.) One should therefore not be surprised
when Theorem 4.9.1.4 is often called the Generalized Fundamental Theorem of Calcu-
lus. To quote from [Spiv65]:

(1) It is trivial.
(2) Tt is trivial because the terms in it have been properly defined.
(3) It has significant consequences.

One sees the truth of point (2) over and over in mathematics. Making the right defi-
nitions can isolate the essential aspects needed to arrive at a solution to a problem.
The validity of point (3) in our current context of integration will become more appar-
ent in Section 8.12. For now we have finished with our outline of differential forms
and their relation to integration.

410 EXERCISES

Section 4.2

4.2.1.  Prove that the sets R" and ¢ are both open and closed.

4.2.2. Prove that a single point is always a closed set.

4.2.3. Is{l/m|n=1,2,...)}aclosed set? Prove or disprove your answer.
4.2.4. Prove that if X is a closed set in R", then cl(X) = X.

4.2.5.  Prove that the interior of a set is an open set.

4.2.6.  Give examples of sets that show the following statements are false:

(a) If X cY, then bdry(X) c bdry(Y).
(b) bdry(X) = bdry(cl(X)).

(¢) bdry(X) = bdry(int(X)).

(d) int(X) = int(cl(X)).
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4.2.7. Prove that (0,1] is open in [-1,1].
4.2.8. Prove that any set is open or closed in itself.
4.2.9. Prove that the function f:(0,1] — R, f(x) = 1/x, is continuous but not uniformly
continuous.
4.2.10. Let vq, vi, v2 € R% Define a homeomorphism between the simplex vov;v; and the unit
disk D?.
4.2.11. Show that the support of a function is the intersection of all closed sets A, where f
vanishes outside of A.
Section 4.3
4.3.1. Prove Proposition 4.3.4.
4.3.2. Prove Corollary 4.3.7(2).
4.3.3. Let f(t) = (t2,1), g(x,y) = y* — 4x, and G(t) = g(f(t)). Compute Df, Dg, and DG. Determine
DG in two ways: from its formula and by using the chain rule.
4.3.4. Let f(x,y) = (x> = 2x + 1, Xy + ¥, x — 3y + 7). Compute the Jacobian matrix f'(-1,5).
What is its rank?
4.3.5. Let A, B:[a,b] — R? be differentiable functions and define f:[a,b] — R? by f(t) = A(t)
x B(t). Prove that
£’(t) = A’(t) x B(t) + A(t) x B’(t).
(We are treating the 1 x 3 Jacobian matrices as vectors here.) In short hand, the
differentiation rule for the cross-product is (A x B)) = A’ x B + A x B".
4.3.6.  Show that the function z = f(xy) satisfies the equation
0z 0z
x—-y—=0.
ox Y dy
4.3.7.  Show that the substitution x = e* and y = e' converts the equation
xz—azu + 2 9%u +X8_u+ a—u—O
ax® Y oy T ax Yoy
into
2 2
_8 121 + _E) 121 =0.
ds Jat
4.3.8. If f(x,y,z) = x sinz and v = (2,-1,3), find Df(0,1,-1).
4.3.9.  Show that the directional derivative of f(x,y) = y?/x at any point of the ellipse 2x* + y?

=1 in the direction of the normal to the ellipse at that point is zero.
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Section 4.4
4.4.1. Consider the curve C defined by the equation x + y? + cosxy = 0.
(a) Can C be parameterized by a function of the form y = f(x) in a neighborhood of
(0,0)?
(b) Can C be parameterized by a function of the form x = g(y) in a neighborhood of
(0,0)?
4.4.2. The point p = (1,2,1) lies on the set X defined by
Xy —4xz+yz=0
xyz+x+z-4=0.
Determine which of the variables can be solved for in terms of the other two at p.
Section 4.5
4.5.1.  Discuss the nature of the critical points of the function f(x,y) = 2x* + y* — x* — 2y2.
4.5.2. Consider the function f(x,y) = x? + 2xy — 4x + 8y. Find the maxima, minima, and saddle
points of f in the rectangle bounded by the lines x =-5,x=1,y=0, and y = 7.
4.5.3. Find the extreme value of the function f(x,y,z) = xyz subject to the constraints
1 + 1 + L c>0
Xy z
and x, y, z > 0.
4.5.4. (a) Prove Case 1 for Theorem 4.5.13.
(b) Fill in the details left out of the proof of Case 2 for Theorem 4.5.13.
Section 4.8
4.8.1.  Let X be the region of the plane defined by
X={(x,y)|4<x?+y*<16, By-x20, 3x-y=0}.
If f(x,y) = x, compute the integral Jxf by a change of variables to polar coordinates.
Section 4.9
4.9.1. If f(x,y) = xy + sinxy, v = (-2,1), and p = (2,3), find df(p)(vp).
4.9.2. Define f:R? — R by f(x,y) = xy + 3y. Find f.(vp), where f, : TP(RZ) - Tip) (R), v=(-2,1),
and p = (3,5).
49.3. (a) Ifo=xydx+y?dy, compute dmw.

(b) If = xy dxdy, compute do.
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4.9.4. If
w=adx+bdy+cdy

is a 1-form on R3, show that

4.9.5. If
ow=FdyAdz+F dzAadx+F;dxady
is a 2-form on R3, show that
do = (div F) dx A dy A dz,

where F = (F;,F>,F3).

Section 4.9.1
4.9.1.1. Compute the line integral

nyderydy

along the curve ¢ when

(a) cis the part of the parabola y = x> from (0,0) to (1,1).
(b) c is the polygonal path with vertices (0,0), (1,0), (1,1), (0,1), and (0,0).




CHAPTER 5

Point Set Topology

5.1 Introduction

In this chapter we introduce the basic concepts dealing with metric and topological
spaces and their associated maps. We shall build on the special case of R" as described
in Section 4.2. The reader new to topology can always think in terms of Euclidean
space and its subspaces. That is certainly where currently most of the applications
are. On the other hand, abstract topological spaces are not just abstract nonsense and
it is worthwhile to introduce them even though metric spaces would be adequate for
geometric modeling. The fact is that the metric usually has little to do with anything.
The key concept is that of open sets. It is the open sets that really define a topology
and by studying topological spaces one strips away the unimportant elements and gets
to what is essential for understanding intrinsic topological properties of spaces. It is
inadequate to think of spaces purely in terms of specific imbeddings in R", even
though, for example, the average person probably only thinks of a circle as an object
sitting in some background like a piece of paper. If we want to study our universe, we
would not think of it as imbedded in another space. The circle and universe have
intrinsic properties that do not depend on any particular imbedding. One needs to see
beyond the imbeddings.

Our intent is to survey only the most important results from what is called general
or point set topology — those that get used a lot in other contexts. There are actually
no really difficult theorems in this chapter. Most follow from the definitions in a rel-
atively straightforward way. Of course, the author realizes that the material here may
well be new to many readers and quite different from what they may have seen before,
so that even easy results may seem hard initially. There are quite a few books on point
set topology, but the one that this author recommends most highly is Eisenberg’s book
[Eise74]. Most of the explicit references in this chapter will be to this book, however,
in the case of references for omitted proofs one can find these in many other books,
such as [Lips65].

Metric spaces are certainly the most important topological spaces and we start
with those in Section 5.2. Section 5.3 defines and discusses general topological spaces.
Section 5.4 describes some important standard operations that create new spaces
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from old ones. If one had to list the two most used properties of topological spaces it
would certainly be compactness and connectedness and we devote Sections 5.5 and
5.6 to those, respectively. The basic problem of topology is to classify spaces up to
homeomorphism and to find invariants that can be used to distinguish homeomor-
phism classes. However, along with deformations of spaces, it is also useful to study
deformations of mappings and we do this in Section 5.7 where we discuss homotopy.
Section 5.8 describes conditions for the existence of certain continuous functions. In
Section 5.9 we take another look at a very important space, P", and discuss some of
its topological properties.

Finally, point set topology is one of those fields where one encounters a great many
definitions. The reader may start to feel overwhelmed by all these definitions at the
first reading of this chapter. In some sense, the reader can “ignore” them until they
become relevant in the context of specific results. The reader may also run into many
of the terms elsewhere, and so this chapter will serve as a general reference for what
they mean. Certainly, we had to present them here because they represent certain
technical conditions without which theorems would be false. The reader who is learn-
ing about topology for the first time may wonder “what the fuss is all about” because
the conditions might seem like conditions that should obviously hold. They may in
fact hold for all the “nice” spaces we will ever consider. However, definitions by their
nature are abstract and they may have consequences that were unintended. For
example, the definition of a continuous function is one with which “everyone” is happy
and which can be used very effectively, but there are continuous functions that are
nowhere differentiable. Is that what one had in mind when defining a continuous
function? (As an aside, although such functions are undesirable, their existence actu-
ally gives us insight into what continuity really means.) The same thing is true here.
Point set topology is a very large field. The definitions that we shall deal with in this
book only scratch the surface. The fact is that, like the continuity of functions, the
definition of a topology on a space is abstract and although it captures a basic idea
that was extrapolated from nice subspaces of R, it allows for a much larger universe
of spaces. This is why we shall have to introduce some additional conditions from
time to time (like requiring the differentiability of a function in addition to its conti-
nuity) to guarantee that we get what we want. Isolating needed conditions for a result
and giving them a name is helpful in understanding what makes a theorem true.
Unfortunately, this book will often not have time to explain fully the nuances and
reasons for naming special conditions leaving some readers with a feeling of mystery.
The only cure for such feelings is to read one of the more comprehensive books on
topology listed in the references.

52 Metric Spaces

Definition. A metric on a set X is a function

d: XxX—>R

such that the following holds for all p, q, r € X:
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(1) d(p.q) 2 0.
(2) d(p,q) =0 if and only if p = q.

(3) (symmetry) d(p,q) = d(q,p).
(4) (triangle inequality) d(p,r) < d(p,q) + d(q,r).

The value d(p,q) is called the d-distance from p to q. A metric space is a pair (X,d),
where d is a metric on X.

R" admits a number of different metrics. Let p, q € R".

The standard Euclidean metric d: d(p,q) = |pq|

n

The taxicab metric di: di(p.q) = 2|Pi -qil
i=1

The max metric dw: d..(p,q) = max{lpi —qil}
1<i<n

Note. Throughout this book, whenever we talk about R", we shall always assume
that its metric is the Euclidean metric unless it is explicitly stated otherwise. The def-
initions and concepts generalize those in Section 4.2.

Many other spaces have metrics. A large source of metric spaces are vector spaces
with an inner product because the distance function between vectors defined by the
inner product is one (Exercise 5.2.2). This applies in particular to many function
spaces.

5.2.1. Example. The space C°([0,1]) of continuous functions on [0,1] can be made
into a vector space by defining the addition of functions and scalar multiplication in

a pointwise fashion. It is easy to check (Exercise 5.2.3) that one possible inner product
on this space is defined by the formula

<f,g>= [ f(g(vadt. (5.1)

This inner product leads to the metric

1/2
da(f, ) = (], (F0 - g(0)’dt) . (5.2)

Two other metrics on C°([0,1]) unrelated to the inner product are

di,g)=[) 1FD) - g(0)ldt (5.3)

and

d..(f,g) = max [f(t) —g(®)]. (5.4)
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See Exercises 5.2.4 and 5.2.5.

5.2.2. Example. Let X be any set and define a map

0: XxX—>R

by
8(p,q) =0, if p=q
=1, otherwise.

It is easy to show that & is a metric on X.
Definition. The map & is called the discrete metric on X.

The discrete metric is rather a trivial metric for a space but it often serves as a
useful example.

Definition. Let (X,d) be a metric space and suppose that A is a subset of X. Let d’
be the map d restricted to A x A. Then d’ is called the induced metric and (A,d) is

called the induced metric space.

Definition. Let (X,d) be a metric space and let p € X. The d-ball of radius r about
p, denoted by B,(p,d), is defined by

B.(p,d)={qeX|d(p,q)<}.

The d-disk of radius r about p, denoted by D(p,d), is defined by
D.(p,d)={qeX[d(p,q) <r}.

The d-sphere of radius r about p, denoted by S.(p,d), is defined by
S:(p.d)={qeX[d(p,q)=r}

Figure 5.1 shows what the disks of radius 1 around the origin look like in the case
of the three metrics defined earlier.

Euclidean taxicab max Figure 5.1. Unit disks for different
metric metric metric metrics.
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Definition. Let (X,d) be a metric space. A subset U of X is said to be d-open if for
every point p in U there is an r > 0 so that B(p,d) C U.

Note that a d-ball is a d-open set. In the case of the discrete metric § on a set,
every subset is 3-open.

5.2.3. Theorem. Let (X,d) be a metric space. Then

(1) Both the empty set ¢ and the whole space X are d-open sets.
(2) An arbitrary union of d-open subsets of X is d-open.
(3) Any finite intersection of d-open subsets of X is d-open.

Proof. The proof is similar to the proof of Proposition 4.2.1.

An arbitrary intersection of d-open sets need not be d-open. We already saw an
example that shows this for the Euclidean metric d on R in Section 4.2.

Definition. Let (X,d) be a metric space. A subset C of X is said to be d-closed if X —
C is d-open.

A (closed) interval [a,b] in R is a closed set with respect to the Euclidean metric.
More generally, any d-disk is d-closed, as is the d-sphere.

5.2.4. Theorem. Let (X,d) be a metric space. Then

(1) Both the empty set ¢ and the whole space X are d-closed sets.
(2) An arbitrary intersection of d-closed subsets of X is d-closed.
(3) Any finite union of d-closed subsets of X is d-closed.

Proof. See the proof of Proposition 4.2.1.

Again, we already saw in Section 4.2 that an arbitrary union of d-closed sets need
not be d-closed. Another fact to note is that subsets do not have to be either d-open
or d-closed. As was pointed out before, the half-open interval [0,1) in R is neither d-
open nor d-closed with respect to the Euclidean metric d.

Definition. Let (X,d) be a metric space and let p € X. A subset V of X that contains
p is called a d-neighborhood of p if there is a d-open set U so that p € U C V.

Note that d-neighborhoods need not be d-open. For example, [-1,1] is a d-
neighborhood of 0.

We shall see later in Section 5.3 that the important topological aspect of a space
is its collection of open sets. In that sense therefore, although a space can have
many different metrics, just because two metrics are different does not mean that the
“topology” that they induce on the space is different.

Definition. Let d and d’ be two metrics on a space X. We shall say that d and d” are
(topologically) equivalent metrics if every d-open set of X is d’-open and every d’-open
set of X is d-open.
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Figure 5.2. Distances between sets.

The Euclidean metric, the taxicab metric, and the max metric on Euclidean space
are all equivalent.

Definition. Let (X,d) be a metric space. Let p € X and A C X. Define the d-distance
from p to A, dist(p,A), by

dist(p,A) =inf {d(p,a)| acA}.

See Figure 5.2(a). One should think of the distance between a point and a set as
being the “smallest distance” between the point and points of the set. For example,
dist(3,[0,1)) = 2.

Definition. Let (X,d) be a metric space and let A,B C X. Define the d-distance from
A to B, dist(A,B), by

dist(A,B) =inf {d(a,b)| acA,beB}.

See Figure 5.2(b). One should think of the distance between two sets as being the
“smallest distance” between the points of the sets. For example, dist ([0,1),(3,20]) = 2
and dist ([0,2),(2,3]) = 0.

Definition. Let (X,d) be a metric space. A subset A of X is said to be d-bounded if

there is a constant ¢ > 0 so that d(p,q) < c for all p, q € A. If the whole space X is d-

bounded, then the metric space (X,d) and the metric d are said to be bounded. If A is

a d-bounded subset of X, then the d-diameter of A, denoted by diam(A), is defined by
diam (A) = sup {dist(p,q)| p,qeA}.

For example, the set X = (0,1) is a bounded set in R, but the set of integers Z is
not. The diameter of X is 1. The next theorem shows that both a bounded and
unbounded metric on a space can induce the same open sets.

5.2.5. Theorem. Let (X,d) be a metric space. Then X admits a bounded metric that
is equivalent to d and for which diam(X) < 1.

Proof. Define

d*(p,q) = min {1,d(p,q)}. (5.5)
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It is easy to show that d* is a metric on X with the desired properties (Exercise 5.2.7).
See [Eise74].

Definition. Let (X,d) and (Y,d’) be metric spaces. A one-to-one and onto map
f:X — Y is called an isometry between these metric spaces if d’(f(p),f(q)) = d(p,q)
for all p, q € X. An arbitrary map f:X — Y is called a local isometry if for every p in
X there exist d- and d’-neighborhoods U and V of p and f(p), respectively, so that
flU is an isometry between U and V.

Motions in R" are all isometries.

Definition. Let (X,d) and (Y,d’) be metric spaces and let p € X. Amap £: X — Y is
said to be (d,d’)-continuous at p if for every € > 0 there is a & > 0 so that d’(f(p),f(q))
< ¢ for all q € X with d(p,q) < 8. The map f is said to (d,d’)-continuous if it is (d,d’)-
continuous at every point of X.

It is easy to see that in the case of the Euclidean metric this is just the usual def-
inition of continuity of functions f:R"™ — R™. See statement (4.1) in Chapter 4.

Definition. Let (X,d) and (Y,d’) be metric spaces. A map f: X — Y is said to be (d,d’)-
uniformly continuous if for every € > 0 there is a 6 > 0 so that for all p, q € X, d(p,q)
< 6 implies that d’(f(p),f(q)) < «.

We already pointed out the big difference between uniform and ordinary continuity
in Section 4.2. The 8 in the uniform continuity case does not depend on where we are
and only on the €. Having this independence is often important, and so it is always better
to have a uniformly continuous map rather than just a plain continuous one.

Next, the usual notion of convergence of sequences in R" extends to metric spaces
in a natural way.

Definition. Let (X,d) be a metric space. A sequence of points p,, n=1,2,...in X is
said to converge to a point p in (X,d) if for every € > 0 there is an m > 1 so that if n >
m then d(py,p) < €. The sequence py, is said to converge in (X,d) if it converges to some
point p in (X,d).

5.2.6. Theorem. Let (X,d) be a metric space. If a sequence of points p,, n = 1,2,
...in X converges to two points p and q in (X,d), then p = q.

Proof. Let € > 0. By definition, there exists an m so that n > m implies that d(py,p)
< ¢ and d(py,q) < €. But then

d(p.q) < d(p,pn)+d(pn,q)<e+e=2¢,
which clearly implies that p = q since € was arbitrary.

Theorem 5.2.6 says that if a sequence converges to a point, then it converges to a
unique point.
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Definition. If a sequence py, n = 1,2, ... converges to a point p in a metric space,
then this unique point p is called the limit point of the sequence and is denoted
by limp,.

n—oeo

5.2.7. Theorem. Let (X,d) be a metric space. A subset A of X is d-closed if
and only if every limit point in X of sequences of points from A also belongs to
A

Proof. If A is d-closed, then X — A is d-open and cannot contain any limit point of
A since every one of its points has a neighborhood entirely contained in X — A. The
converse is just as easy.

Definition. Let (X,d) and (Y,d") be metric spaces and consider maps f;, F: X — Y.
We say that the sequence of maps fi, f;, . .. converges pointwise to the map F if, for
every € > 0 and each p € X, there is an m so that d’(f,(p),F(p)) < € for all n > m. We
say that the sequence fy, [, . . . converges uniformly to F if, for every € > 0 there is an
m so that d’(f,(p),F(p)) < € for all n > m and all p € X. In either case, we call F the
limit function of the sequence fi, f5, . . ..

Notice the important difference between pointwise and uniform convergence. In
the former case, the m depends on the € and the point p, and in the latter, it depends
only on the €. This is similar to the difference between continuity and uniform con-
tinuity. A sequence of functions can converge pointwise but not uniformly (Exercise
5.2.8). The limit function of a sequence of functions, if it exists, is unique because
limits of point sequences are unique. One question that arises in the context of
sequences of functions is whether the limit function will have a property if all the
functions converging to it have this property. The answer to this question is no in
general but getting a positive answer in certain cases is precisely why the notion of
uniformly convergent is introduced. The next theorem is one example.

5.2.8. Theorem. Let (X,d) and (Y,d’) be metric spaces and consider maps f;, F:X
— Y. If the maps f; are continuous and if the sequence of maps f, f5, . .. converges
uniformly to F, then F is continuous.

Proof. This is an easy exercise. See [Lips65].
Theorem 5.2.8 is false without the hypothesis of uniform convergence.
Definition. Let (X,d) be a metric space. A sequence of points p,, n=1,2,...in X is

said to be a Cauchy sequence in (X,d) if for every € > 0 there is an m 2 1 so that d(p;,p;)
< ¢ for all i,j > m.

5.2.9. Theorem. Every convergent sequence in a metric space is a Cauchy
sequence.

Proof. Let p, be a sequence that converges to a point p in a metric space (X,d). Let
€ > 0. Choose m so that n > m implies that d(p,,p) < €/2. It follows that
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d(pi,p;j) <d(p;,p)+d(p,pj) <e/2+¢/2=¢,
and the theorem is proved.

Definition. A metric space (X,d) is said to be complete if every Cauchy sequence in
(X,d) converges.

For example, R" is complete. The set of rational numbers is not complete. The
rational numbers have “holes,” which is why one defined the real numbers. They fill
in those holes.

Finally, taking the product of sets is a common operation. Given a finite collec-
tion (Xj,d;), 1 <1 <k, of metric spaces, we can endow the product space X; x X, X
... X Xk with many metrics. One natural one that is a generalization of the max me-
tric we defined earlier on R" is the following: Let p = (p1,p2,- - --Px), 4 = (41,92,- - -,qx)
€ X; x X, x...x Xy and define

d.(p,q@ = max {di(pi,qi)} -

Definition. The function d.. is called the max metric on X; x X, x. .. x Xj.
5.2.10. Theorem. Let (Xj,d;), 1 <i <k, be metric spaces.

(1) The max metric d. is a metric on the product X; x X; x. .. X Xj.
(2) The open sets defined by d.. consist of unions of sets of the form U; x U, x
... x Uy, where U; is dj-open in X.

Proof. See [Eise74].

In the future, when there is no confusion as to which metric we are talking about
we shall drop the “d-” in front of adjectives such as “d-open,” “d-closed,” etc., and
simply say “open,” “closed,” etc., respectively.

5.3 Topological Spaces

As one looks over the topics covered in the last section, one may have noticed the
importance of open sets. By in large, the only role the metric played was in defining
these sets, but once they were defined the metric was not needed. This leads us to the
next level of abstraction where one concentrates on the open sets right from the start.
The properties that open sets satisfy in the case of metric spaces (see Theorem 5.2.3)
suggest the following:

Definition. Let X be a set. A topology on X is a set T of subsets of X satisfying

(1) Both ¢ and X belong to T.
(2) The union of any collection of sets from T also belongs to T.
(3) The intersection of any finite collection of sets from T belongs to T.
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The sets in T will be called the T-open sets of X with respect to the topology T. If T is
clear from the context, then we shall simply refer to them as the open sets of X.

Using induction it is easy to show that condition (3) in the definition of a topol-
ogy can be replaced by

(3") The intersection of any two sets from T belongs to T.

Definition. Let X be a set. The discrete topology on X is the set T of all subsets of
X.

Clearly, the discrete topology on a set X is defined by the fact that {p]} is an open
set for each point p € X.

Definition. A topological space is a pair (X,T) where X is a set and T is a topology
on X. Again, if T is clear from the context, then one drops the reference to T and
simply says the “topological space” X.

Intuitively, when one talks about a topological space, what one is saying is that
one has specified the collection of subsets that will be called “open.” It must be the
case though that the empty set and the whole space are open sets, that any union of
open sets is open, and that the finite intersection of open sets is open.

5.3.1. Example. If (X,d) is a metric space, then (X,T) is a topological space, where
T is set of d-open sets. The topology T is called the fopology on X induced by d. In
particular, any subset of R"™ has a topology induced by the standard Euclidean
metric.

5.3.2. Example. The Euclidean, taxicab, and max metric on R" induce the same
topology on R" or any of its subsets (Exercise 5.3.1). This topology will be called the
standard topology on R".

5.3.3. Example. The topology on R" induced by the discrete metric is the discrete
topology and differs from the standard topology. A less trivial example of distinct
topologies on a space are the topologies on the space of functions C%[0,1]) induced
by the metrics d; and d.. defined by equations (5.2) and (5.3), respectively. For a proof
of this fact see [Eise74].

The following is a useful concept.

Definition. Let (X,T) be a topological space. A base for the topology T is a collec-
tion of subsets of X, so that each subset belongs to T and every set in T is a union of
elements of the collection.

For example, the open disks B"(p,r) in R" are a base for the standard topology on
R". When dealing with open sets of a topology it often suffices to look at elements of
a base. One can also define topologies by means of bases.
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5.3.4. Theorem. Let X be a set and Q a collection of subsets of X satisfying:

(1) Each element of X belongs to some subset of Q.
(2) If 04, 0; € Q and x € 01 N 0, then there exists an O € Q with x € O C Oy
M 02.

Then there is a unique topology T on X for which Q is a base.
Proof. See [Eise74].

Definition. Let (X,T) be a topological space. A subset A of X is called T-closed (or
simply closed if T is clear from the context), if X — A is T-open.

5.3.5. Theorem. Let (X,T) be a topological space. Then

(1) Both the empty set ¢ and the whole space X are closed sets.
(2) An arbitrary intersection of closed subsets of X is closed.
(3) Any finite union of closed subsets of X is closed.

Proof. This is easy. See the proof of Theorem 5.2.4.

Definition. Let X be a topological space and let p € X. A subset V of X that con-
tains p is called a neighborhood of p if there is a open set U so that p € U C V. A col-
lection of neighborhoods of p is called a local base at p or a neighborhood base at p if
every neighborhood of p contains a member of this collection.

Definition. A topological space (X,T) is said to be metrizable if X admits a metric d
so that T is the topology on X induced by d.

Not all topological space are metrizable.

5.3.6. Example. Let X = {p,q} and T = {¢, X, {p}, {p.q}}. Then (X,T) is a non-
metrizable topological space. If it were metrizable, then p and q would have disjoint
neighborhoods, which is not the case here.

For less trivial examples of nonmetrizable spaces see [Eise74]. Any space that can
be “drawn” (and whose topology is reflected by the picture) will be metrizable because
it lives in R".

Definition. A topological space is said to be a Hausdorff space if any two distinct
points of X have disjoint neighborhoods.

The Hausdorff separability condition may seem like an obvious condition that
should always hold but it does not follow from our definition of a topology. It is
certainly satisfied for metrizable spaces and it is satisfied by all the topological
spaces we shall look at, but, as we just saw in Example 5.3.6, not every topological
space is a Hausdorff space. Most of the time, however, it is an important technical
condition that is assumed for some results to hold. We shall run into it later in quite
a few places.
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Definition. Let A be a subset of a topological space X. A boundary point of A is a
point p in X such that every neighborhood of p meets both A and the complement of
A, X — A. The boundary of A (in X), denoted by bdry(A), is defined to be the set of
boundary points of A. A point a in A is called an interior point of A (in X) if a has a
neighborhood U in X that is contained in A. The set of interior points of A is called
the interior of A and is denoted by int(A). The closure of A (in X), denoted by cls(A),
is defined to be the set of all points p in X with the property that every neighborhood
of p meets A.

These definitions are analogous to those in Section 4.2. It is important to note
that the above definitions of boundary, interior, and closure are all relative to the con-
taining space X. One can show (Exercise 5.3.2) that

int(A) = A - bdry(A), (5.6)

cls(A) = int(A)u bdry(A). (5.7)

Definition. A subset A of a topological space X is said to be dense in X if it inter-
sects every nonempty open set of X. It is said to be nowhere dense in X if its closure

contains no nonempty open subset of X.

For example, the rational numbers are dense in R, as are the irrational numbers.
Any finite subset of R" is nowhere dense in R".

5.3.7. Lemma. Let (X,T) be a topological space and let Y be a subset of X. Define
a set S of subsets of Y by

S={ANY|A€eT}. (5.8)

Then S is a topology on Y.
Proof. The proof is straightforward.
Definition. Let (X,T) be a topological space and let Y be a subset of X. The topol-
ogy S on Y defined by equation (5.8) is called the relative topology on Y induced by T.
The topological space (Y,S) is called a subspace of (X,T). If T is clear from the context,
one simply talks about the subspace Y of X.

“Induced metrics” and “relative topologies” may sound abstract, but these
notions tend to get used automatically in the context of subspaces of R", although
without explicitly using those terms. For example, one probably had no hesitation to

talk about the distance between points of a circle or open arcs in a circle.

5.3.8. Lemma. LetX be atopological space and let Y be a subspace of X. The closed
sets of Y are just the sets A n'Y, where A is closed in X.

Proof. This is an easy consequence of the definitions.
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Definition. Let f:X — Y be a map from a topological space X to a topological space
Y. Let p € X. The map f is said to be continuous at p if for every neighborhood
N of f(p) in Y the set f'(N) is a neighborhood of p in X. The map f is said to be
continuous if it is continuous at every point of X.

5.3.9. Theorem. Let f:X — Y be a map from a topological space X to a topologi-
cal space Y. The map f is continuous if and only if f1(V) is open in X for all open sets
VinY.

Proof. Easy.

We already pointed out in Section 4.2 that in the case of Euclidean spaces the def-
inition of continuity agrees with the standard epsilon-delta definition from calculus.
The messy epsilons and deltas obscure the issues that are really at stake. Of course,
that definition would actually not be possible here anyway since we do not have a
metric. Continuous maps are the natural maps for topological spaces because they
involve the only thing that we have in the context of a topology on a set, namely, open
sets. Note, however, that we are not saying that a continuous map sends open sets to
open sets. Such a definition might seem like the obvious one at first glance, but it
would not capture what we have in mind.

Definition. A map {:X — Y from a topological space X to a topological space Y is
said to be an open map if it maps every open set of X to an open set of Y. It is said
to be a closed map if it maps every closed set of X to an closed set of Y.

The following example shows the difference between a map being continuous,
open, and/or closed:

5.3.10. Example. Let X be the reals R with the standard topology and let Y be the
reals with the discrete topology. Then the identity map from X to Y is not continuous
but both open and closed. On the other hand, the identity map from Y to X is con-
tinuous but neither open nor closed.

5.3.11. Theorem. Iff:X — Y and g:Y — Z are continuous maps between topolog-
ical spaces, then the composite map h = feg:X — Z is a continuous map.

Proof. This follows easily from the definitions.

The next theorem shows that we can piece together continuous maps to get a
global continuous map.

5.3.12. Theorem. Let {Aj}ic; be a covering of a topological space X by subspaces
with the property that either all the A; are open or all the A; are closed and 1 is finite.
If £:X — Y is a map to another topological space, then f is continuous if the restric-
tion maps f |A; are continuous for each i € 1.

Proof. Suppose that the A; are open. Let V be an open set in Y. If f |A; is continu-
ous, then
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y Figure 5.3. Piecing together continuous functions.
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is open in X, which proves the continuity of f. The proof of the theorem in the case
where the A; are closed is also an easy consequence of the definitions. See [Eise74].

5.3.13. Example. By Theorem 5.3.12 the map f:[-1,2] — R defined by

f(x)=-x+1, if xe[-1,0],
=1-x, if xe[0,1],
=—x%+3x-2, if xe[l1,2],

is a continuous map. See Figure 5.3.

Definition. Let X and Y be topological spaces. A bijection f: X — Y is called a home-
omorphism if and only if both f and f~! are continuous maps. Two spaces X and Y are
said to be homeomorphic, and we write X = Y if there exists a homeomorphism
f:X — Y. Any property of a space that is preserved by a homeomorphism is called a
topological invariant.

Homeomorphisms capture the natural notion of equivalence between topological
spaces. The identity map of a topological space is a homeomorphism. Homeomor-
phisms are both open and closed maps. To find a homeomorphism between spaces
one first has to find a bijection between them and then needs to show that it preserves
open (or closed) sets.

5.3.14. Example. Let f:R — R be a continuous map and let
X ={(x,f(x))|xeR}

be the graph of f with the induced topology from R?. Then the map
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Figure 5.4. The domain and graph of a func-
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Figure 5.5. A circle is homeomorphic to the boundary of
a square.

h: R>XcR?
defined by

h(x) = (x,f(x))

is a homeomorphism. To see this, let pg = (x0,f(X0)) and consider an open ball B*(p,r)
about py. See Figure 5.4. Now, B*(po,r) N X is an open set of X and it is easy to see
that h™!(B?(po,r) N X) is an open interval in R containing xo. This and the fact that h
is obviously a bijection clearly imply that h is a homeomorphism.

5.3.15. Example. The unit circle S! is homeomorphic to the boundary X of the
square [-1,1] x [-1,1]. Define a map

h: XSS!
by
hip)= 2.
ipl

It is easy to see from Figure 5.5 that h and h™' maps open sets to open sets. Open arcs
in S' correspond to open “intervals” in X.
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Topological properties of spaces are those properties that are “preserved” by home-
omorphisms. We shall see a number of examples of topological properties in later sec-
tions. A topologist is someone who tries to find and analyze topological properties of
spaces. A topologist does not distinguish between homeomorphic spaces. An ellipse
looks the same as a circle. Roughly speaking, two spaces are the same to a topologist
if one can be deformed into the other without any ripping or tearing. The deforma-
tions correspond to a one-parameter family of homeomorphism. In laymen’s terms,
topology is “rubber sheet geometry.” At the beginning of the next chapter, Chapter 6,
we shall have a lot more to say about the kinds of questions that topology tries to
answer.

Definition. Let X and Y be topological spaces. A map f:X — Y is called an im-
bedding if the map f:X — f(X) is a homeomorphism between X and the subspace
f(X) of Y.

Imbeddings are one-to-one maps by definition.

5.3.16. Example. If A is a subspace of X, then the inclusion map of A into X is an
imbedding. If one gives the set of rational numbers the discrete topology, then
the inclusion map of this set into the reals R with the Euclidean topology is not an
imbedding.

Next, we give some limit-related definitions.

Definition. Let A be a subset of a topological space X. A point a € A is called an
isolated point of A if it has a neighborhood that contains no other point of A except
for a. A point p € X is called a limit or accumulation point of A if every neighbor-
hood of p contains a point of A different from p.

Clearly, every point of a subset A in a space X is either an isolated or a limit
point. A limit point of A that does not belong to A is a point in the boundary of
A.

5.3.17. Theorem. Let A be a subset of a metric space X. Every neighborhood of a
limit point of A contains infinitely many points of A.

Proof. Easy.

Definition. A sequence of points p, of a topological space X is said to converge to
the point p in X if for each neighborhood U of p in X there is some integer m so that
n > m implies that p, € U.

Many of the properties of convergence of sequences in metric spaces generalize
to the context of convergence in topological spaces, but one typically has to add some
additional hypotheses (such as the space being Hausdorff) on the type of topology one
has. For example, the continuity of a function f defined on a space X is not in general
equivalent to f(p,) converging to f(p) for all sequences p, that converge to p (sequen-
tial continuity). One has to allow something more general than sequences. See [Eise74]
and the discussion of nets.
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Definition. (The Countability Axioms) A topological space X is said to be first count-
able if every point of X has a countable local base. It is said to be second countable
if it has a countable base.

Second countability is clearly stronger than first countability. For continuity to be
equivalent to sequential continuity one needs first countability. Second countability
is a desirable property that basically means that one can use induction for construc-
tions. It is also related to another concept.

Definition. A topological space is said to be separable if it has a countable dense
subset.

For example, R is separable because the rationals that are a countable set are
dense.

5.3.18. Theorem. A metrizable space is separable if and only if it is second
countable.

Proof. See [Eise74].

We finish this section with a definition of one of the most important types of nice
topological spaces, namely, manifolds. Manifolds are really the center of attention
of this book. They are basically spaces that look like Euclidean space locally, but
because we want to allow for manifolds with boundary the definition is slightly
more complicated.

Definition. A second countable Hausdorff space M is called an n-dimensional topo-
logical manifold if every point p € M has an open neighborhood V,, that is homeo-
morphic to an open subset U, of the standard halfplane RY. Let hy,: U, — V, be the
homeomorphism. The boundary of M, oM, is defined by

oM={peM]|h,'(p)eR"}.

The points of M are called boundary points. The set M—dM is called the interior of M and
its points are called interior points. If n is unimportant one calls M simply a topological
manifold. The dimension of M is usually indicated as a superscript and one talks about
the “manifold M".” A manifold that has no boundary is said to be closed.

See Figure 5.6. Euclidean space R" is the archetypical example of an n-dimen-
sional manifold without boundary. Other well-known examples are the open balls B"
and the spheres S". The spheres are closed manifolds. The halfplane R% and the disk
D" are the archetypical examples of n-dimensional manifolds with boundary. Their
boundaries are R and the (n — 1)-sphere S™!, respectively. We shall see many more
examples of manifolds in coming chapters. A simple-minded way of thinking about a
closed two-dimensional manifold is as a space with the property that we can lay a
blanket around every point p of the space so that the points of the blanket match is
a one-to-one and onto manner the points of a neighborhood of p.
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Figure 5.6. Neighborhoods
of boundary and interior
points of a manifold.

We shall show later (Corollary 7.2.3.9) that both the dimension and boundary of
a manifold are well defined and do not depend on the neighborhoods Vj, or the home-
omorphisms h,. Boundary points are clearly different from interior points. This is
easy to see in the one-dimensional case. Consider the interval I =[0,1], which is a one-
dimensional manifold with boundary. Removing a boundary point such as 0 does not
disconnect the space, but removing any interior point would. The following facts are
easily proved:

(1) Every point of a manifold without boundary has a neighborhood homeomor-
phic to R".

(2) The boundary of an n-dimensional manifold is an (n — 1)-dimensional mani-
fold without boundary.

Because there are other types of manifolds (Chapter 8 will introduce diffentiable
manifolds and there are also piecewise linear or PL manifolds) we shall often drop the
adjective “topological” and simply refer to a “manifold.” The context will always deter-
mine the type if it is important.

Some definitions of topological manifolds do not require second countability.
The reason for requiring a manifold to be second countable in this book is a
practical one. Without it we would lose some properties of manifolds, such as
metrizability, and many important results in differential topology described in Chapter
8, such as the Whitney imbedding theorem and the Sard theorem, would no longer
hold.

Definition. A (fopological) surface is a two-dimensional topological manifold. A
(topological) curve is a one-dimensional topological manifold.

54 Constructing New Topological Spaces

This section describes some standard construction with which one can define new
topological spaces from old ones. The first of these is the important concept of quo-
tient spaces.
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Definition. Let X be a topological space and let ~ be an equivalence relation on X.
The map

p: X - X/~
p—[pl

which sends an element p into its equivalence class [p] with respect to ~ is called the
quotient map.

5.4.1. Lemma. Let ~ be an equivalence relation on a topological space X and let
p: X — X/~ be the quotient map. Define a collection S of subsets of X/~ by

S={Bc X/~ | p'(B) isopeninX}. (5.9)
Then S is a topology on X/~.

Proof. The proof is straightforward. See [Eise74].

Definition. Let X be a topological space and let ~ be an equivalence relation on X.
The topology S on X/~ defined by equation (5.9), is called the quotient topology on X/~
and the topological space (X/~,S) is called a quotient space of X.

5.4.2. Lemma. Let X be a topological space and let ~ be an equivalence relation on
X. The quotient map p:X — X/~ is a continuous map with respect to the quotient
topology on X/~.

Proof. This follows easily from the definition.

5.4.3. Example. The Moebius strip can be thought of as the quotient space [0,1] x
[0,1]/~, where we use the equivalence relation generated by the relation (0,t) ~ (1,1-t), t
€ [0,1], between the points of the left and right side of the rectangle. See Figure 5.7.

The next theorem lists some basic properties of quotient spaces.

5.4.4. Theorem. Let ~ be an equivalence relation on a topological space X and let
p:X — X/~ be the quotient map. Let Y be a topological space.

(1) A map g:X/~ — Y is continuous if and only if the composite f = gep: X - Y
is continuous.

(2) If £:X — Y is a continuous map that is constant on the equivalence classes of
~, then there is a unique continuous map {*:X/~ — Y so that f = fep. The map
f* is called the induced (by f) map on the quotient space.

(L1-1)
[0,1] x [0,1]

0.9

Figure 5.7. The Moebius strip.
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Proof. The proofs are straightforward. See [Eise74]. A good way to remember this
theorem is in terms of commutative diagrams. Part (1) says that the map g in the
diagram

X

f:o
pl gop
X/~ —m > Y

g

is a continuous map if and only it lifts to a continuous map f. Part (2) says that any

continuous map f in the diagram
f
pl \

X~ —> Y
o

that is constant on equivalence classes induces a unique f*.

It is convenient to introduce some notation for a common special case of a quo-
tient space.

Definition. Let A be a nonempty subspace of a topological space X. Let ~5 be the
equivalence relation

~a=AxAu{(p,p)peX}.

The quotient space X/~ will be denoted by X/A and is usually referred to as the space
obtained from X by collapsing A to a point.

The space X/A is the space we get by identifying all the points of A to a single
point A, the equivalence class of some a € A.

5.4.5. Theorem. LetA be a nonempty subspace of a topological space X. If A is open
or closed, then the quotient map sends X — A homeomorphically onto (X/A) — A.

Proof. Easy.

Let X and Y be topological spaces. Let B be a subspace of Y and let f:B — X
be a continuous map. We would like to define the space that, intuitively, is obtained

from the disjoint union Z of X and Y where we have “attached” or “glued” each point
b in B to f(b) in X. See Figure 5.8. The identification of b with f(b) defines an equiv-

XugY

.\’b B D Figure 5.8. Attaching one space to another.
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alence relation on Z and the space we have in mind is just the associated quotient
space. To make this precise we need to deal with some technical details. We have to
define a disjoint union operation that will handle the case where X and Y are not
disjoint.

Definition. The disjoint union of two topological spaces X and Y, denoted by X + Y,
is defined to be the topological space consisting of the set

X+Y=Xx0uYx1
and the topology whose open sets are
{Ux0uVx1|UisopeninXand V is open in Y}.

The spaces X and Y will always be considered as subspaces of X + Y under the natural
identifications of x € X with (x,0) and y € Y with (y,1).

It is easy to check that the open sets of X + Y do form a topology, so that we do
have a topological space and subspaces X and Y.

Returning to our map f:B — X, we can use it to define an equivalence relation ~¢
on X +Y.

Definition. Let B C Y and let f:B — X be a continuous map. Let ~¢ be the equiva-
lence relation on X + Y induced by the pairs (b,f(b)), b € B. Define

XurY=X+Y)/~.

We say that X up Y is obtained from X by attaching Y by f and call the map f the
attaching map.

5.4.6. Theorem. Letp:X +Y — X Y be the quotient map.

(1) p(Y-B)isopeninX ;Y and p maps Y — B homeomorphically onto p(Y — B).
(2) p(X) is closed in X ur Y and p maps X homeomorphically onto p(X).

Proof. See [Eise74].

5.4.7. Example. Let D be the unit disk D?, H the rectangle [-1,1] x [-1,1], and B
the left and right ends —1 x [-1,1] U 1 x [-1,1] of H. Define f:B — D by

f(—l,t)=(—cos£t,sin£t) and f(l,t)=(cos£t,sin£tj.
6 6 6 6

Then D Ut H is topologically (homeomorphic to) a disk with a handle. See Figure 5.9.

Sometimes one has a collection of subsets of a set that already have a topology
and one wants to extend these topologies to a topology of the whole set. We shall see
examples of this in the next chapter.
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B B DUH Figure 5.9. Attaching a handle to a disk.

ff(&@ffg)f é“b

Definition. Let X be a set and let A; be subsets of X that already possess a topology
(we allow either a finite or infinite set of indices i). Assume

(1) the topologies of A; and A; agree on A; N A;, and either
(2) Ai N A;is always open in both Aj and A;,

or
(2) Ai n Ajis always closed in Aj and A;.
The weak topology T on X determined by the topologies of the spaces A, is defined by
T={UcX|UnA;isopeninA; forall i}.

5.4.8. Theorem. Using the notation in the definition of the weak topology, the fol-
lowing holds:

(1) The weak topology is a topology for X.

(2) A subset A of X is closed in the weak topology if and only if A N A, is closed
for all i.

(3) The subsets A; will themselves be open subsets of X in the weak topology if
condition (2) in the definition held and closed subsets if (2”) held.

Proof. Easy.

Next, one often wants to take the product of topological spaces. Since we want to
end up with a topological space, we need to define a product topology. We shall build
on what we know for metric spaces.

5.4.9. Theorem. IfX;, 1<i<Kk, are topological spaces, then the collection of subsets
{UixU; x ...xUg|U;jisopeninX;}
form the base of a unique topology on X; x X; x...x Xj.

Proof. One simply has to show that these subsets satisfy conditions (1) and (2) in
Theorem 5.3.4. See [Eise74].

Definition. If X;, 1 <i <k are topological spaces, then the topology on the product
set X = X x X, x...x Xk described in Theorem 5.4.9 is called the product topology
on X.
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Figure 5.10. The wedge of two spaces.

XvY
X0
—_—
X0=Yo
Yo Y
Y

Unless stated otherwise, whenever one takes a product of topological spaces it will
always be assumed that the product is given the product topology.
Several other constructions that create new spaces from old are handy.

Definition. A pointed space is a pair (X,xo), where X is a nonempty topological space
and x¢ € X. The point xq is called the base point of the pointed space. The expression
“the pointed space X with base point x;” will mean the pointed space (X,xg).

Definition. Let X and Y be pointed spaces with base points x¢ and yy, respectively.
Let ~ be the equivalence relation on X + Y induced by the pair (xo,y0). The one-point
union or wedge of X and Y, denoted by X v Y, is defined to be the pointed space that
consists of the quotient space

XvY=(X+Y)/~
and the point to which x¢ and yq get identified.

The space X v Y is just the disjoint union of X and Y where we identify x and
yo. See Figure 5.10.

Definition. Let X be a topological space. Define the cone on X, denoted by CX, by
CX =X x[0,1]/X x1.
By identifying X with X x 0 in CX, one always considers X as contained in CX.

See Figure 5.11. Exercise 5.4.2 gives a more concrete description of CX.

Definition. Let X be a topological space. Define the suspension of X, denoted by SX,
to be the quotient space

SX=Xx[-1,1]/~,

where ~ is the equivalence relation induced by the relations (x,-1) ~ (x’,—1) and (x,1)
~ (x',1) for all x, x” € X. By identifying X with X x 0 in SX, one always considers X
as contained in SX.

Again see Figure 5.11. Exercise 5.4.4 gives a more concrete description of SX.
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(0):¢ SX Figure 5.11. The cone and suspen-
sion of a space.

cone on X suspension
of X

55 Compactness

We already pointed out the importance of the compactness property for subsets of R"
in Chapter 4. The generalization to topological spaces is immediate since its defini-
tion was in terms of open sets.

Definition. Let X be a set and let A C X. A collection Q of subsets of X is said to be
a cover of A if every element of A belongs to some subset in Q, that is,

Ac U U.
UeQ
If X is a topological space, then we shall call Q an open, closed, . . . cover of A if every
set in Q is open, closed, . .., in X, respectively. We call Q a finite cover if it is a finite

set. A subset of Q that covers A is called a subcover of Q.

5.5.1. Example. The collection

{{n,n+1]| neZ}

(f-Hn-sa-

Definition. A topological space X is said to be compact if every open cover of X con-
tains a finite subcover of X.

is a closed cover of R and

is an open cover of (0,1).

Let A be a subspace of a topological space X. It is easy to show that A, thought
of as a topological space on its own without reference to X, is compact if and only if



5.6 Compactness 305

every open cover of A in X contains a finite subcover of A (Exercise 5.5.1). Therefore,
when it comes to the compactness of a space, we do not have to distinguish between
whether we think of a space by itself or as a subspace of another space.

5.5.2. Theorem. A closed subset A of a compact space X is compact.

Proof. Let {U;} be an open cover of A. Since A is closed, X — A is open and so
{Ui} U {X - A} is an open cover of X. Since X is compact, there is a finite subcover
and removing the set X — A, if it is in this subcover, will give us a finite subset of {U;}
that covers A.

5.5.3. Theorem. A compact subset A of a Hausdorff space X is closed.

Proof. To show that A is closed, we need to show that X — A is open. The proof pro-
ceeds just like the proof for the case X = R" in Theorem 4.2.4. Let x € X — A. Now X
is a Hausdorff space. Therefore, for every a € A there is an open neighborhood U,
and V, of a and x, respectively, such that U, n V, = ¢. The collection {V,} is an open
cover of A. Since A is compact, there is a finite subcover {V, }i<i<k. It follows that

U=(\U.,,

i

-

1l
—_

1
is an open neighborhood of x contained in X — A.
An extremely important theorem with many consequences is the following.

5.5.4. Theorem. (The Tychonoff Product Theorem) The product X; x X, x...x Xk
of nonempty topological spaces Xj is compact if and only if each X; is compact.

Proof. See [Eise74].

The Tychonoff product theorem is also true for infinite products.

The next theorem characterizes compact sets in Euclidean space and was already
stated and partially proved in Chapter 4 (Theorem 4.2.4). The proof relies on the
following:

5.5.5. Lemma. (The Heine-Borel Theorem) A closed interval [a,b] in R is compact.
Proof. Exercise 5.5.2. See [Eise74].
5.5.6. Theorem. A subset A of R" is compact if and only if it is closed and bounded.
Proof. We already proved that compact implies closed and bounded in Theorem
4.2.4. We sketch a proof of the converse here.

Let A be a closed and bounded subset of R". First, consider the case n = 1. Now a

closed and bounded subset A in R is a closed subset of some interval [a,b]. But [a,b] is
compact by the Heine-Borel theorem, therefore, Theorem 5.5.2 implies that A is
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compact. Next, assume that n > 1. Again, since A is closed and bounded, A is a closed
subset of a product of intervals X =[ay,b1] X [az,bs] X . . . X [ay,b,]. Each interval [a;,b;]
is compact by the Heine-Borel theorem and so X is compact by the Tychonoff product
theorem. Theorem 5.5.2 in turn implies that A is compact and Theorem 5.5.6 is proved.

The special case of Theorem 5.5.6 where n is 1 is usually referred to as the Heine-
Borel-Lebesgue theorem.

Note that a closed and bounded subset of an arbitrary metric space need not be
compact. For example, by Theorem 5.2.5 we can give R" a bounded metric that
induces the standard topology, but R" is obviously not compact. It follows that Euclid-
ean space R" is special when it comes to Theorem 5.5.6. Although being closed and
bounded is equivalent to being compact for subspaces of R”, the importance of the
latter concept is that it clearly shows that we are dealing with an intrinsic property
of a space that has nothing to do with any particular imbedding in R".

There is a generalization of Theorem 5.5.6 to metric spaces. It asserts that a subset
of a complete metric space (X,d) is compact if and only if it is d-closed and “d-totally
bounded.” See [Eise74]. We also have the following:

5.5.7. Theorem. A metrizable space X is compact if and only if each infinite subset
of X has a limit point in X. A compact metrizable space is complete.

Proof. See [Eise74].

From Theorems 5.5.2 and 5.5.3 we get the classical Bolzano-Weierstrass theorem:
Every bounded infinite set of real numbers has a limit point in R.

5.5.8. Theorem. Let f:X — Y be a continuous map between topological spaces. If
X is compact, then so is £(X).

Proof. Every open cover of f(X) pulls back to an open cover of X, which has a finite
subcover so that the corresponding open sets in the cover for f(X) provide a finite sub-
cover of f(X). See the proof of Theorem 4.2.11.

We shall see that Theorem 5.5.8 has many applications because, for example, lots
of well-known spaces are quotient spaces of compact spaces. Here are three corol-
laries.

5.5.9. Corollary. Compactness is a topological property, that is, if X is homeomor-
phic to Y and if X is compact, then so is Y.

Proof. Clear.

5.5.10. Corollary. Let f:X — Y be a continuous map between topological spaces.
Assume that X is compact and Y is Hausdorff. If f is one-to-one and onto, then f is a
homeomorphism.

Proof. It clearly suffices to show that f is a closed map. Let A be a closed subset of
X. Theorem 5.5.2 implies that A is compact and therefore f(A) is compact by Theorem
5.5.8. Finally, Theorem 5.5.3 implies that f(A) is closed.
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Corollary 5.5.10 is useful because it says that when spaces are compact then it is
easier to show that maps are homeomorphisms. Normally, one would have to show
that their inverse is continuous, but we do not need to prove that here.

5.5.11. Corollary. Let X be a nonempty compact space and assume that f:X — R
is a continuous map. Then f attains both its maximum and minimum value on X, that
is, there are x; and x, in X so that

f(x1)<f(x)<f(x;)

for all x € X.

Proof. By Theorem 5.5.8, f(X) is a compact subset of R and hence is closed and
bounded by Theorem 5.5.6. Therefore, sup f(X) and inf f(X) belong to f(X), proving
the existence of x; and x,.

As another example of why compactness is nice, recall Example 4.2.7, which
showed that a continuous function need not be uniformly continuous. The next
theorem states that if the domain of the function is compact then this does not
happen. The proof of the theorem uses the lemma below that we state separately
because it has other applications.

5.5.12. Lemma. (Lebesgue Covering Lemma) Let (X,d) be a compact metric space.
Given any open cover Q of X, there is a 8 > 0, so that if p, q € X and d(p,q) < §, then
there is a set U in Q that contains both p and q. (The number 8 is called a Lebesgue
number for Q.)

Proof. See [Eise74].

5.5.13. Theorem. Letf:X — Y be a continuous map between metric spaces. If X is
compact, then f is uniformly continuous.

Proof. See [Eise74].

We finish this section with the definition for one well-known construction for
“compactifying” certain noncompact spaces.

Definition. A Hausdorff space X is said to be locally compact if every point has a
compact neighborhood.

Clearly, every compact space is locally compact. R" is locally compact but not
compact.

5.5.14. Theorem. Let X be a noncompact, locally compact topological space with
topology T. Let

X = XU{eo},
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where we assume that the point « does not belong X. Then the set

T.. = Tu{X.. - K| K is a compact subset of X}
is a topology for X.. that makes X.. into a compact topological space containing X as
a dense subspace. The space X is unique in the sense that if Y is any compact Haus-
dorff space that has a point p, so that Y — {p} is homeomorphic to X, then this home-
omorphism extends to a homeomorphism from Y onto X., which sends p to .

Proof. See [Eise74].

Definition. The topological space (X, T-) is called the one-point compactification of
X and the point « is called the point at infinity in X.

The obvious example of a one-point compactification is S", which is the one-point
compactification of R™.

5.6 Connectedness

Connectedness can be defined in a number of ways. Except for the fact that we are
dealing with topological spaces, some of the definitions here will be the same as those
in Section 4.2, but we shall begin with the pure topological notion.

Definition. A topological space X is said to be connected if X cannot be written in
the form A U B, where A and B are two nonempty disjoint open subsets of X.

5.6.1. Theorem. Let f:X — Y be a continuous map between topological spaces X
and Y. If X is connected, then so is £(X).

Proof. See [Eise74].
5.6.2. Corollary. Connectedness is a topological property.

5.6.3. Theorem. Consider a collection of nonempty spaces Xj, 1 <i < k. All the Xj
are connected if and only if the product X; x X; X .. .x Xk is connected.

Proof. See [Eise74].
5.6.4. Theorem. R"is connected.

Proof. One first proves that R is connected and then uses Theorem 5.6.3. See
[Eise74].

The next theorem uses the connectedness of R and generalizes the usual inter-
mediate value theorem learned in calculus.
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5.6.5. Theorem. (The Intermediate Value Theorem) Let X be a topological space
and f:X — R a continuous map. Assume that f(x;) < f(x,) for some x;, x, € X. If ¢ is
a real number so that f(x;) < ¢ < f(x»), then there is an x € X with f(x) = c.

Proof. See [Eise74].

Definition. A connected subset of a topological space X that is not properly con-
tained in any connected subset of X is called a component of X.

A more intuitive way to express the notion of component is to say that a compo-
nent is a maximal connected subset.
A simpler notion of connected is:

Definition. Let X be a topological space. We say that X is path-connected if for any
two points p, q € X, there is a continuous map f:[0,1] - X with f(0) = p and (1) =
q. The map f is called a path from p to q. A maximal path-connected subset of a top-
ological space X is called a path-component of X.

5.6.6. Theorem. Let f:X — Y be a continuous map from a path-connected space
onto a space Y. Then Y is path-connected.

Proof. See [Eise74].
5.6.7. Theorem. A path-connected space is connected.
Proof. See [Eise74].

Connected does not imply path-connected in general, so that the notion of path-
connected is stronger. For “nice” spaces however these concepts are identical.

5.6.8. Theorem. A topological manifold is connected if and only if it is path-
connected.

Proof. See [Eise74].

5.7 Homotopy

We have talked about how topology studies properties of spaces invariant under
deformations (rubber sheet geometry). This section studies deformations of
mappings.

Definition. Let f, g:X — Y be continuous maps. A homotopy between f and g is a
continuous map

h: Xx[0,1]—-Y



310 5 Point Set Topology

such that h(x,0) = f(x) and h(x,1) = g(x) for all x € X. In that case, we shall also say
that f is homotopic to g and write f = g.

If we define f;: X — Y by f(x) = h(x,t), then we can see that the existence of h is
equivalent with a one-parameter family of maps connecting f and g and we can think
of h as deforming f into g. See Figure 5.12(a).

5.7.1. Example. Consider the maps f, g:D?* — D? given by f(p) = 0 and g(p) = p.
The map h:D? x [0,1] — D? defined by h(p,t) = tp is a homotopy between them. In
other words, the identity map of D? is homotopic to a constant map.

5.7.2. Theorem. The homotopy relation = is an equivalence relation on the con-
tinuous maps from one topological space to another.

Proof. We must show that the relation is reflexive, symmetric, and transitive.

Reflexivity: If f:X — Y is a continuous map, then h:X x [0,1] — Y defined by h(x,t)
= f(x) is a homotopy between f and f.

Symmetry: Letf, g:X — Y be continuous maps and assume that h: X x[0,1] - Y is
a homotopy between f and g. Define k: X x[0,1] — Y by k(x,t) = h(x,1-t).
Then k is a homotopy between g and f.

Transitivity: Let f, g, h:X — Y be continuous maps and assume that o, f:X x [0,1]
— Y are homotopies between f and g and g and h, respectively. Define
v:X x[0,1] - Y by

Y(x,1) = oux,21), te[0,1/2]
=B(x,2t-1),  te[l/21].

Then v is a homotopy between f and h.

The theorem is proved.

px[0.1] v
pXO h

P%

px1

() (b)

Figure 5.12. Homotopies between maps.
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Definition. If f:X — Y is a continuous map, then the homotopy class of f, denoted
by [f], is the equivalence class of f with respect to =. The set of homotopy classes of
maps from X to Y will be denoted by [X,Y].

If X consists of a single point p, then a homotopy between two maps f, g:{p} —
Y is just a path in Y from the point yo = f(p) to the point y; = g(p). See Figure 5.12(b).
In particular, it is easy to see that the set of homotopy classes [{p},Y] is in one-to-one
correspondence with the path-components of Y.

Definition. A continuous map f:X — Y is called a homotopy equivalence if there is
a continuous map g:Y — X with g = 1x and fcg = 1y. In this case we shall write
X =Y and say that X and Y have the same homotopy type.

5.7.3. Theorem. Homotopy equivalence is an equivalence relation on topological
spaces.

Proof. This is straightforward.

Since the general homeomorphism problem is much too difficult except in certain
very special cases, a weaker classification is based on homotopy equivalence.

Definition. A space is said to be contractible if it has the homotopy type of a single
point.

5.7.4. Example. The unit disk D" is contractible. To see this we show that it has the
same homotopy type as the point 0. Define maps f:D" — 0 and g:0 — D" by f(p) =0
and g(0) = 0. Clearly, fog = 1¢. Define h:D" x [0,1] — D" by h(p,t) = tp. Then h is a
homotopy between gof and the identity map on D", and we are done. Another way to
state the result is to say that both f and g are homotopy equivalences.

Definition. A subspace A of a space X is called a retract of X if there exists a con-
tinuous map r:X — A with r(a) = a for all a in A. The map r is called a retraction of
X onto A.

If x¢ is any point in a space X, the constant map r(x) = xo shows that any point
of a space is a retract of the space. A less trivial example is

5.7.5. Example. The unit circle in the plane is a retract of the cylinder
X ={(x,y,2)|X? +Y? =1and z €[0,1]} (5.10)
because we have the retraction r(x,y,z) = (x,y,0).

Definition. Let A be a subspace of a space X. A deformation retraction of X onto A
is a continuous map h:X x I — X satisfying

h(x,00=x, h(x,1)eA, all xeX,

and
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h(a,1)=a, all acA.
In this case A is called a deformation retract of X.

The argument in Example 5.7.4 also shows that the map f:D" — 0 defined by
f(p) = 0 is a deformation retraction of D" onto 0.

5.7.6. Example. The unit circle is a deformation retract of the cylinder X defined
by equation (5.10). To see this simply define h: X x I — X by h((x,y,2),t) = (x,y,(1-t)z).

5.7.7. Theorem. Let A be a subspace of a space X. If A is a deformation retract of
X, then the inclusion map 1:A — X is a homotopy equivalence. In particular, A and
X have the same homotopy type.

Proof. Leth:XxI— Xbeadeformation retraction of X onto A. Define f: X — A by f(x)
=h(x,1). Since fot = 15 and h is homotopy between t<f and 1x, we are done.

Intuitively speaking, a subset A is a deformation retract of a space X if we can
shrink X down to A without “cutting” anything. We shall see later (Corollary 7.2.3.3
and Theorem 7.2.3.4) that a circle does not have the same homotopy type as a point.
Therefore, no point of the circle is a deformation retract of the circle. The only way
to “shrink” the circle to a point would be to cut it first.

Often it is convenient to talk about “pointed” homotopies, or more generally
“relative homotopies.”

Definition. The notation f:(X,A) — (Y,B) will mean that f is a map from X to Y and
f(A) C B.

Definition. Let f, g:(X,A) — (Y,B) be continuous maps. A homotopy between { and
g relative A is a continuous map

h:X x[0,1] > Y

such that h(x,0) = f(x), h(x,1) = g(x), and h(a,t) € B for all x € X, a € A, and
t € [0,1]. In that case, we shall also say that f is homotopic to g relative A and write
f =A £.

5.7.8. Theorem. The homotopy relation =, is an equivalence relation on the set of
continuous maps f:(X,A) — (Y,B).

Proof. The proof is similar to the proof of Theorem 5.7.2. We just have to be careful
that the homotopies keep sending A to B.

Definition. The set of homotopy classes of maps f:(X,A) — (Y,B) with respect to
the equivalence relation =, will be denoted by [(X,A),(Y,B)].

A natural question to ask at this point is how many homotopy classes of maps
there are between spaces in general and what this number measures. We are not ready
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to answer such a question yet and will have to wait until Chapter 7, but the reader
may appreciate one glimpse into the future. Given a map

f:s' > 8!,

the degree of f is, intuitively, the number of times that f winds the circle around itself.
(In Section 7.5.1 we shall give another definition of the degree of f.) Define

f,:S!' > S!

by f,(cos0,sin0) = (cosn6,sinnB). Then f, has degree n. It turns out that all maps of
the circle to itself are homotopic to one of these maps and two maps are homotopic
only if they have the same degree, so that there is a bijection between the homotopy
classes of maps of the circle to itself and the integers.

5.8 Constructing Continuous Functions

There are many situations where one wants to define continuous functions on a
topological space satisfying certain properties. This brief section describes two very
fundamental theorems that deal with the existence of certain functions, which in turn
can be used to construct many other functions. We shall give one application having
to do with the existence of partitions of unity at the end of the section.

For a topological space to have the continuous functions we want it needs
to satisfy a special property. It is worth isolating this property and giving it a
name.

Definition. A topological space X is said to be normal if, given two disjoint
closed sets A and B in X, there exist disjoint open sets containing A and B,
respectively.

The condition that a space be normal is somewhat technical, like being Hausdorff,
but fortunately the spaces of interest to us satisfy this property.

5.8.1. Theorem.

(1) Any metrizable space is normal.
(2) Any compact Hausdorff space is normal.

Proof. See [Eise74].
5.8.2. Theorem. (The Urysohn Lemma) Let X be a normal space and assume that
A and B are two closed subsets of X. Then there exists a continuous function f:X —

[0,1] such that f takes the value 0 on A and 1 on B.

Proof. See [Jani84].
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5.8.3. Theorem. (Tietze Extension Lemma) Let X be a normal space. Then any
continuous function f:A — [a,b] or f:A — R defined on a closed subset A of X can
be extended to a continuous function F:X — [a,b] or F:X — R, respectively.

Proof. See [Jani84].

The next concept enables one to localize problems and will be used in later
chapters.

Definition. A partition of unity on a topological space X is a collection ® of contin-
uous real-valued functions satisfying the following:

(1) Forallp e ®andx € X, 0 < o(x) < 1.

(2) Every point in X has a neighborhood on which all but a finite number of func-
tions in @ vanish.

(3) For every x in X

Y ox)=1.

ped

(Note that by condition (2) this is a finite sum for each x.)

If € is a cover of X, we say that the partition of unity ® is subordinate to & if each
function in ® vanishes outside some set in &.

5.8.4. Example. Define functions

b,b,:R—R
by
b(x)=x+1, for xe[-1,0],
=—x+1, for xel0,1],
=0, elsewhere,
and

by(x) = b(x — n).

It is easy to check that the collection of functions by(x) is a partition of unity on R.
See Figure 5.13. This partition of unity is subordinate to the open cover

by (%) by(x) by (%)

v y Figure 5.13. A partition of unity
n-3 n-2 n—1 n n+l n+2 n+3 for R.
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{n-1,n+1)|neZ}
of R.

It would be good to know what condition on a topological space guarantees the
existence of partitions of unity.

Definition. A cover of a space is locally finite if every point in the space has a neigh-
borhood that meets only finitely many elements of the cover. A Hausdorff space is said
to be paracompact if every open cover admits a locally finite subcover.

5.8.5. Lemma. Every paracompact space is normal.
Proof. See [Jani84].

5.8.6. Theorem. A Hausdorff space is paracompact if and only if every open cover
admits a partition of unity subordinate to it.

Proof. The only hard part is showing that paracompact implies the existence of the
stated partitions of unity. Because of Lemma 5.8.5 one can use Urysohn’s lemma to
construct the desired partition of unity. See [Jani84].

The next obvious question is: which spaces are paracompact?
5.8.7. Theorem. The following types of topological spaces are paracompact:

(1) Compact Hausdorff spaces
(2) Topological manifolds
(3) Metrizable spaces

Proof. Part (1) is trivial. Part (2) is also not hard. For (3) see [Schu68].

5.9 The Topology of P"

Projective space P" is not only one of the really important spaces in mathematics but
it also serves as an excellent example of a nontrivial topological space. This section
looks at its purely topological properties. We shall return to it later in Chapter 8 to
look at its manifold properties and again in Chapter 10 where its algebraic properties
come to the fore.

Recall the (set theoretic) definition of P" given in Section 3.4, namely,

P" = (R™ -0)/~, (5.11)

where ~ is the equivalence relation on R™! — 0 defined by p ~ cp, for ¢ # 0. In Chapter
3 we did not say anything about its topology, but actually, when we talk about P" as
a topological space, we always assume that it has been given the quotient space top-
ology that is defined by equation (5.11). What does this space really “look” like top-
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ologically? There are quite a few different definitions that all lead to the same space
(up to homeomorphism). Each gives a little different insight into its structure.

A second definition of P™: P" is the set of lines through the origin in R™!.

Justification: Except for the fact that the origin is missing, the equivalence class
[x1,X2, . . . ,Xnt1] is just such a line through the origin, so that there is a natural one-
to-one correspondence of points. (The topologies are assumed to match under this

correspondence.)

A third definition of P™: P" is the unit sphere S" with antipodal points identified,
that is,

P =S8"/~,
where p ~ —p.

Justification: The relation ~ which relates points of S" to their antipodal points is
an equivalence relation, and the map

(R™! -0)/~ - S"/ ~,

X1 X2 Xn+1
[x1,X2, ..., Xps1] = B'E’ e ,T
where D = [(X1,X2, . . . ,Xnt1)|, is clearly a homeomorphism.

A fourth definition of P™: P" is the unit disk D" in the plane with antipodal points
on its boundary identified, that is,

P"=D"/-,
where ~ is induced from the relations p ~ —p for p € ™.

Justification: See Figure 5.14 where the labels and arrows are trying to indicate the
identifications. The boundary of the upper hemisphere S%is just 87!, It is easy to see

i e-T

disk with antipodal boundary
points identified Figure 5.14. Visualizing the projective plane.
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Figure 5.15. Another way to visualize the projective plane. p\oebius
strip

Disk glued to Moebius strip
along their boundary

that P" can be thought of as S%/~, where ~ is a restricted version of the equivalence
relation in the third definition above, namely, p ~ —p for p € $"~!. Our characteriza-
tion now follows from the observation that the only identifications that are taking
place are on the boundary of S} and that the interior of S} projects in a one-to-one
fashion onto the interior of the disk D".

In the case of the projective plane, there is another well-known identification.

A fifth definition of P?: The projective plane is the union of the Moebius strip and
a disk where we identify their boundaries, which are just circles.

Justification: Consider the shaded region in Figure 5.15, which is a “collar” of the
boundary of the unit disk. A little thought should convince the reader that under
the identification described in the fourth definition, this shaded region is just the
Moebius strip.

We now have four different ways of looking at the topological space P" (five,
in the case of the projective plane). In each case we used a quotient topology of
Euclidean space. Alternatively, one can define this topology by defining a metric on
P

Definition. Let p = [x] and q = [y] be points of P", where x, y € R™!. Define the
distance between p and q, denoted dist (p,q), by

dist(p,q)=d, wherecosdzm and 0<d<m/2.

x|yl

It is easy to see that dist(p,q) is well defined and does not depend on the repre-
sentatives x and y that are chosen for p and q, respectively. It is just the angle between
the two “lines” p and q. The function dist(p,q) is in fact a metric on P" and makes P"
into a metric space.

5.9.1. Example. Let L be the line in R? defined by —x + 2y + 1 = 0. To find the
points of P? that are “near” the ideal point L* associated to the family of lines
parallel to L.

Solution. Let p = [X,Y,Z] be any point of P2. Since L” = [-2,-1,0], a simple com-
putation using the definition of distance shows that the distance d between the two
points satisfies
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If p corresponds to a real point (x,y), that is, p = [x,y,1], the only way that d will go
to zero is if x and y both get arbitrarily large and (x,y) is near the line y — 2x = 0. This
follows from the Cauchy-Schwarz inequality. Similarly, the only ideal points close to
L” are points p = [X,Y,0] with X close to -2 and Y close to —1.

5.9.2. Theorem. N-dimensional projective space P" is a compact, connected,
metrizable topological manifold.

Proof. The compactness and connectedness follows from Lemma 5.3.18 and Theo-
rems 5.4.6 and 5.5.2 using the third and fourth definition of P". We postpone showing
that P" is a manifold to Section 8.13, where we will in fact show that it is a differen-
tiable manifold.

Finally, we note that any hyperplane in P* is homeomorphic to P*!. In particu-
lar, the subspace of ideal points is homeomorphic to P*!,

5.10 EXERCISES

Section 5.2

5.2.1. Prove that every metric on a finite set is the discrete metric.

5.2.2. Prove that if a vector space V has an inner product <,>, then the function

d(u,v) =juv|=<v-u,v-—u>

defines a metric on V.
5.2.3. Prove that equation (5.1) defines an inner product on C°([0,1]).
5.2.4. Prove that the function d; defined by equation (5.3) defines a metric on C°([0,1]).
5.2.5. Prove that the function d.. defined by equation (5.4) defines a metric on C°([0,1]).

5.2.6. Show that the metrics d; and d.. on C%([0,1]) defined by equations (5.3) and (5.4), respec-
tively, are not equivalent metrics.

5.2.7. Let (X,d) be a metric space. Prove that the function d* defined by equation (5.5) is a
bounded metric on X.

5.2.8. Consider the sequence of functions f,(x) = x" on [0,1]. Show that this sequence of func-
tions converges in a pointwise fashion but not uniformly. Note also that although each
function is continuous, the limit function g(x) is not. Describe g(x).

5.2.9. Show that the rational numbers are not complete by giving an example of a Cauchy
sequence of rational numbers that does not converge to a rational number.

5.2.10. Sometimes one does not quite have a metric on a space.
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Definition. A pseudometric on a set X is a function
d: XxX—>R

satisfying conditions (1), (3), and (4) in the definition of a metric and the following
weakened form of condition (2):

(2) d(p,p)=0forall p € X.
(a) Show that the relation ~ on X defined by
p ~ q if and only if d(p,q) =0

is an equivalence relation on X.
(b) Let X* denote the set of equivalence classes of X with respect to the relation ~ in
(a). Define

d*: X*xX*—>R
by
d*([pl.[q]) = d(p.,q).

Show that d* is a well-defined metric on X*.

Section 5.3

5.3.1. Prove that the Euclidean, taxicab, and max metric on R" induce the same topology.
5.3.2. Prove equations (5.6) and (5.7).

5.3.3. Define a homeomorphism between the open interval (0,1) and R.

Section 5.4
5.4.1. Prove that if the maps f;:X; — Y; are continuous, then so is the map
Oxbhx.. . xf: XixXox. .. xXpg=>YixYex...xYn

5.4.2. We can give a more concrete description of the cone on a subspace of R". Let X C R™.
Choose v € R™! — R". Prove that the cone CX on X is homeomorphic to the space

{tx+(1-t)v|xeX and te[0,1]}.

5.4.3. Prove that D" = CS™!,

5.4.4. We can give a more concrete description of the suspension of a subspace of R". Let
X C R". Choose v € R™ — R" and w € R™? — R™!. Prove that the suspension
SX of X is homeomorphic to the space
{x+(1-tu|xeX,te[0,1],and u= v or w}.

5.4.5. Prove that 8" =~ SS™.
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Figure 5.16. A star-shaped region.

Section 5.5

5.5.1. Let A be a subspace of a topological space X. Prove that A is compact if and only if
every cover of A by open subsets of X has a finite subcover.

5.5.2. Prove that a closed interval [a,b] in R is compact.

Hint: Consider
A = {x | [0,x] can be covered by a finite number of sets from the open cover}.
Prove
(1) 0€A
(2) c=sup A € A (Find a contradiction to the assumption that 0 < ¢ € A by finding
a 8 > 0 so that [0,c—8] is compact and [8,c] is contained in an open set from the
cover.)
3) c=1

Section 5.6

5.6.1. Prove that a space consisting of two points is not connected.

5.6.2. Prove that every convex subset of R" is connected.

5.6.3. Use a connectivity argument to justify the fact that a “figure eight” (the wedge S' v S')
is not homeomorphic to a circle.

Section 5.7

5.7.1. Show that a space X is contractible if and only if the identity map for X is homotopic
to a constant map g: X — X.

5.7.2. Let X C R". Define X to be star-shaped if there is some point xg € X, such that for every
x € X, the segment [x¢,x] is contained in X. See Figure 5.16. Prove that every star-shaped
region is contractible.

5.7.3. Prove that every cone is contractible. This extends the result from Exercise 5.7.1.

5.7.4. Prove that a retract of a contractible space is contractible.




CHAPTER 6

Combinatorial Topology

6.1 Introduction

Topology is a relatively new field in mathematics. In the last chapter we considered
some basic concepts from what is called point set topology. This chapter is the first
of three that will introduce us to a broader view of the subject and we begin with a
brief history. Before the mid-19™" century the field as a whole consisted mainly of a
collection of isolated facts. The word “topology” itself appeared first in 1847 in the
book Vorstudien zur Topologie, by J.B. Listing, a student of Gauss. Before that, one
used the term “geometria situs” for the study of certain qualitative properties of geo-
metric figures that would be considered topological today. The term was introduced
by Leibniz, although he did not contribute much to the subject himself. In the 1800s
and early 1900s topology was usually referred to as “analysis situs.”

Probably the earliest significant topological observation concerned a relationship
between the number of faces, edges, and vertices of a simple polyhedron, which was
already known to Descartes around 1620. By a simple polyhedron we mean a convex
three-dimensional linear polyhedron, that is, a convex solid figure without holes that
is bounded by planar faces. The five standard well-known regular simple polyhedra
are shown in Figure 6.1. A regular polyhedron is a polyhedron with the property that
every face has the same number of edges and every vertex has the same number of
edges emanating from it. For now we are only interested in the boundary of a simple
polyhedron. It is easy to show that a simple polyhedron is homeomorphic to D3, so
that its boundary is homeomorphic to the 2-sphere S

Given a simple polyhedron, let ny, n., and n; denote the number of its vertices,
edges, and faces, respectively. Obviously, as Figure 6.1 shows, the numbers n,, n., and
ng themselves vary wildly from polyhedron to polyhedron, but consider the alternat-
ing sum n, — n. + ng. One can check that this sum is 2 for all the polyhedra in Figure
6.1. Is this accidental? No, we have just discovered the first combinatorial invariant.

6.1.1. Theorem (Euler’s Formula). n, — n. + n¢ = 2 for every simple polyhedron.
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Figure 6.1. The five regular
polyhedra.

tetrahedron cube octahedron

() (b) (©

B &

dodecahedron icosahedron
(d) (e)
Figure 6.2. Flattening the boundary
of a cube and octahedron
(@) (b) into the plane.

Sketch of proof. Since this theorem deals with our first example of an invariant in
topology, it is worthwhile showing how this result can be proved. The argument is
actually very simple. First, we reduce the problem to a problem in the plane. The
boundary of our simple polyhedron is a sphere and so if we remove one face, then
the rest of it can be flattened out. Figure 6.2(a) and (b) shows what we would get if
we applied this procedure to the cube or octahedron, respectively. We end up with a
bounded region X in the plane that consists of a collection of n,” vertices, n.” edges,
and ny faces. Clearly,

n,”=n,, n. ’=n, and n¢’=n¢ -1.
The region X is homeomorphic to a disk D?. Our original problem is now equivalent
to showing that if a disk has been subdivided into n,” vertices, n.” edges (it actually
does not matter if the edges are curved or not), and ny faces, then

n, -n.’—-ng’ =1. (6.1)

To simplify our problem, assume that all the faces are triangular. If this is not true
already, then we can achieve this by successively adding edges between non-adjacent
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vertices of a face. See Figure 6.3. Dividing a face into two does not change the alter-
nating sum n,” — n.” + nf because we gain both an edge and a face in the process.

Next, list the triangular faces in a sequence Ty, T, . .., Ty, such that T; meets
X1 = U Tj
1<j<i

in either one or two edges. See Figure 6.4. Our argument now proceeds to show equa-
tion (6.1) holds for X; by induction on i. If i = 1, then X is a triangle and clearly

n, -n., +n;’=3-3+1=1.

Assume now that equation (6.1) holds for Xj_;, i > 2. As Figure 6.4 shows, when we
add T; we either increase n,” and n¢ by 1 and n.” by 2 (Figure 6.4(a)), or we increase
n.” and n¢ by 1 and leave n,” unchanged (Figure 6.4(b)). In any case, the sum n,” — n.’
— ny is still equal to 1. This finishes our sketch of the proof of Euler’s formula.

The alternating sum n, — n. + n¢ in Euler’s formula is called the Euler character-
istic of the boundary of the polyhedron and we have just proved that it is a topolog-
ical invariant. It is the first known result in combinatorial topology. The term
“combinatorial” is derived from the fact that one is studying invariants based on
combinations of numbers, such as ny, n., and ny, that are easily computed by simple
counting.

Euler’s formula is a special case of far-reaching generalizations that have many
beautiful consequences, some of which we shall see later in this chapter and in the
next two chapters. Even this simple version is enough to prove some interesting facts.

Figure 6.3. Subdividing faces into
triangles.

T

(W)
1<jsi

v,

(a) (b)

Figure 6.4. Listing the triangles in a triangular decomposition of a disk.
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For excellent papers on the significance and history of Euler’s theorem see [Gott96],
[GriiS94], [HilP94], and [HilP96]. As an example, we shall now give a simple proof of
the following fact that was already known to Euclid.

6.1.2. Theorem. There are no regular polyhedra other than the ones shown in
Figure 6.1.

Proof. Assume that we have a regular polyhedron for which every face has h edges
and every vertex belongs to k edges. Since every edge has two vertices and belongs to
exactly two faces, it follows that

n¢h =2n. =n,k.

Substituting these identities into Euler’s formula, we get

n n
258 _p 420822,
kK eTh

or equivalently,

1 1 1 1

n. h k 2 (6.2)

Now h and k are always assumed to be larger than 2 for a polyhedron. On the other
hand, if both h and k were larger than 3, then equation (6.2) would imply that

oL o1 1 1 1.1 1 .,
no. h k 274 4 2 7

which is impossible. Therefore, either h or k must equal 3. If h = 3, then

ne. 3 k 2

implies that 3 < k < 5. By symmetry, if k = 3, then 3 < h < 5. Tt follows that
(h,k,n.)=(3,3,6), (4,3,12), (3,4,12), (5,3,30), or (3,5,30).

These values are in fact realized by the tetrahedron, the cube, the octahedron, the
dodecahedron, and the icosahedron, respectively. See Figure 6.1 again.

Other early results in topology dealt with the following:

Map-coloring problems: The problem is to find the smallest number of colors
required to color an arbitrary map in such a way that no two adjacent countries have
the same color. For example, the countries A, B, C, and D in Figure 6.5 show that it
takes at least four colors. Countries such as E and G that meet in a single point are
not considered adjacent. The conjecture that four colors suffice to color any map was
finally proved in 1976 with the help of a computer ([AppH77]). The map-coloring
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Figure 6.5. Coloring maps.

Figure 6.6. The Konigsberg bridges
problem. (@ (b)

/> trefoil knot

Figure 6.7. A nontrivial knot.

problem has been generalized to coloring maps on other surfaces such as on a torus.
Interestingly enough, the Euler characteristic, generalized to arbitrary surfaces, shows
up in the formula for the smallest number of colors for such maps.

Graph problems: A famous example of this type of problem is the Konigsberg
bridges problem. The problem was to prove that the seven bridges across the Pregel
river in the Prussian city of Konigsberg could not be crossed by walking without
walking across one of the bridges more than once. See Figure 6.6(a). The correspon-
ding graph theory problem, to traverse a graph using each edge exactly one, is shown
in Figure 6.6(b).

Knot theory problems: Here one wants to classify knots that are thought of as
imbeddings of circles in R3. The unit circle in R? is a trivial knot. An example of a
nontrivial knot is the trefoil knot shown in Figure 6.7. One seeks invariants with which
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Figure 6.8. Does a simple closed curve have an
q inside and outside?

outside

knots, that is, imbeddings, can be distinguished. On an intuitive level, the question
is, given a pile of string, what test will determine if it is knotted and when are two
knots the same?

The classification of surfaces: The problem is to determine computable invariants
that will differentiate between different surfaces such as the sphere and the torus.

The Jordan curve theorem: A circle in the plane clearly divides the plane into two
parts — a bounded part that is the inside of the circle and an unbounded part, the
outside. A natural question to ask is whether every simple closed curve in the plane has
the same property. Is there again a well-defined inside and outside? See Figure 6.8.
Does every curve that starts at an inside point p and ends at an outside point q have to
cross the curve at some point? Surprisingly, this seemingly obvious fact is difficult to
prove for general curves. The first partial proof of this fact is due to C. Jordan in 1893.

We shall look at some aspects of combinatorial topology in this chapter. A lot of
the material is derived from [AgoM76]. The study of topological invariants is impor-
tant not just to mathematicians but also to anyone interested in geometric modeling
and computer graphics and this chapter will be a warm up for the theory that will be
developed in the next chapter. The next section will try to explain in broad terms what
topology is all about. Section 6.3 defines simplicial complexes and polyhedra. The
latter form the core of the spaces studied by topology. Section 6.4 introduces cutting
and pasting. These basic operations in topology are then applied in Section 6.5 to
solve the surface classification problem.

6.2 What Is Topology?

The topics introduced in the introduction of this chapter may seem like they are all
quite separate, but in fact they all have something in common. For example, the shape
or size of faces and sides of a simple polyhedron is unimportant in Euler’s formula,
the shape of a country is unimportant to the coloring of a map, and whether or not
a graph is planar does not depend on the length or straightness of its edges. In other
words, we were dealing with properties of objects that were invariant under certain
deformations. What are the allowable deformations under which the properties stay
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invariant? They are more general than motions or isometries. Preserving distance or
curvature of curves or surfaces is not important.

As mentioned in Chapter 5, topology is sometimes called “rubber-sheet geometry”
because a topologist does not distinguish between two subsets in R" if, upon pretend-
ing that they are made of rubber, he/she can stretch one into the other without tearing
or puncturing anything in the process. Compare the difference between the sphere and
an ellipsoid and the sphere and the torus. The difference between the former is clearly
minor. The ellipsoid is just a slightly elongated or deformed sphere. On the other hand,
note that if one cuts along any circle on a sphere, then one will divide the sphere into
two parts. The allowable deformations of spaces that we have in mind should preserve
this property. Since cutting the torus along a meridian does not separate it, a torus
cannot be a deformed sphere, and we shall consider the sphere and torus to be topo-
logically distinct. As another example, consider the sphere and the disk. An obvious dif-
ference between the two is that the latter has a boundary whereas the former does not,
but there is also a more subtle difference. Our intuition should tell us that there is no
way to flatten out a sphere without first puncturing it. To put it another way, a sphere
has a “hole” but a disk does not. A torus can also be thought of as having two “holes,”
but its “holes” are quite different from the one in a sphere.

There is one important observation that needs to be made in the context of rubber-
sheet geometry. When we talk about stretching an object, the stretching is not con-
fined to take place in a fixed R but could take place in any higher-dimensional R™*
for some k. For example, a nontrivial knot in R? like the trefoil knot cannot be
deformed into the standard circle within R? (otherwise it would not be knotted), but
it can be deformed into the circle by a deformation that takes place in R*. The point
is that the space in which an object happens to be imbedded is unimportant. In fact,
it would be better to forget that it is there at all, because one is only interested in the
intrinsic properties of the object itself. In analogy with the concept of Platonic forms
one should think of equivalent spaces as being merely two different representations
of some single ideal object. (Of course, what we are talking about now concerns
invariant properties of objects. We could also ask about invariants for maps. The
classification of knots has to do with invariants of imbeddings of circles in R3. This
is a whole other story that is postponed to later.)

The transformations that capture the spirit of rubber-sheet geometry are homeo-
morphisms and the basic problem that the topologist is trying to solve is determin-
ing when two spaces are homeomorphic. It would be nice if there were a simple
algorithm that would accomplish this. The search for such an algorithm takes us out
of general or point set topology and into the domain of algebraic topology and the
special case of combinatorial topology. In algebraic topology the goal is to associate to
each space certain algebraic invariants such that two spaces will be homeomorphic
if and only if they have the same invariants. A good simple example of such an invari-
ant is the Euler characteristic that was discussed earlier. However, note that our point
of view has changed. Instead of starting with a polyhedron with a given Euler char-
acteristic and discovering other polyhedra with the same Euler characteristic, we are
thinking of the Euler characteristic as a number that is the same for all homeomor-
phic spaces. Returning to the general case, if we had methods for computing our alge-
braic invariants, then studying a space would reduce to studying its invariants. In this
way topological or geometric questions would reduce to problems in algebra (hence
the term “algebraic” topology) for which a great deal of theory has already been devel-
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oped. The precise nature of the invariants we are talking about cannot be defined in
a few words. We will only be scratching the surface of this topic in this chapter and
the next. In Chapter 8 we shall describe aspects of differential topology. Differential
topology builds on algebraic topology but specializes to classification problems for
the important class of differentiable manifolds. The differential structure that these
manifolds possess enables one to use constructions that are not available for general
spaces.

6.3 Simplicial Complexes

This section defines the spaces that constitute the core domain to which combinato-
rial and algebraic topology applies.

Definition. A (finite) simplicial complex K in R" is a finite collection of simplices in
R" satisfying:

(1) If 6 € K, then all faces of ¢ belong to K.
(2) If 0, T € K, then either 6 N 1= ¢ or 6 N T is a common face of ¢ and 7.

Definition. Let K be a simplicial complex. The underlying space of K, denoted by
|K|, is defined by
K|= U c.

ocekK

The dimension of K, denoted by dim K , is defined to be -1 if K is empty and the
maximum of the dimensions of the simplices of K, otherwise.

Figure 6.9 shows some examples of simplicial complexes. Note that a simplicial
complex is a set of simplices and hence not a subset of Euclidean space. Its under-
lying space is, however. In practice one is often sloppy with the terminology. In refer-
ring to the space in Figure 6.9(c), a person might very well speak of “that simplicial
complex K,” but as long as the simplices are clearly indicated, there should be no con-
fusion. In the future we may sometimes abbreviate the term “simplicial complex” to
“complex.”

Condition (1) in the definition of a simplicial complex is a technical one. Its use-
fulness will become clear later. Condition (2) is the main defining condition and basi-
cally states that one should consider a simplicial complex simply as specifying an
acceptable decomposition of a space into simplices. This can be done in many ways
however, as one can see from Figure 6.10. The two simplicial complexes K and L have
the same underlying space.

Definition. A simplicial complex L is said to be a subdivision of a simplicial complex
K if |K| = |L| and every simplex of K is a union of simplices of L.

In Figure 6.10 the simplicial complex L is a subdivision of the simplicial complex K.
A wrong way to subdivide a space into simplices is shown in Figure 6.11(a). The
set A is a set of simplices but not a simplicial complex because its two 1-simplices do
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not intersect in a simplex in A. On the other hand, |Al is the underlying space of the
simplicial complex K in Figure 6.11(b). A useful fact is the following:

6.3.1. Proposition. Let K be a simplicial complex. Every point of the underlying
space |K| belongs to the interior of a unique simplex of K.

Proof. Exercise 6.3.1.

Definition. Let K be a simplicial complex. A subcomplex of K is a simplicial complex
L with L c K.

For example, in Figure 6.10 the set M = {vq,v;,vgv,]} is a subcomplex of L. M is not
a subcomplex of K even though M| c K|.

Definition. The boundary of a simplicial complex K, denoted by dK, is defined by

0K ={1| tis a face of a simplex 6* ¢ K that belongs
to a unique (k +1)-simplex of K} .

It is easy to see that dK is a subcomplex of K. For example, if K is the simplicial
complex in Figure 6.9(b), then

oK ={vp,vi,V2,V3,V1V2,VoV3,ViV3).

This example also shows that the underlying space of 9K, 0K/, is not necessarily the
boundary of |K| because, thinking of |Kf, as a subset of R?,

bdry K|=|0K| U vgv;.

We always have [0K| < bdry IK| and the two sets are the same if |K| is an n-
dimensional manifold in R".

Definition. Let K be a simplicial complex and let v and w be vertices of K. An edge
path in K from v to w is a sequence of vertices v = vy, vy, ..., v, = w of K with the
property that vivi,; is a 1-simplex in K for 0 <i < n. An edge path from v to v is called
an edge loop at v.

Definition. A simplicial complex K is connected if, given any two vertices v and w
in K, there is an edge path from v to w.

The simplicial complex in Figure 6.9(a) is not connected, whereas those in Figures
6.9(b) and 6.9(c) are. It is easy to show that a simplicial complex K is connected if
and only if |K| is path-connected.

Definition. Let X be a subspace of R™. A triangulation of X is a pair (K,¢), where K
is a simplicial complex and ¢ : [K| — X is a homeomorphism. The complex K is said
to triangulate X. A (finite) polyhedron is any space that admits a triangulation.
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Note that even simple spaces like the unit circle are not the underlying space of
a simplicial complex because a “curved” space cannot be built out of “flat” spaces like
simplices. It is easy to show, however, that the circle is a polyhedron. In fact, all the
spaces that one usually can think of are polyhedra. The only obvious exceptions have
simple explanations. For example, the plane is not a polyhedron even though it has a
nice triangulation using an “infinite” simplicial complex as shown in Figure 6.12(a).
One can easily allow a simplicial complex to have an infinite number of simplices, but
when one deals with infinity one does have to be careful. One would not want to think
of the reals as a 0-dimensional complex whose simplices are the individual points.
That would imply the wrong topology for the space. Here is the correct definition:

Definition. An infinite simplicial complex K is a countably infinite collection of sim-
plices in R" satisfying conditions (1) and (2) in the definition of a finite simplicial
complex and the following:

(3) Every point of R" has a neighborhood that meets only finitely many simplices
of K.

An infinite polyhedron is a space that is triangulated by an infinite simplicial complex.

All spaces studied in this book are finite or infinite polyhedra. Since we deal mostly
with finite ones we shall omit the adjective “finite” and explicitly use the adjective
“infinite” on those occasions where we need infinite simplicial complexes or polyhe-
dra. By and large, spaces that “really” are not finite polyhedra are topologically “weird”
spaces such as the one shown in Figure 6.12(b) but could nevertheless be useful like
fractals in computer graphics (described in Chapter 22 in [AgoMO05]).

Sometimes we want to distinguish between “curved” and “flat” or “linear” spaces.

Definition. The underlying space of an n-dimensional simplicial complex K is called
a linear polyhedron of dimension n.

It is easy to show that the term “convex linear polyhedron” using the new defini-
tion of linear polyhedron is compatible with the term as defined in Section 1.7.

Definition. Let py, p2, ..., and px be a sequence of points in a two-dimensional
plane X. The set

AN
_IU v

X={(xsin(1/x)) 10<x <2}
uf Oy)I-1<y<1}

Figure 6.12. Spaces without
finite triangulations. (a) (®)
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k-1

c=[pi.pi +1]
i=1

is called a polygonal curve in X defined by the vertex sequence. Each p; is called a
vertex of the curve. If p; = px, then C is called a closed polygonal curve.

Let C be a closed polygonal curve in a plane X in R" that is homeomorphic to a
circle. By the Jordan curve theorem the curve C divides the plane into two connected
closed sets A and B, so that

X=AuUB, AnB=C,
and one of the parts, say A, is bounded and the other is not.

Definition. The bounded part A is called the polygon with vertices p; defined by the
polygonal curve.

A polygon is actually a polyhedron that is homeomorphic to a disk. This fact, that
an imbedding of a circle in the plane extends to an imbedding of the disk, is the so-
called Schoenflies theorem that was partially proved by A. Schoenflies in 1906.

Definition. If P is a polygon and if Py, Py, ..., and Py, k > 0, are disjoint polygons
contained in the interior of P, then removing the interior of a P; creates a hole in P and

cls (P—P1 —Pz —...—Pk)
is called a polygon with k holes.

From the comments above, polygons and polygons with holes are two-
dimensional polyhedra.

Definition. If ¢ is a simplex, then the simplical complex (o) = {1 | T < 6] is called
the simplicial complex determined by 6.

For example, (voviv2) = {Vo,V1,V2,VoV1,V1V2,VoV2,VoV1V2}.
Next, let us isolate the maps that are naturally associated to complexes.

Definition. Let K and L be simplicial complexes. A simplicial map f : K — L is a
map f from the vertices of K to the vertices of L with the property that if v, vy, ...,
and vy are the vertices of a simplex of K, then f(vg), f(vy), ..., and f(vy) are the ver-
tices of a simplex in L. If f is a bijection between the vertices of K and those of L, then
f is called an isomorphism between K and L and the complexes are said to be iso-
morphic. We shall use the notation K = L to denote that complexes K and L are
isomorphic.

6.3.2. Proposition. Composites of simplicial maps are again simplicial maps.
Proof. Easy.

We show how simplicial maps induce continuous maps of underlying spaces. Let
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f: K>L
be a simplicial map between simplicial complexes K and L. Define a map
If]: Kl —[L|

as follows: Let x € |K|. By Proposition 6.3.1, the point x belongs to the interior of
some unique simplex 6 = vgv; - - - vg of K. If the t; are the barycentric coordinates of
x with respect to 6, then .
X = z tivi,
i=0

and we define

k
Ifl (x) = 2 tif (v;).

i=0

Definition. The map |f| is called the map of underlying spaces induced by the sim-
plicial map f.

6.3.3. Proposition.

(1) |f] is a well-defined continuous map.
(2) Ifl is a homeomorphism if and only if f is an isomorphism.
(3) If f: K > L and g : L — M are simplicial maps, then |gof| = |g|e|f].

Proof. Exercise 6.3.6.

6.4 Cutting and Pasting

We begin by discussing a slight generalization of simplicial complexes. There are two
reasons for introducing the abstract simplicial complexes defined below. One is that
simplicial complexes, sometimes called geometric complexes, play only an interme-
diate role in the study of polyhedra. It is the abstract part of their definition that one
typically exploits and not the fact that they happen to correspond to a particular sub-
division into simplices of an actual space in R". This point will be brought home by
various constructions we carry out in this section and the next. A second reason is
that in topology one often talks about “cutting” a space or “pasting together” (or “iden-
tifying”) parts of spaces. It often helps tremendously in understanding complicated
spaces and constructions by defining them in terms of such cutting and pasting oper-
ations. The mathematical basis of these operations is the concept of a quotient space
as defined in the last chapter, but because of the special nature of what we are doing
in this chapter, we can define that concept more simply using abstract simplicial com-
plexes. Hopefully, this will also strengthen the reader’s intuition about quotient spaces
in general.
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Definition. An abstract simplicial complex is a set A of nonempty subsets of a given
set V such that

(1) {v} € Aforeveryve V and
(2) if S € A, then every nonempty subset of S belongs to A.

The elements of A are called (abstract) simplices. If S € A and if S has k + 1 elements,
then S is called an (abstract) k-simplex. The elements of V are called the vertices of A
and one identifies the vertex v in V with the 0-simplex {v} in A.

Every simplicial complex K defines an abstract simplicial complex Ax in a natural
way, namely,

Ak ={{vo,v1,..., vk} | vovy --- vk is a k-simplex of K}.

It is easy to check that A is in fact an abstract simplicial complex. For example, if L
is as in Figure 6.10, then

Ar ={vo,Vvi,V2,{vo, V2 },{vi, V2 }}.

Conversely, it is possible to associate a geometric complex to an abstract simplicial
complex.

Definition. Let A be an abstract simplicial complex. A geometric realization of A is
a pair (¢,K), where K is a simplicial complex and ¢ is a bijective map from the ver-
tices of A to the vertices of K such that {vy,vy, ... ,vi} is a k-simplex of A if and only
if e(vp)o(vy). . .o(vy) is a k-simplex of K.

To show that geometric realizations exist, we simply need to “fill in” the missing
points in the abstract simplices.

6.4.1. Theorem. Every abstract simplicial complex A has a unique (up to isomor-
phism) geometric realization.

Proof. Let V be the set of vertices of A and assume that V has n + 1 points. Let ¢
be a bijection between V and the set of vertices of any n-simplex ¢ in R". Define a
subcomplex K of ¢ by

K ={p(vo)o(vy)---@(vi) | {vo,vi,...,vk } is a k-simplex of A}.

It is easy to see that (¢,K) is a geometric realization of A. If (¢’,K’) is another geo-
metric realization of A, then @o¢! : K — K’ is an isomorphism.

Theorem 6.4.1 is much more significant than one might conclude from its trivial
proof. Tt is this theorem that allows us to define certain quotient spaces without any
fancy point set topology.

Before we show how abstract complexes can be used to make sense of the cutting
and pasting operations that we referred to at the beginning of this section, it will help
the reader understand what we are talking about here by giving some examples. Prob-
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Figure 6.13. Spaces as labeled figures.

ably the simplest way to describe a space to someone is to do it visually. In practice,
this would mean drawing a picture of it on a flat surface. Consider two-dimensional
spaces such as surfaces. Unfortunately, few of even these special spaces can be flat-
tened out into a plane. Most are also too complicated for an easily understood rep-
resentation by means of projections, but there is another approach. Suppose that we
were able to “cut” the space in a few places and that the result could then be flattened
out. It turns out that as long as we label the resulting flattened figure appropriately
to indicate where the cuts were made, then it will be possible for a person to recon-
struct the space mentally from this labeled figure. As an example of how labeled figures
can describe spaces, consider Figure 6.13. Does the reader see how Figures 6.13 (a)-(c)
are defining a circle, cylinder, and 2-sphere, respectively? Our next task is to make the
passage from a labeled figure to the space it represents rigorous. This is where abstract
complexes come in.

Definition. A labeled (simplicial) complex is a triple (L,u,S), where L is a simplicial
complex, S is a set, and p is a map from the vertices of L to S. The elements of S will
be called labels. To simplify the notation, we shall usually drop the explicit reference
to S and talk about the “labeled complex” (L,u) whenever S is clear from the context.

Suppose that (L,u) is a labeled complex. Define an abstract simplicial complex
Awyw by
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A ={uS)|SeAL}.

Let (@), K(Ly) denote any geometric realization of Ay and let X, = [ K. Let

cw: L=>Kaey

be the simplicial map defined on a vertex v of L by

cLw (V) = O (W(v))

and let

PLw =lewwl: L= X w-

Definition. A, is called the abstract simplicial complex induced by the labeled
complex (L,n). K, is called a simplicial complex defined by (L,u). The space X
is called a geometric realization of (L,n) and the map p(y is called the natural pro-
jection of |L| onto X ).

The labeled complex (L,p) defines the simplicial complex K ) and the space X ;)
uniquely up to isomorphism and homeomorphism, respectively, with X, just being
a quotient space of |L|. It is easy to show that ¢,y and p(,) are an isomorphism
and homeomorphism, respectively, if and only if u is a bijection. A good exercise for
the reader is to return to Figures 6.13(a)—(c) and show that the spaces X ) are in
fact the ones indicated by working through the definitions we have just given.
Although converting labeled figures to the spaces they represent is very easy once one
understands what is going on, one does have to exercise a little caution. For example,
a quick glance at the labeled figure in Figure 6.14(a) might lead one to believe that
one is representing a cylinder. This is incorrect. The space X, is actually homeo-
morphic to the sphere S?, just like Figure 6.13(c). There is also a danger in using too

(L) (L)
VO V2 VO VO
Vi V3 Vi Vo Vo

Ky = 90, where G is a 3—simplex
X =V,
~q2 @, 0
Xop=$ )

(@) (d)

Figure 6.14. Why labeled figures have to be interpreted carefully.
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= )

Figure 6.15. Using labeled complexes to define cutting and pasting.

few vertices. The labeled complex in Figure 6.14(b) represents a point and not a two-
dimensional space.

Note: The notation that we have just introduced will be used in other parts of this
book. Furthermore, statements such as “the simplicial complex K in Figure A...,”
where Figure A consists of a labeled complex (L,u), will always mean “the” complex
K =K (K is well defined up to isomorphism).

Finally, we come to “cutting” and “pasting” and how these operations might be
defined. We shall not give a precise definition in general, but now that we know about
labeled figures and their geometric realizations, we can at least describe how such a
definition might look. Consider Figure 6.15. Intuitively, we can think of the space Z
in Figure 6.15(b) as the space Y in Figure 6.15(a) “cut” along the edge vjvs. Conversely,
Y is obtained from Z by “pasting together” the two arcs from v; to v4 in Z. Clearly,
from the point of view of point set topology, the space Y is nothing but the quotient
space of the space Z with respect to the equivalence relation on the points of Z, which
says that points on the two arcs from v, to v4 are related if they are to be glued together.
However, by using labeled complexes and their geometric realizations, we can
describe the relationship without the formalism of quotient spaces in point set
topology.
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In the context of the example in Figure 6.15, to define a space Z that corresponds
to having “cut” Y along the edge v;v,, choose a labeled complex (L,u) with |L| =Y as
in Figure 6.15(c). If (L’,u") is the labeled complex shown in Figure 6.15(d), then we
can let Z = |L’| = X ). To define “pasting” we reverse these steps. Assume that we
are given Z = |L’| and (L",u”) as shown in Figure 6.15(d) and that we want a space Y
that corresponds to “pasting together” the two arcs from v; to v4 in Z. Form the labeled
complex (L”,u”) as in Figure 6.15(e) by relabeling the vertex v;y’, which is to be iden-
tified with the vertex v; as v; and define Y = X1~ ,». Note that X7, = X(). In prac-
tice, one often omits all but the relevant labels in figures. In fact, one may not even
specify the triangulation since the homeomorphism type of the resulting space is inde-
pendent of the choice. For example, one could easily use Figure 6.15(f) to indicate the
same type of pasting as Figure 6.15(e).

It should be obvious how to extend the definitions above to the situation where
one wants to cut or paste along arbitrary polygonal curves or, more generally, along
curves in a polyhedron (use an appropriate triangulation) and therefore feel free to
use this terminology in what follows.

6.5 The Classification of Surfaces

The classification of surfaces is not only a fascinating chapter in the history of topol-
ogy but it is also a great place to practice what we learned in the last section. His-
torically, the earliest topological invariants were discovered in the study of surfaces.

We have already given one definition of surfaces in Chapter 5. They are two-
dimensional topological manifolds. For the purposes of this section, we restrict our-
selves to compact and connected surfaces without boundary and we now give a
combinatorial definition for these

Definition. A combinatorial surface (without boundary) is a polyhedron S together
with a triangulation (K,¢) satisfying:

(1) K is a two-dimensional connected simplicial complex.

(2) Each 1-simplex of K is a face of precisely two 2-simplices of K.

(3) For every vertex v in K, the distinct 2-simplices 61, 63, . . ., 05 of K to which v
belongs can be ordered in such a way that 6;, 1 <i <'s, meets 6j;1 in precisely
one 1-simplex, where 05,1 = 07.

A triangulation (K,) satisfying properties (1)—(3) is called a proper triangulation.

Note 1. It is easy to show that every combinatorial surface is in fact a compact con-
nected two-dimensional topological manifold without boundary. The only points
where the property of having a neighborhood that is homeomorphic to a disk is not
obviously true and needs to be checked are the vertices, but this is where condition
(3) is used. The converse is also true:

6.5.1. Theorem. (Rad6) Every two-dimensional topological manifold (without
boundary) in R" admits a (possibly infinite) triangulation. If the manifold is compact
and connected, then every triangulation is proper.
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Proof. See [Rad625]. Incidentally, with regard to the first statement in the theorem,
if the manifold is compact, then the triangulation will be finite. The infinite triangu-
lations occur with noncompact surfaces such as R?, which is not a surface using the
definition above.

In light of Theorem 6.5.1, we shall drop the adjective “combinatorial” in this
chapter and simply refer to a “surface.”

The reader may wonder why we have bothered with a rather technical definition
of a surface, when we have the more natural manifold definition that corresponds to
one’s usual intuitive notion about the kind of space that a surface really is. The reason
is that our goal is to give a complete classification of surfaces and for this it is con-
venient to work with proper triangulations. Thus, the technical aspects would not have
been avoided. At least with our choice of definition we do not have to appeal to a
theorem whose proof would involve a lengthy digression if we were to give it.

Note 2. The second part of Theorem 6.5.1 is important because a space can be tri-
angulated in many ways. It would be a very unsatisfactory state of affairs if some tri-
angulations were proper and others not.

Note 3. Radd’s proof that every two-dimensional topological manifold can be trian-
gulated used methods from complex analysis. The obvious generalization that every
topological n-dimensional manifold can be triangulated remained a famous unsolved
problem called the triangulation problem. We need to point out though that histori-
cally when searching for a triangulation for a manifold one was not satisfied with just
any triangulation. One assumed a weak regularity condition on the “star” of each
vertex.

Definition. Let K be a simplicial complex and ¢ a simplex in K. The star of o,
denoted by star(c), is the union of all the simplices of K that have ¢ as a face, that is,

star (6)=u {t|teKando <1}.

Definition. Two simplicial complexes are said to be combinatorially equivalent if they
have isomorphic subdivisions.

Definition. Call a triangulation (K,9) for a topological manifold a proper triangula-
tion if the subcomplexes that triangulate the boundary of the stars of vertices are
combinatorially equivalent to the boundary simplicial complex of an n-simplex. A
topological manifold that admits a proper triangulation is called a combinatorial
manifold.

The condition for a proper triangulation is stronger than just saying that the stars
are homeomorphic to D" and is basically a generalization of the proper triangulations
defined above for surfaces. In 1952 Moise [Mois52] proved that all topological three-
dimensional manifolds could be triangulated. One of the major achievements of the
1960s was the solution to the triangulation problem by Kirby and Siebenmann
([KirS69]). They proved that in each dimension n, n > 5, there are topological mani-
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folds that are not combinatorial manifolds. Subsequently, Andrew Casson proved in
1985 that there exist four-dimensional topological manifolds that could not be trian-
gulated by any simplicial complex. There is another famous related problem, origi-
nally a conjecture, called the Hauptvermutung. This problem, which was basically a
question about the uniqueness of triangulations, asked if any two proper triangula-
tions of a manifold had isomorphic subdivisions. Here also the answer is no. In dimen-
sions larger than four, there are well-defined invariants that determine whether the
answers to the above questions are yes or no.

Note 4. A space that is a surface using the definition above is also called a closed
surface. The adjective “closed” in the context of surfaces or manifolds means that
there is no boundary. Section 6.6 will briefly discuss the definition and classification
of more general types of surfaces, such as surfaces with boundary like the unit disk
and the torus with two open disks removed (see Figure 6.16), and noncompact sur-
faces with or without boundary, such as the open unit disk or that disk with an open
disk removed from its interior. We also repeat for emphasis that in this section, unless
stated otherwise, a space that is called a “surface” is a compact and connected space.

After these preliminary remarks about surfaces we start the main task of this
section, which is their classification. We would like a list of all possible surfaces (up
to homeomorphism) and, if possible, a simple characterization of each. The basic step
will involve taking a given arbitrary surface, cutting it into pieces, and then reassem-
bling the pieces into some recognizable form. As we cut we will use labels to remem-
ber that the two edges that are created are actually identified in the surface. Our proof
of the classification theorems will therefore involve the manipulation of lots of labeled
complexes. This is why we discussed such complexes in the previous section. In our
case here the complexes will actually be planar and the labeling will be modified some-
what to simplify things.

As an example, consider the torus in Figure 6.17(a). Cutting along the circle A4
produces Figure 6.17(b). Next, cutting along the edge A, in Figure 6.17(b), or along

Figure 6.16. Surfaces with boundary.
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Figure 6.17. Cutting and pasting for the torus.
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Figure 6.18. Regular k-gons.

the circles Aj and A; in Figure 6.17(a) simultaneously, produces Figure 6.17(c). Clearly,
Figures 6.17(b) and (c) can be considered representations of a torus if we understand
the labeling and arrows properly. Notice that we are now labeling the edges and not
the vertices. This will be more intuitive for the cutting and pasting we want to do. It
is easy to pass between the two types of labeling however. The main advantage to
labeling vertices is that the results about geometric realizations of labeled complexes
are easier to state and prove since it is more straightforward to relate this labeling to
abstract complexes. At any rate, our first step in classifying surfaces will be to show
that an arbitrary surface S can be represented by a labeled polygon similar to the one
we got for the torus. We will also show that this geometric presentation is equivalent
to an “algebraic” presentation that consists of a formal symbol.

Let k > 3 and let Qk denote the “standard” regular k-gon (k-sided polygon), namely,
the convex hull of the points

w;(k) = (cos 2mj/k, sin 2mj/k) € s'.
Let

ejk) =wj1(k)wjk)

denote the jth edge of Q. Figure 6.18(a) shows Qs. Since it will also be convenient to
have a two-sided “polygon,” let Q, = D? be the “polygon” with vertices

wo(2)=(1,0) and w;(2)=(-1,0)

and “edges”

e;(2)=S! and e,(2)=Sl.

See Figure 6.18(b).
The next lemma basically proves that any surface can be flattened out into the
plane by cutting it appropriately. More precisely, it shows that a surface can be rep-
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resented as a labeled planar polygon and that we can normalize that polygon to be a
regular k-gon.

6.5.2. Lemma. Given a surface S we can always find a labeled complex (L,u) =
(Ls,us) satisfying:

(1) IL| = Qy for some k.

(2) The vertices of L are precisely the points wg(k), wi(k), .. ., and wy_;(k).

(3) There is a homeomorphism h : X ) — S.

(4) If ys : Qx — S is given by ys = hepr,), then yslint(Qy) and yslei(k) are
one-to-one.

Proof. See [AgoM76].

Think of the labeled complex (Ls,Us) in Lemma 6.5.2 as being derived from S by
cutting along ys(dQy). Conversely, S can be reconstructed from Qy by pasting together
those edges of Qy that are mapped onto the same set in S by ys.

The main consequence of Lemma 6.5.2 is that the study of surfaces has been
reduced to the study of certain labeled complexes because each surface S has
an associated labeled complex (Ls,us), which in turn determines the surface since
S ~ Xsps)-

Before describing an even simpler and more compact representation for S we need
some notation. Let

Z+ = {AIIAZ)"'}

be the infinite set of distinct symbols A;. Define

T={A, Ay, .. JU{AT L ASY L)

where each expression Aj! is considered as a purely formal symbol and no algebraic
significance is attached to the superscript “—1.” We shall identify the symbol (A;!)™!
with A;. With this identification a™! will belong to = whenever the symbol a does. Let

Q = the set of all nonempty finite strings aja, ...aq, where a;e X.

For example, the strings
AA = AAT)T, AIALATIASY, and  AJAAAT'AA;3

belong to Q.

Returning to our surface S, choose a labeled complex (Lg,us) and map s : Qx —
S as described in Lemma 6.5.2. Given an “admissible” labeling of the edges of Qy,
define a string

Wg =ajay...axe

for S by letting the element a; be the label of the ith edge e;(k) of Qk. Here is an infor-
mal description of how such admissible labelings are obtained. Label the first edge
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e1(k) of Qg with an arbitrary element from X. Continue around to the other edges of Qx
in a counterclockwise fashion and associate a different label from X to each of them (if
“a” has been used, “a™!” does not count as different) unless the new edge, say e; = e;(k),
is identified with a previously labeled edge, say e; = e;(k). In that case, the labels for e;
and ej should reflect this identification while at the same time distinguishing between
the two possible ways that the edges could be identified. Assume that e; has been
labeled “a.” If the edges are identified in an orientation-preserving way, then use the
label “a” for e;, otherwise use “a™.”

A more rigorous recursive definition of the string wg is the following. Define a; to
be an arbitrary element of X. Let 2 < i < k and assume that the elements aj, ay, ...,

and a; 1 have already been defined. The definition of a; divides into two cases:

Case 1. ys(ei(k)) # ys(ej(k)) for all j, 1 <j <i: In this case, let a; be an arbitrary
element of

-1 -1 -1
> - {al,al ,az,a; , ...,ai_l}

Case 2. ys(ei(k)) = ys(ej(k)) for some j, 1 <j <i: In this case, let

aj=a; if ys(wi(k))=wys(wj(k))

= aj_1 otherwise.

Definition. The string wg € Q is called a symbol associated to (Ls,ls), or simply a
symbol for the surface S.

Note that the symbol for a surface is not unique since there is no unique choice
of a; in Case 1 above.

6.5.3. Example. To find a symbol for the sphere S?.
Solution. Suppose that we have triangulated §? with the complex
K =9d(vovivavs),

where voviv,vs3 is some 3-simplex. The first task is to find a labeled complex for some
regular k-gon of the type guaranteed by Lemma 6.5.2. Although this would not be
hard to do directly in our special case, in general it would be easiest to use two steps:
One would first flatten the surface out into the plane by cutting and then move the
result to a regular k-gon. We shall follow this general approach, which is actually how
Lemma 6.5.2 would be proved. See Figure 6.19(a). The first step would produce the
simplicial complex L with the simplicial map

o:L—-K

defined by the condition that

al{o;"):(ci") = (oi)
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Figure 6.19. From labeled complex to symbol for sphere.

is an isomorphism for all i. Think of |L| as having been obtained from |K| by cutting
along the edges vov; and vovi. Mapping |L| to a regular k-gon is easy. For example,
the triangulation Ly of Q¢ and the simplicial map

B :L—> L()
B(vi") = w;i(6)

shown in Figure 6.19(a) does the job. It is easy to see that the labeled complex (Lo, o)
shown in Figure 6.19(b) defines our sphere in the sense that a geometric realization
of it would be homeomorphic to S2. (Lo,uo) is a labeled complex of the type we were
looking for and we can use the algorithm described above on it to get a symbol such
as
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A3
(a) (b) ()

Figure 6.20. Alternate labeled complexes for sphere.

AIATIALAASIAS!
for 8%. Figure 6.19(c) shows the corresponding labeled polygon.

Example 6.5.3 listed one symbol for a sphere, but it is clear that a different choice
of edge labels could have produced the symbol

A ALAIAGAGIATY.

As we stated earlier, symbols for surfaces are not unique. On the other hand, although
the labeled complex (Lo,lp) does not determine a unique symbol for the sphere, we
leave it to the reader to convince him/herself that all symbols derived from (Lo,o) will
have the form

alaf1a2a3a§1a§1

for aj € Z. In general, one can show that every symbol associated to a labeled complex
(Ls,us) from Lemma 6.5.2 for a surface S has the same basic structure, that is, if aja,
...ax and bib; ... by are two symbols associated to (Ls,us), then there is a permuta-
tion o of X such that b; = 6(a;) and 6(a™') = 6(a)™! for all a € . This justifies our talking
about “the” symbol wg associated to (Lg,us) after all.

Continuing our sphere example, even though Figure 6.20(a) is a good pictorial
representation for one of its symbols, it is not the one that is usually adopted. By
drawing little arrows in the edges of Qg as indicated in Figure 6.20(b), one can incor-
porate, without superscripts on the symbols, the same information that was contained
in Figure 6.20(a). The two possible ways of identifying edges (via linear maps) are
specified by the direction of the arrows. For example, the arrows tell us that the points
x and y in Figure 6.20(c) are to be identified with the points x” and y’, respectively.
Observe that the direction of the arrows is not uniquely specified by a symbol. Simul-
taneously reversing their direction on two edges that are to be identified changes
nothing. The only important property that is an invariant is whether these arrows
are both in the same or opposite direction. Most of the labeled polygons we shall
refer to from now on will have the arrows in their sides rather than superscripts on
the labels, but we should remember that either or both methods simultaneously is
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permissible. Furthermore, because it is clearly easy to pass back and forth between
symbols and labeled polygons Qy, we can use either of these two representations
interchangeably.

We have defined symbols for surfaces, but that is only half the story. We basically
have a “map” from the set of surfaces to the set of strings Q. To really take advantage
of this correspondence we need a map that goes the other way, that is, we need a map
that associates a surface to a string in Q. It is clear how to define this map on an intu-
itive level. Rather than cutting we shall paste. Basically, if w = aja,...ax € Q, then
we start with Qx and construct a space S,, by pasting together any edges e;j(k) and
ei(k) of Qx whenever a; = aj or a;”'. It is easy to see that if w is an arbitrary string, then
the space S,y need not be a surface. Therefore, in addition to explaining the con-
struction of S, more carefully, one would also like to know under what conditions S,
will be a surface.

Definition. If a € X, then define ny(a) to be the number of times that the symbol a
or a! appears in the string w. The length of w, 1(w), is defined by

1(w) = Z ny(a).

aey

For example, if w = AjA;AT'A1AA3Y, then ny (A1) = 3, nyw(Az) = 2, nyw(A3) = 1, and
ny(A;) = 0 for i > 3. Also, I(w) = 6.

Definition. Define a subset Q* of Q by

Q*={weQ|ny(@)=0or2forallaeX}.

It is easy to see that if wg is a symbol for a surface S, then wg € Q*. In fact, the
next lemma shows among other things that Sy, is a surface if and only if w € Q*.

6.5.4. Lemma. There is a construction that associates to each w e Q* a well-defined
labeled complex (Ly,Uy) with the following properties:

(1) 1Lyl = Qi if I(w) > 2 and |Ly| = Qg if I(w) = 2.

(2) The space S,, = X, is a surface.

(3) If S is a surface and if u is any symbol for S, then S = S,,.

(4) Leta,be =. If w=aa!, then S,, = §%. If w = aa, then S,, = P2. If w=aba 'b"!,
then S, =~ S' x S.

Proof. See [AgoM76]. It is easy to justify part (4). Cutting a sphere along an arc
allows us to flatten the remainder into a disk with two edges that are appropriately
identified. For P?, recall the discussion in Section 3.4 and Figure 3.9. For S! x S, see
Figure 6.17.

Definition. IfSis a surface, then any w € Q* such that S,, = S will be called a symbol
for S.

The fact that this new definition of a symbol for a surface is compatible with the
earlier one follows from Lemma 6.5.4(3).
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Figure 6.21. The relationship between surfaces and labeled objects.
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Figure 6.22. A connected sum example. Sy

The first step to the classification of surfaces is now completed. Figure 6.21 sum-
marizes the various correspondences that we have established. We have associated to
every surface a collection of symbols. Each of these symbols determines the surface
uniquely up to homeomorphism, so that whenever two surfaces have a symbol in
common they are homeomorphic. Before we move onto the next step we shall find
symbols for some more standard surfaces.

We already know from Lemma 6.5.4(4) that

AATY, AjA;, and AjALATIAS!

are symbols for 8%, P?, and S! x S!, respectively. Knowing this one can determine
symbols for other surfaces that can be formed from these basic ones by means of what
is called a “connected sum” operation. Let S; and S, be two surfaces. Intuitively, the
connected sum of S; and S, is the surface one gets by cutting out a disk from both
S; and S; and pasting the remainders together along the boundaries of the holes that
were generated. See Figure 6.22. To make this rigorous, choose a proper triangula-
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tion (Kj,@;) for S; and let o; be a 2-simplex of K;. If the K; are simplicial complexes in
R", we can choose n to be large enough so that we can reposition the polyhedra Kl
in such a way that 6y =0, = Kl N K.

Definition. Any space that is homeomorphic to the underlying space of the simpli-
cial complex

L =(KUK2)-{oi}
is defined to be the connected sum of S; and S, and is denoted by S; # S,.

6.5.5. Proposition. The connected sum operation # is well defined, that is, the
homeomorphism type of S; # S, does not depend on the triangulations (Kj,¢;) or the
choice of simplices o;. Furthermore,

(1) S; # S, is a surface.

(2) (Commutativity) S; # S, = S, # S;.

(3) (Associativity) S; # (S, #S3) = (S1 #S;) # Ss.
(4) (Identity) S; # S*> = S.

Proof. The hard part of this proof is to show that the operation # is well defined.
The rest is easy. See [AgoM76].

6.5.6. Proposition. Table 6.5.1 shows the symbols for the sphere and the connected
sum of n tori and n projective planes.

Proof. See [AgoM76].

Definition. The symbols in Table 6.5.1 are called the normal forms for the corre-
sponding surfaces.

The next step in classifying surfaces involves manipulating labeled polygons. One
ends up with the next theorem, the first main theorem dealing with the classification
of surfaces. On an intuitive level the proof involves starting with a labeled polygon
that corresponds to the symbol of a given surface and then, by cutting and pasting,
changing that polygon into another labeled polygon that defines a symbol having one
of the normal forms shown in Table 6.5.1. The details are lengthy and messy but not

hard.

Table 6.5.1 Surface symbols.

Surface Symbol
S2 aa™’
(S™%S") #---# (S™ST) asaya;'8y" 8y, 18050 130
ntimes
w aa,---a,3,
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6.5.7. Theorem. Every surface is homeomorphic either to the sphere, or to a con-
nected sum of tori, or to a connected sum of projective planes.

Proof. See [AgoM76].

To finish the classification of surfaces we need to show that the surfaces in
Theorem 6.5.7 are nonhomeomorphic.

Definition. Let S be a surface and let (K,p) be any proper triangulation of S. Let
ni(K) denote the number of i-simplices in K. The Euler characteristic of S, x(S), is
defined by

x(S) =no(K) —n;(K) +n,(K).

6.5.8. Proposition. The Euler characteristic for a surface is a well-defined integer
that does not depend on the triangulation of the surface that is chosen for the defi-
nition. Furthermore,

(1) x(8%) =2, x(S'x8") =0, and %(P?) = 1.
(2) If Sy and S, are surfaces, then x(S1#S,) = x(S1) + x(S2) — 2.

Proof. The fact that the Euler characteristic is well defined is a special case of a
much more general result proved later in Section 7.4. Part (1) is easily verified from
triangulations of the spaces in question. (Any reader who has trouble finding a trian-
gulation for the torus or projective plane can find one in Section 7.2.) To prove (2),
let Ky, K5, L, 61, and 6, be as in the definition of the connected sum. The complexes
K; and L triangulate the surfaces S; and S; # S;, respectively, and the 2-simplex o;
belongs to K. Since L has all the 2-simplices of K; and K; except for 6; and 65, it follows
that

ny(L) =n,(Ky)+na(K3) -2.

But, in L, the boundary of 6; has been identified to the boundary of 6,. Therefore,
ny (L) =ni (K1) +ny(K2) -3

and
no(L) =no (K1) +1o(K2) -3,

because one does not want to count the 0- and 1-simplices in the boundary of o7 and
o, twice. The three equations easily lead to the result in part (2) of the proposition.

It follows from Proposition 6.5.8 and Theorem 6.5.7 that it is easy to compute the
Euler characteristic of any surface.

We are almost ready to prove the second part of the classification theorem for
surfaces. Before we do, we need to bring up orientability again and also define a
commonly used term in connection with surfaces, namely the “genus.” First of all, the
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sphere and the connected sum of tori are orientable surfaces whereas the connected
sum of projective planes is not. We shall not be able to prove this, however, until the
next chapter and after we have a precise definition of orientability.

Definition. If S is a surface, define the genus of S to equal 0 if S is homeomorphic
to the sphere and equal to n if S is homeomorphic to a connected sum of n tori or n
projective planes, n > 1.

Intuitively, if the genus of an orientable surface is n, then the surface is homeo-
morphic to a sphere with n handles. See Figure 6.23. Since the projective plane is the
union of a disk and a Moebius strip, it is often referred to as a sphere with a cross-
cap in the literature. With this terminology, a nonorientable surface of genus n is called
a sphere with n crosscaps.

A simple formula relates the genus g of a surface S to its Euler characteristic y:

g=(2-yx)/2, if Sisorientable
=2-y, otherwise. (6.3)

The next proposition summarizes what we just shown.

6.5.9. Proposition. Table 6.5.2 shows the Euler characteristic, orientability, and
genus of the listed surfaces.

A e

1 1 1 1 1 1
§TxS (S™XSH#EXS) Figure 6.23. Two surfaces as spheres with

Genus 1 Genus 2 handles.

Table 6.5.2 The geometric invariants of some surfaces.

Euler
Surface characteristic Orientability Genus
S? 2 orientable 0
(8™x8™) #---#(S'xS") 2-2n orientable n
N S/

ntimes

=
P24...#P? 2-n nonorientable n




6.5 The Classification of Surfaces 351

6.5.10. Theorem. The sphere, the connected sum of n tori, n > 1, and the connected
sum of m projective planes, m > 1, are nonhomeomorphic spaces.

Proof. The proof follows easily from Proposition 6.5.9 and the topological invari-
ance of the Euler characteristic.

Theorems 6.5.7 and 6.5.10 together comprise what is called the classification
theorem for closed surfaces. This theorem can be summarized by the following:

Algorithm for determining the homeomorphism type of a given surface S:

Step 1: Decide whether or not S is orientable.
Step 2: Compute the Euler characteristic of S from a triangulation.
Step 3: Look up the surface type in Table 6.5.2.

Computing the Euler characteristic is a simple counting procedure but determining
orientability is a little more subtle. The problem is that we do not yet have a formal
definition of orientability. We shall return to that point in the next chapter (Section
7.5).

If we do not count connected sums, then the only concrete example of a nonori-
entable surface that we have so far is the projective plane. There is another well-known
nonorientable surface, called the Klein bottle, named after the mathematician Felix
Klein who first described it. This surface is easier to visualize than the projective plane
and we finish this section with a brief discussion of it.

First, recall that to construct a torus one can start with a tube (Figure 6.17(b))
and then bring the ends around and glue them together (Figure 6.17(a)). We vary this
construction slightly. We again start with a tube (Figure 6.24(a)), but rather than

self-intersection X

N /D

(a) (b) (©

A A

A2
(d)
Figure 6.24. The Klein bottle.
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gluing the ends together like we do for the torus, we bend one end and bring it to the
inside of the tube (Figure 6.24(b)), and finally glue that end to the other one from the
inside (Figure 6.24(c)). Of course, as can be seen from Figure 6.24, this involves pierc-
ing the tube. As a result we do not get a legitimate surface since we have a self-inter-
section along a circle (marked X in Figures 6.24(b) and (c)). Unfortunately, we cannot
eliminate this singularity because the surface K that we were trying to define, like the
projective plane, cannot be imbedded in R3. We are seeing K after it has been “pushed”
into R3. On the other hand, if we had a fourth dimension, then we could grab one
part of the surface near the intersection X and lift it up into the fourth dimension,
thereby removing any intersection and creating a real surface without singularities.
This is in analogy with the way that one can remove the self-intersection of a circle
immersed in the plane as a figure eight. We can remove the self-intersection by lifting
one part of the circle near the intersection up into the third dimension. See Figure
6.25. If one can understand how a two-dimensional person could try to visualize that
three-dimensional construction, then one should be able visualize what the surface K
looks like. It is clear from the construction, that K can also be described as a square
with sides identified as shown in Figure 6.24(d). This means that we can give the fol-
lowing precise definition of a Klein bottle:

Definition. Any surface with symbol A;A,A A5 is called a Klein bottle.

Proposition 6.5.11. The Klein bottle K is a nonorientable surface that is homeo-
morphic to P? # P2,

Proof. Represent the Klein bottle via the labeled polygon shown in Figure 6.26. If
we cut K along the lines indicated by ¢ and d, then we get two Moebius strips with
the shaded region being one of them. This shows that K is gotten by taking two
Moebius strips and gluing them together along their boundaries. This is precisely what
we have in the case of P? # P?, since the projective plane can be gotten by gluing a
disk to a Moebius strip along their boundaries.

Intuitively, we can see that the Klein bottle is nonorientable because it is one-

sided. Here we are thinking of the surface as made of, say, paper and we are walking
along it. See our discussion of the Moebius strip in Section 1.6. Because of the one-

= /)

(a) (®)

Figure 6.25. Eliminating a self-intersection using a third dimension.



6.6 Bordered and Noncompact Surfaces 353

Figure 6.26. The Klein bottle as the union of two Moebius A,
strips.
c
A 1A
d
A2

sidedness, one could say that if one were to pour water “into” a Klein bottle, then the
water would come right “out,” although this is not quite true since gravity would keep
some of it inside.

Sometimes a Klein bottle is referred to as a sphere with a twisted handle and the
connected sum of k Klein bottles, as a sphere with k twisted handles.

6.6 Bordered and Noncompact Surfaces

We finish the chapter with a few comments on “bordered” and noncompact surfaces.
To allow for a boundary we broaden the definition of a combinatorial surface.

Definition. A combinatorial surface (with or without boundary) is a polyhedron S
that admits a triangulation (K,¢) satisfying:

(1) K is a two-dimensional connected simplicial complex.

(2) Each 1-simplex of K is a face of at least one but not more than two 2-
simplices of K.

(3) For every vertex v in K, the distinct 2-simplices 61, 63, . . ., 05 of K to which v
belongs can be ordered in such a way that 6;, 1 <i<s - 1, meets 6;;; in pre-
cisely one 1-simplex. If s > 1, then o5 and 6 have either just v or a single 1-
simplex in common.

The boundary of S, denoted by dS, is defined to be the set ¢( |oK|). If 9S = ¢, then S
is called a closed surface. A surface with nonempty boundary is called a surface with
boundary or a bordered surface.

Clearly, if S is a combinatorial surface using the new definition and if S = ¢, then
S is just a combinatorial surface as defined earlier in Section 6.5. As before, com-
pactness and connectedness is built into the definition of these new surfaces. We shall
again drop the adjective “combinatorial.”

Topologically a bordered surface can be represented by a polygon some, but not
necessarily all, of whose sides have been identified in pairs. The unidentified sides of
the polygon give rise to the boundary of the surface. Therefore, to classify bordered
surfaces one can take the same approach as the one used to classify closed surfaces.
One shows that every bordered surface can be represented by a labeled polygon and
that such representatives can be put into a “normal form.”
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n Figure 6.27. Bordered surfaces as a disk D with
handles.
)

(a) (b

i =
OG-

(©) ()

6.6.1. Theorem. (The Classification Theorem for Bordered Surfaces) Two bordered
surfaces are homeomorphic if and only if they have the same number of boundary
components, they are both orientable or nonorientable, and they have the same Euler
characteristic.

Proof. See [AgoM76].

Theorem 6.6.1 tells us when two bordered surfaces are homeomorphic, but what
does the typical one look like? To answer that question, we need an easy to under-
stand list of bordered surfaces to which an arbitrary one can be compared. A simple
construction produces such a list. Start with a disk and some rectangular strips. Suc-
cessively paste the two ends of these strips to the boundary of the disk. The bordered
surface that one gets in this way is called a “disk with handles.” See Figure 6.27. Note
that each strip can be attached in different ways. Before we paste the ends to the disk,
we have the option of either giving or not giving the strip a half-twist (see Figure
6.27(a) and (b)). The ends themselves can be pasted in a manner so that the strip
either does or does not interlock with previous strips (compare Figures 6.27(c) and
(d)). By computing the number of boundary components, the orientability, and the
Euler characteristic of such disks with handles, one can show, using Theorem 6.6.1,
that every bordered surface is homeomorphic to one of these (see [Mass67]). One
corollary of this that all bordered surfaces can be imbedded in R?. This was not true
for closed surfaces.

Finally, the classification of noncompact surfaces with or without boundary turns
out to be much more difficult than that of compact surfaces because the number of
possibilities is so much greater. Some examples of noncompact surfaces are:

(1) Any open subset of a compact surface (alternatively, the complement of an
arbitrary closed set).

(2) The surface of a ladder with an infinite number of rungs.

(3) The surface of an infinite wire grid that is infinite in both directions.

(4) Infinite connected sums of surfaces.

We refer the interested reader to [Mass67]. The classification results are much messier
than those in the compact case. Note that all the triangulations are infinite in this case.
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theorem fails.

6.7 EXERCISES

Section 6.1
6.1.1. The proof of Euler’s formula (Theorem 6.1.1) used the fact that the triangular faces in
the decomposition of a disk D? can be listed in a sequence Ty, T, . . ., Ty, such that T;
meets
X;.1=U Tj

1<i<i

in either one or two edges. Sketch a proof and discuss potential problems. (In [BurM71]
it is proved that the analogous fact for cell decompositions of higher-dimensional disks
does not hold.)

6.1.2. A common way to express Euler’s theorem is to say that no matter how a sphere is
divided into n¢ regions with n. edges and n, vertices, the sum n, — n. + n; will always
equal 2. Compute n, — n. + n¢ for the decomposition of 8 shown in Figure 6.28. Where
does the proof of Euler’s theorem fail in that example? If we want to preserve the valid-
ity of the theorem, then what conditions must a “permissible region” satisfy so that
Euler’s theorem will hold for all decompositions of §? into permissible regions?

Section 6.3

6.3.1. Let K be a simplicial complex and let x € |K|. Prove that there is a unique simplex
¢ € K such that x € int G.

6.3.2. Show that if L and M are subcomplexes of a simplicial complex K, then L n M is a sub-
complex of K.

6.3.3. Prove that if K is a simplicial complex, then so is JK.

6.3.4. Let K be a simplicial complex.

(a) Prove that K is connected if and only if |K/| is connected.
(b) Define a component of K to be a maximal connected subcomplex L of K. Show that

K=LiulL,u..uL,,
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Figure 6.29. A bordered surface for Exercise 6.6.1.

where the L; are components of K. Show that Li n L; = ¢, if i #j.
(c) Prove that a subcomplex L of K is a component of K if and only if |L| is a com-

ponent of |K].

6.3.5. Let K be a simplicial complex and let f : |[K| — R™ be a map. Prove that f is continu-
ous if and only if f|o is continuous for all 6 € K.

6.3.6. Prove Proposition 6.3.3. (Hint: Use Exercise 6.3.5.)

Section 6.5

6.5.1. Sketch a proof of the fact that a closed nonorientable surface cannot be imbedded in
R3 by justifying and proving the following:

(a) A closed curve that meets a closed surface in R?® “transversally” must meet it in an
even number of points.

(b) If a closed surface in R? contains a Moebius strip, then there is a curve close to
the median curve of the Moebius strip that meets the surface in only one point.

6.5.2. What surface has symbol abcda™'b~'c7!d™!?

6.5.3. Which of the surfaces listed in Proposition 6.5.6 is homeomorphic to the following:
(a) a connected sum of a torus and Klein bottle
(b) a connected sum of a torus and projective plane
Justify your answer.

6.5.4. The genus of a surface can be defined as the maximum number of disjoint circles along
which a surface can be cut without disconnecting it. Justify this characterization of the
genus.

6.5.5. If one is going to make computations with a triangulation of a space there are obvious

reasons for choosing a minimal triangulation, that is, a triangulation that has the fewest
number of simplices. Let S be a surface triangulated by a simplicial complex K. Prove
the following lower bounds on n; = n;(K), the number of i-simplices in K:

(a) S=82: ny 24
n126
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(b) S=P?*: ny, =6
n1215
n2210

(¢) S=S!'xS!: ny>7
n1221
n2214

Hint: Use facts about the Euler characteristic and relations between the numbers n;
as was done in the proof of Theorem 6.1.2.

Section 6.6

6.6.1. Triangulate the bordered surface shown in Figure 6.29. What is its Euler characteris-
tic? Represent the surface as a disk with handles.




CHAPTER 7

Algebraic Topology

7.1 Introduction

The central problem of algebraic topology is to classify spaces up to homeomorphism
by means of computable algebraic invariants. In the last chapter we showed how two
invariants, namely, the Euler characteristic and orientability, gave a complete classi-
fication of surfaces. Unfortunately, these invariants are quite inadequate to classify
higher-dimensional spaces. However, they are simple examples of the much more
general invariants that we shall discuss in this chapter.

The heart of this chapter is its introduction to homology theory. Section 7.2.1
defines the homology groups for simplicial complexes and polyhedra, and Section
7.2.2 shows how continuous maps induce homomorphisms of these groups. Section
7.2.3 describes a few immediate applications. In Section 7.2.4 we indicate how homol-
ogy theory can be extended to cell complexes and how this can greatly simplify some
computations dealing with homology groups. Along the way we define CW complexes,
which are really the spaces of choice in algebraic topology because one can get the
most convenient description of a space with them. Section 7.2.5 defines the incidence
matrices for simplicial complexes. These are a fundamental tool for computing
homology groups with a computer. Section 7.2.6 describes a useful extension of
homology groups where one uses an arbitrary coefficient group, in particular, Z,. After
this overview of homology theory we move on to define cohomology in Section 7.3.
The cohomology groups are a kind of dual to the homology groups. We then come to
the other major classical topic in algebraic topology, namely, homotopy theory. We
start in Sections 7.4.1 and 7.4.2 with a discussion of the fundamental group of a topo-
logical space and covering spaces. These topics have their roots in complex analysis.
Section 7.4.3 sketches the definition of the higher-dimensional homotopy groups and
concludes with some major theorems from homotopy theory. Section 7.5 is devoted
to pseudomanifolds, the degree of a map, manifolds, and Poincaré duality (probably
the single most important algebraic property of manifolds and the property that sets
manifolds apart from other spaces). We wrap up our overview of algebraic topology
in Section 7.6 by telling the reader briefly about important aspects that we did not
have time for and indicate further topics to pursue. Finally, as one last example,
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Section 7.7 applies the theory developed in this chapter to our ever-interesting space
|

The reader is warned that this chapter may be especially hard going if he/she has
not previously studied some abstract algebra. We shall not be using any really
advanced ideas from abstract algebra, but if the reader is new to it and has no one
for a guide, then, as usual, it will take a certain amount of time to get accustomed to
thinking along these lines. Groups and homomorphism are quite a bit different from
topics in calculus and basic linear algebra. The author hopes the reader will perse-
vere because in the end one will be rewarded with some beautiful theories. The next
chapter will make essential use of what is developed here and apply it to the study of
manifolds. Manifolds are the natural spaces for geometric modeling and getting an
understanding of our universe.

Anyone reading this chapter should at least read Sections 7.2.1-7.2.5 as carefully
as possible. They give the reader uninitiated to algebraic topology a taste of what the
subject is about. It is important to pay attention to the details and work through them,
otherwise little will sink in and everything will be just a blur. Two other important
topics are the fundamental group and pseudomanifolds. Although we try to be as clear
as we can be about basic concepts, the proofs in the chapter will tend to get less and
less detailed as we go along because we want to give as much of an overview as pos-
sible. Even if things start getting too abstract, it is recommended that one glance over
all the material (definitions and basic theorems) to at least get an overall picture of
how algebraic topology tries to pin down the structure and classification of topolog-
ical spaces.

7.2 Homology Theory

7.21 Homology Groups

The motivation for the homology groups (and especially the homotopy groups defined
later in the chapter) is based on the intuitive idea that topological spaces can be char-
acterized in terms of the number and type of “holes” that they have. There is no precise
definition of a hole. The simplest examples of spaces without holes are the Euclidean
spaces R". The prototype of a space that has an “n-dimensional hole” is S". The hole
exists because S" cannot be contracted to a point within S" without tearing it. In our
discussion we shall use surfaces and their one-dimensional holes as examples because
one can draw nice simple pictures in this case to illustrate what we are talking
about.

Consider the infinite cylinder C in Figure 7.1. In terms of holes, we would say that
the cylinder has a “vertical hole.” The existence of this hole is demonstrated by the
fact that we have closed curves (circles), such as o and B, that cannot be contracted
to a point in C. The curves o and P actually determine the same hole in C. One reason
for this is that one can deform one curve into the other. On the other hand, the closed
curves o and B in the torus T in Figure 7.1 correspond to the presence of two distinct
holes, an “inside” and “outside” hole. Of course, some closed curves, such as y in the
cylinder C, can be contracted to a point and do not correspond to any hole. It follows
that if we are going to study (one-dimensional) holes by means of closed curves then
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Rt . T

Figure 7.1. Holes in a torus.

Figure 7.2. Boundaries of simplices in complexes.

we need to look at some sort of equivalence classes of closed curves with respect to
a suitable equivalence relation. One natural such equivalence relation would be homo-
topy. This is what one uses for the definition of homotopy groups. For homology
groups we shall use a weaker and more algebraic notion.

Note that the curve yin C bounds a disk D and that the union of the two curves
o and B in C also bounds a region. This suggests that we define an equivalence rela-
tion for closed curves where the equivalence class that represents the trivial element
corresponds to curves that bound. We continue this line of thought in the context of
simplicial complexes. One of the useful aspects of simplicial complexes is that they
have both a geometric and an abstract nature to them. It is the latter that we want to
take advantage of right now because it will let us switch into a symbol manipulation
mode where purely algebraic manipulations replace geometric operations.

Figure 7.2 shows two 2-simplices, 61 = voviv, and 0; = vivpvs, in a simplicial
complex K. Consider the edges 11 = vgvy, T2 = Vovz, T3 = V1V3, T4 = V1V3, and Ts = v,v3 in
K. As point sets, the boundaries of 61, 0>, and 6; U 63 are T; U T, U 13, T3 U T4 U Ts,
and T U T, U T4 U Ts, respectively. What is the relationship between the boundary of
the region 61 U 6, and the boundaries of the individual simplices 6; and 6,? We could
say that the edge 13, considered as part of the boundary of ¢y, and the edge 73, con-
sidered as part of the boundary of 65, have, in some sense, cancelled each other. This
idea of cancellation can be made more meaningful if we use a more suggestive alge-
braic notation and write “+” instead of “U.” If we want the function “boundary of” to
be additive, then we want the equation

T+ To+Ta+T5=(T1 +T2 +T3) + (T3 + T4 +7T5)
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to hold. If we treat simplices as formal symbols, then one way to satisfy this equation
is to identify the expression T3 + 13 (which one is also tempted to write as 2t3) with 0.
A homology theory based on this approach (the mod 2 homology groups) will be dis-
cussed in Section 7.2.6. In this section we describe a second approach. It may seem
slightly more complicated initially but will lead to better invariants.

First of all, we introduce a notion of orientation for simplices. For now, we shall
leave things to intuition and infer the orientation of a simplex simply from the order
in which its vertices are listed. For example, the expression vw will be used to deter-
mine not only the 1-simplex with vertices v and w but also the direction (in this case
from v to w) in which one should “walk” if one were to walk along that edge. Given
an orientation of a 2-simplex, we get a natural orientation of the boundary curve. For
example, returning to the simplicial complex in Figure 7.2, using the expression vov;v;
for the 2-simplex o7 indicates that it has been oriented in the counterclockwise fashion
and its boundary will be thought of as a closed path that is intended to be traversed
also in a counterclockwise fashion, say by starting at vo and then walking from vy to
vy, from v; to v,, and finally from v, back to vy.

We can express the relationships between oriented simplices and their boundaries
symbolically by introducing a boundary operator 9%, so that what we were just saying
can be summarized by equations of the form

*
0 (VOV1V2) =VoV]+ViV2 +V2Vy
and
*
J (V1V3V2) =V{V3+V3Vy+VyoVy.

More generally, since arbitrary oriented regions also define an orientation on their
boundary, it makes sense to have the operator 0* defined on those. In the case of the
union of the two simplices 61 and 6, the geometry would imply that

*
0 (V()V1V2 U V1V3V2) =VQV]+V1V3+V3Vy+VoVg. (7.1)

On the other hand, from an algebraic point of view we would like

% * %
0" (voviva +ViV3vy) =0 (Vovivy) + 0 (ViV3vy)
Z(V()Vl +ViVvy +V2V0)+(V1V3 +V3V) +V2V1). (72)

The difference between the two expressions on the right of equations (7.1) and (7.2)
is that the second has an extra viv, + vov; term. In terms of walking along paths, the
difference between the two paths is that in the second we took extra strolls, first from
v; to v; and later from v, back to vi. This suggests that we should identify viv, + vyvy
with 0. By formally defining v,v; = —v{v, we make this even more plausible. Geomet-
rically, it means that —vv, represents the path from v; to v, traversed in the opposite
direction. We would then have the reasonable looking equations

ViV2 + VoV =VVy + (—V1V2) =0.

This as far as we go in our motivational discussion and we now start our rigorous devel-
opment of homology groups. What we tried to indicate was that if one is interested in
studying the holes in a space, then one approach to this leads to symbol manipulation
involving oriented simplices, formal linear sums of these, and boundary maps. A
homology group will be a “group of cycles” modulo a “group of boundaries.”
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Let 6 be a g-simplex in R™. An orientation of ¢ cannot just be an ordering of the
set V of its vertices because there are many orderings. We need an equivalence rela-
tion on the set of orderings. Note that any two orderings of V differ by a permutation
of V.

Definition. An orientation of 6 is an equivalence class of orderings of the vertices of
o, where two orderings are said to be equivalent if they differ by an even permutation
of the vertices.

The fact that the inverse of an even permutation is an even permutation easily
implies that we are dealing with an equivalence relation. Furthermore, there are only
two equivalence classes. The two possible orientations of a g-simplex 6 = vgv; - - - Vg,
q 2 1 are determined by the orderings (vo,vy, . . . ,vg) and (v,vo,v2,v3, . . . ,vg). If pLis one
orientation of ¢, then it will be convenient to let —u denote the other. we have —(—)
= u. A O-simplex has only one orientation. Note the similarity between the definition
of the orientation of a simplex with the definition of the orientation of a vector space.

Definition. An oriented g-simplex [o] is a pair (o,u), where ¢ is a g-simplex and
u is an orientation of 6. The notation [vgv; - - - v4] denotes the oriented g-simplex (vov;
-+ - Vg,1) where p the orientation determined by the ordering (vo,vi, ..., vg). If g =0,
then there is only one orientation, and we shall always write simply vy instead of [vg].
If g > 1 and if [6] is an oriented g-simplex, then —[c] is defined to be the oriented g-
simplex consisting of ¢ together with the opposite orientation, that is, if [6] = [vov;
-+ -vgl, then —[o] = [vivgvovs - - - vq]. For uniformity of notation, [6] may also be
denoted by +[c].

Now, let K be a simplicial complex and let S; denote the set of oriented g-
simplices of K.

Definition. A g-chain of K, 0 < q<dim K, is a function f:S; — Z with the additional
property that if q > 1, then

f(-{o]) = £(s")

for every [69] in Sq. The set of all g-chains of K is denoted by C4(K). Given f, g € C4(K),
define the sum

f+g:Sq>Z
by
(f+2)(o?]) = (o] + (o).

7.2.1.1. Theorem. (Cy(K),+) is an abelian group.

Proof. First of all, it is easy to see that f + g € Cy(K). The additive identity for + is
the zero function, which maps all oriented g-simplices to zero. The additive inverse
of any f in Cy(K), denoted by —f, is defined by the formula
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(-£)([o]) = ~(E(o]))
for all [69] € S,
It is convenient to have C4(K) defined for all values of g, including negative values,

even though the only groups that are really interesting to us are the ones with 0 < q
< dim K.

Definition. If q <0 or q > dim K, define Cy(K) = 0.
Definition. For all g, the abelian group (Cy(K),+) is called the group of g-chains of
K. The “vector”

C#(K) = ( cee ,Cfl(K),CO(K),Cl(K), cee )

is called the (oriented) chain complex of K.

The definition of g-chains as functions is neither convenient nor intuitive. We shall
now describe the more common notation that one uses when working with g-chains.
For each oriented g-simplex o = [69] € Sq define a g-chain

or € Cq(K)
by
ap(P)=0, for BeSy; and P#ta,
or(a)=1, and
op(-0) =-1.

Such “elementary” g-chains or actually generate C4(K). To see this, choose one orienta-
tion for each g-simplex of K and let S§ be the collection of oriented g-simplices defined
by these choices. (The easiest way to simultaneously pick an orientation for all the sim-
plices of K is to order the vertices of K once and for all and then to take the induced ori-
entation.) The essential property of S{ is that it is a subset of S satisfying:

(1) If g =0, then S = S,.
(2) If g 2 1, then, for any B € S, either B or —f belongs to S but not both.

7.2.1.2. Lemma. Cy(K)= @ Zog.

+
oeSy

Proof. This is easy to prove (Exercise 7.2.1.1). See Appendix B for a clarification of
the notation. A proof can also be found in [AgoM76].

Because the map

Z — Zog
n — nog

is clearly an isomorphism, it follows from Lemma 7.2.1.2 that if K has nq g-simplices,
then Cy(K) is isomorphic to a free abelian group, which is a direct sum of nq copies
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of Z. Since the map o. — o imbeds S, in Cy(K), we shall identify o with o. With this
identification, we now have a rigorous mathematical definition of the notion, referred
to in the motivational part at the beginning of this section, of “formal linear combi-
nations” of oriented g-simplices. Furthermore, by treating the elements of Cy(K) as
such formal sums, which we shall do in the future, we shall make our computations
more intuitive. The reader should remember, however, that the definition of C4(K)
depends only on K and not on any particular choice of orientations.

Now that we know about g-chains, we move on to a definition of the boundary map.

Definition. The boundary map
dq : Cq(K)— Cy1(K)

is defined as follows:

(1) If 1 < g < dim K, then dq is the unique homomorphism with the property that

q .
8q ([V0V1 e Vq]) :2(—1)1[‘]0 v {/i . vq]
i=0

“pn

for each oriented g-simplex [vgv; - - - vq] of K, where “¥;” denotes the fact that
the vertex v; has been omitted.

(2) If g <0 or q > dim K, then 9 is defined to be the zero homomorphism.
7.2.1.3. Lemma.

(1) The maps 94 are well-defined homomorphisms.
(2) For all q, 94-1°dq = 0.

Proof. Assume that 1 < q < dim K, which is the only case where something has to
be proved. Let ¢ be a g-simplex and 6; a (q — 1)-dimensional face of 6. Suppose that

G =VoVi Vg and ©6;=vq- Vi Vg
Let [0] and [0;] be the orientations of ¢ and o; induced by the orderings
o=(vo,v1,...,vq) and o0;=(vq,...,Vi,...,Vg),
respectively.

Claim. The orientation v = (-1)/[0;] of 6; depends only on the orientation pu = [0]
and not on the particular ordering o.

First, consider what happens to the orientation [0;] when we pass from the order-
ing o to the ordering

0’ =(Vo,...,Vi,...,Vs,...,Vq), s<t,

which corresponds to interchanging two vertices vy and vi. If s # 1 # t, then we have
interchanged two vertices of 6;, so that [0';] = —[o;] and
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v =(=1'of| = ~=D'[or] = -v.
If s = i, then the new ordering of the vertices of ¢ is
(VOr e Vi, Vi, Vig, oo, Vi, Vg - ’Vq)

and

v =(=D'[of] = 0 Dol = ~-1)'[os] = -,

A similar equation holds if t = i. Therefore, interchanging two distinct vertices of o
always results in a change of sign of v. Since the representative o for p is well defined
up to an even permutation of the vertices and since every even permutation is the
composition of an even number of transpositions, the Claim is proved.

Definition. The orientation v of o; is called the orientation of o; induced by the
orientation U of ©.

The Claim implies that dq is well defined because the “boundary” (q — 1)-chain

q .
2(_1)‘[‘,0 Ny Vg
i=0

is well defined for each oriented g-simplex [vov; ... vq]. Furthermore, because this
(q — 1)-chain is exactly what the (oriented) boundary of the oriented g-simplex should
be intuitively, we are justified in calling the maps d4 “boundary maps.” For example,
the definition of d, implies that
92 ([voviva]) = [viva] = [vova]+[vovi]
=[viva]+[vavo]+[vovi],

which is what we want. Part (1) of the lemma is now proved since to define a homo-
morphism on a free group it suffices to specify it on a basis (Theorem B.5.9).
To prove part (2), we may assume that q > 2. It suffices to show that

(aq—loaq )([VOVI cee Vq]) =0

for every oriented g-simplex [vov; . .. vq] of K, since these generate Cy(K). Now

q .
(0g-100¢ N[ VoV ... Vq]) = dg-1 [z (=D'[vo - ¥ "'Vq]j

i=0

q
Z 1)aql( Vq])
q i-1
=2 1)[2( )'[v Vi vg]
i=0 =0

" z =) M vg - ¥ . ---vq]j.

j=itl
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Observe that, for s <t, each term [vo - - - % - - - ¥ - - - vq] appears twice in the sum above.
It appears once with coefficient (1) when i =s and j = t, and a second time with
coefficient (-1) when j =s and i = t. It follows that the terms in the sum cancel pair-
wise, so that the sum is zero. The lemma is proved.

We shall see that the second part of Lemma 7.2.1.3 is fundamental to the whole
theory of homology groups. Here are some more basic definitions.

Definition. Let c € Cy(K). If dq(c) = 0, then we shall call ¢ a g-cycle of K. If ¢ = 94.1(d)
for some d € Cg:1(K), then we shall call ¢ a g-boundary of K. The set of g-cycles and
g-boundaries of K will be denoted by Z4(K) and B4(K), respectively.

Clearly,
Zy(K)=kerdq and Bg(K)=im dg+1,

so that we are dealing with subgroups of C4(K). Furthermore, by Lemma 7.2.1.3(2),
the group By(K) is actually a subgroup of Z,(K). It follows that we have inclusions

Bq(K) cZy(K) c Cq(K)
and it makes sense to talk about the quotient group of g-cycles modulo g-boundaries.

Definition. The g-th homology group of K, Hy(K), is defined by

Z4(K)
By (K)

Hq (K) =

As in the case of Cy(K), it is notationally convenient to have the groups By(K),
Z4(K), and Hy(K) defined for all values of q. Of course, only values of q satisfying 0 <
g < dim K are interesting. Negative values of q will in particular always be ignored in
computations.

With the definition of the homology groups we have arrived at some important
algebraic invariants for polyhedra, although we shall have to establish quite a few
other facts before we will be ready to prove this. We could have used other regular
figures, such as g-dimensional cubes, as building blocks for spaces to define these
groups but there are at least two reasons for the choice of simplices, namely, with
other figures both the orientation and the important maps dq would have been more
complicated to define.

7.2.1.4. Example. To compute the homology groups of K = {vy}.

Solution. Clearly,
Cq(K)=0, ifg>0,
Co(K)=Zvy, and
Bo(K) =0,

so that
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Figure 7.3. A triangulating complex for a circle.
V2

Vi

Vo

K =0 <vgv vy>

IKI = boundary of triangle

H, (K) = Z(K) =B, (K) =0, ifq>0, and
Ho(K)=Z(K)=Co(K) = Z.

7.2.1.5. Example. To compute the homology groups of K = d< vypviv, >. See Figure
7.3.
Solution. In this case

Cq(K)=0, ifg>1,
Ci(K) =Z[vovi]® Z[v V] ® Z[v,vo], and
Co(K) = ZV() @ ZV] @ ZVz.

Trivially,
Hq(K)=Z4(K)=By(K)=0, ifqg>1.
Next, assume that
x =alvovi]+blvivy]+c[vavo]
is a 1-cycle. Then

0=0;(x)
=(avy —avyg)+(bv, —bvy) +(cvg —cvy)
=(c—-a)vg+(@a-b)vi +(b-c)v,.

It follows that c —a=a — b =b — ¢ = 0, which implies that a = b = c. Hence,

Z,(K) = Z([vov ]+ [viva]+[vove]) = Z.
But B{(K) =0, and so

Hi(K)=7Z,(K)=Z.
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Before computing Hy(K) it is convenient to introduce some more notation.
Definition. Let K be a simplicial complex. If x, y € Cy(K), then we shall say that
x is homologous to y, or that x and y are homologous, and write x ~ y, provided that
X —y = dg+1(w) for some w € Cg1(K). Also, if z € Zy(K), let [z] = z + By(K) € Hy(K).
The coset [z] is called the homology class in Hy(K) determined by z.

Note. Recall that if v is a vertex of K, then we use v to denote the element of Cy(K)
rather than [v]. Therefore, [v] will always mean the homology class of v.

The relation ~ on Cy(K) is clearly an equivalence relation and two g-cycles x, y €
Z4(K) c Cy(K) determine the same homology class in Hy(K) if and only if x ~ y.

Returning to the computation of Hyo(K) in Example 7.2.1.5, note that Zy(K) =
Co(K). Also,

Vo~V ~V2
because
di([vovi)=vi—vy and 9i([viva])=vy—vy.

This proves that Hy(K) is generated by the homology class [vo]. On the other hand, if
n[vg] = 0, then

nvo =0 (x)

for some 1-chain
x =a[vgvi]+b[viva]+c[vavg].

Applying d; to the element x and equating the coefficients of the vertices vy, v, and
v, that one gets to the same coefficients in nvy = nvg + Ov; + Ov, easily shows that n =
0. It follows that the map from Z to Hyo(K) that sends k to k[vg] is an isomorphism,
that is,

Hy(K)=Z.
This finishes Example 7.2.1.5.

7.2.1.6. Example. To compute the homology groups of K = d <vgviv,v3>. See Figure
7.4.

Solution. First of all, since there are no g-simplices for q > 2,
Hq,(K)=0, ifq>2.

On the other hand,
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Figure 7.4. A triangulating complex for a sphere. Vs
Va

Vo
Vi

K =0 <vyv vovy>

IKI = boundary of tetrahedron

Ca(K) =Z[vov V2] @ Z[vov V3] @ Z[viv,v3] © Z[vgv,vs],
Ci(K) =Z[vov]® Z[v(v,] @ Z[vov, | ® Z[vov3]| @ Z[v3v,]|® Z[viv3], and
Co(K) = ZVO @ ZV1 @ ZV2 @ ZV3.

Now B3(K) = 0 and dy = 0. Therefore, H,(K) = Z,(K) and Zy(K) = Co(K). To compute
the group Z,(K), let

z=a[vov1v2]+b[vovivi]+c[vivovs]+d[vov,vs]

be a 2-cycle. By definition, d(z) = 0. Computing the coefficients of the 1-simplices in
0>(z) and setting them equal to 0 implies that a = -b = —c = d. In other words,

Z,(K) = Z([vovav ] @ [voviv3] @ [vivovs ] @ [vovavy ),
and so
H,(K) ~ Z.

We could compute Hi(K) by calculating Z,(K) and B;(K) using arguments as
before, but the approach to calculating homology groups by explicitly determining
the group of cycles and the group of boundaries would become very tedious as spaces
get more complicated. To simplify computations it is helpful to use certain tricks and
shortcuts. The point is that we are looking for homology classes. Any representative
cycle for such a class will do, and so we are free to replace any such cycle by a homol-
ogous one.

Let z be a 1-chain. The equation

[vovs]=[vovi]+[viv3]+0s ([vivavs])
shows that the chains [v,vs] and [v,vi] + [viv3] are homologous. Therefore, if the ori-

ented 1-simplex [v,v3] appears in z with some nonzero coefficient, then we can replace
[vovs] by [vovi] + [vyvs] to get a homologous 1-chain z; in which [v,v3] does not appear.
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Similarly, we may replace any occurrence of [viv,] in z; by [vivg] + [vov2]. This will
give us a 1-chain z,, which is homologous to the original z and which contains neither
[vov3] nor [vyv,]. If we assume further that z actually was a 1-cycle, then z, will be a
1-cycle and [vgv,] cannot appear in z, either, otherwise the coefficient of v, in 91(z,)
would not vanish. An argument similar to the one used in the computation of H;(K)
in Example 7.2.1.5 now shows that z, must in fact be a multiple of

x = [vovi]+[vivs]+[v3vp].

In other words, H;(K) is generated by [x]. On the other hand, x = d,([vgvv3]) and so
[x] = 0 and we have proved that

H;(K)=0.

Finally, the group Ho(K) can be computed like in Example 7.2.1.5. The first step
is to show that Hy(K) is generated by [vg]. Next, one shows that n[vy] = 0 implies that
n = 0. We again get that

Ho(K)=Z.
This finishes Example 7.2.1.6.

7.2.1.7. Example. The simplicial complex K in Figure 7.5 triangulates the torus. We
want to compute the homology groups of K.

Solution. Again, since there are no g-simplices for q > 2,
Hq,(K)=0, ifq>2.

To compute H,(K), orient the 2-simplices 6 in K as indicated by the circular arrows
in Figure 7.5. In this example, the notation [¢] will denote the 2-simplex ¢ together
with that preferred orientation. Let ¥ denote the element in C,(K) that is the sum of
these oriented 2-simplices, that is,

—V—
V3 Vg4
Vo Vo

&) U
U U

&
Vzb vﬁb vgb VZT
ool o)
VIO V5() V7()
U @

—_—

Vi

Vo V3 \ Vo

v Figure 7.5. A triangulating complex for the

IKl=S'xS! torus.
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= Z [o].

2-simplex o in K
For example, [vgv,vg] is one oriented simplex that appears in the sum X.
Claim 1. X is a 2-cycle.

To see that d>(X) = 0, consider an arbitrary 1-simplex v;v; in K. If viv; is a face of
the two 2-simplices ¢ and ¢’, then the coefficients of [vivj] in d-([c]) is the negative of
the coefficient of [vivj] in d>([6’]). It follows that the coefficient of [vivj] in d,(X) is zero.

Claim 2. [X] generates Z,(K).

To prove Claim 2 let z be a 2-cycle. Let 6 and ¢’ be an arbitrary pair of 2-simplices
in K that meet in an edge vjv;. It is easy to see that the coefficient of [v;v;] will vanish
in d,(z) if and only if [6] and [6"] appear in z with the same multiplicity. Since this is
true for all pairs of adjacent 2-simplices in K, we must have that z = aX for some
integer a.

Claim 1 and 2 prove that

H,(K)=Z,(K)=ZZ=Z.
To determine H;(K), define two 1-cycles u and v by
u=[vovi]+[viva]+[vave] and v =[vovs]+[vivs]+[vavo].
Claim 3. H;(K) is generated by [u] and [v].

To prove Claim 3 observe that any 1-chain z is homologous to a 1-chain z; of the
form

z1 =ai[vovz]+az[viava]+az[vave]+as[vovi]+as[vivs]
+ag[vavg|+az[vive]+ag[vevs]|+ag[vavg]+aig[vgvs], for somea; e Z.

We leave this as an exercise for the reader. For example, one can start by first replac-
ing any appearing [v,v3] in z by [vve] + [vevs], then replacing any [vove] by [vovi] +
[vive], and so on. Each of these replacements produces a new chain that is homolo-
gous to the previous one, so that the final chain z; is homologous to z. This is similar
to what we did in Example 7.2.1.6. If we were to start with a 1-cycle z, then z; will
also be a 1-cycle. However, for an element like z; to be a 1-cycle, it must satisfy two
other properties. First, a; must be 0 fori =7, 8, 9, 10; otherwise, one or more of the
vertices Vs, Vg, v7, and vg would appear in 91(z;) with a nonzero coefficient. Second,
a; = a; = a3 and a4 = a5 = ag; otherwise, d1(z1) would not be zero. This shows that any
1-cycle z is homologous to a 1-cycle of the form au + bv, where a, b € Z and Claim 3
is proved.

Claim 4. The homology classes [u] and [v] are linearly independent.



372 7 Algebraic Topology

Assume that
a[u]+b[v]=0

in H{(K) for some integers a and b. It follows that the cycle au + bv is a boundary,
that is,

au+bv=09,(x)

for some 2-chain x. Let [6] be any oriented 2-simplex that appears in x. The simplex
o will have at least one edge viv; that is different from those appearing in u and v.
Since every edge belongs to precisely two 2-simplices, let 6" be the other 2-simplex
that has vivj for an edge. The only way that the coefficient of [vivj] will vanish in 9,(x)
is the coefficients of [6] and [6] in x are equal. A simple extension of this argument
shows that every oriented 2-simplex [o] of K must appear in x with the same coeffi-
cient. Therefore, x = k¥, for some integer k and where X is the 2-chain defined earlier,
and

02 (x) =092 (kX) =k, (X)=k-0=0.

This means that a = b = 0 and Claim 4 is proved.
Claim 3 and 4 prove that the map that sends (a,b) € Z ® Z to a[u] + b[v] € H{(K)
is an isomorphism and

HEK)=Z®Z.
Finally, one can show that
Ho(K)~Z

using the same argument as in Examples 7.2.1.5 and 7.2.1.6. This finishes Example
7.2.1.7.

7.2.1.8. Example. The simplicial complex K in Figure 7.6 triangulates the projec-
tive plane. We want to compute the homology groups of K.

vy Vs
V3 Vo

U U U
U U U

V2 O \Z (J Vo ()
& U U

() Vo O Vg () V2
U U U

Vs Vg4 V3

Vi

Vo

~<~—— 4 Figure 7.6. A triangulating complex for the
IKI = P? projective plane.
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Solution. We shall only sketch the computation of H;(K) and H,(K) in this example
and leave the details and the computation of the other groups as an exercise to the
reader.

Claim 1. Z,(K)=0.

Orient the 2-simplices in K as shown in Figure 7.6. If z is any nonzero 2-cycle,
then z must contain all the oriented 2-simplices of K with equal multiplicity. For
example, if

z=al[vgVv7vo]+...,
then all the oriented 2-simplices adjacent to vgv;vg must appear with the same mul-

tiplicity because that is the only way that the boundary of z can vanish. In other words,
z must be of the form aX where X is the sum of all the oriented 2-simplices. But

d(X)=2u,
where
u=[vov]+[viva]+[vovs]+[viva] +[vavs]+[vsvel.
It follows that a must be zero and Claim 1 is proved. This also shows that

H,(K) =0.

Claim 2. 1If z is a 1-cycle, then z is homologous to ku for some integer k.
Claim 2 is proved by first showing that z is homologous to a 1-cycle z; of the form

z1 = ai[vovi]+az[viva]+as[vovs]+as[vavy]+as[vavs]

+ag[vsvo]+ar[vavs]+ag[vive] +ag[vsve]+ajg[vovg], forsomea; eZ.

But since 9d1(z;) = 0 we must have a; = ag = ag = a;¢ = 0. Finally, one shows that all the
remaining 1-simplices in z; must appear with the same multiplicity, proving Claim 2.

Claim 3. [u] #0.
If u = d,(c) for some 2-chain ¢, then one can show by an argument similar to the one
in the proof of Claim 1 that all the oriented 2-simplices must appear in ¢ with multi-
plicity 1, that is, ¢ = X. This contradicts the fact that d(X) = 2u, and proves Claim 3.
Claims 2 and 3 and the fact that 2[u] = 0 (since d(X) = 2u) clearly prove that
H(K)=1Z,.

This finishes what we have to say about Example 7.2.1.8.
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One can see from the examples above that homology groups of a simplicial com-
plex K do give us important information about the holes in the underlying space K.
A point, which has no holes at all, had zero homology groups above dimension zero.
In Examples 7.2.1.5 and 7.2.1.7 the generators of H(K) were associated in a natural
way with one-dimensional holes. The two-dimensional hole in the sphere and the
torus corresponded to the generator of Hy(K). The fact that the group Ho(K) was non-
zero in all of our examples (it was isomorphic to Z) also makes sense if one recalls
that 0-dimensional holes intuitively correspond to imbedded O-spheres and S° con-
sists of two points. Exercise 7.2.1.2 asks you to prove that the rank of Hyo(K) equals
the number of connected components of |K|. The spaces in our examples were all con-
nected and had a single connected component.

Working through our examples should also have brought out another point, namely,
the algebraic nature of homology theory. Although our original motivation was to
detect geometric “spherical” holes (perhaps even imbedded spheres), the “homological
holes,” or k-cycles, are more general. For example, the results in the case of the projec-
tive plane may have been somewhat unexpected for someone new to homology (twice
the generator of H;(K) was zero and there was no 2-cycle) but they all make sense once
one understands this algebraic nature of homology a little better. A k-cycle for a simpli-
cial complex cannot always be represented as an imbedded k-sphere in |K| and an
imbedded k-sphere in |K| whose corresponding k-cycle is homologous to zero does not
necessarily bound a (k + 1)-disk in |K|. The general question of when k-cycles can be rep-
resented by imbedded k-spheres and when imbedded k-spheres bound (k + 1)-disks is
extremely interesting but often difficult to answer, even for manifolds. For example, it is
already nontrivial to determine those 1-cycles that can be represented by imbedded
circles in the simple case of the torus. The fact is that homology theory is really associ-
ated to abstract simplicial complexes because all that it needs is an appropriate opera-
tor dq on linear combinations of formal symbols of the form [vov; - - - vq]. We may have
used some geometric intuition to motivate our proofs, but the proofs themselves were
independent of it. This is the reason that the study of topology that deals with simplicial
complexes is called combinatorial topology. We shall see in Section 7.2.5 how a com-
puter can compute homology groups. However we look at it though, we should be
excited by the prospect that we have a theory that detects geometric invariants.

We move on and introduce some more standard terminology. Let K be a simpli-
cial complex. The group C4(K) is by definition a finitely generated free abelian group
with the g-simplices of K forming a set of generators. Since subgroups and quotient
groups of finitely generated abelian groups are again finitely generated, we conclude
that Hy(K) is finitely generated. It follows from the fundamental theorem about such
groups (Theorem B.5.7) that

H,(K)=~F,®T,

where F is a free group and Ty is the torsion subgroup of Hy(K).

Definition. The rank of Fy, which is also the rank of Hy(K), is called the gt/ Betti
number of K and will be denoted by By(K). The torsion coefficients of T, are called
the gth torsion coefficients of K.

Clearly, once one knows the Betti numbers and torsion coefficients, one knows
the homology groups. The Betti numbers and torsion coefficients for Examples
7.2.1.4-8 above are easily determined.
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Let us show how homology groups can be used to tackle the problem of classify-
ing topological spaces. At the moment homology groups have only been defined for
simplicial complexes, but we could define the homology groups of a polyhedron to be
the homology groups of a simplicial complex that triangulates it. The problem is that
spaces can be triangulated in many different ways. Therefore, the next theorem, which
asserts the topological invariance of homology groups, is essential here. Its proof will
be given shortly.

7.2.1.9. Theorem. Suppose that K and L are simplicial complexes and that |K] is
homeomorphic to IL|. Then Hy(K) is isomorphic to Hq(L) for all q.

Proof. This is an immediate corollary of Theorem 7.2.3.1 in Section 7.2.3 since
homeomorphisms are homotopy equivalences.

Definition. Let X be a polyhedron. Choose any triangulation (K,¢) for X and define
the gth homology group of X, Hy(X), by Hq(X) = Hq(K). The qth Betti number of X,
Bo(X), and the gth torsion coefficients of X are defined to be the rank and torsion coef-
ficients of K, respectively.

Although the groups Hy(X) are not uniquely defined since a polyhedron has many
triangulations, they are well defined up to isomorphism by Theorem 7.2.1.9. This is
all we need to be able to conclude that homology groups give us topological invari-
ants of spaces and not just properties of particular triangulations and are therefore
exactly the type of computable algebraic invariants we were looking for in Section
6.2. See [AgoM76] for a wide range of applications justifying the hard work we put
into our effort. Some of these will also be discussed in Section 7.2.3. The next chapter
will also look into the subject further, but at this point we are lacking one important
ingredient of the theory, namely, we do not yet know how homology groups behave
with respect to maps.

Table 7.2.1.1 summarizes the computations we have made so far and some that
come from Exercises 7.2.1.3-4. The results are stated for polyhedra rather than sim-
plicial complexes because that is what we are after anyway, not the intermediate struc-
tures, the simplicial complexes.

We finish this section with a comment about the concept of orientability. Looking
at Table 7.2.1.1 we see that what distinguishes closed compact orientable surfaces S
from nonorientable ones is the group Hx(S), or, to put it another way, the ability to
find a nonzero 2-cycle. A little reflection shows that we got a nonzero 2-cycle precisely
because it was possible to orient the 2-simplices of a triangulating simplicial complex
so that adjacent 2-simplices induced the opposite orientation on the 1-simplex in their
boundary which they had in common. This shows that the condition of orientability
as described in Chapter 1 is actually easily computed by combinatorial methods — one
simply needs to find a 2-cycle.

722 Induced Maps

In Section 7.2.1 we defined a mapping from simplicial complexes K to their homol-
ogy groups Hy(K). We now show how this mapping of objects extends to a mapping
of maps in a natural way.
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Table 7.2.1.1 Some spaces and their homology groups.

X Ho(X) H1(X) Ha(X) Hi(X)
i>2
D° z 0 0 0
s? Zoz 0 0 0
s’ y4 y4 0 0
s? y4 0 Y4 0
S'x§’ z ZoZ z 0
P? y4 Z, 0 0
The Klein bottle V4 Z02Z, 0 0
Orientable surface (genus k) Y4 k(Z® Z) z 0
Nonorientable surface (genus k) Y4 "oz, 0 0

Definition. Let K and L be simplicial complexes and let f:K — L be a simplicial
map. Define maps

f4q: Cq(K)—Cq(L)
as follows:
If g < 0 or q > dim K, then fy; = 0.

If 0 < q < dim K, then f;q is the unique homomorphism defined by the condition
that

fuq ((vovy - - vq D) = [f(vo)f(vy) - - £(vq)], if f(vi) #f(v;) fori#]j,
=0, otherwise,

for each oriented g-simplex [vgv; - - - vg] of Cy(K). (The map f4q is well defined
because the group Cy(K) is a free group with generators [vov; - - - vg].)

7.2.2.1. Lemma. 0q°fyq = fyq-1°0q for all q. In other words, for all q there is a com-
mutative diagram

Cq(K) —*5 Cy(L)
9 4 La,
Cq_1 (K) T) Cq_1 (L) .
Proof. Clearly, it suffices to show that
©q o fsg)[vovi - v = (fs g1 ©9q)[Vov1 -~ vg))

for every oriented g-simplex [vov; - - - V4] in K and we do this by computing both sides
of this equation.

Case 1. The vertices f(vo), f(vy), ..., and f(v,) are all distinct.
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In this case,
Qg ofy g M[vovy -~ vql) = dq (£(vo)f(vy)---£(vy)])

q . PN
=D D f(vo) - -f(vi) - £(vg)]

—
o

(—1)if#q_1 [VO cee f/i . vq]

IV

i=0

! .
= f#ql[z(_l)l[vo Wy Vq])
i=0

= (Frg 1 200 )0V -+ VoL

Case 2. The vertices f(vy), f(v,), ..., and f(v,) are all distinct, but f(vo) = f(vy).

The assumption f(vy) = f(v;) implies that

(aq °f#q)([VOv1 tre vq]) = aq (0) =0

and
q .
(f#q—l oaq)([V()Vl e vq]) = (f#)q_l[Z(_l)l [VO AN ‘A/'i AN vq])
i=0
q .
= 2(_1)1(f#)q_1 [vo--- Vi Vq]
i=0
= (=) [fv)E(Wv2) - vl + (D [E(Wo)E(v2) - - F(vg)]
+(=1)7 0+ - +(=D%-0
=[f(v)E(vy) - f(vg)] = [E(vo)f(v2) - £(vg)]
=0.
N\
Case 3. The vertices f(vo), f(vy), ..., f(vi), . . ., f(vy) are all distinct, but f(v;) = £(v;)

for some i < j.

A

This case follows easily from Case 2 because [vovy - - - vq] = Hvivjvovy - - - ¥ - - - ¥
cevgl.
q

Case 4. There exist distinct indices i, j, and k, such that f(v;) = f(v;) = f(wy).
In this case,
(aq of#q )([VOVI - Vg ]) = aq (0) =0

and
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q
((F) gy 29q Jvovs - vo]) = (f#)q_l[z(—l)[[v() ey Vq])
=0

q
=D (fe)g_y[vo -+ ¥y - vg]=0.

t=0
The lemma is proved.

Now the maps f4q are no more interesting by themselves than were the chain groups
Cy(K). What will be important are the maps that they induce on the homology groups,
and Lemma 7.2.2.1 is essential for that. We generalize the construction somewhat.
Definition. A chain map

¢: Cy(K)— Cy(L)

is a “vector” @ = (... ,0-1,90,91, . . .) of homomorphisms ¢q:Cq(K) — C4(L) satisfying
dq° Pq = Pg-1°9q.

Having a chain map (...,0-1,00,91, . ..) is equivalent to having a commutative
diagram

RS BN Cq+1(K)L>Cq(K)L>Cq,1(K)—>

\L(Pq+1 J’(Pq i(Pq—l

i T}Cq+l(L)T} Cq(L)a—q>Cq—l(L)—) s

Note that fs = (..., fu_q,fu0,fs1, . ..) is a chain map by Lemma 7.2.2.1 called the chain
map induced by the simplicial map f.

7.2.2.2. Lemma. Let ¢:Cy(K) — Cy(L) be an arbitrary chain map. Then

(1) 9(Z4(K)) < Zy(L), for all q.
(2) 9(By(K)) < By(L), for all q.

Proof. This follows easily from the definition of a chain map. If z € Z(K), then
8q((pq (Z)) =0q-1 (aq(z)) =0Pq-1 (O) =0,

which proves (1). To prove (2), note that

Pq (ap+1 (C)) :ap+1 ((pq+1 (C))

Definition. Let ¢:Cy(K) — Cy(L) be an arbitrary chain map. Define maps

Puqt Hg(K) - Hy (L)
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0ra(2) =94 (2)], 7z €Zq(K).

7.2.2.3. Lemma. .4 is a well-defined homomorphism.
Proof. First of all, by Lemma 7.2.2.2(1), the definition makes sense, since @q(z) €

Zq(L). To show that @.q is well defined, let a € Hy(K) and assume that a = [z] = [2], z,
7' € Zy(K). Then z — 7’ belongs to B4(K). Therefore,

Pq (Z) —Qq (Z’) =0q (Z - Z’) € Bq (L)

by Lemma 7.2.2.2(2), that is, [¢4(z)] = [@q(2")]. This proves that @.q is well defined.
Next, let [zi] = z; + B4(K) be elements of Hq(K). Then

Qsq (1] +[22]) = 0+q (21 +22) + Bq (K))
=Qq(z1 +22)+Bg(L)
=(@q(z1)+9q(22)) +Bq(L)
=(@q(z1) +Bq (L)) +(@q(z2) + Bq (L))
= Qiq (21 ]) + 0:q ([22]).

Thus, ¢+ is a homomorphism and Lemma 7.2.2.3 is proved.

Definition. The maps ¢.q are called the homomorphisms on homology induced by the
chain map . In particular, if f:K — L is a simplicial map, we shall let

f.q: Hq(K) > Hq(L)
denote the map on the homology group induced by the chain map f3.

Consider the simplicial complex K = 9 (vovivz). The next two examples compute
f.q for two simplicial maps f: K — K.

7.2.2.4. Example. To compute f.q when f is the constant map defined by f(v;) = v.

Solution. The given f induces the constant map |f’ : |K| - |K| f|(x) =vo. We know

from Example 7.2.1.5 that
Ho(K) = Hy(K)=Z
and
Hq(K)=0 for q>1,

so that we only have to worry about what happens in dimensions 0 and 1. The map
fu1: C1(K) — C1(K) is obviously the zero map by definition, and so f.; : H{(K) — H;(K)
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is also the zero map. Next, note that the group Hyo(K) is generated by the element
Vo + Bo(K) and

f.0(vo +Bo(K)) = f40(vo) +Bo(K) = vo + By (K).
This implies that f. is the identity map.

7.2.2.5. Example. To compute f.; when f is defined by f(vo) = vy, f(vi) = v5, and f(v,)
=V]j.

Solution. Tt follows from an argument similar to the one in the previous example
that f., = 0 if g > 1 and f. is the identity map. Only f.; is different this time. Recall
from Example 7.2.1.5 that

a=(vovi]+[viva]+[vove]) + B (K)
is a generator of H;(K). Since

fi(a) =fu((vovi ]+ [viva]+[vave]) + B (K)
= ([f(vo)f(v)]+ [F(v)E(v2)] + [£(v2)f(vo)]) + B (K)
= ([vova]+[vovi]+[vivo]) + B (K)

=-a
it follows that f.; is the negative of the identity map.

The next lemma lists some basic properties of the maps fy, and f.q that are easy
to prove.

7.2.2.6. Lemma. Letf:K — L and g:L — M be simplicial maps between simplicial
complexes. Then

(1) (gof)#q = g#qof#q: Cq(K) — Cq(M)
(2) (gof)iq = geq°fiq: Hy(K) = Hy(M).
(3) If K=L and f = 1k, then f4q and f.q are also the identity homomorphisms.

Proof. This is Exercise 7.2.2.1.

Now simplicial complexes and maps are basically only tools for studying topo-
logical spaces and continuous maps. We shall show next how continuous maps induce
homomorphisms on homology groups.

Definition. Let K and L be simplicial complexes and suppose that f: |K| - |L| isa
continuous map. A simplicial approximation to f is a simplicial map ¢:K — L with the
following property: If x |K| and if f(x) € & for some simplex 6 € L, then |(p| (x) € ©.

The next lemma summarizes two important properties of simplicial
approximations.
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7.2.2.7. Lemma. Letf: |K| - |L| be a continuous map and suppose that ¢:K — L
is a simplicial approximation to f.

(1) The map |(p| (Kl - L] s homotopic to f.
(2) If f = |yl|, where y:K — L is a simplicial map, then y = ¢.

Proof. To prove (1), define a homotopy h: |K| x [0,1] = |L| between f and |(p|
by

h(x,t) = tlel(x) + (1 - Df(x)

for x e |K| and t € [0,1]. That h(x,t) actually lies in IL| follows from the fact that
|(p| (x) and f(x) lie in a simplex of L, which means that the segment [|(p| (x),f(x)] is
contained in |L| because simplices are convex.

To prove (2), let v be a vertex of K. Then w = f(v) is a vertex of L. Since a vertex
is also a 0-simplex, the definition of a simplicial approximation implies that @(v) = w.
This proves the lemma.

Part (2) of Lemma 7.2.2.7 means that the only simplicial approximation to a sim-
plicial map is the map itself. An arbitrary continuous map does not have a unique
simplicial approximation, however.

If K is a simplicial complex, define a new simplicial complex, denoted by sd(K),
as follows:

(1) The vertices of sd(K) are the barycenters b(c) of the simplices ¢ in K.
(2) The g-simplices of sd(K), g > 0, are all the g-simplices of the form b(c()b(c})
-+ - b(og), where the o; are distinct simplices of K and 6y < 61 <... < 0.

It is easy to show that sd(K) is a simplicial complex (Exercise 7.2.2.3) that is a sub-
division of K. Clearly, |sd(K)| = |K|

Definition. The simplicial complex sd(K) is called the (first) barycentric subdivision
of K. The nth barycentric subdivision of K, denoted by sd™(K), is defined inductively
by

sd’(K) =K,
sd®(K) = sd(sdn*1 (K)), forn=>1.

Figure 7.7 shows a simplex and its barycentric subdivision.

7.2.2.8. Theorem. (The Simplicial Approximation Theorem) Let K and L be sim-
plicial complexes and suppose that f: K| - |L| is a continuous map. Then there is
an integer N > 0 such that for each n > N, f admits a simplicial approximation ¢:
sd"(K) — L.

Proof. See [AgoM76].
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2 \Z3 b(voviva)
b(vgv,) b(vivy)
Vo Vi Vo b(vgvy) Vi
K sd (K)

Figure 7.7. A barycentric subdivision.

Associated to barycentric subdivisions are natural homomorphisms
sdyq 1 Cq(K) — Cq(sd(K))

that correspond to sending an oriented simplex [o] to the sum of the oriented sim-
plices into which the barycentric subdivision divides 6. For example,

sdy2([vovivz]) = [b(voviva)veb(vovy)]+[b(voviva)b(vovi)vi |+ [b(vovivy)vib(vivy)]
+[b(voviv2)b(viva)va ]+ [b(veviva)vab(vovy)] + [b(voviva)b(voevs)vel.

See Figure 7.7. More precisely, define the maps sdyq inductively on the oriented
simplices as follows:

(1) If v is a vertex of K, then sdyo(v) = v.

(2) Assume 0 < q < dim K and sdgq-1 has been defined. If [6] is an oriented g-
simplex of K, then

sd4q([6]) = b(6)sd q-1(9q ([S]).

(We are using the expression w[vgv; ...vq] to denote the oriented simplex
[wvgvy ... vq] and let this operation distribute over sums.)

If g < 0 or dim K < q, then we define sdyq to be the zero map.
7.2.2.9. Lemma. The maps sdyq are well-defined homomorphisms. Furthermore,
0q°8dyq = sdyq-1°9q, so that sdy = (.. ., sdy_1,sdyo,5d41, . . .) is a chain map that induces

homomorphisms

sduq: Hq(K) - Hy (sd(K)).

Proof. This is an easy exercise. See [AgoM76].
We can extend our definitions and define homomorphisms

sdj,: Cq(K)— Cq(sd™(K))
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inductively by

sd}, =zeromap, forn <0,
sd‘,iq =identity map of Cy(K),

sdiq = sd#qosd%l, forn>0.
The maps sd}, induce homomorphisms (actually isomorphisms)
sd? - Hq(K) - Hg(sd™(K)).

We are now ready to show how continuous maps induce homomorphisms on
homology groups. Let K and L be simplicial complexes and let

f: K|—IL|

be a continuous map. The Simplicial Approximation Theorem implies that there is an
n > 0, such that f admits a simplicial approximation

¢: sd"(K)— L.

Definition. The homomorphism
fiq: Hq(K) > Hg(L)
defined by
fiq = Paqosdiy

is called the homomorphism induced on the gth homology group by the continuous
map f.

7.2.2.10. Lemma.

(1) f.q is a well-defined homomorphism.

(2) f K =L and f = 1k, then f.q is the identity homomorphism.

(3) If M is a simplicial complex and g: |L| - |M| is a continuous map, then
(go f)*q = 4q° f;s:q.

Proof. See [AgoM76].

7.2.2.11. Theorem. Let K and L be simplicial complexes and suppose that f,
g: [K| - |L| are continuous maps that are homotopic. Then f.q = giq: Hy(K) — Hg(L)
for all q.

Proof. See [AgoM76].
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1.2.3 Applications of Homology Theory

Before describing some applications, it is worthwhile to briefly pause and summarize
what we have accomplished so far; otherwise, it is easy to lose sight of the global
picture and get lost in a sequence of lemmas and theorems. The main results can be
summarized by the following:

Fact 1. For every simplicial complex K and every integer q there is an abelian group
Hy(K) called the qth homology group of K.

Fact 2. For every continuous map f:%KF—) |L| between the underlying spaces of two
simplicial complexes K and L there are a homomorphisms

f*q . Hq (K) - Hq (L)

whose natural properties are best summarized by the commutative diagram

ILI
o K
1K) f=f
K| ——— > Kl IMI
Hy(L)
f*q = g*q
(o
TH(K) =
H(K) ————> H(K) ————> HM)

(TikD=q (gof)xq

The top line in the diagram deals with simplicial complexes and maps and
the bottom lines deal with groups and homomorphisms.

For our purposes, Facts 1 and 2 contain essentially everything that we need to know
about homology groups and induced maps. Many of our applications will follow in a
purely formal way from Facts 1 and 2 with the geometry being irrelevant. Actual defini-
tions are only needed for a few specific computations. There is one caveat though. We
would really like to have well-defined homology groups and induced maps associated to
polyhedra and their continuous maps. Singular homology theory (see Section 7.6)
accomplishes that, but we shall at times pretend that we have this here also. To avoid
such pretense and restore rigor we could pick a fixed triangulation for each polyhedron
and translate continuous maps between them to maps between the underlying spaces of
the simplicial complexes. This would validate our arguments but the messy details
would obscure geometric ideas. By the way, homology theory can be described axiomat-
ically by means of the so-called Eilenberg-Steenrod axioms. Facts 1 and 2 correspond to
a subset of these axioms. Statements made in Chapter 6 about algebraic topology asso-
ciating “algebraic invariants” to spaces should make a lot more sense now.

7.2.3.1. Theorem. Two simplicial complexes K and L with homotopy equivalent
underlying spaces have isomorphic homology groups.
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Proof. Let f: |K| - |L| and g: |L| - |K| be continuous maps such that gof = 1]
and feg = 1||. Then Fact 2 implies that

g*qof*q = lHq(K) and f*qog*q :lHq(L)
for all g. It follows that f.q is an isomorphism and the theorem is proved.

7.2.3.2. Corollary. Homotopy equivalent polyhedra have isomorphic homology
groups.

7.2.3.3. Corollary. If a polyhedron X has the homotopy type of a point, then

Z, qu}

Hq(X)z{O q>0

In particular, these are the homology groups of D".

There is one consequence of Theorem 7.2.3.1 that would be disappointing to
anyone who might have hoped to use homology groups to classify topological spaces.
They are not strong enough invariants to distinguish spaces up to homeomorphism.
For example, Corollary 7.2.3.3 shows that both a single point and the disk D" have
the same homology groups but are clearly not homeomorphic. The best we could hope
for now is that they distinguish spaces up to homotopy type. Unfortunately, they fail
to do even that except in special cases. (There exist polyhedra, such as the spaces in
Example 7.2.4.7, that have isomorphic homology groups but that are not homotopy
equivalent.) Nevertheless, homology groups are strong enough to enable one to prove
many negative results, that is, if one can show that two spaces have nonisomorphic
homology groups, then it follows that the are not homeomorphic. In fact, they would
not even have the same homotopy type.

Before we state several invariance results that can be proved using homology
groups, we need to compute the homology groups for the higher-dimensional spheres.

7.2.3.4. Theorem. Ifn > 1, then

Z®7Z, if n=1 and k=0
Hi(S™) =1 Z, if n>2 andeither k=0 or k=n-1
0, if k#0 or n-1.

Proof. The case n = 1 is left as an easy exercise for the reader. Assume that n > 2.
Let 0 = vgvy - - - vy be any n-simplex. Let M = (6) and N = dM be the simplicial
complexes associated to the simplex and its boundary. Since $"~! is homeomorphic
to 90 = N/, it suffices to compute Hi(N). The definition of the simplicial homology
groups implies that

Bi(N)=Bx(M), for 0<k<n-2 or k=n,
Zix(N)=Z, (M), forallk.

Therefore,
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H,(N)=H (M), for kzn-1,

and Corollary 7.2.3.3 proves Theorem 7.2.3.4 for these values of k.
To compute H,,_;(N), note that

(On-129n)([vovy - V1] =0,
and so
Z=0n([vovy -+ vn]) € Zy 1 (N).
We shall show that X is in fact a generator of Z,,_1(N). If

z= Y ai[vovi - Vi valeZp g (N),
i=0
then
0=0n1(2)= zaian—l ([vovi---Vi---vq])

i=0

n i-1 . n .
= Zai(Z(_l)l[vOVI SR TREE RN DY ) [vovy - - ...vn])_

i=0  \j=0 j=itl
Let s < t. The coefficient of the oriented (n — 2)-simplex [vovy ... V... ¥ ... v,]is
(-Da+(=1)'as.

Since this coefficient has to vanish, it is easy to check that z = agZ. It follows that
Z,-1(N) = ZX. But B,_1(N) = 0 and Z,_1(N) has no elements of finite order, so that

Hp1(N)=Z,1(N) = Z,
and the theorem is proved.
7.2.3.5. Theorem.
(1) The spheres S™ and S™ have the same homotopy type only when n = m. In
particular, 8" is homeomorphic to 8™ if and only if n = m.

(2) The Euclidean space R" is homeomorphic to R™ only when n = m.

Proof. Part (1) follows from Theorem 7.2.3.4 and Corollary 7.2.3.2. To prove part
(2), we use the stereographic projection

Pn: S"—eny >R
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Suppose that h:R" — R™ is a homeomorphism. Define
H: S" -S8™
by

H(x)=(p;nlohopn)(x), if x#epq, and

H(en+1) =€m+1.

The map H will be a homeomorphism and therefore n = m by part (1). The theorem
is proved.

The next three theorems are less trivial.

7.2.3.6. Theorem. (Invariance of Dimension) If K and L are simplicial complexes
with |K| = |L|, then dim K = dim L.

Proof. See [AgoM76].

Definition. The dimension of a polyhedron is defined to be the dimension of any
simplicial complex that triangulates it.

Theorem 7.2.3.6 shows the dimension of a polyhedron is a well-defined topologi-
cal invariant.

7.2.3.7. Theorem. (Invariance of Boundary) If K and L are simplicial complexes
and h: |K| - |L| is a homeomorphism, then h( |8K|) = |8L|.

Proof. See [AgoM76].
Theorem 7.2.3.7 makes it possible to define the boundary of a polyhedron.
Definition. Let X be a polyhedron. Define the boundary of X, denoted by 0X, by
dX = ¢(0K]),
where (K,@) is any triangulation of X.

7.2.3.8. Theorem (Invariance of Domain) If U and V are homeomorphic subsets of
R" and if U is open in R", then so is V.

Proof. See [AgoM76].

Returning to our definition of topological manifolds in Section 5.3, we are finally
able to prove the claimed invariance of two aspects of the definition.

7.2.3.9. Corollary. The dimension of a topological manifold and its boundary are
well defined.
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Proof. The corollary is an easy consequence of Theorems 7.2.3.5 and 7.2.3.8.

Next, we return to the Euler characteristic as defined in Chapter 6. We are now
in a position to put this invariant in a more general context. What we had in Chapter
6 was a combinatorial concept defined for surfaces that was easy to compute by some
simple counting and yet was claimed to be a topological invariant. We can now define
that topological invariant in a rigorous manner.

Definition. If K is a simplicial complex, let ny(K) denote the number of g-simplices
in K and define the Euler-Poincaré characteristic of K, x(K), by

dim K

xK)= Y, (1) ng(K).

q=0

What makes y(K) a topological invariant is the fact that it is related to the Betti
numbers Bq(K) of K.

7.2.3.10. Theorem. (The Euler-Poincaré Formula) Let K be a simplicial complex.
Then

dim K

1K= Y, (~D)TBy(K).

q=0

Proof. By definition, the boundary map dq:C(K) — Bg-1(K) is onto and has kernel
Z(K) and the natural projection Z4(K) — Hy(K) is onto and has kernel Bq(K). There-
fore, Theorem B.5.8 implies that

rank (Cq(K)) = rank (Bq-1(K)) + rank (Z4(K)) and
rank (Zq (K)) = rank (Hq (K)) + rank (B4 (K)).

These identities and the fact that rank (C4(K)) = ny(K) gives us that

dim K
1K) = Y, (-D¥ng(K)
q=0
dim K
= z (-1)%rank (Cq(K))
=0
d?m K
= 2 (=1 [rank (Bg-1(K)) + rank (Hq (K)) + rank (B4 (K))]
=0
d?m K dim K
= z (-1)*rank (Hq (X)) + 2 (-1)?[rank (Bq-1(K)) +rank (B4 (K))]
-0 =0
d(ilrn K ’
= Y (-1%rank (Hq(K))

q=0
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since the rank (B;i(K)) terms cancel each other in the sum. This proves the theorem
because Bq(K) = rank(Hy(K)).

It follows from Theorem 7.2.3.10 that this combinatorially defined number x(K)
is a topological invariant associated to the underlying space |K|. In fact, it is
more than that and actually depends only on the homotopy type of |K| because that
is the case for the Betti numbers.

Theorem 7.2.3.10 suggests the following definition of a well-known invariant of a
polyhedron.

Definition. If X is a polyhedron, the Euler-Poincaré characteristic of X, y(X), is
defined by

dim X

AX)= Y, (DB (X).

q=0

The typical way to compute the Euler-Poincaré characteristic of a polyhedron X
is of course to use a simplicial complex K that triangulates X and use the numbers
ny(K). This is also how it is often defined. Our definition has the advantage that the
property of it being an intrinsic invariant of a polyhedron that is independent of any
triangulation is built into the definition.

7.24 Cell Complexes

The homology theory we developed was based on simplices, but as we have men-
tioned before, we could have used other spaces as our basic building blocks, such as
n-dimensional cubes, for example. The main advantage of simplices is a theoretical
one. They simplify some formulas and constructions. A big practical disadvantage of
simplices, however, is the fact that the simplicial complexes that triangulate spaces
typically contain a great many simplices. Even a simplicial complex that triangulates
a simple space such as the basic n-dimensional simplex already has an exponential
number of simplices (as a function of n). Any algorithm for computing homology
groups based on simplices would quickly be overwhelmed by their number for all but
relatively low-dimensional spaces. Fortunately, one can define homology groups based
on more efficient decompositions of spaces.

Definition. An open k-cell is any space ¢ that is homeomorphic to R¥. The integer k is
called its dimension is denoted by dim ¢. An open cell is an open c-cell for some k. A cell
decomposition of a space is a collection of disjoint open cells whose union is the space.

Note that the dimension of an open cell is well defined by Theorem 7.2.3.5.
A straightforward generalization of simplicial complexes is to look for cell decom-
positions where we allow curved cells rather than just linear cells like the simplices.
Actually, we shall go a step further.

Definition. A map f:(X,A) — (Y,B) is called a relative homeomorphism if {:X —'Y
is a continuous map that maps X — A homeomorphically onto Y — B.



390 7 Algebraic Topology

Note that the relative homeomorphism f need not be a homeomorphism because
it might not be one-to-one on A.

Definition. Let A be a closed subspace of X. We shall say that X is obtained from A
by adjoining k n-cells ¢}, n > 0 and 0 <1i < k (we allow k = ), if the following holds:

(1) Each ¢f is a subspace of X and X=Aucguclu....
2) If

c¢=clnA

then cf! — ¢ and ¢f' — ¢ are disjoint for i # j.
(3) X has the weak topology with respect to the sets A and cf.
(4) For each n-cell ¢f, there exists a relative homeomorphism

f; :(D“,S‘H) —(c, e

that maps S™! onto the set ¢[. The map f; is called a characteristic map for
the n-cell ¢! and g; = f; | Sn1 is called the attaching map for the n-cell ¢f.

Condition (4) justifies us calling ¢}' an n-cell or cell or closed n-cell (one can show that
c? is a closed subset of X). Note however that, although ¢} — ¢} is an open n-cell since
it is homeomorphic to R", ¢! may not be homeomorphic to the closed disk D" because
f is not required to be one-to-one on ™!,

Like in Section 5.3, one can think of these attaching maps as specifying a way to
glue an n-disk D™ to a space along its boundary $"~!. This continues the cut-and-paste
paradigm from the last chapter except that we are not doing any “cutting” right now.
An alternate description of X is that

X=Aug DV gD UL,

7.2.4.1. Example. The n-sphere S" can be thought of as a space obtained from a
point by attaching an n-cell using an attaching map that collapses the boundary of
the n-cell to a point. For example, consider S!. A natural characteristic map is

f: D' =[-1,1]>S!, f(t) =(costn,sintn),
which shows that S' can be thought of as the point (—1,0) with a 1-cell attached.

Definition. A CW complex C is a Hausdorff space X together with a sequence of
closed subspaces X" of X, n=-1, 0, 1, ..., satisfying

M ¢=X'cXcX'c...

@ x=Jx".
n=0

(3) Each X" is obtained from X" ! by adjoining n-cells ¢! via characteristic
maps f, ;. The n-cells ¢} are called the (closed) n-cells of C and ¢f — ¢} = ¢} -
X! the open n-cells.

(4) X has the weak topology with respect to the subspaces X".
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The space X is called the underlying space of the CW complex C and denoted by
|C| . If the subspace structure on X defined by C is clear from the context, one often
uses the phrase “the CW complex X” to refer to C. We define C", called the n-skeleton
of C, to be the CW complex with underlying space X" and sequence of closed
subspaces

X'eX0ceXle., .. Xl eX"eX ...

The subspace X" is usually also called the n-skeleton of C. A CW complex C is finite
if it has only finitely many cells. It has dimension n if it has at least one n-cell but no
m-cells for m > n (equivalently, |C?| = |C™*!| =...). If C has dimension n for some
n (denoted by dim C = n), then it is said to be finite dimensional, otherwise, it is said
to be infinite dimensional. If the characteristic maps are all homeomorphisms, then
the CW complex is said to be regular, otherwise, it is irregular.

CW complexes were first defined by J.H.C. Whitehead in 1949. The “C” stands for
“closure finite” and the “W” for “weak topology.” The term closure finite is the tech-
nical term for the property that every closed n-cell of a CW complex C meets only a
finite number of open cells in c™!|. For a proof that this property is satisfied by a
CW complex as defined above see [LunW69]. Whitehead’s definition of a CW complex
actually differed slightly from the one given here. He started with abstract cell decom-
positions for which that property had to be stipulated. One can easily show that con-
dition (4) of the definition is trivially satisfied for finite CW complexes and can be
omitted if one restricts oneself to such complexes.

A CW complex defines a cell decomposition for a space. One normally thinks of
a CW complex as a space where one start with some 0-cells (points), then attaches
some 1-cells, then some 2-cells, and so on. Cells are to CW complexes what sim-
plices are to simplicial complexes. (Note that the initial set of points can also be
thought of in terms of having attached some 0-cells to an initially empty space.)
Clearly, every simplicial complex is a regular CW complex because it defines an
obvious sequence of cells and skeletons. The main difference between the cell decom-
position induced on a space X by a regular CW complex and a triangulation of X
is that cells have a flexible number of faces and are potentially “curved” from the
start.

Figure 7.8 shows the inductive aspect of the definition of a regular CW complex
by showing the steps that represent a disk as a regular CW complex. We started with
two points and then attached two 1-cells and one 2-cell. It is easy to construct a regular
cell decomposition for a torus by dividing a rectangle into four equal subrectangles
and identifying the boundary pieces appropriately. This structure will have four 0-
cells, eight 1-cells, and four 2-cells and is quite an improvement, in terms of numbers
of cells, over the standard triangulation of the torus shown in Figure 7.5. In fact,
we can even do better. Figure 7.9 shows a CW complex whose underlying space
is the torus and which consists of four cells — one 0-cell a, two 1-cells b and ¢, and
one 2-cell. The boundary of the 2-cell in Figure 7.9(a) is mapped onto the 1-skeleton
a U b U ¢ in Figure 7.9(b) by mapping the edges b; and ¢; to b and ¢, respectively,
using the orientation indicated by the arrows. This will send the vertices a and a; to
a. Note that if we were to cut along the circles b and ¢ in the torus we would unfold
it to a rectangle.
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| Figure 7.8. Generating a cell decomposition of a

disk.
of « och cf <)
(a) )
¢} ¢l
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Figure 7.9. A compact cell decomposition for the torus.

Definition. A subcomplex of a CW complex C is a CW complex L such that

(1) IL| is a closed subspace of lc
) L] =Ll A lc?|, and
(3) each cell of L is a cell of C.

’

Definition. A CW complex is locally finite if each of its closed cells meets only a
finite number of other cells (of any dimension). It is normal if each closed cell is a
subcomplex.

Definition. Let C and C’ be CW complexes. A continuous map f : |C| - |C’| is called
a cellular map if £(C%) < (CY) for all q.

Here are some basic facts that hold for CW complexes. Some are easy to prove
and are good exercises for the reader. The proofs of those that are not can be found
in [LunW69] or [Jani84].

(1) Polyhedra are CW complexes. Every finite CW complex has the homotopy type
of a polyhedron and every finite regular normal CW complex can be triangulated.
We can drop the finiteness conditions here if we allow infinite simplicial complexes.
CW complexes are more general than polyhedra however. In particular, [LunW69] gives
an example of a finite three-dimensional CW complex that cannot be triangulated.
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(2) If Cis a CW complex, then its skeletons C" are subcomplexes.

(3) Arbitrary unions and intersections of subcomplexes are subcomplexes.

(4) Every compact subset of a CW complex lies in a finite subcomplex.

(5) A CW complex is compact if and only if it is finite.

(6) If X is a locally finite CW complex, then any union of closed cells is a closed
subset of X.

(7) If X is a CW complex and Y is an arbitrary topological space, then a map f:
X — Y is continuous if and only if flo is continuous for every closed cell ¢ in X.

(8) Let X and Y be CW complexes and let A be a subcomplex of X. Any continu-
ous map f:X — Y that is cellular on A is homotopic to a cellular map g:X — Y rela-
tive to A, that is, there is a homotopy h: X x I — Y so that h(x,0) = f(x), h(x,1) = g(x),
and h(a,t) =f(a), forallae Aandte I

(9) If the spaces X and Y are finite CW complexes, then so is X x Y.

(10) If the subspace A is a subcomplex of a CW complex X, then the cells in X -
A and one 0-cell corresponding to A define a cell decomposition for X/A that make it
into a CW complex.

(11) Attaching cells to a CW complex produces a CW complex.

(12) Let X and Y be CW complexes and let A be a subcomplex of X. If {:A —-Y
is a cellular map, then Y U X is a CW complex.

(13) A CW complex is a paracompact space and hence also a normal space.

(14) A connected CW complex is metrizable if and only if it is locally finite.

The cell decompositions of CW complexes are usually more natural decomposi-
tions of a space than triangulations and there are typically substantially fewer cells in
a cell decomposition than simplices in a triangulation, but there are a number of other
advantages to using CW complexes, making them the spaces of choice for topologists.
For example, properties (9)-(11) are easy for CW complexes and would be more com-
plicated for simplicial complexes because it would involve subdivisions.

It is possible to define a homology theory for a finite regular normal CW complex
C (actually for any CW complex, but this gets more involved) merely by copying what
was done in the case of simplicial complexes. For details see [CooF67]. In other words,
one can define the notion of an oriented cell and then the group of g-chains, C4(C),
of C is obtained by taking formal linear combinations of oriented g-cells in C. There
is also a natural boundary map

dq :Cq(C) > C41(C)
and well-defined group
ker dq

im aq+]

Hq (C) =

called the qth homology group of C.

Using the fact that any continuous map f: Icl - |c’| between the underlying
spaces of two CW complexes C and C’ is homotopic to a cellular map, there is an
induced natural homomorphism

f.q : Hq(C)— Hy(C).
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The groups Hy(C) and homomorphisms f.q satisfy all the properties that their
simplicial analogs did. Finally, one can prove the important theorem that asserts
that if C is a finite regular normal CW complex and K is a simplicial complex with
| homeomorphic to |K|, then Hy(C) is isomorphic to Hy(K). This means that one
can obtain the homology groups of a polyhedron either from a simplicial or a cell
structure.

Definition. If C is a finite CW complex, then let ny(C) denote the number of g-cells
in C and define the Euler-Poincaré characteristic of C, x(C), by

x(C) = dlrzn,‘c (-1)nq(C).
q=0
The Euler-Poincaré characteristic of a CW complex is really nothing new.
7.2.4.2. Theorem. If C is a finite regular normal CW complex, then x(C) = X(|C|).
Proof. See [CooF67]. Note that the hypothesis implies that |C| is a polyhedron.

We know that the Euler-Poincaré characteristic and the dimension of a polyhe-
dron is a topological invariant. There is an interesting related fact.

Definition. If f(xo,Xxy, . ..) is any function of the indeterminates x; and if C is a CW
complex, then define

f(C) =f(no(C),n; (C), ... ).

We shall say that f is topologically invariant function if £f(C) = {(C’) for all CW com-
plexes C and C’ with homeomorphic underlying spaces.

7.2.4.3. Example. If

f(xo,X1,...)=Xo —X1x3+x3 and g(xo,x1,...):z(—1)qxq,
q=0

then

£(C) =no(C) -1 (C)n3(C) +n7(C)* and  g(C) = x(C).

7.2.4.4. Theorem. The only topologically invariant functions f(xg,x;,...) on CW
complexes are those that are functions of the Euler-Poincaré characteristic and
the dimension, that is, if C and C’ are CW complexes with dim C = dim C’ and
x(C) = x(C"), then f(C) = f(C’).

Proof. See [AgoM76].
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This leads to the next topic in this section. Given a polyhedron X, what is the
fewest number of cells needed in a cellular decomposition of X? The answer to this
question is not only important for computation purposes but also to the topological
classification of polyhedra. Exercise 6.5.5 gave a partial answer in some special cases
to the corresponding question for simplicial complexes.

Definition. Let ¢” be an n-cell of a CW complex C that does not belong to any higher-
dimensional cell of C. If ¢"! is an (n — 1)-cell of C that is contained in ¢” but to no
other higher-dimensional cell of C, then ¢! is called a free cell of C.

Let C be a CW complex. Let ¢” be a top-dimensional cell in C that contains a free
(n — 1)-dimensional cell ¢*!. Let C’ be the subcomplex one obtains after removing the
cells ¢® and ¢!, that is,

|C’| — |C| _ (cn p ) _ (cn—l _ én—l).

Definition. We shall say that C’ is obtained from C by an elementary collapse from
c¢"! through c”. Conversely, we say that C is obtained from C’ by an elementary expan-
sion using the cell pair (c", ¢™™).

See Figure 7.10. An elementary collapse through a free cell gives rise to a natural
attaching maps, so that C can be thought of as being obtained from C’ by attaching
an n-cell.

Definition. Let C and C’' be CW complexes. We say that C collapses to C" and write
C | € if there exists a sequence of CW complexes Co=C > C;D...> C, = C so that
Ci;1 is obtained from C; via an elementary collapse. In that case we also say that C’
expands to C.

Figure 7.10 shows a sequence of elementary collapses that collapse a disk to a
point. Figure 7.11 shows how a cell decomposition of an annulus can be collapsed to
a circle. The numbers in the 2-cells of Figure 7.11(a) indicate the order of their col-
lapse, which are then to be followed by the 1-cell collapses whose order is indicated
by the numbers in Figure 7.11(b). We end up with the circle in Figure 7.11(c).

0 0
c) ) )
€1
1 1
c 5]
2 o <l \J ! .
0 1 0 1
c§ c! c§ c} c§ c}
collapsing collapsing collapsing
from c} through ¢? from c3 through c} from ¢} through c}

Figure 7.10. Collapsing a disk to a point.
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¢l
—_— —_—
i E ¢ ¢

(a) (b) (c)

Figure 7.11. Collapsing an annulus to a circle.

Io4

Figure 7.12. Retracting from free cell ¢"' through cell ¢".

7.2.4.5. Theorem. Let C and C' be CW complexes. If C collapses to C’, then |C’| is
a deformation retract of |C|.

Proof. Tt suffices to prove the theorem in the case where C’ is obtained from C by
an elementary collapse from an (n — 1)-cell ¢™! through an n-cell ¢ because the
general case can be proved by induction. See Figure 7.12. The result follows from the
fact that it is easy to construct a deformation retraction of D" to S*'by “pushing
down” through D" from S}! and is left as an exercise.

7.2.4.6. Corollary. Let C and C' be CW complexes. If C collapses to C’, then C and
C’ have the same homotopy type. In fact, the inclusion map of |C’| in |C| is a homo-
topy equivalence.

Proof. This follows from Theorems 7.2.4.5 and 5.7.7.

Corollary 7.2.4.6 just reinforces what we have said before, namely, that homo-
logy and homotopy invariants are not good enough for detecting when spaces are
homeomorphic.

Returning to the problem of finding a minimal cell decomposition of a polyhe-
dron X, the idea is to start with any CW complex C with |C| = X and then

(1) Collapse C as much as possible to a CW complex Cj.

(2) Pick a cell ¢; in C; that does not belong to any other cell in Cy, remove it from
Cy, and collapse the remainder as much as possible to another CW complex C,.

(3) Repeat step (2) as long as there are cells ¢; to pick.
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Table 7.2.4.1 Minimal cell decompositions.

X no(X) n1(X) n2(X)
Orientable surface (genus k) 1 2k 1
Nonorientable surface (genus k) 1 k 1
\4 \%
cf ¢ c
v
V2 C% V3 c
Figure 7.13. The dunce hat. (a) (b)

This will lead to a cell complex built up from a sequence of cells ¢/, ¢, ..., ¢y
derived from the ¢; whose underlying space has the same homotopy type as iC| . This
approach leads to Table 7.2.4.1 that lists the number of cells in a minimal cell decom-
positions for compact connected surfaces (without boundary).

Will the construction above lead to a minimal cell decomposition? In low dimen-
sions, the answer is yes, but in general, the answer is no. To see why this is so, con-
sider Figure 7.13 which shows part of the steps in the construction of the space called
the dunce hat. Start with the triangle shown in Figure 7.13(a) and identify the three
edges ci, ¢}, and c} using the orientation of the edges shown by the arrows. Figure
7.13(b) does not yet show the final picture because one still needs to identify the two
edges marked c. The dunce hat is clearly not collapsible because it has no free edges
but one can prove that it is contractible. A consequence is that there are cellular
decompositions so that if one is not careful about choosing the sequence of collapses,
one might not end up with a minimal cell decomposition. This can happen even
in the case of a simple space such as D". There are cellular decompositions of D",
n > 2, with the property that no sequence of collapses will end up with a point. See
[BurM71].

If we look back over the examples we have given of topological spaces since we
started talking about topology in Chapter 5, we can see that, as far as manifolds were
concerned, they have been pretty limited and were restricted to such “standard” spaces
as surfaces, R", S", D", P", etc. We got the most variety of spaces from surfaces, but
our classification theorems showed that they also fit into simple patterns. Once one
gets above dimension 2, however, things change drastically and a neat classification
is no longer possible. Just so that the reader does not think that there is nothing new
out there and gets bored with all the current examples, we finish this section by defin-
ing a well-known class of three-dimensional manifolds that are quite different from
the ones we have seen up to now. Fortunately, they are relatively easy to describe in
terms of a cell structure.
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(@ (b)
Figure 7.14. The lens paces L(p,q) and L(5,1).

Definition. Let p and q be relatively prime positive integers and assume that
0 < q < p/2. Define the lens space L(p,q) as follows: Let S be the reflection in R? about
the x-y plane and let R be the rotation about the z-axis through an angle of 2nq/p
radians. Then

L(p,q) =D*/~,

where ~ is the equivalence relation induced by the identification of x € 82 with R(S(x)).
In other words, we are identifying the point x in the upper hemisphere with the point
in the lower hemisphere obtained by reflecting x about the xy-plane and then rotat-
ing by 2nq/p. We are not identifying any points in the interior of the disk D?.

Here is another description of L(p,q). See Figure 7.14(a). Let
ck = (cos 2nk/p,sin 2nk/p,0), k=0,1,...,p—-1.

The points ¢i divide the equator of the sphere into p equal arcs. Let a = ez and b =
—e3 be the north and south pole of the sphere, respectively. We get the following cell
decomposition of D*:

0-cells: a, b, ¢

1-cells: the great arcs from a to ¢x and from b to ¢k and the arcs along the unit
circle from ¢y to ¢4

2-cells: 2p curved triangles, denoted by vegey, 1, bounded by the arcs from v to ¢,
from ci to ¢4q, and from ¢y, back to v, where visa or b

3-cells: D?

(All indices are taken modulo p.) L(p,q) is now the disk D* where we identify the
curved triangle ackeg,; in the upper hemisphere with the curved triangle in the lower
hemisphere beyqCkiq+1 and the vertices are identified in the order listed. Figure 7.14(b)
shows the case of L(5,1) where we have linearized the construction and have replaced
the sphere by a suspension of a five-sided polygon. The shaded triangle acscs gets
identified with the shaded triangle bcscy.
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Note that L(1,q) is the sphere S3, but this case has to be treated in a slightly
special way if one wants a nice cell decomposition. One has to add another vertex
at —e;.

Lens spaces were first defined by Tietze ([Tiet08]). We list some of their proper-
ties below:

(1) They are closed compact three-dimensional manifolds.
(2) They can be triangulated.

(3) L(2,1) is homeomorphic to P.

(4) The homology groups of L(p,q) are

—-
Il

N
Il

Z

. ~ Zp
H;(L(p,q)) = 0
v

—
Il
w N = O

—
Il

(5) x(L(p,q)) = 0.
(6) L(p,q) is homeomorphic to L(p,q") if and only if

q’ = +q*!(mod p).

(7) L(p,q) and L(p,q") have the same homotopy type if and only if qq" or —qq" is a
quadratic residue modulo p.

Properties (1)—(3) are easy to prove. Figure 7.14(b) should make clear what one
needs to do for (2). For properties (4) and (5) use the cell decomposition of L(p,q)
induced by the cell decomposition of D? described above to compute its homology
groups. Property (6) was proved by Reidemeister ([Reid35]). Property (7) was proved
by Whitehead ([Whit41]). More details about lens spaces can also be found in [SeiT80]
and [HilWe60].

Although it is obvious that homotopy equivalence is a weaker relation than home-
omorphism (consider a disk and a point or, more generally, any deformation retract),
it is not so obvious with respect to some types of spaces like manifolds without bound-
ary. This makes the next example and lens spaces all the more interesting.

7.2.4.7. Example. A consequence of properties (6) and (7) is that the 3-manifolds
L(7,1) and L(7,2) have the same homotopy type but are not homeomorphic.

7.25 Incidence Matrices

This section discusses the so-called incidence matrices. These matrices played an
important role in the history of combinatorial topology. An excellent detailed account
of these matrices can be found in [Cair68]. Computers can easily use them to compute
homology groups.
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Let K be a simplicial complex of dimension n and, as before, let nq = ny(K) be the
number of g-simplices in K. For each g, assume that we have chosen an orientation
for all the g-simplices in K and let

st ={lot}[o2].-. o, ]

be the set of these oriented g-simplices of K. The set S{ will be a basis for the free
abelian group C4(K). Define integers €} by the equation

n,
g [0 ] = i eilof]
i=1

and note that

{J_rl if of! is a face of G?H}
1) *

0 otherwise

Definition. The integer 8% is called the incidence number of [6}] and [6}1]. The gth
incidence matrix E9, 0 < q < dim K, of K is defined to be the (nq X ng)-matrix

1 1 1
[ 2 N
Ng+1
q q q q
[01 ] &1 £ €ingu
q—(ed) = [~a q q q
E (SIJ) [02] €71 €55 82nq+1
q
T I P T
[ Ng 8nql anZ annq,,]

whose rows and columns are indexed by the elements of S and S{,i, respectively.

7.2.5.1. Example. Suppose that K = (vov;v,) and that we have chosen the Sj as
follows:

Sy =1{vo,vi,va},

S‘l+ ={[vovi],[viv2][vova]},

S5 ={lvoviva]}.
The incidence matrices of K are then given by

[voviv2] [vovi] [viva] [vov2]
VoV +1 v +1 0 -1
‘= {vo‘,l} j| ond E= v0 1 1 0
1V2 1 - -
[VOV2] -1 V2 0 +1 +1
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Next, we define the incidence matrices with respect to arbitrary bases

{Cq} = {c?,cg, cen ,ng}

for the free abelian groups C4(K). Since we have bases, there are unique integers n
such that

Ng

q+1) _ q.9
0gs1(cf™) = Xmije].
i=1

Definition. The gth incidence matrix of K with respect to the bases {c%*'} and {c9} is
defined to be the (nq x ng1)-matrix

q+l
j

(ef)=c? |- ni

Let ¢ be an arbitrary (q + 1)-chain. If we express ¢ with respect to the basis {c9*!},
then

for some unique integers a; and

Ng+1 Ng (NDg+l
9q+1 (€)= X aj9gn (cf™) = Z[ 2 amj ] il
j=1

j=1 i=1

This shows that the boundary homomorphisms d, of K, and hence the homology
groups of K, are completely determined once the incidence matrices are known with
respect to some bases. Our goal in the remainder of this section is to show how the
homology groups of K can be computed from knowledge of the basic incidence matri-
ces E9 of K alone.

7.2.5.2. Lemma. Choose a basis for each group Cy(K). The matrix product of any
two successive incidence matrices with respect to any such choice of bases is the zero
matrix. Using the notation above, this means that for all q

(n%_l)(n%) =(ng-1 X Ng41 HMatrix of zeros.

Proof. This is a straightforward consequence of Lemma 7.2.1.3(2).
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Lemma 7.2.5.2 and some purely algebraic manipulations of matrices lead to

7.2.5.3. Theorem. It is possible to choose bases for all the groups Cy(K) simul-
taneously with respect to which the qth incidence matrix has the normalized
form

Ng+1—Yq columns Yq columns
0 0 & 0
53
Yq TOWS
N = a
% (7.3)
0 0 0
ng —Yq rows
0 0 0 0

where
(1) the 8%s are positive integers,
(2) 8, divides &% and
(3) ng =Yg 2 Yg-1-

Outline of Proof. Choose a basis

{Cq} = {c?,cg, Ce ,ng}

for each group Cq(K) and assume that N9 is the qth incidence matrix with respect
to these bases. We shall transform the matrices N9 into the form (7.3) by appropri-
ate changes to the bases and so we need to know how changes to bases affect the
matlrices. First of all, note that changing the basis {c} clearly affects both N9 and
N9,

Claim 1. The matrices N9 have the following properties:

(a) Replacing

q q
{C?,...,ci ,...,ng} by {clq,...,—ci ,...,ng}

corresponds to changing all signs in the ith column of N9 ! and ith row of N9,
(b) Replacing

q q q q q q q
{cl,...,ci,...,cj,...,c } by {cl,...,cj,...,ci,...,c }
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corresponds to interchanging the ith and jth columns in N9°! and the ith and jth rows
in N4
(¢) Replacing

{c?,...,ciq,...,cq } by {C?,...,C?+kc}1,...,cq }

ng ng

for some integers k and i # j corresponds to replacing the ith column of N9 by
the ith column plus k times the jth column and replacing the jth row of N9 by the jth
row minus k times the ith row.

The proof of parts (a) and (b) of Claim 1 is easy and left to the reader. Part (c) is
readily deduced from the identities

dq (ciq + kc?) =0q (c;1 ) +koqg (C?)
and

nq

ng
9 (c7) = D mied =i (ef ke )+ (nd —knd)ed + D, miet.

t=1 t=1,t#,j

Claim 1 is proved.
Now consider the 0th incidence matrix E° = (Su) of K. Note how each column has
only two nonzero entries, namely, one +1 and one —1.

Claim 2. Any integer matrix P = (p;) having the property that each nonzero
column has precisely two nonzero entries, one of which is +1 and the other is —1, can
be transformed into a normalized matrix as defined by Theorem 7.2.5.3 via a sequence
of matrix operations of the type described in Claim 1 above.

Claim 2 is proved by induction on the number of rows (or columns) in P.
First, by interchanging rows, we may assume that p;; = +1. The next step is to
zero out the first row past the first entry by a sequence of column operations.
Specifically, if pjj =1 for some j > 1, then replace the jth column of P by (jth column
— pij (Ist column)). The new matrix P’ = (pfj) will have pj; = 0 and either the
jth column is zero or there are again just two nonzero entries, one +1 and the other
—-1. By a sequence of such operations we arrive at a matrix P” = (p{}) such that
pfi =1, pfj =0, for j > 1, and P” also satisfies the same hypotheses as the original
matrix P. Now p”; will equal —1 for some i > 1. Subtracting the 1st row from the
ith row of P”, will give us a matrix Q = (qj), such that qi; = qi; = 0 for i, j > 1. The
inductive hypothesis would then apply to the matrix (qj)2<i2<j and finish the proof
of Claim 2.

In order to prove our theorem we shall prove the following assertions for
k> 0:
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Assertion Aj: It is possible to choose bases for the groups Cq(K) so that with
respect to these bases the incidence matrices are

N?, ... NX1 Nk Bk EnL
(All other incidence matrices are uninteresting since they are zero.)

Note the following important property of the matrices N¥ in assertion Ay that
follows easily from the fact that, by Lemma 7.2.5.2, the product N¥'N¥ is the zero
matrix.

Claim 3. The last Yy rows of the matrix NK in assertion Ay are zero.

We shall use induction on k to prove the assertions Ax above. Assertion A; follows
from Claims 1 and 2. These claims show that E° can be transformed into the nor-
malized form N? by changing the basis of Cy(K) and C;(K) appropriately. Although
the 1st incidence matrix may have changed, the ith incidence matrices for i > 2 have
not. One can check that the proof actually shows that 8 =1, for 1 <i < y,.

Assume inductively that assertion Ay is true for some k > 0. One can show that N*
can be transformed into a normalized form such as is required for Theorem 7.2.5.3
by a sequence of matrix operations of the type described in Claim 1. This fact is a
special case of a normalization theorem for matrices that is not hard but too long to
reproduce here. A proof can, for example, be found in [Cair68].

Using Claim 3 we may assume that only the first ny — 5., rows of N¥ will be affected
as we transform the matrix to its normalized form. Translating the changes we make
in the matrix into the corresponding changes in the basis for Cx(K) and their effect
on N¥!, we can easily see that only the first nx — yi_; columns of N¥! are manipu-
lated. Since these consist entirely of zeros, the matrix NX™' is left unchanged. Of
course, the matrix EX*! will certainly have changed, but we have established assertion
Ax.1. By induction, assertion Ay is true for all k > 0. Assertion A, proves Theorem
7.2.5.3.

A detailed version of the qth incidence matrix (7.3) of Theorem 7.2.5.3: Recall
that the rows and columns of the incidence matrices are indexed by the chains in the
chosen basis of the appropriate chain groups of K. Therefore, assume that 0 < g <n
and that the basis elements of C4(K) corresponding to the rows of N¢ have been labeled
as follows:

The first yq basis elements are labeled as AY’s (note that v1 =y, = 0),

the last y,_; are labeled as C{s,

the remaining B = nq — Yq — Yo-1 basis elements, if there are any, are labeled as Bf’s,
and

if the 8 are the elements shown in the normalized matrix (7.3), then the integer
pq is defined by

pq =max (O,{i |8 > 1})

With this notation, matrix (7.3) can be rewritten as
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+1 +1 +1 +1 +1 +1 +1 +1
A‘ll A4 B‘ll ... B4 C‘11 oY cY oY
Y qH B g Pq pq+l Tq
Af 87 0
1 1

q q
A 0 8pq

q
Yqd
The detailed version of the incidence matrices makes computing the homology
groups of K easy because it tells us all we need to know about the groups Cq(K) and
homomorphisms d,. In particular, it is easy to see that

{[A;l ]’ e ’[qu ]'[B?]’ Tt '[ng ]}
is a basis for Hy(K). Also,

o([A}]) = &, with the &8s being the torsion coefficients of Hy(K),
o([Bf]) = e, and
rk H(K) = Bq.

Finally, incidence matrices can be defined for CW complexes using their cells. All
the information about homology groups that one could deduce in the simplicial case
remain valid. This greatly simplifies computations because the dimensions of these
matrices will be much smaller.

726 The Mod 2 Homology Groups

A more precise name for the homology groups of a simplicial complex K as defined
in Section 7.2.1 is to call them the homology groups “with coefficients in Z.” The
reason is that chain group C4(K) consisted of formal integer linear combinations of
oriented g-simplices. It is easy to generalize this.

Let G be an arbitrary abelian group and let Sy again denote the set of oriented g-
simplices of K. If 0 < q < dim K, define the group C(K;G) of g-chains with coefficients
in G by
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Cq(K;G)=1{f:Sq —» G|if q=1, then f(-a) = —f(o) for all o in Sy }.

Clearly, C4(K) is just C4(K;Z). The elements of Cq(K;G) can be thought of as formal
sums

Y ga0, (7.4)

"
oeSq

where g, € G, motivating the terminology. Elements are added by collecting the coef-
ficients of the oo and then adding them using the group addition. Pretty much every-
thing we did earlier carries over without any problem if we simply replace Z by G.
There is a boundary homomorphism

dq : Cq(K;G) — Cq1(K;G)

and we can define the subgroup Z,(K;G) of g-cycles and the subgroup By(K;G) of g-
boundaries with coefficients in G. Again, Bq(K;G) c Zy(K;G). Finally,

Definition. The group

Z,(K;G
HﬂK;G)z%.

is called the gth homology group of K with coefficients in G.

Simplicial maps f : K — L induce homomorphisms
f.q : Hq(K;G) - Hy(L;G),

and one can again show that the homology groups Hy(K;G) are topological invariants
and so we can associate a unique (up to isomorphism) group Hq(X;G) to every poly-
hedron X. They are important new invariants associated to a space even though it
turns out that each is completely determined by Ho(X;Z) and Hy1(X;Z) by the so-
called “universal coefficient theorem.” A very important special case is the case where
G = Z; and it is worthwhile to look at that case more carefully.

Let K be simplicial complex. Since +1 is the same as —1 in Z;, there is no need to
orient the simplices of K to define C4(K;Z,). It follows that if T is the set of all g-sim-
plices in K, then Cy(K;Z,) can be identified with the set of all maps

g: Tqg =2y,

that is, an element of C4(K;Z,) (usually called a mod 2 g-chain) can be thought of as
consisting of a linear sum of g-simplices of K. To add mod 2 g-chains we simply collect
the coefficients of like simplices but must remember that 6 + 6 = 0 for every 6 € Tq
because 2 = 0 in Z,. For example, if K is the simplicial complex determined by the
simplex vgvivyvs, then
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VoVi + ViV +V)V(g,ViVy +VoV3 +V3V] € Cl(K;Zz)
and
(VOV1 +vivy + V2V0) + (V1V2 +Vyov3 +V3V1) =VoV]+V3V]+VoV3+VyVg. (75)

Recall our intuitive discussion of “holes” in Section 7.2.1. It is what we are doing now
that makes precise the first approach to homology groups in that section.
The boundary map

aq : Cq (K,Zz) - qul (K,Zz)

satisfies

q
aq(va---vq)=2vO-~-fli~~~vq,
i=0

that is, d4 sends the boundary of a g-simplex to the sum of all of its (q — 1)-dimen-
sional faces. Proving dq-1 © dq = 0 is easy in this case because each (q — 2)-dimensional
face a g-simplex belongs to precisely two (q — 1)-dimensional faces of the simplex and
2 =0 in Z,. The mod 2 homology groups of K, Hy(K;Z,), are now defined to be the
usual quotient group of the kernel of dq (called the mod 2 g-cycles) by the image of
dg+1 (called the mod 2 g-boundaries).

We can relate the mod 2 g-chains of K to subsets of |K| .

Definition. Let c € C4(K;G). The support of ¢, denoted by | c | , is the union of all the
g-simplices appearing in ¢ with a nonzero coefficient.

Observe that if we represent g-chains ¢ in C4(K;Z) by the subset lc| of |K|, which

is their support, then

(1) The subset |c + d| is the closure of the symmetric difference lclAld| of the
subsets |c| and [d|.

(2) The subset |8q(c)| is the union of all the (q — 1)-simplices that are the face of
an odd number of g-simplices appearing in c.

Now, since Z, is a field, the groups C4(K;Z,), Zq(K;Z,), B4(K;Z,), and H(K;Z,) are
actually vector spaces over Z;.

Definition. The gth connectivity number of K, kq(K), is defined to be the dimension
of the vector space Hy(K;Z,) over Z,. If X is a polyhedron, then the qth connectivity
number of X, kq(X), is defined to be the qth connectivity number of any simplicial
complex K that triangulates X.

Connectivity numbers are the mod 2 analogs of Betti numbers. They are well
defined in the case of a polyhedron because the groups Hq(X;Z,) are well defined up
to isomorphism.
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7.2.6.1. Theorem. Let K be a simplicial complex. Then

dim K

AK)= Y, (~D)kq(K).

q=0

Proof. The proof of this theorem is the same as that of Theorem 7.2.3.10. The only
difference is that one uses the mod 2 groups now and works with the dimensions of
these vector spaces rather than the ranks of the corresponding groups in the usual
homology theory with integer coefficients. One also needs to use the fact that

dim C4(K;Z>) =nq(K).

7.2.6.2. Corollary. If X is a polyhedron, then

dim X

AX)= D (1) Tkq(X).

q=0

Connectivity numbers have a simple geometric interpretation in the special case
of surfaces.

7.2.6.3. Lemma. Let S be a closed and compact combinatorial surface. Then

(1) xo(S) = 1.
(2) x2(S) = 1.
(3) xi(8) =2 = x(S).

Proof. Exercise 7.2.6.1(b) proves (1). Next, it is easy to see that Hy(S;Z,) = Z, because
the sum of all the 2-simplices of S is a mod 2 2-cycle that generates Hy(S;Z;). (We
should point out that this fact is actually a special case of Theorem 7.5.1(1) in Section
7.5.) This proves (2). Parts (1), (2), and Corollary 7.2.6.2 now imply (3).

Lemma 7.2.6.3 shows that the first connectivity number «;(S) (which is the only
one that is interesting for surfaces) does not depend on the orientability of the surface
S. This was certainly not the case with the first Betti number ;(S) and more evidence
that mod 2 homology theory does not detect orientability properties of spaces. We
shall also see this later with respect to the top dimensional homology groups of
pseudomanifolds. The next theorem is the main result that we are after right now.

7.2.6.4. Theorem. The first connectivity number x;(S) of a combinatorial surface S
equals the maximum number of distinct, but not necessarily disjoint, simple closed
curves in S along which one can cut and still have a connected set left over.

Outline of Proof. First of all, we need to explain the expression “simple closed
curves” in our current context. A collection of subsets X; of S will be called a collec-
tion of simple closed curves in S if each X; is homeomorphic to the circle 8! and there
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is a triangulation (K,¢) of S and subcomplexes L; of K such that (p(|Li|) = X;. We shall
use this notation in the argument below.
Define a number &(S) by

8(S) =max {k|S-(X; uX;u...uX)is connected,
where the Xj are distinct simple closed curves in S}.

We need to prove that k;(S) = 8(S). It is easy to see from the normal form for a surface
that was given in Chapter 6 and Lemma 7.2.6.3(3) that

8(S) 2 x((S) =2 x(S). (7.6)

Conversely, let 8(S) = k and assume that k > x((S). Let X; be the generator of
H(Li;Z,) = Z(L;Z,) < Z1(K,Z,), that is, I is the sum of the 1-simplices in L;. Since
k1(8S) is the dimension of the vector space H{(K;Z,) and k > k;(S), the 1-cycles Z; deter-
mine a linearly dependent set of elements in H{(K;Z;). Therefore, there must be a 2-
chain ¢ € Cy(K;Z,), so that

82 (C) =ajX;+azXy+---+agXy,

where a; € {0,1} and not all a; are zero. The chain ¢ cannnot be the sum of all the 2-
simplices of K, because it would be easy to check that d,(c) = 0 in that case. Since we
are assuming that d,(c) # 0, at least one 2-simplex ¢ of K does not belong to c. Using
this fact one shows that

S-XjuX,u---uUXy)

is not connected. This contradicts our initial hypothesis and proves that k > «;(S) is
impossible, and so

3(S) <x((S). (7.7)
Inequalities (7.6) and (7.7) prove the theorem.

Finally, the mod 2 homology groups can be computed using “mod 2” incidence
matrices.

1.3 Cohomology Groups

In addition to homology groups there are also cohomology groups associated to a
space. These groups are a kind of dual of the homology groups. We shall run into
them in Section 7.5.2 when we discuss the Poincaré duality theorem for manifolds.
They provide a formal setting that makes proving facts about homology easier, even
though they are closely related to the latter and add nothing new as far as the group
structures are concerned. However, it is possible to define a natural ring structure for
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them whose analog on the homology level is more complicated. This richer algebraic
structure leads to a whole host of new topological invariants. We outline the defini-
tion of cohomology groups in the case of simplicial complexes.

Let K be a simplicial complex.
Definition. The gth cochain group of K, denoted by C4K), is defined by

C4(K)=Hom (C4(K),Z).
Define the coboundary map
89: CY(K) - CI(K)
by
(Sq (f)) (c)=f(9q(c), forfeCI(K)andceCqyu(K).

Using the fact that d4_1°9q = 0, it is straightforward to check that datlo§a = 0, so
that im 89! ¢ ker 8%. The elements of im 89! and ker 89 are called g-coboundaries and
g-cocycles, respectively.

Definition. The gth cohomology group of K, denoted by H4(K), is defined by

ker 59

im 8971

HY(K) =
Definition. Let K and L be simplicial complexes and f:K — L a simplicial map.
Define the induced homomorphism

ffa: CY(L) - CU(K)
by

(F*9(g)) (c) = g(fyq (), for ge C(L)and c e Cq(K).
It is easy to show that

d9of#d = fhatloga,

and so f*9 induces well-defined induced homomorphisms
f*9: HY(L) » HY(K).

We mentioned earlier that cohomology groups do not add anything new as groups.
The following theorem is one example of this.
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7.3.1. Theorem. Let K be a simplicial complex. If T,(K) is the torsion subgroup of
Hy(K) and if rq is the rank of Hq(K), then

HY(K) = Tq-1(K) @ (free abelian group of rank ).

Proof. See [Cair68].

Another point made earlier was that one important difference between co-
homology and homology is that cohomology admits a natural product. Here is how
one gets this product. First, order the vertices of the simplicial complex K and let “<”
denote this ordering.

Definition. If f € CP(K) and g € CYK), then define f-g e CP*YK) by
(- 2)([vovy -~ Vprq ) = E([vovy - - vp DE([VoVps1 -+ Vpiq])

for all oriented (p + q)-simplices [vov; . . . Vp.q] of K with vg < vy <. .. v,.q. This product
of cochains induces a product

u: HP(K) x HY(K) — HP*9(K)
called the cup product.

Two distinct orderings of the vertices of K will induce isomorphic product struc-
tures on the cohomology groups. The cup product makes the cohomology groups into
a “graded ring.” As an example of how the cohomology ring gives more information,
consider the space X in Figure 7.15 that consists of the wedge of a sphere and two
circles. One can show that X has the same homology groups as the torus
S! x 8! (Exercise 7.3.1), so that homology cannot tell those two spaces apart. On the
other hand, the cohomology ring structure of X and the torus are different (even
though both have the same cohomology groups). By the way, X does not have the
same homotopy type as the torus.

This concludes our brief overview of cohomology groups, but we shall get more
glimpses of them in the future.

Figure 7.15. A space with the same homology groups as the

torus. X = S%vSlvs!
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7.4 Homotopy Theory

741 The Fundamental Group

We motivated homology theory by saying that it was an attempt to analyze the “holes”
in a space. For homology theory “holes” were treated algebraically, but we pointed
out at the time that the more natural classification of holes would be via homotopy
theory. We shall now take up this homotopy approach, beginning with the one-dimen-
sional “holes” or closed paths. By studying the number of homotopy classes of closed
paths we shall arrive at another important invariant associated to a topological space.
However, rather than studying maps of the circle it is convenient to use maps of an
interval where both end points are mapped to the same point because this simplifies
a number of formulas. Such maps are clearly equivalent to maps of a circle. Through-
out this section I will, as usual, denote the unit interval [0,1].

Let X be a pointed topological space with base point xg. We define a composition
or “product” of closed paths in X.

Definition. Given maps o, B:(I,0I) — (X,xo) define a map o*f:(I,dI) — (X,xp) by

(o B)(D) = x(21) ,ifOSts%,
:B(Zt—l),if%Stsl.

See Figure 7.16. If one thinks of o and 3 as describing paths that one walks along,
then a* B corresponds to first walking along o at twice the original speed and then
along B, also at twice the speed. The next four lemmas lead up to the main result,
which is Theorem 7.4.1.5.

7.4.1.1. Lemma. Let o, o, B, B’ :(I,0I) » (X,x0). If o0 =yp; o” and B =y B/, then a*f
=op o * 3.

Proof. If f(t,s) and g(t,s) are homotopies between o, o and B, ', respectively, then
the map

B(2s-1)

a(0) = a(l)

0t 12 s 1 Figure 7.16. The composition of closed paths.
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Figure 7.17. The homotopies in Lemma 7.4.1.2.
: : NI G I
f g
0 o 1 ' 0 B '
N2
f g
0 QVB 1 t

h: IxIL0xdIulxdl) —(X,xo)

defined by

hits)=fts),  if0<t< %

=g(2t—1,s), if%S t<1,

is a homotopy between o*f and o’ [’. See Figure 7.17.

7.4.1.2. Lemma. Given maps o, B, v:(L0I) — (X,xo), then (o B)*y =5 ax(B*7y).

Proof. It is easy to check that

(00 B) = 7)(t) = au(4t), foro<t<
=B(4t-1), for%StS—,
=y(t-1), for%ﬁtsl,

and

(o (B ))(t) = au(2t), for0<t<—,

[\

=B(4t-2), forLStS—,

[\
N

=7(4t-3), for%StSI.

The map h defined by
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s Figure 7.18. Associativity of closed path
2 composition.

A

h is constant

along these 1
lines 7

§

4 1
h(t,s)za(—tj, forOStSi,
s+1 4
s+1 s+2
=B4t-s-1), for—<t<——,
B( s—1) or 1 2
3 (4t—s—2) fors+2<t<1
N ) 4 S

is a homotopy between (o) *y and o.* (B*7y). See Figure 7.18.
Define the constant path ¢:I — X by c(t) = xq.
7.4.1.3. Lemma. For any o:(I,0I) —» (X,X(), 0t*C =55 0L =51 C* 0L

Proof. Define a map h by

h(t,s)=a(%), forOStSSTH,
=X, forsTHStSI.

Then h is a homotopy between o#c and o. See Figure 7.19. A similar homotopy can
be defined between c* o and o, proving the lemma.

7.4.1.4. Lemma. Given o, define B by B(t) = (1 — t). Then o*B =5 ¢ =5 B0
Proof. First observe that

(o B)(t) = ou(2t), for0<t< %

=o(2-2t), for%StSl.
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@

Figure 7.19. The constant path acts as an identity.
o« 5

h is constant
on these lines

Iy
o

=== —--_t
Q
o

1
\ 1
\ 7
\ 1
\ /
lines of \ %0 )
constant :”\ —//
value N—=L/
\ — 1
\ — /
\ /
\ 1
\ 1 t
0 o 12 B
Figure 7.20. Reverse traversal gives the inverse.
It is easy to check that the map h defined by
1
h(t,s) = ou2ts), for0<t< >

1
=o(2s—2ts), for 5 <t<l1,

is a homotopy between o * 3 and the constant path c. See Figure 7.20. A similar map
shows that B*a is homotopic to c.

Let m1(X,x0) denote the set of equivalence classes of maps o.: (I,dI) — (X,x) with
respect to the equivalence relation =3 More precisely,

(X, x0) = [(I,0T),(X,x0)].
Define a product+*on 71(X,Xq) as follows: If [a], [B] € 71(X,X¢), then [a] *[B] = [ov B].

7.4.1.5. Theorem. The operation * on m1(X,Xq) is well defined and makes 71(X,x¢)

into a group.

Proof. The fact that * is well defined follows from Lemma 7.4.1.1. Lemma 7.4.1.2
shows that * is associative. Lemma 7.4.1.3 shows that if c(t) is the constant path, then
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[c] is the identity for *. Lemma 7.4.1.4 shows that each element of n;(X,x() has an
inverse with respect to *.

Definition. The group m(X,xo) is called the fundamental group or first homotopy
group of the pointed space (X,xo). The point x is called the base point for this fun-
damental group.

So now we have another group associated to a space, but what information does
it give us? Before we compute the group for some spaces we look at some general
properties of it. First of all, the isomorphism type of the fundamental group is inde-
pendent of the base point if the space is path-connected.

7.4.1.6. Theorem. If X is path-connected, then 71(X,x¢) is isomorphic to m(X,x;)
for all x¢, x; € X.

Proof. Lety:I — X be a path from x; to xq. Define a map
T: m(X,x0) = m(X,x1)
by
T(o)) = [oy],
where o, : (I,dI) - X is defined by

oy (t) = y(3t), forte|0, }

=o(3t-1), forte ,%},

1
3
[2
=vy(3-3t), forte 5,1}

The map o,(t) is the path that walks along (1), then o(t), and then backtracks along
v(t). See Figure 7.21. It is easy to check that T is a well-defined isomorphism (Exer-
cise 7.4.1.1).

Note. Because of Theorem 7.4.1.6, the base point is often omitted for path-
connected spaces X and m(X) is used to denote 71(X,xq) for some xy € X.

7.4.1.7. Theorem. A contractible space has a trivial fundamental group.
Proof. The homotopy that shows the space is contractible to a point easily provides
a homotopy between every closed path in the space with the constant path (Exercise

7.4.1.2).

7.4.1.8. Corollary. A point, R", and D" all have a trivial fundamental group.
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Figure 7.21. Proving that the fundamental group
is independent of the base point.

x; =7(0)

7.4.1.9. Theorem. The fundamental group of S? is trivial.

Proof. Here is a sketch of the proof. Let o.: (I,dI) — (S?,e;). The Simplicial Approx-
imation Theorem implies that o is homotopic (relative to dI) to a map that misses a
point p # e; in §%. Since S? — p can be contracted to e; this proves that a is homo-
topic to the constant map and the theorem is proved.

Just in case the reader is beginning to think that the fundamental group is
always trivial, we give some examples of simple spaces for which the group is
nontrivial.

7.4.1.10. Theorem.

(1) m(S") = Z.

(2) m(P?) = Z,.

(3) The fundamental group of a wedge of two circles (figure eight) is a free group
on two generators.

Proof. See [Mass67] or [Cair68]. One way to prove part (1) is to show that the iso-
morphism is defined by the degree of the map as sketched in Section 5.7 and defined
rigorously in Section 7.5.1. Later in Corollary 7.4.2.23 we shall see alternate proofs of
(1) and (2).

Next, we look at how the fundamental group behaves with respect to continuous
maps. Let (X,x) and (Y,yo) be pointed spaces. Let f:(X,x9) — (Y,yo) be a continuous
map. Define

£: m(X,x0) > m(Y,yo)
by

£ ([a]) = [fear].

7.4.1.11. Lemma. The map f. is a well-defined homomorphism of groups.

Proof. This is Exercise 7.4.1.3.
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Definition. The homomorphism f. is called the homomorphism induced by the con-
tinuous map f.

7.4.1.12. Theorem.
(1) If f, g: (X,x0) — (Y,yo) are homotopic continuous maps, then

fi =g.: m(X,x0) > m(Y,yo).

(2) If £: (X,x9) — (Y,yo0) and g:(Y,y0) — (Z,z9) are continuous maps, then

geof = (gof), 1 M (X, x0) = m(Z,20).

Proof. This is Exercise 7.4.1.4.
We can now prove the homotopy invariance of the fundamental group.

7.4.1.13. Theorem. Homotopy equivalent spaces have isomorphic fundamental
groups.

Proof. This is an easy consequence of Theorem 7.4.1.12.

Note that Theorem 7.4.1.7 is actually an easy consequence of Theorem 7.4.1.13
since a contractible space has the same homotopy type as a point.

There is a nice relationship between the fundamental group of two spaces and
that of their product.
7.4.1.14. Theorem. Let (X,x) and (Y,yo) be pointed spaces and let

p: XxY—>X and q: XxY->Y
be the natural projections defined by p(x,y) = x and q(x,y) = y. Then the map
6: m(XXY,x0 Xyo) = m(X,x0) X (Y,yo)

defined by

o([a]) = ([poa].[gear]),
is an isomorphism.
Proof. See [Mass67].
Theorem 7.4.1.14 enables us to compute many more fundamental groups.

7.4.1.15. Corollary. m;(S'xS")~Z & Z.
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Proof. The corollary follows from Theorems 7.4.1.10(1) and 7.4.1.14. See also Corol-
lary 7.4.2.23(3).

Theorem 7.4.1.10(3) showed that the fundamental group of a space is not neces-
sarily abelian. Is there any connection between it and the first homology group? After
all, in both cases we are dealing with one-dimensional “holes.” To answer that ques-
tion we describe a natural map from one to the other.

Note. To simplify the discussion below we are pretending (as we earlier said we
would) that polyhedra have well-defined homology groups.

Let X be a connected polyhedron and let xg € X. Define
u: m(X,xo) = Hi(X)
as follows: Let [a] € m1(X,x0), where o: (I,dI) — (X,x¢). If ¢:I—S! is the map
o(t) = (cos 2xt,sin 2mt),

then o induces a unique map B:S' — X with the property that o(t) = B(e(t)). (B is the
unique map that makes the diagram

st —> X

P A

(LoD)

commutative.) Now B induces a map B. on homology groups. If 1 is a fixed (“stand-
ard”) generator of H;(S!), then

(oD =B () € Hi(X).

7.4.1.16. Theorem.

(1) The map p defines a homomorphism of groups called the Hurewicz
homomorphism.

(2) The map p sends m1(X,xg) onto H;(X).

(3) The kernel of u is the commutator subgroup of m(X,xo).

Proof. See [Cair68].

It follows from Theorem 7.4.1.16 that H;(X) is the abelianization of n;(X,xg). The
advantage of the fundamental group of a space is that it gives somewhat more infor-
mation about the space than the first homology group. The disadvantage is that it is
more complicated to compute.
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Definition. A path-connected space that has a trivial fundamental group is called
simply connected.

Analyzing spaces and maps gets much more complicated if the spaces involved
are not simply connected. The fundamental group has a subtle but significant influ-
ence on the topology of a space and its name is quite appropriate. It is probably the
single most important group from the point of view of algebraic topology. A great
many theorems have as part of their hypotheses the assumption that a space is simply
connected. See for example Theorems 7.4.3.7 and results in Section 8.7, 8.9, and 8.10.

A nice way to summarize some aspects of the fundamental group and its rela-
tionship to the first homology group is as follows: If

f: (X,x0) > (Y,yo0)

is a continuous map, then (again ignoring the current nonuniqueness of homology
groups) there is a commutative diagram

(X, xo)——m(Y,yo)
wl o,
Hi(X)——Hi(Y)

where [ is the Hurewicz homomorphism.

We end this section with an application of the fundamental group. The group plays
a central role in the study of knots. Some references for knot theory are [CroF65],
[Livi93], [Rolf76], and [Mass67].

Definition. A subspace K of R? is called a knot if K is homeomorphic to S'. The
space R? — K is called the complement of the knot K. Two knots K; and K, are said
to be equivalent if there is a homeomorphism h:R?> — R?, so that h(K;) = K;.The equiv-
alence class of a knot is called its knot type. A knot is trivial if it is equivalent to the
standard S! in R>. A knot is called a polygonal knot if it is the union of a finite number
of (linear) segments, that is, it is a polygonal curve. A knot is said to be tame if it is
equivalent to a polygonal knot.

We are sticking to the traditional theory here, because the definition of a knot is
sometimes generalized to include imbeddings of n-spheres, n > 1, in a space. We also
need to point out that there are other variations of the definition of a knot in the lit-
erature. Sometimes knots are defined to be maps, that is, imbeddings k:S! — R?,
rather than subsets. In that case, the equivalence of knots is defined in terms of
isotopies. (Two imbeddings hg and h; are said to be isotopic if there exists a one-
parameter family of imbeddings hy, or isotopy, between them.) Fortunately, there is
not much difference between the theories. For example, if we stick to orientation-
preserving homeomorphisms, then two knots are equivalent using our definition if
and only if they are isotopic. (We shall define what it means for a homeomorphism
between oriented manifolds to be orientation preserving in Section 7.5.1. A homeo-
morphism h:R? - K — R? — K is said to be orientation preserving if its extension to
S* > S§%is)
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Sometimes it is convenient to consider knots in S rather than R? because S* is a
compact space, but there is again no real difference in the theory since, using the
stereographic projections, 8% can be thought of as just R* with one point added. Note
also that, since all knot, are homeomorphic to S', classifying them is not a question
of determining if they themselves are homeomorphic because they are. What makes
knots different is their imbedding in R?. Every knot in the plane is necessarily trivial
by the Schoenflies theorem.

In order not to have to deal with wild imbeddings, one also usually assumes that
knots are polygonal.

Definition. Let K be a knot. The fundamental group n;(R? — K) is called the group
of the knot K. (The base point of the fundamental group was omitted because we are
only interested in the group up to isomorphism.)

The group of a knot plays a large role in the study of knots but does not deter-
mine the knot completely because there exist inequivalent knots that have the same
knot group, such as for example, the square knot and the granny knot shown in Figure
7.22. Certainly, equivalent knots have isomorphic knot groups because their comple-
ments are homeomorphic. The knot group is only one of many interesting invariants
associated to a knot.

Before we list a few important known facts about the classification of knots, we
define a well-known infinite family of knots that serve as useful examples.

Definition. A rorus knot of type (p,q), where p and q are relatively prime, is a knot
that can be imbedded in a torus and has the property that it cuts a meridian circle of
the torus in p points and a circle of latitude in q points. In cylindrical coordinates, a
specific instance of such a knot is the curve

r=2+cos(q8/p)
z = sin(q8/p)

that lies in the torus in R? (the circle in the x-z plane with center (2,0,0) and radius
1 rotated about the z-axis) defined by the equation

(r-2)*+22 =1.

square knot granny knot

Figure 7.22. Two inequivalent knots with isomorphic knot groups.
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[

Figure 7.23. A torus knot of type (3,5).

Figure 7.23 shows an example of a torus knot.
7.4.1.17. Theorem.

(1) A tame knot is trivial if and only if the group of the knot is infinite cyclic (iso-
morphic to Z). There is an algorithm that determines whether or not a knot
is trivial.

(2) Two tame knots have homotopy equivalent complements if and only if their
knot groups are isomorphic. (Conjecture: If two tame knots have homeomor-
phic complements, then they have the same knot type.)

(3) There exist infinitely many knot types. For example, the torus knots of type
(p,q) are all inequivalent.

(4) The abelianization of every knot group is infinite cyclic.

(5) If K is a tame knot, then m;(R?> - K) =0 fori> 1.

Proof. The proofs of most of these facts are much too complicated to give here. See
the references for knot theory listed earlier.

742 Covering Spaces

The topic of this section is intimately connected with the fundamental group but also
has important applications in other areas such as complex analysis and Riemann sur-
faces. Section 8.10 in the next chapter will continue the discussion and discuss the
related topic of vector bundles.

We begin with some basic terminology and motivational remarks. See Figure 7.24.

Definition. A bundle over a space X is a pair (Y,p), where Y is a topological space
and p:Y — X is a continuous surjective map. One calls Y the rotal space, p the pro-
jection, and X the base space of the bundle. The inverse images p~'(x) c Y for x € X,

are called the fibers of the bundle.

In our current context we should think of the total space of a bundle as consist-
ing of a union of fibers that are glued together appropriately. Of course, the general
case of an arbitrary surjective map p does not lead to anything interesting. The inter-
esting case is where all the fibers are homeomorphic to a fixed space F. The obvious
example of that is the product of the base space and F.

Definition. A bundle over X of the form (X x F,p), where p is the projection onto
the first factor defined by p(x,f) = x, is called the product bundle with fiber F.
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Figure 7.24. Basic bundle terminology. fibers p~!(x) = F

YN

o HHHH HHH

prOJecnon p

base space X

Next, we define a notion of equivalence of bundles over a space. We begin by defin-
ing general bundle maps. They should preserve the fibers (map fibers to fibers) since
that is the only structure present.

Definition. A bundle map from a bundle (Yi,p;) over a space X to a bundle (Y;,p2)
over X is a map

f: Y1 - Y2
with the property that

Y1 —f> Yz

Pl\, b2
X

is a commutative diagram (p; = p°f). The bundle map f is called a bundle isomorphism
and we say that the bundles (Y;,p1) and (Y3,p») are isomorphic if f is a homeomorphism.
If (Y,p) = (Y1,p1) = (Y2,p2), then a bundle isomorphism is called a bundle automorphism
of (Y,p).

Definition. A bundle (Y,p) over a space X that is isomorphic to a product bundle is
called a trivial bundle. The bundle is called a locally trivial bundle if for every x € X
there is an open neighborhood U of x in X such that (p~!(U),p | p'(U)) is isomorphic
to a trivial bundle over U.

If all locally trivial bundles were trivial bundles, there would be no point in intro-
ducing the concept of bundle. The next example describes a very simple nontrivial

bundle.

7.4.2.1. Example. If we consider P" as the quotient space of 8" where antipodal
points are identified and let p:S™ — P" be the quotient map, then one can show that
(S",p) is a locally trivial bundle over P" (Exercise 7.4.2.1). Every fiber is the discrete
space consisting of two points. Clearly, (S",p) is not a trivial bundle because S" is con-
nected and the trivial bundle with fibers consisting of two points would not be.
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It is the bundles with discrete fibers that interest us in this section. In Section 8.10
we shall look at bundles whose fibers are vector spaces.

Definition. A covering space for a space X is a locally trivial bundle with base space
X with the property that every fiber is a discrete space. The covering is called an
n-fold covering if every fiber consists of n points. The bundle automorphisms of a
covering space are called covering transformations.

Example 7.4.2.1 already described a 2-fold covering space. Here are some more
examples.

7.4.2.2. Example. The map

p: R—>S!

p(t) =(cos t,sin t)
defines a covering space (R,p) of S! whose fibers
p ') ={t+2nn|neZ}

are a countable discrete set of points.

7.4.2.3. Example. Consider the circle S! as a subset of the complex plane C. The
map

p: S'»S!
p(z)=z"

defines a bundle (S!,p) over S! that is an n-fold covering space for S'.

7.4.2.4. Example. The map

p: R>>S! xS'cR? xR?

p(s,t) = ((cos t,sin t),(cos t,sin t)).

defines a is a covering space (R?,p) of the torus S' x S!.

That all the total spaces in our examples were manifolds should not be
surprising.
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7.4.2.5. Theorem. The total space of a covering space of a topological manifold is
a topological manifold.

Proof. This is obvious from the local triviality property of the bundle.

When one works with covering spaces or bundles in general, some of the most
important tools are map-lifting tools.

Definition. Let (Y,p) be a covering space for a space X and let y:[a,b] - X be a con-
tinuous curve. A map 7 :[a,b] — Y is called a lifting of the curve y starting at y(a) if
we have a commutative diagram
Y
v/ dp
[a,b]——X,

that is, pey = Y. More generally, given a map f:Z — X, any map f:Z — Y is called a
lifting of f if we have a commutative diagram

that is, pef = f.
7.4.2.6. Theorem. (The Path-Lifting Theorem) Let (Y,p) be a covering space for a
space X. Let xo € X and yo € p (). Then every continuous curve y:[0,1] — X lifts

to a unique continuous curve ¥:[0,1] — Y that starts at yj.

Proof. We sketch a proof of this theorem. It will give the reader a good idea of the
kind of arguments one uses with covering spaces. Figure 7.25 shows what is involved.

I Y 0
2 (e
Figure 7.25. Lifting paths.
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The easy case is where one can find an open neighborhood U of x( over which the
covering space is trivial and that contains the curve y(t). The set p~'(U) will consist of
disjoint open sets in Y that are homeomorphic copies of U. Let V be the one that con-
tains yo and let py = p | V. Then ¥ = pyv 'eyis the unique curve we seek. For the general
case, we separate the proof into two parts.

We prove uniqueness first. Let ¥; and §, be two liftings of y that start at yo. Con-
sider the sets

A={te[0,1][71(D =720} and B={te[0,1]| ¥:1(t)#T2(0)}.

These are obviously disjoint sets whose union is [0,1]. Using continuity, it is easy to
show that both of these sets are open in [0,1]. Since 0 € A, A is nonempty. But [0,1]
is connected and so B must be the empty set and we have proved uniqueness.

To prove the existence of a ¥, consider the set

C ={t €[0,1]| there is a lifting of y over[0,t]}.

Figure 7.26 should help the reader follow the rest of the argument. Since the cover-
ing space is trivial over an open neighborhood of xg and we know how to lift paths
over such a neighborhoods, the set C will contain a small neighborhood of 0 and
hence, if c is the supremum of C, then 0 < ¢ < 1. If ¢ = 1, we are done. Assume that
¢ < 1. Choose a neighborhood U of y(c) over which the covering space is trivial. Choose
€ > 0, such that [c — 2¢g,c + 2¢] < [0,1] and Y([c — 2¢,c + 2¢]) < U. By the definition of
¢, there is a lifting

Y:[0,c-€e]l>Y
of
v: [0,c—¢g]— X.
Because the curve y’ [c — 2g,c + 2¢] lies in U it can be lifted to Y, that is, the lifting ¥

can be extended to a lifting of y| [0,c + 2¢]. This contradicts the fact that ¢ was the
supremum of the set C and so ¢ < 1 is impossible.

lifting of ¥ [c — €, ¢ + 2¢€]

Yo=7(0)

Yo=7(0) \Y(c_g) (0 y(c+2£)_’ X  Figure 7.26. :D_;tc.)ving the existence of path
iftings.
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Figure 7.27. Lifting a homotopy.

Zx0

Zx[0,1]

Zx1

The importance of Theorem 7.4.2.6 is not only that every path in the base space
lifts to path in the total space but that the lift is essentially unique, meaning that if
two lifted paths agree at one point, then they agree everywhere. The unique lifting
property generalizes to arbitrary connected spaces not just the interval [0,1]. Another
important lifting theorem is the following:

7.4.2.7. Theorem. (The Homotopy Lifting Theorem) Let (Y,p) be a covering space
for a space X. Let h:Z x [0,1] — X be a continuous map. Define h;:Z — X by h(y) =
h(yt). If ho is a lifting of hg, then h lifts to a unique continuous map h:Zx[01]—>Y
so that h(y,O) = ho(y)

Proof. See[Jdni84]. Figure 7.27 tries to indicate the relationship between the various
maps.

7.4.2.8. Corollary. (The Monodromy Lemma) Let (Y,p) be a covering space for a
space X. Let Yo, v1:[0,1] — X be two continuous curves that start at the same point xg
and end at the same point x;, that is, xo = ¥9(0) = ¥1(0) and x; = y9(1) = y1(1). Assume
that vy and y; are homotopic by a homotopy h that fixes the endpoints, that is, h(t,0)
=xp and h(t,1) = xy, for all t € [0,1]. If, Yo, ¥1:[0,1] = Y are liftings of yy and 7y, respec-
tively, that start at the same point in Y, then §p and ¥; will end at the same point, that
is, o(1) = 11(1).

Proof. This is an easy consequence of Theorem 7.4.2.7.

Corollary 7.4.2.8 is an important uniqueness type theorem. It says that if one lifts
two homotopic paths that start and end at the same point, then the lifted paths will
also end at the same point if they start at the same point.

The next two results describe some relationships between the fundamental groups
of the total and base space of a covering space.

7.4.2.9. Theorem. Let (Y,p) be a covering space for a space X. Let xg € X and yp €
p'(X¢). Then the induced homomorphism

p:: m(Y,yo0) = m(X,x0)
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is one-to-one.

Proof. See [Mass67] or [Jani84]. Basically, if an element [f] maps to 0, then the map
pef is homotopic to a constant in X and this homotopy lifts to a homotopy between f
and the constant map in Y.

A natural question is if y; € p~!(xo), then what is the relation between the sub-
groups p-(1(Y,y1)) and p:(n1(Y,yo)) in m1(X,x0)? There is an easy answer.

7.4.2.10. Theorem. Let (Y,p) be a covering space for a space X and let xg ¢ X. If Y
is connected, then the subgroups p.(m1(Y,yo)) in ©;(X,Xx¢) as yo ranges over the points
in p~'(x¢) generate a conjugacy class of subgroups in m;(X,xo).

Proof. See [Mass67]. The result follows easily from the following observations. Let

yo, ¥1 € p '(x¢). Let &.: [0,1] = Y be a curve with 6(0) = yo and 6(1) = y;. The curve o
=pe°d :[0,1] - X is a loop at xq. If [{] € 71(Y,y1), then define fi: [0,1] —» Y by

[(t) = a(3t), te _0, }

) ot
_Y 2 4 ;3:

1
3
=0(3-3t), te %1}

Now, set y=peyand p =peji It is easy to show that [fi] € ;(Y,yo) and [u] = [o] ' [y][c]
e m(X,xg). See Figure 7.28.

Next, we would like to classify covering spaces. Let (Y,p) be a covering space for
a space X and let xy € X and yo € p!(x¢). First, we shall answer the question about
when maps from some arbitrary space Z into X lifts to a map into Y. Let zg € Z. The
specific question is, given a map f : (Z,z9) — (X,xo), when does a lifting f : (Z,z9) —
(Y,yo) exist? In terms of diagrams, we are given f and p and are looking for an f that
will produce a commutative diagram

-
/
I
~ \

yP
X Figure 7.28. How loops in the total space project to
conjugate loops.
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Y,yo0
f Ip
Z,ZO ;)X,Xo.

A necessary condition is clearly that f.(n1(Z,z0)) < p«(m1(Y,y0)). The amazing fact is
that this condition is also sufficient provided that some weak connectivity conditions
hold.

Definition. A topological space X is said to be locally path-connected if every neigh-
borhood of a point contains a neighborhood that is path-connected.

Fortunately, the spaces of interest to us are locally path-connected. Manifolds are
trivially locally path-connected, but so are CW complexes (use induction on the
number of cells).

7.4.2.11. Theorem. Let (Y,p) be a covering space for a space X. Let Z be a path-
connected and locally path-connected space. Let xg € X, yo € p ' (Xo), and zg € Z. Then
amap f: (Z,z9) - (X,x¢) lifts to a map f : (Z,zy) — (Y,yo) if and only if f.(n1(Z,z¢)) <
p-(m1(Y,y0)).

Proof. See [Mass67] or [Jani84]. The diagram below should help clarify what is
being said:

) Y,yo n1(Y,y0)
f Ip Up.
7,z SN X, xg p«(m1(Y,y0))
N

M(Z,20)——>£.(m1(Z,20)) € 11 (X, X0).

We can deduce a number of important results from Theorem 7.4.2.11.
7.4.2.12. Theorem. Let (Y;,p1) and (Y2,p2) be covering spaces for a space X, where
Y; and Y; are path-connected and locally path-connected spaces. Let xo € X and y; €

pi'(x0). The two covering spaces are isomorphic via a bundle isomorphism f : (Y;,y;)
— (Y2,y2) if and only if p1«(n1(Y1,y1)) = p2:(m1(Y2,y2)).

Proof. See [Mass67]. The following diagram might again help:

m(Y,y) oy, Ly, m(Yz,y2)

pl*l pl\, X/Pz l P2s

p1=(m (Y1, y1)) c mi(X,x0)  pa:(m1(Ya,y2))

To get the next theorem we need another technical definition.
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Definition. A topological space X is said to be semi-locally simply connected if every
point x in X has a neighborhood U so that every closed curve in U that starts at x is
homotopic to a constant map in X.

Manifolds and CW complexes are semi-locally simply connected (use induction
on the number of cells for CW complexes).

7.4.2.13. Theorem. Let X be a path-connected, locally path-connected, and semi-
locally simply connected space. Let xg € X. If G is an arbitrary subgroup of m(X,xo),
then there is a path-connected and locally path-connected space Y and covering space
(Y,p) of X, so that for some point yp € p'(x¢), p«(n1(Y,y0)) = G.

Proof. See [Mass67] or [Jani84].

Definition. A universal cover or universal covering space for a space X is a covering
space (Y,p) for X, with the property that Y is path-connected, locally path-connected,
and simply connected.

By Theorem 7.4.2.12, the universal covering space of a space (if it exists) is unique
up to isomorphism. Therefore, if the projection p is obvious from the context, then
the common expression “the universal cover Y of X” refers to the universal covering
space (Y,p).

7.4.2.14. Example. The space R is the universal cover of the circle S! (see Example
7.4.2.2).

7.4.2.15. Example. The sphere S" is the universal cover of projective space P" (see
Example 7.4.2.1).

7.4.2.16. Theorem. Let X be a path-connected, locally path-connected and semi-
locally simply connected space. Then X has a universal covering space and any two
are isomorphic.

Proof. Only the existence part of this theorem needs proving. See [Mass67] or
[Jani84].

The reason that a universal covering space (Y,p) for a space X has the name it
has is that if (Y’,p’) is any other covering space for X, then there a unique (up to iso-
morphism) map p: Y — Y making the following diagram commutative

Yy

p\x/ P

In fact, (Y,p) will be a covering space for Y’. In other words, the universal covering
space of a space “covers” every other covering space of the space.

The covering transformations of a covering space are interesting. They obviously
form a group.
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Definition. Cov(Y,p) will denote the group of covering transformations of a cover-
ing space (Y,p).

7.4.2.17. Theorem. Let (Y,p) be a covering space for a path-connected and locally
path-connected space X. Let xo € X and yp € p'(x0). Let G = p.(n;(Y,yo)) and let Ng
be the normalizer of G in 11(X,x0). Given an element [y] € Ng, there is exactly one
covering transformation hy, that maps yo into the end point ¥(1) of the lifting ¥ of v
that starts at yo. The map

Ng — Cov(Y,p)
[v] = hiy

is a homomorphism with kernel G, that is,

Ng
Cov(Y,p)=—.
ov(Y,p) G

Proof. See [Mass67] or [Jani84].

7.4.2.18. Corollary. Let (Y,p) be the universal covering space for a path-connected
and locally path-connected space X and let xg € X. Then Cov(Y,p) = m(X,xq). If
71(X,x¢) is finite and n = |n1(X,xo) , then (Y,p) is an n-fold covering.

7.4.2.19. Example. The covering transformations of the universal covering space
(R,p) defined in Example 7.4.2.2 are the maps

h,: R=R
defined by
h,(t)=t+2nn.
The maps h, are obviously covering transformations. Note that h,, = h.

7.4.2.20. Example. The only covering transformation of the covering space S" over
P" is the antipodal map of S".

7.4.2.21. Corollary. Let (Y,p) be the universal covering space for a path-connected
and locally path-connected space X and let xg € X. Then X = Y/~, where ~ is the equiv-
alence relation defined by y ~ y’ if there is an h € Cov(Y,p), such that y’ = h(y).
7.4.2.22. Example. Let m, n € Z. Define maps

hpnn: R > R?
by

hmn(x,y) = (x+21m,y +27n)
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and think of the torus S! x S! as the quotient space of R?~, where ~ is the equiva-
lence relation

(X> Y) - hm,n (Xr Y)

If p : R? - R?/~ is the quotient map, then (R?p) is the universal covering space of the
torus. With this interpretation, the maps hy, , are obviously the covering transforma-
tions. Note that hy, , = h'Tgchj ;.

Using Corollary 7.4.2.18 and what we showed in Examples 7.4.2.19, 7.4.2.20, and
7.4.2.22 we now have alternate proofs of the facts stated in Theorem 7.4.1.10(1) and
(2) and Corollary 7.4.1.15, namely,

7.4.2.23. Corollary.

(1) m(SH = Z.
2) m®P") = Z,.
B) mS'xSH=72oZ.

All this talk about covering transformations and the last three examples leads to
another question. Suppose that we turn things around and start with a group of
homeomorphisms G of a space Y and define

Y/G=Y/~, (7.8)
where

y1~y2 if y>=h(y;) forsomeheG.

Definition. The space Y/G in equation (7.8) is called the guotient space of Y modulo
the group G.

If p: Y — Y/G is the quotient map, then is (Y,p,Y/G) a covering space with G the
group of covering transformations? The answer in general is no. At the very least the
homeomorphisms in G could not be allowed to have fixed points, but we need some-
thing stronger.

Definition. A group of homeomorphism G of a space X is said to be properly
discontinuous if every point x in X has a neighborhood U so that all the sets h(U),
h € G, are disjoint.

Clearly, no homeomorphism in a properly discontinuous group of homeomor-
phism can have a fixed point. Furthermore, it is easy to see that the covering
transformations of a covering space form a properly discontinous group of homeo-
morphisms of the total space.

7.4.2.24. Theorem. LetY be a connected, locally path-connected topological space
and G a properly discontinuous group of homeomorphism of Y. If p : Y — Y/G is the
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quotient map, then (Yp) is a covering space for Y/G with G the group of covering
transformations.

Proof. See [Mass67].

As a nice application of this discussion of covering transformations we relate this
to the lens spaces defined in Section 7.2.4. As before, let p and q be relatively prime
positive integers and assume that 0 < q < p/2. Consider the unit sphere S* in complex
2-space C2. (One can identify C> with R*.) Define rotations

ci: S$*->8°
by
Gi(z1,22) = (21e/P, z,e?™/P),
where z;, z2e Candi=0, 1,..., p-1. (The e?™P are the pth roots of unity.) Since

6; = 6(, we have in effect defined a group
G =1{00,01,...,0p-1}
of order p of rotations acting on S°. Define
L(p,q)=$%/G
and let
n: $* - L(p,q)
be the quotient map.

7.4.2.25. Theorem. The new spaces L(p,q) are homeomorphic to the lens spaces
L(p,q) defined in Section 7.2.4. Furthermore,

(1) (S3m) is the universal covering space for L(p,q).
(2) G = Cov(S*n).

Proof. See [CooF67] or [HilW60]. Parts (1) and (2) are obvious.
7.4.2.26. Corollary. =; (L(p,q)) = Z,.

This concludes our overview of the theory of covering spaces. The gist of the main
results stripped of their technical details is summarized by the following:

(1) The theory of covering spaces for simply connected spaces is uninteresting
because the only covering space in that case is where the space covers itself.

(2) The universal covering space of a space covers every other covering space of
the space.
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(3) The covering transformations of the universal covering space of a space have
no fixed points and are in one-to-one correspondence with the elements of the fun-
damental group of the space. They act transitively on the fibers, that is, any point in
the total space can be mapped into any other point belonging to the same fiber as the
first.

(4) Every conjugacy class of a subgroup of the fundamental group of a space
defines a covering space for that space.

See [J4ni84] for a variety of applications of covering space theory.

743 Higher Homotopy Groups

There is an important generalization of the fundamental group of a space that leads
to higher-dimensional homotopy groups.

Definition. Let n > 2. Given maps o,  : (I",0I") — (X,x¢), define a map
axB: (I",01") — (X,xo)
by

(o B)(ty,tz, ..., th) =0(2ty,ta,. .. ,ty), ifo<st <

=Bt —1Ltz,...,ty), if =<ty <1,

Definition. Let
7tn (X, X0) = {ou | o2 (17,01) = (X, x0)} /= pn

be the set of equivalence classes of maps o with respect to the equivalence relation
=,r. Define a product * on 1,(X,%¢) as follows: If [a], [B] € ©.(X,X0), then

[o] = [B] = [ov* B].
7.4.3.1. Theorem. The operation * on n,(X,xo) is well defined and makes m,(X,x¢)
into a group called the nth homotopy group of the pointed space (X,xo).
Proof. The proof is similar to the one for the fundamental group. Exercise 7.4.3.1.

There is a perhaps easier way to visualize the product in 7,(X,x¢). First, we need
a definition.

Definition. Let X, Y, and Z be pointed spaces with base points xg, yo, and zy, respec-
tively. If f : X — Z and g : Y — Z are continuous maps with f(xg) = z¢ and g(yo) = zo,
then define a map
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fvg: XvY—>Z by fvg|X=f and fvg|Y=g
This map is called the wedge of f and g.

With this definition we can now give an alternate definition of the product in
(X, xg). First of all, we can clearly identify maps (I",0I") — (X,x¢) with maps (S",e;)
— (X,xg). Let

c: S">S8"vS8S" (7.9)
be the map that collapses S*! to the base point of 8" v 8" and that wraps the upper
and lower hemisphere of S™ around the first and second factor of 8™ v S", respectively.
Let [a], [B] € m.(X,x0). If we represent o and § as maps

o.f: (8" e1) = (X, x0),
then the product [o]*[B] is nothing but the homotopy class of the composite map
(owP) © c. See Figure 7.29.
We now have homotopy groups 7,(X,x¢) defined for n > 1. It is convenient to make

a definition for n = 0. Note that S° = {—1,+1].

Definition. 7y(X,xq) is defined to be the set (there is no group structure) of homo-
topy classes of maps

f:(S%,1) = (X,xo).
(Equivalently, mo(X,x) is the set of path components of X.)

Although 7o(X,x¢) has no group structure, one often refers to it as the Oth homo-
topy “group.”

7.4.3.2. Theorem. The group m,(X,X¢) is abelian whenever n > 2.
Proof. Figure 7.30 shows how to construct a homotopy between o* 3 and f§* c.
Just as in the case of the fundamental group, higher homotopy groups are inde-

pendent of the base point if the space is path-connected. One therefore often writes
,(X) instead of m,(X,xp).

sn NaVAR

Y o
sl 5 RN
T Y
N2
Figure 7.29. Using the wedge operation to \_/
define a homotopy group

product. (ovB)ec
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Figure 7.30. Proving the commutativity of
t homotopy groups.

Continuous maps induce homomorphisms on the homotopy groups in a natural
way, similar to how it was done in the case of the fundamental group. Let (X,x() and
(Y,yo) be pointed spaces. Given a continuous map

f: (X,x0) = (Y,yo0)
define

fo: ma(X,x0) = ma(Y,y0), n=0,

f.([o]) = [forr].
7.4.3.3. Lemma. The map f. is well defined. It is a homomorphism of groups when
nz1.
Proof. Exercise 7.4.3.2.

Definition. The map f. is called the homomorphism induced by the continuous map
f.

The fact that the higher (n > 2) homotopy groups are abelian sets them apart from
the fundamental group. In other ways, they satisfy similar properties however. For
example, one can show, just like in Theorem 7.4.1.14, that there are isomorphisms

T (X XY, X0 X y0) = Ta(X,X0) X Ta (Y, yo)-
(By the way, no such isomorphism exists for homology. A theorem, the Kiinneth
theorem, relates the homology of the product of two spaces to that of the spaces but

it is much more complicated.) There are also natural homomorphisms

n: ma(X,x0) = Hy(X), (7.10)
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called the Hurewicz homomorphisms, which generalize the homomorphism for the
fundamental group. (We are again pretending that H,(X) is well defined.) These
homomorphisms are neither onto nor one-to-one in general though. The homotopy
groups capture the idea of “holes” better than the homology groups. After all, the
n-sphere S" is the prototype of an n-dimensional “hole.”

Nontrivial “higher” homotopy groups of spheres are one important example of
what sets homotopy groups apart from homology groups. The homology groups H;(X)
are all 0 if i is larger than the dimension of X, but this is not necessarily the case for
homotopy groups. For example,

15(S2) = Z.

One well-known theorem that relates the homotopy and homology groups in a
special case is

7.4.3.4. Theorem. (The Hurewicz Isomorphism Theorem) If n>2 and if X is a con-
nected polyhedron whose first n — 1 homotopy groups vanish, then the Hurewicz
homorphism

u: g (X,x0) = Hy(X)
is an isomorphism.

Proof. See [Span66].

Theorem 7.4.3.4 is one result that can be used to compute higher homotopy
groups.

7.4.3.5. Theorem. Letn>1.

(1) m(S")=0for 0 <i<n.
(2) ®(S™) = Z.

Proof. To prove (1) consider a map f : §' — S". The map f is homotopic to a map
that misses a point, say ey.1. (To prove this fact, use the simplicial approximation
theorem with respect to some triangulations of the spheres.) But S" — e, is home-
orphic to an open disk that is contractible. It follows that f is homotopic to a constant
map and proves (1). The case n = 1 in part (2) is just Corollary 7.4.2.23(1). If n > 1,
then (2) follows from (1), Theorem 7.4.3.4, and Theorem 7.2.3.4.

It should be noted that Theorem 7.4.3.4 implies nothing about the homomor-
phisms

p: (X, x0) = Hi(X)
for i > n (n as in the theorem). In general, homotopy groups are much harder to

compute than homology groups but they are stronger invariants than homology
groups. As an example of the latter, there is the following theorem:
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7.4.3.6. Theorem. A continuous map f: X — Y between CW complexes is a homo-
topy equivalence if and only if it induces isomorphisms on all (n > 0) homotopy
groups.

Proof. See [LunW69].
The best that one can do for homology is

7.4.3.7. Theorem. Let X and Y be simply connected CW complexes. A continuous
map f : X — Y is a homotopy equivalence if and only it induces isomorphisms on all
homology groups.

Proof. See [Span66].

Theorem 7.4.3.7 is false if X and Y are not simply connected. For a counter-
example, see [Span66], page 420. There is an analog of the theorem when spaces are
not simply connected, but things get much more involved. It is based on the notion
of a simple homotopy equivalence. See [Dieu89].

We finish with one last application.

Definition. A topological space that has the homotopy type of the n-sphere S" is
called a homotopy n-sphere. A polyhedron is called a homology n-sphere if it has the
same homology groups as S™

7.4.3.8. Theorem. Every simply connected homology n-sphere, n > 2, is a homo-
topy n-sphere.

Proof. By Theorems 7.4.3.4 we get a map between the S™ and the space that is an
isomorphism on homology. Now use Theorem 7.4.3.7.

Theorem 7.4.3.8 is also false if we drop the simply connected hypothesis. In
[SeiT80] one can find an example of a three-dimensional space, called a Poincaré
space, that is a homology 3-sphere but that has a nontrivial fundamental group and
hence cannot be of the same homotopy type as S* (nor homeomorphic to it). The nice
thing about Theorems 7.4.3.7 and 7.4.3.8 is that, in order to prove something about
homotopy type, we do not have to mess around with complicated homotopy groups
but can simply work with homology groups, which is a much easier task. We do have
to check that spaces are simply connected though.

1.5 Pseudomanifolds

This section specializes to manifold-like spaces. We shall define what it means for
them to be orientable and relate this concept to homology. Some applications of this
can be found in the next section.

Definition. A polyhedron X is called an n-dimensional pseudomanifold or n-
pseudomanifold or simply pseudomanifold if it admits a triangulation (K,¢) satisfying
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(1) Every simplex of K is a face of some n-simplex in K.

(2) Every (n — 1)-simplex of K is a face of at least one, but not more than two, n-
simplices of K.

(3) Given any two n-simplices a and B in K there is a chain o = 64, 03,..., O =
B of n-simplices o; in K so that ¢; and 6;;; meet in an (n — 1)-simplex.

The pseudomanifold is said to be closed if 0K = ¢.

Note that condition (3) in the definition implies that pseudomanifolds are compact
connected spaces. This is not an essential but convenient standard assumption. It is
easy to see that every (combinatorial) surface is a pseudomanifold, but not every two-
dimensional pseudomanifold is a surface. Figure 7.31(a) shows a two-dimensional
pseudomanifold with boundary that is not a surface with boundary. Figure 7.31(b)
shows a pinched sphere (a sphere with two points identified). The problem occurs at
the points p that do not have the correct neighborhood. In general, every triangula-
ble n-manifold is an n-pseudomanifold. Although the boundary of every manifold is
a manifold, Figure 7.31(a) also shows that this need not be the case for pseudoman-
ifolds. Nevertheless, pseudomanifolds have enough nice manifold-type properties, so
that they are interesting because many properties of manifolds are true simply
because they satisfy the pseudomanifold conditions. Finally, one nice fact (Theorem
7.5.2) is that it does not matter how we triangulate a pseudomanifold because every
triangulation will satisfy properties (1)-(3). One way to prove this topological invari-
ance of the combinatorial structure of a pseudomanifold is to establish the following
interesting property of the top-dimensional mod 2 homology group of a pseudoman-
ifold (and hence manifold) first.

7.5.1. Theorem. Let X be an n-dimensional pseudomanifold.

(1) If oX = o, then H.(X;Z,) = Z,.
(2) If 0X # ¢, then Hy(X;Z,) = 0.

Proof. See [AgoM76]. The proofs are not hard. They are similar to our computa-
tions of homology groups for 8™ and consists in finding the obvious cycles and bound-
aries. Note that over Z; the orientation of simplices does not play a role.

7.5.2. Theorem. (Invariance of Pseudomanifolds) Let X be an n-dimensional
pseudomanifold and let (L,%¥) be any triangulation of X. Then L satisfies properties
(1)—(3) in the definition of a pseudomanifold.

o o

(a) (b)

Figure 7.31. Pseudomanifolds that are not manifolds.
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Proof. See [AgoM76]. The proof is also not hard but too long to give here. It does
make use of Theorem 7.5.1.

To define the orientability of pseudomanifolds, we start with a combinatorial def-
inition and then show how one can use a homology group to detect this property.

Definition. Let X be an n-dimensional pseudomanifold and let (K,p) be a triangu-
lation of X. We shall say that X is orientable if the n-simplices of K can be oriented
coherently, that is, the n-simplices of K can be oriented simultaneously in such a way
that any two n-simplices that meet in a common (n — 1)-dimensional face induce oppo-
site orientations on that face. Such a choice of orientations of n-simplices, if it exists,
is called an orientation of X. If X is not orientable, one calls X nonorientable.

The next theorem shows that the definition is well defined and independent of
the particular triangulation that is chosen. It also shows that orientability is easily
determined.

7.5.3. Theorem. A closed n-dimensional pseudomanifold X is orientable if and only
if Hy(X) = Z.

Proof. See[AgoM76]. The proof again relies on finding the right cycles like in the past.

Using the results in Table 7.2.1.1 for surfaces, we see that our new rigorous defi-
nition of orientable agrees with our previous intuitive definition. More importantly,
we now have an algorithm for determining the orientability of a surface. It is also
clear that choosing an orientation of a closed n-dimensional pseudomanifold X is
equivalent to choosing a generator of Hy(X). Theorem 7.5.1 shows that the mod 2
homology groups tell us nothing about the orientability of X.

Before we state another useful criterion for when a pseudomanifold is orientable
we need to discuss a few more concepts associated to pseudomanifolds.

Let K be a simplicial complex that triangulates an n-dimensional pseudomanifold
M". Recall the definition of the barycentric subdivision sd(K) of the simplicial complex
K given in Section 7.2.2. Its vertices are the barycenters of the simplices in K. If b(c)
again denotes the barycenter of the simplex o, then the k-simplices of sd(K), k > 0,
are all the k-simplices of the form b(cy)b(c}) . . . b(ox) where the o; are distinct sim-
plices of K and 6y < 01 < ... < Ok

Definition. Let o* be a k-simplex of K. Define the dual (n — k)-cell 6™ by

o’ *=U [b(o)b(o))b(03) . . . b(G, 1) | ojisasimplexinKando <01 <0, <... <0Gy}
Call b(o) the barycenter of o2,
7.5.4. Example. Consider the two-dimensional simplicial complex K shown in
Figure 7.32 whose vertices are labeled with uppercase letters and whose edges are
drawn with thick lines. The barycentric subdivision of K is drawn with thin lines and

its additional vertices are labeled with lowercase letter. The dual cell of the 0-simplex
A is the union of the 2-cells Aab, Abc, Acd, Ade, Aef, and Afa in the barycentric
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Figure 7.32. Defining the dual cells.

subdivision. The dual cell of the 1-simplex AB is the union of the two 1-simplices ab
and af. The dual of the 2-simplex ABC is the 0-simplex b.

The dual cell 6% will not necessarily be homeomorphic to D™*. It is if we are
dealing with a proper triangulation for a combinatorial manifold but not for an arbi-
trary pseudomanifold. For example, the dual cell of the vertices p in Figure 7.31 are
not disks. In order for the dual cells to have nice properties we do not need anything
as strong as a combinatorial manifold.

Definition. A closed compact connected topological n-dimensional manifold is
called a homology manifold if it admits a triangulation (K,@) with the property that
the boundary of the star of every vertex in K is a homology (n — 1)-sphere.

Earlier results in this chapter show that the property of being a homology mani-
fold is a topological invariant.

7.5.5. Theorem.

(1) Every homology manifold is a pseudomanifold.
(2) An n-dimensional homology manifold is a manifold when n < 3.

Proof. See [SeiT80] or [Cair68].

Not every n-dimensional homology manifolds is a manifold when n > 4 (see
[SeiT80] for counterexamples), but they have enough in common to be able to prove
the important duality theorems in Section 7.5.2.

Returning to the dual of a k-simplex o* in a simplicial complex K that triangu-
lates a pseudomanifold M", we have

7.5.6. Proposition.

(1) 62 is an (n - k)-dimensional pseudomanifold.

(2) If M is a homology manifold, then 90" ¥ is an (n — k — 1)-dimensional homol-
ogy sphere.

(3) The simplex 6* and its dual cell 62 ¥ intersect in the single point b(o).
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Proof. See [SeiT80] or [Cair68].

Definition. The collection of dual cells of K, denoted by K., is called the dual cell
complex of K.

If the dual cells were homeomorphic to disks, then we really would have a CW
complex as defined in Section 7.2.4. Even without this, K. has many properties in
common with such a cell complex because the dual cells are contractible and one can
compute the homology groups from them. See [SeiT80] or [Cair68]. Note further that
since we have a notion of a barycenter of dual cells, we can define duals of the cells in K.
in the same way that we defined the duals of cells in K. With this definition of the dual
cell complex of the dual complex, it is easy to see that (K.). =K, because the dual cell of
a dual cell consists of cells whose union is a cell in the original complex. We will allow
ourselves to talk of the dual of a cell both in the case where it belongs to K and also when
it belongs to K.. We can also define what we mean by an orientation of a dual cell.

Definition. An orientation of a dual cell 62* consists of a collection of compatible
orientations of the (n — k)-simplices of 627%, that is, if two of the (n — k)-simplices meet

in an (n — k — 1)-simplex 1, then they should induce opposite orientations on 7.

Let M" be an n-dimensional pseudomanifold and let (K,p) be a triangulation of
it. For simplicity, assume M = |[K|. Let v be a vertex of K. Consider an edge loop
v=(v=vvy,...,vk =v) at vand the dual cells ¢} = (v;). and ¢! = (vjvj;): of dimen-
sion n and n — 1, respectively. Now, an orientation of ¢} induces an orientation of
cP!. Conversely, it is easy to see that an orientation of ¢! induces an orientation of
cl Therefore, if we start with an orientation o of c§j, then this will define an orienta-
tion on c§~!, then on ¢}, then on ¢!, and so on, until we arrive back at ¢} with an
induced orientation that we shall denote by (o). The orientation y(0) may or may not
agree with the original orientation o, but if we walk around the edge loop twice, that
is, if we were to use the edge loop v» = (v = vo,vy, . .. vk = Vo, vy, . . . ,Vk = V), then defi-
nitely v,(0) = o, because there are only two possible orientations for a simplex or dual
cell. In any case, one can show, using the Simplicial Approximation Theorem, that,
starting with an orientation o “at v”, any continuous map o : (I,0I) — (M,v) will induce
a well-defined orientation o(o) at v that corresponds to walking around o(t) carrying
o. It should be intuitively clear that if o(o) = o for all o, then M is orientable. If
(o) # o for some o, then we get a well-defined subgroup

H = {[a] € m;(M,v)| al(o) = o}

of m;(M,v) of index 2. Th~e subgroup H gives rise to a double covering space (M,f) for
M. One can show that M is an orientable pseudomanifold. The results are summa-
rized in the next theorem.

7.5.7. Theorem.

(1) Every simply connected pseudomanifold is orientable.

(2) If M is a nonorientable pseudomanifold, then there is a double covering space
(M) for M with M an orientable pseudomanifold and this double covering
with orientable total space is unique (up to isomorphism).
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Proof. One can find more details for the argument sketched above in [SeiT80]. Part
(1) actually follows from part (2) because a simply connected space cannot have any
nontrivial covering space.

15.1 The Degree of a Map and Applications

This section describes some applications related to orientable pseudomanifolds. We
shall yet again assume that polyhedra have well-defined homology groups.

Definition. Let M" be a closed orientable pseudomanifold. If f:M" — M" is a con-
tinuous map, define the degree of f, denoted by deg f, to be the unique integer defined
by the property that

f.(a)=(degf)a
for all a € HM" (=2Z).

7.5.1.1. Theorem. Let M" be a closed orientable pseudomanifold and let f, g:M" —
M" be continuous maps.

(1) If f is the identity map, then deg f = 1.

(2) If f is a constant map, then deg f = 0.

(3) If f and g are homotopic, then deg f = deg g.
(4) deg (fog) = (deg f)(deg g).

(5) If f is a homeomorphism, then deg f = +1.

Proof. Easy.

To better understand the degree of a map f:S" — 8" for arbitrary
n > 1, note that by Theorems 7.4.1.16, 7.4.3.4, and 7.4.3.5 there is a commutative
diagram

7 (8")——7a(S")

ud o,
Hn(Sn)T>Hn(S“)

with the Hurewicz homomorphisms p being isomorphisms for all such n. Homology
classes are more algebraic and less geometric than elements of homotopy groups. By
looking at what happens in the diagram at the homotopy group level it is more intu-
itively obvious that the degree of f roughly states how many times S" is wrapped
around itself by f.

7.5.1.2. Theorem. Letn > 1. The reflection r:S" — S™ defined by
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r(Xq,X2,...,Xne1) = (=X1,X2, ..., Xnt1)
has degree —1.

Proof. It is not hard to prove the theorem by simple computations using an appro-
priate triangulation (K,) of 8" and the simplicial map of K corresponding to r, but
the details are rather messy and we do not repeat them here. See [AgoM76]. Intu-
itively, think of S™ as a cell complex with two n-cells that consist of two hemispheres
(the parts with the x-coordinates nonnegative or nonpositive). Then a generator of
H,L(S™) can be represented by a cycle that consists of the sum of these two cells ori-
ented appropriately. The reflection will then map each of these oriented n-cells into
the other, but with the opposite orientation.

7.5.1.3. Theorem. Let n > 1. The antipodal map f:S" — S", f(p) = —p, has degree
(_1)n+1‘

Proof. Consider the reflections r;:S" — S", 1 <i < n+1, defined by

ri(XerZ’ oo rXIl+1) = (X1; e )Xi—lr_Xi’Xi+1; e ;Xn+1)-
Clearly, f = ry°r;°...°ry . Therefore, the theorem follows easily from Theorems
7.5.1.1(4) and 7.5.1.2.

Actually, the case where n is odd can be proved directly without appealing to
Theorem 7.5.1.2. In terms of coordinates,

f(XI’XZ) s ;Xn+1) = (_Xlr_XZ) v ;_Xn+1)~

If n = 1, then f is just a rotation through 180 degrees and is homotopic to the
identity. The map

h: §'x[0,1] > S'
defined by
h(xy,x2,t) = (cos mt)(—x1,—X2) + (sin wt)(x2,—X1)
is one such homotopy. In the case of an arbitrary odd n, we have an even number of
coordinates and we can again define a homotopy between f and the identity by using

a map like h for each pair of coordinates x,; 1 and x5;, i1 =1,2,...(n + 1)/2.

Using the properties of the degree of a map, we can easily deduce some
well-known theorems. See also Section 8.5.

7.5.1.4. Theorem. S"is not a retract of D™,

Proof. Suppose that we have a retraction r:D™! — 8" Let 1:S" — D"*! be the natural
inclusion map. The maps
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(3 L Dn+1 r (3

lead to maps
H,(S")——H,(D")—-H,(S").

This would imply that the degree of the identity map re1:8" — S" is zero because
H,(D™!) = 0. Since the identity map has degree 1 (Theorem 7.5.1.1(1)), the retraction
I cannot exist.

More generally, if W is an orientable pseudomanifold whose boundary W is non-
empty and connected, then dW is not a retract of W. One can use the same argument,
but one would have to prove that H,(W) = 0 first, which involves facts about homol-
ogy groups that we have not proved. Intuitively, the fact is clear however because there
is no nonzero n-cycle since the boundary of the sum of all the n-simplices in a trian-
gulation is nonzero.

7.5.1.5. Theorem. (The Brouwer Fixed Point Theorem) Every continuous map
f:D™ — D" has a fixed point.

Proof. 1If f has no fixed points, then the map
r: D* —» 8!
defined by
r(p) = point q of S™! where the ray from f(p) through p meets S™!

is a retraction of D™ onto S™!, which is impossible by Theorem 7.5.1.4.
Finally,

Definition. Let M" be a closed orientable pseudomanifold. A homeomorphism
h:M" — M" is said to be orientation preserving if it has degree +1 and orientation
reversing if it has degree —1.

Note that by Theorem 7.5.1.1(5), the degree of h is +1. More generally,

Definition. Let M" and W" be closed oriented pseudomanifolds and let f: M" — W"
be a continuous map. As indicated earlier, we can interpret the orientations as corre-
sponding to a choice of generators Uy € Hy(M™) and uw € H,(W"). Define the degree
of f, denoted by deg f, to be the unique integer defined by the property that

fi(um) = (deg Huw.

If f is a homeomorphism, then f is said to be orientation preserving if it has degree +1
and orientation reversing if it has degree —1.

The degree of a map between pseudomanifolds satisfies properties similar to those
stated in Theorem 7.5.1.1. We leave their statements and proofs as exercises for the
reader.
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15.2 Manifolds and Poincaré Duality

This section discusses a very important property satisfied by the homology groups
of manifolds. It helps greatly in their determination and is a cornerstone in their
classification.

Throughout this section we assume that M" is a closed, compact, and connected
n-dimensional homology manifold and that K is a simplicial complex that triangu-
lates it. Identify the homology groups of M with those of K.

First, consider the case where M is an oriented manifold. The orientation induces
a well-defined orientation on all the n-simplices of K. Consider an oriented k-simplex
[6*] and an oriented version of its dual cell [62¥]. Both correspond to a union of ori-
ented k-, respectively, (n — k)-simplices of sd(K). Let v be any k-simplex of sd(K) con-
tained in ¢ (= 6*) and assume that [v] has orientation compatible with [¢]. Similarly,
let 1. be any (n — k)-simplex of sd(K) in o2 ¥ and assume that [1.] has orientation com-
patible with [6?7%]. By Proposition 7.5.6(3) v and 1. have a single vertex in common.
Let

[vl=a[pop: ...px] and [t.]=b[pkpk:i...Pnl,

where the p; are vertices of sd(K), px is the vertex that v and 1. have in common, and
the integers a and b are +1. Let

(€] =c[popi - .. Pnl,

where the integer ¢ is +1 and is chosen so that the oriented n-simplex [€] has the ori-
entation induced by the given orientation of M. The integers a, b, and ¢ clearly depend
on how the points p; are ordered.

7.5.2.1. Example. See Figure 7.33. We have two 2-cells with a counterclockwise ori-

entation. Here n = 2, 6 = pops3, vV = pop1, k=1, 6: = p2p1 U pip4, T= = p2p1, § = pop1p2,
a=1b=c=-1.

Definition. The intersection number of [6¥] and its dual [67¥], denoted by I([c"],
[62K]), is defined by

Figure 7.33. Defining the intersection
number of dual cells.
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I([Gk],[cf_k ]) =abec.

7.5.2.2. Lemma. The intersection number I = I ([6¥],[627¥]) is well defined.
Proof. We have to show

(1) I does not depend on the order of the vertices p; and
(2) I does not depend on the choice of v and 7..

A proof of these two facts can be found in [SeiT80].

As we pointed out earlier, although the dual cells in the dual complex K. may not
be disks, the fact that we have a homology manifold means that, algebraically, they
are linear combinations of simplices that act like disks from the point of view of
homology. If one worked through the details one would be able to show that repre-
sentatives of homology classes can be replaced by linear combinations of the dual
cells and that a homology theory that uses chain groups based on dual cells would
produce the same homology groups as before. Furthermore, there is also no problem
with defining incidence matrices for the dual cells and these would play the same role
as the incidence matrices for the simplicial theory.

7.5.2.3. Theorem. Given K and K., if one orients the cells of K and K. in such a
way that the intersection number of dual cells is +1, then the incidence matrix EX!
for K is the transpose of the incidence matrix EX™* for K. multiplied by (1)~

Proof. See [SeiT80].

7.5.2.4. Theorem. (The Poincaré Duality Theorem) The kth Betti number of an ori-
entable homology manifold M" is the same as the (n — k)-th Betti number and the k-
dimensional torsion coefficients are the same as the (n — k — 1)-dimensional torsion
coefficients for k=0, 1,..., n.

Proof. See [SeiT80].

Theorem 7.5.2.4 applies only to orientable manifolds. If the manifold is not ori-
entable, then the theorem is false, but one can prove a duality theorem provided one
uses Z, for coefficients. In that case things get simpler because one does not have to
worry about orientations.

7.5.2.5. Theorem. (The Mod 2 Poincaré Duality Theorem) The kth connectivity
number of a homology manifold M" (orientable or not) is the same as the (n — k)-th
connectivity number for k=0, 1,..., n.

Proof. See [SeiT80].

7.5.2.6. Corollary. The Euler characteristic of an odd-dimensional homology
manifold is 0.
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Proof. One simply uses Poincaré duality to show that the terms in the alternating
sum cancel each other.

Here is an application of what we know so far.

7.5.2.7. Theorem. If M" is a simply connected n-dimensional homology manifold
with the property that

H;(M")=0 for0<i<n/2,
then M" has the homotopy type of S".

Proof. First of all, the hypotheses imply that n > 2. Next, Poincaré duality implies
that H;(M) = 0 for 0 < i < n. Theorem 7.5.3 and the Hurewicz isomorphism theorem
(Theorem 7.4.3.4) then implies that there is a map f:S" — M, so that [f] € ©,(M) gets
sent to =1 in H,(M) (which we identified with Z). This map f induces isomorphisms
on all homology groups. Since M is simply connected, f will also induce isomorphisms
on the homotopy groups (Theorem 7.4.3.7). Therefore, f is a homotopy equivalence
(Theorem 7.4.3.6).

Comparing Theorem 7.5.2.7 with Theorem 7.4.3.8, points out the importance of
Poincaré duality. It basically means that we only need to check things on the homol-
ogy level up to dimension n/2 rather than up to dimension n.

The above discussion of duality in manifolds was really a combinatorial ap-
proach to the subject. There are more general approaches. For example, given an n-
dimensional homology manifold M, one can define a pairing

HMxH, . (M)—>Z (7.11)
(c],(d) = ced

with ced defined as follows: Choose the representatives ¢ and d for the homology
classes so that they intersect transversally, that is, they intersect in a finite number of
points. The orientations of the cells of ¢ and d induce an orientation number of £1 at
these points. Add up these +1’s and define ced to be this sum.

Generalizing further, one can define a pairing

H, (M) x Hs(M) — Hy5-n (M) (7.12)
([c].(d) = [c“n"d]

where the representatives ¢ and d are again chosen to intersect transversally and ¢’n“d
is the cycle defined by the intersection of the simplices of ¢ and d.

In the end though, these geometric approaches to Poincaré duality are “brute
force” approaches. The cleanest and most elegant way is via cohomology groups. Here
is a brief outline of what one needs to do. First, we need to define something called
the cap product. Let X be a topological space and define a map

N: C(X)xCh(X) = Cprui(X) (7.13)



7.6 Where to Next: What We Left Out 449

as follows: Let g € C! (X), a € C, (X). Then, using the product of cochains, there is a
unique element in C,_§(X), denoted by g n a, with the property that

flgna)=(f-g)a), (7.14)

for all f e C™(X). In the case of simplicial complexes and an oriented n-simplex [c],
gnfo]=(- l)i(n_i) g([back i-face of o])[front (n —i)-face of o], (7.15)

where the front k-face of o consists of those points with barycentric coordinates (to,tg,
.. 1,0, ...,0) and the back k-face of 6 consists of those points with barycentric coor-

dinates (0, ... 0,toy, . . . ,to).

7.5.2.8. Proposition. The map N defined by equation (7.13) is well defined,
bilinear, and satisfies

(1) (ghyna=gn(hna)

2) 1na=a '

3) d(gna)=Bg) Nna+(-1)4megnga
Proof. See [MilS74].

Property (3) in Proposition 7.5.2.8 implies that N induces a well-defined bilinear
map

n: H(X) x H,(X) > Hpi(X) (7.16)

Definition. The map N defined in equation (7.16) is called the cap product for X.

7.5.2.9. Theorem. (The Poincaré Duality Theorem) Let M" be an orientable homol-
ogy manifold and let i be a generator of Hy(M) = Z. The homomorphism

H'(M) — H,, (M)
a—sanp

is an isomorphism for all i.
Proof. See [MilS74].

Theorem 7.5.2.9 and Theorem 7.3.1 imply Theorem 7.5.2.4.

7.6 Where to Next: What We Left Qut

We have covered a lot of algebraic topology, but there is much more and we have only
scratched the surface. Of course, we have left out many details and proofs and these
should be filled in and understood before moving on, but we would like to mention
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some additional topics in this section that would be the natural next step for the inter-
ested reader. Since the topics get progressively more advanced, any references for
them will necessarily make for harder and harder reading for someone who has only
learned about algebraic topology from reading this book. A good general reference is
[Span66].

There are a great many tools for computing homology groups. One of the most
important is the definition of relative homology groups. If L is a subcomplex of a sim-
plicial complex K, then one can define relative homology groups Hq(K,L). These groups
are gotten by looking at the groups Cq(K)/Cq4(L) and the induced boundary maps

. Cq(K) Cq—l (K)

dg : - .
4 Cq (L) Cq—l (L)
Then
H, (K,L) = .ker dq '
im dgy

(By making the natural definition C4(¢) = 0, one identifies Hq(K) with Hy(K,$).) One
can show that, for q > 0, Hy(K,L) is isomorphic to Hy(M), where M is a simplicial
complex that triangulates the quotient space IK[/]L].

Definition. A sequence of abelian groups and homomorphisms

Do s Goag — 5 Gy — s Gy —
q+l q q-1

is said to be an exact sequence if ker hq = im hg,; for all g.

There is an exact sequence
. >Hq@L) > Hq(K) > Hy(K,L) > Hg (L) > Hqg1(K) — ...

called the homology sequence of the pair (K,L) that relates the three homology groups
Hy(L), Hy(K), and Hq(K,L), so that if one knows two of the groups, then the third is
fairly well determined. This is extremely useful in determining the homology groups
of a space from knowledge of the homology groups of subspaces. Simplicial maps on
pairs of complexes induce maps on relative homology groups.

One of the problems with simplicial homology theory is that, although one can
eventually show that it is a topological invariant, this is not obvious at the start since
the groups for a space seem to depend on a particular simplicial subdivision. It would
be nicer if one could define groups that are intrinsically topological invariants. Sin-
gular homology theory provides the answer. In this theory maps of simplices replace
the simplices themselves.

Definition. The simplex A" = ege; . . . e, is called the standard n-simplex.

Definition. Let X be a topological space. A continuous map T:A? — X is called a
singular g-simplex of X. Let Sq be the set of singular simplices of X. Define the group
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of singular q-chains of X, denoted by C§(X), by
Ci(X)={f:Sq —» Z| f(T) =0 for all but a finite number of Te Sy }.

@

The group operation “+” on C§(X) is the obvious one, namely, if f, g € C3(X) and
T e Sg, then

(f+g)(T) = £(T) + g(T).
By identifying T with the map fr:Sq; — Z, where

fr(T) =1,
(T)=0,if T"# T,

we see (just like in the case of the chain groups for a simplicial complex) that C§(X)
can be thought of as the set of all finite linear combinations niT; + nyT, +. . . + Ty,
n; € Z, of singular simplices T; of X.
Definition. Given a singular g-simplex T:AY — X, define the ith face of T,
§T: AT 5 X
by
(SiT)(tO,tl, e rtq—l) = T(tO) e ’ti—lrortir e ;tq—l)-
The boundary map
051 Cy(X) > C;(X)
is the homomorphism defined by the condition that
. < g
35 (T) =Y (-1)'(5'T)
i=0
for each singular g-simplex T:AY — X.
Oneshows like before that d;_; °05=0, so that one can again define homology groups.

Definition. The gth singular homology group, denoted by Hi(X), is defined by

ker 93

s -
q+1

H(X) =
aX) im o

Definition. Given a continuous map f:X — Y, define a homomorphism
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fiq : C&(X) = C3(Y)
by the condition that 34(T) = foT for every singular g-simplex T:A9 — X.

One can show that d5°f}q = fiq-1°9; so that the maps f}q induce well-defined
homomorphisms

£5,  H(X) - HS (Y).

With the groups Hg(X), their corresponding relative groups H§(X,A) for a subspace A
of X, and maps f%y, along with their relative analogs, we never have to worry about
triangulations. The topological invariance is trivially built into the definition. Fur-
thermore, polyhedra now have real groups associated to them, not groups up to iso-
morphism. The nontrivial part is showing that they give the same groups as the
simplicial homology theory. The solution to this problem comes from the fact, referred
to earlier in Section 7.2.3, that homology theories can be axiomatized using the
Eilenberg-Steenrod axioms. We can take our various definitions of homology groups
simply to be existence results that assert that there are objects that satisfy the abstract
theory. Any two theories that satisfy the axioms will have isomorphic groups if they
have isomorphic homology groups for a point.

Since cohomology groups are derived algebraically from chain groups, one can
obviously define singular cohomology groups.

Although homotopy groups are much harder to compute than homology groups,
there are tools that help in this. One such is the fact that one can define relative homo-
topy groups m,(X,A,xo) that play the same role for homotopy theory that the relative
homology groups play for homology theory. Given a topological space X, a subspace A,
and a point xg € A, these groups are obtained from relative homotopy classes of maps

o: (I",0I",er) - (X,A,xq),

where the homotopies have to keep mapping JI" to A. Maps between pairs of spaces
induce homomorphisms of the relative groups. There is also an exact sequence

oo T (XA X0) = Ta (A, x0) = Ta (X, x0) = T (XA, x0) — ...

From an abstract point of view, we can think of H. and m. as examples of “func-
tors” from the “category” of topological spaces to the “category” of groups. (The reason
for the quotes around some terms is that they have precise mathematical definitions
that we cannot go into here.) This is how topological questions get translated into
algebraic questions.

The theories we have talked about, homology, homotopy, and so on, really apply
to arbitrary topological spaces. Of course manifolds are the most interesting ones, in
particular three-dimensional manifolds, because those are the spaces with which we
have contact in everyday life. Therefore, it should not be surprising that a great deal
of work has been done in low-dimensional topology. Unfortunately, we shall see in the
next chapter that, as counter-intuitive as it might seem, a lot more is known about n-
dimensional manifolds for n > 5 than three- and four-dimensional manifolds. As a
starting point for more information on advanced aspects of this subject we suggest
the books [Mois77] and [Matv03].
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Finally, we have said that one major goal of topologists is to find algebraic invari-
ants for spaces that can be used to classify them up to homeomorphism. This chapter
has described homology groups, homotopy groups, and cohomology rings that are
general-purpose invariants that apply to arbitrary topological spaces. In the next
chapter we shall learn about additional invariants that can be defined in the special
case of differentiable manifolds. A great many tools for computing the various invari-
ants of this chapter have been developed. We have indicated some of them above.
Another extremely powerful tool is the construction of what are called spectral
sequences, but this subject is much too advanced and technical to even sketch here.
The reader would have to have a fairly good understanding of most of the topics
described in this chapter beforehand. One good reference is [McCI85].

With regard to the computability of the task of evaluating algebraic invariants,
there is unfortunately one negative result along these lines.

7.6.1. Theorem. There cannot exist any algorithm for deciding whether or not two
given compact, orientable, triangulable 4-manifolds are homeomorphic.

Proof. See [Mark58]. The proof depends on the fact that almost any group can be
the fundamental group of a 4-manifold and the algebraic fact that the question
whether two arbitrary (nonabelian) group representations determine isomorphic
groups is undecidable.

Theorem 7.6.1 means that the homeomorphism problem for n-manifolds has a
hope of being solvable only when n < 3. The only open case is therefore n = 3.

7.7 The CW Complex P"

In this last section of the chapter, we return once again to the spaces P" and describe
them from the point of view of algebraic topology. We begin by defining their standard
cell decomposition. This is done best by first describing S™ as a regular CW complex.

Definition. The standard regular CW complex representation of S" is the CW complex
defined by the collection of i-dimensional cells ci=Slandch=S . inR*! for0<ic<
n. The attaching map f;; for the cell ¢} is the obvious one which projects the disks D!
to either the upper or lower hemisphere of S'.

Figures 7.8(a) and (c) show the decompositions for S° and S', respectively. Now
think of P" as the quotient space of 8" where we identify antipodal points and let

p: S"—>P" (7.17)
be the standard double covering projection.
Definition. The standard regular CW complex representatzon of P" is the CW complex

defined by the collection of i-dimensional cells ¢! = p(c}) and attaching maps f; = pef; 1,
for0<i<n.
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It is worthwhile pointing out the following properties of this CW complex repre-
sentation of P" explicitly:

(1) There is one i-dimensional cell for each dimension 0 <i < n.
(2) The i-skeleton of P" is just P' and we have a filtration

P'=c’cP!(=S')c...cP' cP",
where P! is obtained from P! by attaching an i-cell.

This cell structure of P" allows us to compute the homology and cohomology of the
space fairly easily if we use the approach based on oriented cells described in Section
7.2.4. The fact is that each i-cell ¢ in S§' has a natural orientation obtained by pro-
jecting the standard orientation of D' upward. The projection p projects this orienta-
tion to an orientation of the cell ¢' in P". If we denote our CW complex for P" by C,
then since there is only one cell in each dimension i, 0 <i<n,

Ci(C)=Z

and to compute the homology groups we simply have to analyze the boundary maps
on the cells ¢'.

7.7.1. Theorem. The homology groups of P" are given by
(1) Ho (P") = Z
H, (P") - {0 for0< 1 <nand 1 even}
Z, forO<i<nandiodd

Hn(P“)z{

0 n even}
4 n odd

(2) Hi;(P"Z;)=Z,,0<i<n,

Proof. Here is a sketch of the argument that proves (1). Let us orient the cells ¢}*!
based on the orientation of D! induced from the standard orientation [ey,es, . . ., €]
of R, Consider the cell ci*! in 8" with i > 2. The boundary of that cell consists of
the two cells ¢ and c¢;. What orientation does the boundary map on ci*! induce on
these two cells? Well, the orientation induced on ¢j and ¢ have to be [ej,e, . .., €l
and [-ej,ey, . . ., €], respectively. The reason is that adding e, at the end of the first
basis and —e;;; at the end of the second must lead to the standard orientation of D!
and it is easy to check in the second case that

[-ei,ez,....ei,—ei]=[e,es,... €]

But under the antipodal identification map the cell ¢l and its orientation [—ej, ey,
..., €] gets mapped to the cell ¢} with orientation [e,—e>, . . ., —e;]. The latter agrees
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with the orientation [ej,e,, ..., e;] if i is odd and —[ey,es, ..., e;] if i is even. In the

first case, ac}” will equal 2¢l and in the second, 0. What this shows is that, for 0 < i
<n,

Z;(C)=0 ifiiseven
=7 ifiisodd
and, for 0 <i<n,
B;(C)=0 ifiiseven
=27 ifiisodd.
Part (2) of the theorem follows from the fact that 2 is the same as 0 in Z,. For a
more rigorous proof of this theorem see [CooF67].
7.7.2. Theorem. The cohomology groups and cohomology ring structure of P" are:
(H)H PYHY=1Z

Hi(Pn)~{O for0<i<nandiodd}
Z, forO<i<nandieven

H“(P“) _ {Zz n even}
Z n odd

(2) H (P"Z,)=Z,,0<i<n,

(3) As a ring using the cup product, H*(P",Z;) is a polynomial ring with one

generator w, € H'(P",Z,) satisfying a single relation wit' = 0, that is,

H* (Pn ,ZZ) “«_» ZZ[WH] .

If i: P" P! is the natural inclusion, then i*(wWpn.1) = Wp.
Proof. See [CooF67] and [Span66]. We could use Theorem 7.3.1 for part (1).

We finish with a result about the homotopy groups of P". Recall, however, our
earlier comment that the sphere S" has nontrivial higher homotopy groups.

7.7.3. Theorem. Letn>1.

(1) Since P! is homeomorphic to S!, n; (P!) = Z.
(2) If n > 1, then ©t; (P") = Z,.
3) m (P") = m; (S") fori > 2.
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Proof. See [Stee51] or [Span66]. The isomorphisms in (3) are induced by the
projection map in (7.17).

1.8  EXERCISES

Section 7.2.1

7.2.1.1. Prove Lemma 7.2.1.2.
7.2.1.2. Prove that if K is a simplicial complex, then
rank (Ho(K)) = number of connected components of IK|.

7.2.1.3. Prove that the homology groups of the Klein bottle are as indicated in Table 7.2.1.1.
You can use a triangulation similar to that of the torus shown in Figure 7.5.

7.2.1.4. Prove the results indicated in Table 7.2.1.1 for

(a) orientable surfaces of genus k
(b) nonorientable surfaces of genus k

7.2.1.5. If X and Y are polyhedra, prove that

Hy(X v Y)~Hy(X)®Hy(Y), q#0.

Section 7.2.2

7.2.2.1. Prove Lemma 7.2.2.6.

7.2.2.2. Let K = d<vgvivavs> be the simplicial complex in Example 7.2.1.6. Compute the maps
f.q for the simplicial map f:K — K defined by f(vo) = vy, f(vi) = v, f(v2) = v;, and
f(v3) = vs.

7.2.2.3. Let K be a simplicial complex. Show that sd(K) is also a simplicial complex.

Section 7.2.3

7.2.3.1. Let K be a simplicial complex. Show that the cone on K| is a polyhedron and
determine its homology groups.

7.2.3.2. If K is a nonempty simplicial complex and if |[K| has k components, prove that the
suspension of |K| has the following homology groups:

Ho(SK)=Z
Hi(SK|) = (k-1)Z
Hg41(SK]) = Hy(K), q>0.
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Section 7.2.4

7.2.4.1. Describe a minimal cell decomposition for the Klein bottle.
7.2.4.2. Triangulate the dunce hat and compute its homology groups.

7.2.4.3. (a) Prove that the homology groups of the lens spaces are what they were stated to
be.

(b) Prove that the Euler characteristic of a lens space is 0.

Section 7.2.5
7.2.5.1. Compute the incidence matrices for the simplicial complex K = d<vgviv,yvs>. Work
through the proof of Theorem 7.2.5.3 and determine the normalized form of the inci-

dence matrices and the bases of the chain groups that define them. Show how these
matrices determine the known homology groups.

Section 7.2.6

7.2.6.1. (a) If X is a point, then prove that

Ho(X;G) =G, and
Hq(X;G) =0, for q #0.
(b) Let X be a polyhedron. Prove that Hyo(X;G) is isomorphic to a direct sum of as
many copies of G as there are components of X. In particular, the 0Oth connec-

tivity number of X, 1k(X), is nothing but the number of components of X.

7.2.6.2. Compute Hy(X;Z,), for all q, where X is

(a) S"
(b) S'xS!
(c) P?

(d) the Klein bottle

Section 7.3

7.3.1. Prove that the space X = §? v 8! v 8! in Figure 7.15 has the same homology groups as
the torus.

Section 7.4.1

7.4.1.1. Complete the proof of Theorem 7.4.1.6 by filling in all missing details.
7.4.1.2. Prove Theorem 7.4.1.7.

7.4.1.3. Prove Lemma 7.4.1.11.

7.4.1.4. Prove Theorem 7.4.1.12.
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Section 7.4.2

7.4.2.1. Show that the bundle (S",p) over P" in Example 7.4.2.1 is locally trivial.

7.4.2.2. Give an intuitive justification of the fact that the lens spaces defined in Sections 7.2.4
and 7.4.2 are homeomorphic.
Section 7.4.3

7.4.3.1. Prove Theorem 7.4.3.1.
7.4.3.2. Prove Lemma 7.4.3.3.

Section 7.5

7.5.1. Work through the details of a proof of Theorem 7.5.1.
7.5.2. Work through the details of a proof of Proposition 7.5.6.

Section 7.5.1
7.5.1.1. Letf, g:S" — S", n > 1, be continuous maps.
(a) Prove that if f(p) # g(p) for all p € S, then
deg f+(-1)"(deg g)=0.

(b) Prove that if deg f # (-1)™!, then f has a fixed point.
(c) Prove that if deg f # 1, then f(p) = —p for some p € S".




CHAPTER 8

Differential Topology

8.1 Introduction

Most of what we did in the last three chapters applied to topological spaces that could
be quite general, even if one restricted oneself to polyhedra. In this chapter we spe-
cialize to studying manifolds. Topological manifolds were defined in Chapter 5 and
then studied further in the context of pseudomanifolds and homology manifolds in
Chapter 7. As topological spaces they look like R” or R locally. To put it another way,
to a sufficiently small bug in a manifold the space around it would look flat. Now we
shall study differentiable manifolds, which have a differentiable structure in addition
to their topology. Having a differentiable structure on a manifold means that we can
transfer many other properties and techniques from Enclidean space over to it. In
particular, we can use calculus and linear algebra. This turns out to play an im-
portant role in the analysis of the manifold because we will be able to do things that
we can not do with an ordinary topological manifold. Smooth curves and surfaces,
spaces important in geometric modeling and CAGD, are instances of differentiable
manifolds.

Although we sketch an intrinsic definition of a differentiable manifold later in this
chapter, our working definition will be one that defines certain subspaces of R" to be
manifolds. By defining a manifold in terms of what could be considered as a partic-
ular imbedding of the corresponding “abstract” manifold, we simplify the definition
of tangent vector and tangent space, which are an essential part of a manifold. The
intrinsic definition of a manifold is not that much harder, but with our approach we
make it somewhat easier for the reader who has never seen any of this material before
and who does not feel entirely comfortable with n dimensions. Defining manifolds as
parameterized subspaces of Euclidean space is also the way one usually sees them
defined in CAGD. In one sense, there is no loss of generality because an important
theorem asserts that even abstract manifolds can be realized as subspaces of a suit-
ably high dimensional Euclidean space. On the other hand, one should be aware of
the fact that the disadvantage of studying manifolds as subsets of Euclidean space is
that it might seem as if some of the invariants we define for them depend on the sur-
rounding space when in fact they do not. Abstraction enables one to see essential
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aspects more clearly. That is the reason that one defines an abstract n-dimensional
vector space and does not just deal with R" (although the two are isomorphic). In the
case of manifolds, they have lots of intrinsic properties that do not depend on any
particular imbedding. For example, on one level anyway, there really is no difference
between all the circles of radius one in the plane. They all correspond to different
imbeddings of an “abstract” version of a unit circle. In fact, until we get to differen-
tial geometry where the metric matters, all circles are the “same.”

Section 8.2 discusses parameterizations of spaces, which is essential for the defi-
nition of a manifold given in Section 8.3 and the abstract manifolds defined in Section
8.8. The idea of a manifold originated in Riemann’s groundbreaking lecture “On the
Hypotheses which lie at the Foundation of Geometry” delivered to the faculty at the
University of Gottingen in 1854. The ideas expressed in this talk are usually consid-
ered to be the most influential in the history of differential geometry. An integral part
of a differentiable manifold is its tangent space, which is defined in Section 8.4.
Section 8.5 discusses what it means for a manifold to be orientable. Sections 8.6 and
8.7 give an overview of what is involved in the classification of manifolds. They give
the reader a taste of some difficult but beautiful results on the structure of manifolds.
Key to this is the handle decomposition of a manifold and cobordism theory along
with algebraic topology invariants. This part of the theory is relatively new. It covers
about a twenty year period starting in the middle 1950s and culminated in the main
structure theorems for manifolds that are known today. See [AgoM76b]. Next, in
Section 8.8 we move on to an intrinsic definition of a manifold. Sections 8.9 and 8.10
define vector bundles and discuss some of their basic properties with emphasis on
their role in the study of manifolds. Section 8.11 defines what it means for maps or
manifolds to be transverse. The degree of a map and intersection numbers serve as
two examples of how transversality can be used, but it appears in a great many essen-
tial ways in proofs related to differentiable manifolds. In Section 8.12 we continue
the topic of differential forms and integration that we started in Sections 4.9 and 4.9.1,
but this time in the setting of manifolds. Finally, in Section 8.13 we take another look
at the projective spaces P" and we introduce the Grassmann manifolds in Section
8.14.

8.2 Parameterizing Spaces

Parameterizations are a generalization of Descartes’ idea that a good approach to
studying a geometric space is to introduce coordinates for its points, because one can
then use equations or other analytic tools to study the space. They are used in many
places and are fundamental to the idea of a manifold, especially the abstract mani-
folds defined at the end of this chapter.

Definition. Let X be a subset of R". If there a subset U of R* and a surjective C" map

o: U - X,

then @ is called a C" parameterization of X. The set X is called the underlying space of
® in that case.
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Usually, parameterizations will be one-to-one maps, or close to that. In that case,
they basically allow us to associate coordinates to points of a space, that is, if

D(ug,uy, ... ,ux)=q,

then we can think of q as having coordinates (uy, uy, . . ., ux). (In the context of param-
etrizations and a set U we shall often use parameters u; rather than x;.) The modifier
“C" is often omitted and may need to be determined from the context. As a general
rule, unless explicitly stated otherwise, the assumption will be that a parameterization
is a C* map. The reason is that we frequently want to have the ability to talk about
the derivative of the map. Actually, to be of class C* would be adequate for everything
we do in this book but we do not want to get involved in that sort of technical detail.
In this context, for differentiability to make sense, U will be either an open subset of
R" or have a “nice” boundary, that is, every boundary point will have a neighborhood
that looks like RX.

8.2.1. Example. The graph of any function admits a natural parameterization.
More precisely, if A € R™ and if f:A — R”", then the map

®: A — graph(f)c R™ xR”
defined by
®(a)=(a,f(@) (8.1)

is a parameterization of the graph of f. One can think of this map as projecting orthog-
onally up from A to the graph. Here are two examples:

£ =x7: D(x) = (x,x?)
fx,y)=x*+y*: @y =(xyx*+y?)

See Figure 8.1. In differential geometry the parameterization ®(x,y) = (x,y,f(x,y)) of
the surface that is the graph of the function f(x,y) is often called a Monge patch.

To get a parameterization for a space, one usually has to think of some geomet-
ric way that its points can be described by some real numbers. These real numbers
correspond to “directions” as to “how one can get to the point.” For example, the coor-
dinates of the point (2,3) in R? can be thought of as saying that one can get to it from
the origin by walking a distance 2 along the x-axis and then a distance 3 along a line
parallel to the y-axis.

8.2.2. Example. Consider the unit sphere S? as being a surface of revolution
obtained by rotating one half of the unit circle about the x-axis. By definition of a
surface of revolution, the sphere is then a union of circles each of which is the inter-
section of the surface with a plane parallel with the yz-plane that meets the x-axis at
some x-value. But any one of these circles is, again by definition, just a point revolved
about the x-axis. Since points on a circle of fixed radius can be specified by one real
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(xx%)

l (x,y)

f(x) = x2 f(x,y) = x2 + y?

(@ (b)

Figure 8.1. Parameterizations of graphs.

Figure 8.2. A parameterization for a sphere.

number, an angle, it is therefore clear that one could tell someone how to get to a
point on the sphere by telling that person two numbers, x and 0. The x-value speci-
fies a circle and its radius and the 6-value a point on that circle. This leads to the para-
meterization of S? defined by

d(x,0)= (X,Vl —x? cosO,V1 - x? sine), -1<x<1,0<06<m (8.2)
See Figure 8.2. Note that v1—x2 is the radius of the circle at x.

8.2.3. Example. A slightly more complicated example is a parameterization of the
Moebius strip. See Figure 8.3. One can think of the Moebius strip as a union of line
segments parameterized by [-1,1], one for each point on the circle of radius 2 about
the origin. Now an ordinary vertical cylinder centered on the z-axis of radius 2 could
be parameterized by
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Figure 8.3. Parameterizing the Moebius strip. z

®O,t)=(2cosH,2sinO,t), 0<O0<2n and -1<t<],

but in the case of the Moebius strip we need to rotate the line segments about their
center point. When 0 is zero, we start with a horizontal line segment from 1 to 3 on
the x-axis. As 0 increases, we start rotating the line segment about its center on the
circle of radius 2 with the top end tilting up toward the z-axis. When 6 gets to m, the
line segment is vertical. The parameterization is easy to write in vector form. Let

ey = (cosH,sinB,0)

and let ug denote the unit vector which, at “time” 0, points from pg = 2e4 to the point at
the top of the vertically-slanted line segment. Then the parameterization we want is

DO,t) =2eq + tug.

It remains to compute ug in terms of 6 and t. But ug lies on the unit circle in the ver-
tical plane through the origin with basis ey and es. If it makes an angle o with the
vector eg, then

Ug =COSO €y +Sina es.

Since o = 0/2, we are led to the following formula for ®:

dO,1) = ((2 +tcos gjcos 6,(2 +t sing)sine, t sin%), (8.3)

where 0 <9 <2xrand -1 <t<1.

Parameterizations are intended to help in the study of a space. They are usually
not of interest by themselves. The idea is that by determining properties of the map
one gets some information about intrinsic properties of the space. As mentioned
earlier, the definition as it stands is really too general to expect something like this to
work unless the map is essentially one-to-one.
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Definition. Let U c RX. A C"map, r > 1,
®: U->R"

is said to be regular at a point p in U if D®(p) is one-to-one. The map @ is said to be
regular if it is regular at every point of U.

The parameterization in Example 8.2.1 of the graph of a function is regular,
assuming that the function is differentiable. The parameterization in Example
8.2.3 is also regular. Both are in fact globally one-to-one. In general, regular para-
meterizations are locally one-to-one (Theorem 4.4.6), but not necessarily globally
one-to-one.

8.2.4. Example. The parameterization

®O) =(cosH,sinh),0 R,
of the unit circle is a regular parameterization but is not globally one-to-one.

The parameterization of S? defined in Example 8.2.2, although often used, is not
regular. For one thing, it is not differentiable when x is 1. For another, when x is *1
the circle being rotated has degenerated to a point and ® is not locally one-to-one
there. The nonregularity may, however, not be a problem if one is not interested in
those values of x.

Even if one sticks to regular parameterizations, there are still many ways to para-
meterize a space. For example, if a curve is parameterized by an interval and one
thinks of the parameter as time, then one can traverse or walk along the curve with
many different velocities and each one would correspond to a different parameteri-
zation of the curve. When using parameterizations as a vehicle for studying spaces
we must be careful to stick to those properties that are an invariant of the underly-
ing space.

Definition. Let U, Vc R*and X c R™ Letr>1 and let ®:U — X and ¥:V — X be
two regular C" parameterizations of a space X. We say that W is a regular reparame-
terization of @ if ¥ = ®<p for some one-to-one and onto C" map p:V — U with Du(q)
one-to-one for all q in V. The map p will be called a change of coordinates or change
of parameters transformation. The map | is said to be orientation preserving if
det(Du(q)) > 0 for all q in V; otherwise, | is said to be orientation reversing. If | exists,
then ® and ¥ are said to be equivalent parameterizations.

See Figure 8.4. Think of the map p as defining a change of coordinates. We shall
sometimes say that ¥ was obtained from ® by a change in coordinates. The proper-
ties of spaces that we want to study via parameterizations should be invariant under
regular reparameterizations. It is easy to show that the notion of being equivalent is
an equivalence relation on the set of regular parameterizations of a set X.

8.2.5. Example. Consider the parameterizations
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Figure 8.4. Regular reparameter- R®
/ v
o
Rk

]

(cos 6, sin0)

Figure 8.5. Reparameterizing the

RK

)

=Nl -12)

half circle. 0 0

®: [0,n] >SS! and ¥:[-11]—8S!

defined by
®(0) = (cos@,sin) and P(t)=(t,V1-t?).

The map

w: [-1,1]-[0,7], u(o:(l—t)g,

is an orientation-reversing reparameterization because p’(t)=-m/2. See Figure 8.5.

8.3 Manifolds in R"

Topological manifolds were defined in Section 5.3. Now we add a differential struc-
ture. In this section we restrict ourselves to subsets of Euclidean space because, by
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doing so, the definitions really only involve concepts that should be familiar to the
reader, such as the differentiability of vector-valued functions. The price we pay,
however, is that they are not entirely satisfactory from a mathematical point of view.
For one thing, the reader will find that we never really define a differential structure
anywhere in this section. We shall only be defining whatever is needed for two ideas
to make sense, namely, that a manifold has tangent planes and that certain functions
are differentiable. The correct and intrinsic definitions are postponed to Section 8.8
at which point the reader has hopefully gotten a feeling for the geometric ideas, so
that the additional abstraction will not be a problem.

We again phrase our definitions in a way that includes manifolds with boundary
right at the start. The reader should compare the new definition with the one in
Section 5.3.

Definition. A subset M of R" is called a k-dimensional C" manifold, r 2 0, if, for every
point p in M, there is an open neighborhood V,, of p in M, an open set U, in R, and
a C" homeomorphism ®,:U, — V), which is assumed to be regular if r > 1. The maps
®,, are called local (C') parameterizations for M. A C* manifold is called simply a dif-
ferentiable or smooth manifold. If V, = M, then ®,, is called a proper (C') parameteri-
zation for M. The boundary of the manifold M, oM, is defined by

oM = {pe M|<I>p71(p) € kal}.

If oM = @, then M is called a closed manifold.

See Figure 8.6. Clearly, every C" manifold is also a C* manifold for 0 < s <r. Since
a C° manifold is almost by definition a topological manifold, it follows that every C
manifold is a topological manifold and so the terminology used with the latter applies.
Furthermore, from what we know about topological manifolds it follows that the
dimension and boundary of C" manifolds are well defined. It is also easy to show that
the boundary of a k-dimensional C" manifold is a (k — 1)-dimensional C" manifold
(without boundary). One slight difference between this definition and the earlier one
in Section 5.3 is that we have used an arbitrary open set Uy, in RX rather than just the
whole halfspace R¥ One does not gain any generality by doing so, but it will match

Figure 8.6. A k-dimensional
manifold MX.
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the definitions in Section 8.8 better. The reason for using sets U, will become appar-
ent later in Section 8.8.

Note. Trying to handle both closed manifolds and manifolds with boundary does
introduce some complications because results involving the latter sometimes need
special hypotheses. One difference shows up when it comes to limits or derivatives.
In the future, such limits or derivatives at points on the boundary should always be
taken to mean one-sided limits or derivatives although we shall not explicitly say so.
With that standing assumption, theorems that we state for manifolds will hold for
both types unless we say otherwise.

We shall see that one important difference between a subset of R" being a topo-
logical manifold and being a differentiable manifold is that a subset that is a differ-
entiable manifold has a nice, unique “tangent plane” at every point. Think of a sphere
and its tangent planes. A precise definition of tangent planes will be given in the next
section. Their existence is a consequence of the regularity of the local parameteriza-
tions. For that reason, the regularity property of local parameterizations is an essen-
tial hypothesis and not just a minor property that has been tacked on to the definition.
This means that, although the boundary of a square is a topological 1-manifold, it is
not a C'-manifold, r > 1, because there is no unique tangent line at the corners. A more
correct way of stating this fact is to say that the boundary is not a differentiable sub-
manifold of R". In general, this section simply specifies sufficient conditions for a
subset to be a differentiable submanifold of R", namely, a differentiable imbedding of
an abstract manifold as defined in Section 8.8. It should also be pointed out that if a
set M is a C" manifold, then we have assumed the existence of certain local C" para-
meterizations, but it does not follow that every local parameterization of M will be
a C" parameterization. See Example 8.3.2 below.

8.3.1. Example. Euclidean space R is a k-dimensional differentiable manifold
because we can let Up, = R¥ and let ® be the identity map. It is also easy to show that
DX is k-dimensional differentiable manifold with boundary S¥'.

8.3.2. Example. The unit circle S! is a one-dimensional differentiable manifold
because it can be covered by local C* parameterizations

®;: (-1,)>S!, i=12,34,

defined by

Each map ®; covers half of the circle and is a C* map since we have stayed away from
u = £1. The maps
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¥ (037“) —S! and ¥: (—n,zj —S!

defined by

Y (u) = ¥ (u) = (cosu,sinu)

are a simpler set of local C* parameterizations. There are lots of different local C~
parameterizations for S!. On the other hand, there are also lots of local parameteri-
zations that are not C”. For example the map

¢: (-1L,)—>Si
defined by
oW =(-v1- (1 +u)’,1+u),ue(-1,0],
=(V1-(-w’,1-u),uefo,),

is parameterization of a neighborhood of the point (0,1) that is continuous (C°) but
not C! because the derivative does not exist at u = 0.

The next theorem states an important property of differentiable manifolds,
although its proof is much too involved to present here. The main consequence for
us is that simplicial homology groups are defined for such manifolds and we can use
what we know about pseudomanifolds and homology manifolds.

8.3.3. Theorem. Every C" manifold M, r > 1, admits a triangulation that is infinite
in general, but if M is compact, then M has a finite triangulation that makes it into a
pseudomanifold if it is connected. Every closed compact connected C" manifold, r >
1, is a homology manifold.

Proof. See [Munké61].

Manifolds are defined in terms of parameterizations and that is the most common
way they are presented, but there is another way, namely, they can sometimes be
defined as the set of zeros of a function. For example, the sphere $?is the set of zeros
of the polynomial

p(x,v,2) = x> +y? +2z% 1.
Definition. Let f:R" — R™. Define the set of zeros of f, V(f) , by

V() =f1(0)={peR" | f(p)=0}.

In practice, f is usually a polynomial, and in that case V(f) is also called an (affine
algebraic) variety. Algebraic geometry is that field in mathematics which tries to
analyze the topological structure of V(f) in terms of algebraic invariants associated to
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y .

zZ=X z=x2+y2

(@ (b)

Figure 8.7. Surfaces that are varieties.

Y
P 1
/\
Figure 8.8. A variety that is not a surface. (@ (®)

the polynomial f. It happens that there are some very deep connections between the
two. We shall look at some of this in Chapter 10. The graphs of functions can always
be thought of as varieties. For example, in Figure 8.7 the graph of the functions

z=g(x,y)
are varieties V(f), where
f(x,y,2)=z-g(x,y).

Not all zero sets V(f) are nice, locally Euclidean spaces. For example, consider the
point p in the set in Figure 8.8(a) and the line L in the set in Figure 8.8(b). We can
think of these as zero sets of the function x> — y? in the plane and 3-space, respec-
tively. In the first case we cannot find any neighborhood of p that looks like a line. No
matter how small the neighborhood, it will always look like a cross. A similar problem
exists in the second case. It is possible to give examples where worse problems arise.
This leads to the following question: Is there a simple criterion that can be applied to
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f that guarantees that V(f) will be a nice space? First of all, note that this is a local
question that has to do with what neighborhoods of points look like.

8.3.4. Theorem. (The Implicit Parameterization Theorem) Let f:R" — R™ be a dif-
ferentiable map. If f(x) = (f;(x), . . . ,fm(x)) and if the m x n Jacobian matrix " = (ofi/dx;)
has constant rank k < n on an open set containing V(f), then V(f) is a differentiable
manifold in R" of dimension n — k.

Proof. We need to show that we can parameterize a neighborhood of an arbitrary
point x¢ in V(f). Without loss of generality assume that x is the origin. By Theorem
4.4.5 we can get local diffeomorphisms g and h of neighborhoods of the origin in R"
and R™, respectively, so that

h(f(g(xy, . .. ,x0) =(x1, . .. ,X,0,...,0).

The map g can now be used to define the parameterization of a neighborhood of xg
that we need.

8.3.5. Example. To analyze the set V(f) for the function f(x,y,z) = z — x.
Solution. We have that
f'(x,y,2z) = (-2x,0,1).

Clearly, ' has rank 1 on the zero set V(f) and so by Theorem 8.3.4 V(f) is a smooth
surface (two-dimensional manifold). In fact, V(f) is the parabolic “trough” shown in
Figure 8.9(a).

8.3.6. Example. To analyze the set V(f) for the function f (x,y,z) = (x> + 3y + 22> —
1,2).

e X2 +3y2+222-1=0
\ - z=0

,
z-x*=0 ’

(@ (b)

Figure 8.9. The varieties in Examples 8.3.5 and 8.3.6.
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Solution. Since

f’(x,y,z):(zx 6y 42)

0 0 1

and {* has rank 2 on the zero set V(f), Theorem 8.3.4 implies that V() is a
smooth curve. This is easily verified because V(f), the set of common zeros of the
functions

g(x,y,z) = x> +3y? +27%2 -1
h(x,y,z)=z,

is just the ellipse in the plane defined by the equation x> + 3y? = 1. See Figure 8.9(b).

The following theorem is a local version of Theorem 8.3.4.

8.3.7. Theorem. Let f:R" —» R™ and assume that f(p) = 0. If the rank of Df is k in
a neighborhood of p, then there is a neighborhood U of p with U n V(f) an (n — k)-
dimensional manifold.

Proof. Since being a manifold is a local property, one can use the same argument
as in Theorem 8.3.4.

Next we define what it means for a map between manifolds to be differentiable.
It might seem as if there is nothing to do since Section 4.3 already defined a notion
of differentiability for functions defined on subsets of R™. However, since our mani-
folds are not necessarily open subsets of R™, it is the definition given at the end of
that section that would have to be used. Unfortunately, using that definition for the
differentiability of a function on an arbitrary set one would not able to get a well-
defined derivative of the function. Therefore, we shall use a definition based on the
parameterizations of a manifold. After all, a parameterization corresponds to a coor-
dinate system for a neighborhood of a point in the manifold and it makes sense to
define differentiability with respect to such local coordinates.

Definition. Let M" and N¥ be C" manifolds in R™. A map f:M" — N is said to be
of class C" or a C" map at a point p in M" if there is an open set U in R", an open
neighborhood V of p in M", and a local C' parameterization ®yy:U — V, so that

fOCDU’V: U—)N(;Rm

is a C"map. The rank of fat the point p is the rank of D(fo®y y) at u = ®yy ! (p). The map
fis a C"map if it is of class C" at every point p in M. A differentiable map is a C* map.

See Figure 8.10. Notice that this definition does not yet define a derivative of the
map f. We will do that in the next section because we need to define tangent vectors
first. Right now we only have a notion of differentiability and rank. In this book we
shall be mostly concerned with C* maps and not get involved in the fine points of C*
maps, n # oo.
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R™ N Figure 8.10. Defining a C" map
R between manifolds.
Mn oty
(DUV

R ,
8.3.8. Theorem. The definition of differentiability and rank for maps between man-
ifolds in Euclidean space is well defined and equivalent to the one given in Section
4.3.
Proof. To show that differentiability and rank are well defined we must show that
the definitions do not depend on the local C" parameterization ®@yy. Let U’ be another

open set in R", V" another open neighborhood of p in M", and @y v :U” — V" another
C" parameterization. The main observation is that

-1
fodyy =fodyyo ((DU,V Oq)U’,V')

and the map ®yy ' o®@y v is a CR diffeomorphism between open sets in R™. We may

have to restrict the maps to smaller open sets so that the composites are defined, but

we shall leave the details to the reader. See also Theorem 4.3.25.

8.3.9. Example. To show that the antipodal map f:S! — S' defined by f(p) = —p is
a C” map.

Solution. Let py € S! and assume that py = (cos8p,sin6y). The map
®: (8) 1,00 +1) > S'
defined by
D(0) = (cosH,sin0)
is a local C” parameterization of a neighborhood of py. Now,
fod: (B)—1,80+1) > R?

is just
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(f o ®)(®) = (—cos0,—sinb)

and this map is clearly C”. If po = (Xo,y0) with yo > 0, then we could have chosen another
local C* parameterization such as

¥: (-1,)—> S,
where
P(x) = (x,V1-x2).
This time

(f ° ‘P)(X) = (_Xr_ 1- Xz ))
which is also C™.

Definition. Let f:M® — N* be a differentiable map between differentiable mani-
folds. If f has rank n at all points of M, the f is said to be an immersion. If f is a
homeomorphism onto f(M) c N and is an immersion, then f is called an imbedding.
If f is a homeomorphism between M and N and an immersion, then it is called a
diffeomorphism.

Immersions may only be locally one-to-one. For example, a figure eight is an
immersion of a circle in the plane but not an imbedding.

8.3.10. Theorem. If f:M® — N is a diffeomorphism, then n = k and f':N — M is
also a diffeomorphism.

Proof. The fact that n =k follows from the invariance of domain theorem, Theorem
7.2.3.8. Since f is a homeomorphism, it has an inverse which is also a homeomor-
phism. To prove that f! is a diffeomorphism, use the inverse function theorem,
Theorem 4.4.2.

Definition. A differentiable manifold N¥ that is a subset of a closed manifold M™ is
called a (differentiable) submanifold of M" if the inclusion map is an immersion. If
the manifold M" has a nonempty boundary, then we also require that for every p €
N¥, there is an open neighborhood U of p in M”, an imbedding h:U — R", and an
open subset V c R¥, ¢ R, so that N n U = h™(V).

The reason for the complication in the case of manifolds with boundary is that
we do not want N to meet the dM in a bad way. See Figure 8.11(a) for some cases of
h, U, and V. Figure 8.11(b) shows some good submanifolds and Figure 8.11(c) some
imbedded manifolds that we would not want to call submanifolds. Among other
things, unless N is contained in dM, N — oN should not meet oM and oN should always
meet OM nicely (“nice” means transversally as defined in Section 8.11).

Finally, another common term is the following:
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hy(B)

(a)

&

good submanifolds bad “submanifolds”
(b) (©

Figure 8.11. Good and bad “submanifolds”.

Definition. A submanifold N¥ of a manifold M" is said to have codimension n — k
in M".

Unless stated otherwise, all manifolds from now on are assumed to be differen-
tiable manifolds.

8.4 Tangent Vectors and Spaces

Curves are basic to understanding our definition of tangent vectors and tangent spaces
of manifolds.

Definition. A C' parametric curve is a C' function F:[a,b] — R". The space X =
F([a,b]) traced out by F will be called the path of the parametric curve F. A differen-
tiable parametric curve is a C” parametric curve. The parametric curve F is said to be
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closed if F(a) = F(b). If F is closed and F is one-to-one on [a,b] or one-to-one on (a,b),

then F will be called a proper parametric curve or proper parameterization of the path
X.

Note that a parametric curve is a function. We have reserved the word “curve” by
itself to mean a set, in the same way that “path” or “surface” refer to a set. The reader
needs to be cautioned about the terminology. The problem is that these words are
often used to mean either a set or a function with only the context making clear which
is meant. Our terminology attempts to more or less allow for the common usage of
the words dealing with curves and surfaces while at the same time maintaining the
important distinction between a set and a function. As an example of this, we point
out to the reader that expressions such as “differentiable parametric curve,” “the para-
metric curve F(t),” etc., will often be abbreviated to “differentiable curve,” “the curve
F(t),” etc., respectively, in the future.

Let F:[a,b] — R" be a differentiable parametric curve. If

F(t) = F (1), E(), . .. ,Fa(b),
then we know that

F'()=(F 1), B, . .. E).

Definition. The vector F'(t) is called the rangent vector of the curve F at F(t). In
certain contexts it is called the velocity of F at F(t) and its length, |F'(t)|, is called the
speed of F at F(t). The vectors

F'(t)
[F*(t)]

(or 0if F'(t) =0)

are called the unit tangent vectors of the curve.

Some simple cases and pictures should convince the reader that the term
“tangent vector” makes sense because the vectors that one gets are indeed what one
would want to call “tangent” to the curve. One can see this also from the definition
of the derivative, which makes F’(t) a limit of secant lines. The terms “velocity” and
“speed” also make sense because the derivative specifies a rate of change. Note that
F’(t) is another curve and so one can keep differentiating (if the derivative exist) to
get higher-order derivatives F”(t), ..., F®(1), ... of F(t).

8.4.1. Example. Define F(t) = (t? + 3t,sint,5). Then F'(t) = (2t + 3,cost,0) and the
tangent vector to F at (0,0,5) is (3,1,0). Also, F”(t) = (2,-sint,0), and so F”(0) = (2,0,0).

8.4.2. Example. Consider the parameterization of the unit circle defined by F(8) =
(cos0,sin®). Then F'(0) = (—sin0,cos0) and this vector is clearly a vector “tangent” to
the circle at F(0) since F(0) ¢ F’(0) = 0.

Next, note that if g(t) = t, then, using the chain rule, the tangent vector F'(t) is just



476 8 Differential Topology

DF(t)(g’(t)) = DE(t)1).

Thus, if we understand tangent vectors of the curve corresponding to the x-axis, then
we get the tangent vector for an arbitrary parametric curve by mapping the tangent
vectors along the x-axis over to it.

Now let us move on to higher dimensions. It clearly makes sense to talk about the
tangent plane of a surface in R? at a point. Higher-dimensional manifolds in R® also
have tangent planes. There are a number of different rigorous definitions that can be
given for the tangent space of a submanifold of Euclidean space. The easiest way is
to take advantage of the fact that we understand tangent vectors to parametric curves.

Definition. Let M be a manifold and let p € M. If

v: [a,a]l>M,a>0,

is any parametric curve in M with y(0) = p, then y’(0) is called a tangent vector of M
at p. The set of tangent vectors to M at p is called the tangent space of M at p and is
denoted by Ty, or Tp(M). The set

{p+viveTy}

is called the tangent plane of M at p.
See Figure 8.12.

Caution. Later on, such as in Sections 8.11, 8.12, and 9.16, we shall, for technical
reasons, want to “index” tangent vectors by the point at which they are defined. There-
fore the definition of “tangent vector” and “tangent space” will be changed slightly.
This will in no way alter any facts about these concepts but only involve a simple and
obvious translation of terminology. The later definitions are needed for the theory of
abstract manifolds. Right now we are quite happy to stick to subspaces of R" and to
keep the notation as simple as possible.

Note that the tangent space and the tangent plane are just translations of each
other. The tangent space passes through the origin (since the constant curve y(t) = p,
produces the zero tangent vector) and the tangent plane at p passes through p. To
justify the terminology we need to show that the T,(M) is a vector space. We also need
a practical way to compute these spaces.

Figure 8.12. A tangent vector at p in a mani-
fold M.
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8.4.3. Theorem. Let M be a k-dimensional submanifold of R” and let p e M. Let V
be an open neighborhood of p in M and let ®:U — V be any parameterization of V,
where U is an open set in R*. Let q € U and ®(q) = p.

(1) If M = R* = R", then T,(R¥) = R%.
(2) Tp(M) is a k-dimensional vector space. In fact, Tp(M) = DdD(q)(Rk).
(3) The tangent plane of M at p is a k-dimensional plane.

(4) The vectors gcb

(q,i=1.2,...,k, are a basis for T,(M).

i

Proof. Figure 8.13 should help the reader follow the proof. To prove (1) note that
the lines through q parallel to the coordinate axes in R* correspond to some very
special curves y; defined by

vilt) =q+te; =(qi, - . . ,qi-1,9i +,Qi+1, - - - ,qK)-

Clearly, v;(0) = q. Furthermore, it is also easy to check that v(0) = e;. This gives us a
clue as to how to define a curve y(t) through q that has as a tangent vector an arbi-
trary vector v e R¥. Simply let

k
V() =q+ Y tvie; =(qi +Vit, . . . ,qk +Vkt).
i=1
Then y’(0) = v, from which (1) follows.
To prove (2) note that if y(t) is a parametric curve in Rk through q, then pu(t) =
@(y(1)) is a curve in M through p. The chain rule implies that

RK

Figure 8.13. Defining the
standard basis
for the tangent
space.
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1’(0) = D&(q)(y"(0)). (8.4)

This shows that D® maps tangent vectors to R¥ at q to tangent vectors to M at p, that
is,

D®(q): Tq(R¥)=RX - T,(M) (cT,(R")=R").

Since ® is a local parameterization, D®(q) is a one-to-one linear map from R¥ to R,
It remains to show that D®(q) is onto Tp(M).

Let v e Tp(M) and let p(t) be a curve in M with p(0) = p and u’(0) = v. We need to
find a curve y(t) in R* with y(0) = q and u(t) = ®(y(t)), because then the chain rule
(equation (8.4)) implies that

Do(q)(y(0) =v.

But @ '(u(t)) is such a curve (there is no loss in generality in assuming that p lies in
V) and (2) is proved.

Part (3) clearly follows from (2). Finally, we prove (4). Using the y; defined above,
define curves ; through p by pi(t) = ®(yi(t)). The W; can be thought of as defining a
local curvilinear coordinate system for M at p. See Figure 8.13. Furthermore, the curves
ui(t) are often called the u;-parameter curves for the parameterization ®(uy,uy, . . . ,uy).
In the special case of a surface, one would refer to ui(t) and p,(t) as the u- and v-
parameter curves at p in M, respectively.

Recalling how partial derivatives are defined it is easy to see that

20, aq>n())_a
o V)7

aui

(@, ...,

u

w0 = .

On the other hand, the chain rule shown in equation (8.4) shows that
1;"(0) = D@(q)(y;'(0)) = DD(q)(e;).

This proves (4).

8.4.4. Corollary. If M is a surface in R?, then the cross product 0®/9dx(q) x 9®/9y(q)
is a normal vector for Tp(M).

Note: The fact that (4) holds in Theorem 8.4.3 was built into our definition of local
parameterizations of a manifold because they are assumed to be regular. However, as
mentioned earlier, it is sometimes natural to use parameterizations that are not
regular. For example, consider the parameterization of the surface of revolution
obtained by rotating the parabolic arc y = 1 — x, =1 < x < 1, about the x-axis. One can
parameterize this surface via the map

®(x,0) = (x,(1 - x*)cos, (1 - x*)sinB), -1<x<1,0<0<m.
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Compare this with Example 8.2.2. This parameterization is differentiable everywhere
but not regular and property (4) fails when x is £1. Nonregularity may be a problem
if one is interested in the tangent plane at those points where the parameterization is
not regular because the standard way to find an equation for the tangent plane is to
compute the normal using Corollary 8.4.4. Therefore, if condition (4) is important,
then one needs to check that the parameterization at hand is in fact a regular para-
meterization at the points in question.

8.4.5. Example. To find the tangent plane X to S? at the point p = (%20%2) .

Solution. Let us use the parameterization
D, v)= (u,V,Vl —u? —V2)
for the upper hemisphere. Then

0P

(10_#) and 32_(01_;)
du N —u -2 ov 7 A—w2 vt/
Since @(%2,0)=p,

atb( 1 BCD( 1
Ju

Tz,sz(l,O,—l) and v Tz,sz(O,l,O)

are a basis for X. A normal vector for X is (1,0,1) = (1,0,-1) x (0,1,0). These answers
clearly agree with one’s intuition of what the plane should be.

Using a parameterization and Corollary 8.4.4 to determine the tangent plane
involves a fair amount of computation. It turns out that if we are able to present our
surface as the zeroes of a function, then it is much easier to get equations for the
tangent planes. Compare the next result to Proposition 4.5.7.

8.4.6. Proposition. Let M be a manifold in R" and suppose that f:R” — R is a dif-
ferentiable function such that M = V(f). Let a € M. The tangent plane X of M at a is
defined by the equation

Vi(a)e(p—a)=0. (8.5)
If a=(ajay, ...,a,) and p = (x1,X2, . . . ,Xn), then this equation can be written as
of of
—(@)(x;—ap)+ ...+ (a)(xy —ap)=0. (8.6)
0x1 0Xn

Proof. If y:[-c,c] - M is any curve in M through a, then

f(y(©)=0
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by hypothesis. Differentiating this equation using the chain rule yields
Vi(a)ey’(0)=0.

In other words, the gradient of f is orthogonal to every tangent vector. It follows that
VI gives us a normal vector of the tangent plane that we are trying to find.

8.4.7. Example. To redo Example 8.4.5 using Propositions 8.4.6.
Solution. Define
f(x,y,2)=x>+y? +2z% - 1.

The sphere is the zero set of f and Vf = (2x,2y,2z). According to Proposition 8.4.6,

1 1
Vf(Tz,o,Tz)=(«Fz,o,«Fz)

will be a normal vector to the plane. This agrees with the result in Example 8.4.5.

8.4.8. Example. To show that the lines normal to the tangent planes of an arbitrary
sphere pass through its center.

Solution. Consider the sphere S of radius r with center po. If
tp)=lp-pol* -2,
then S = V(f). It is easy to check that
Vi(p) =2(p - po).

Since the point-normal form of the line L through p and pg is p + t(p — po), the normal
Vi(p) is a direction vector and we are done. See Figure 8.14.

Now we look at how differentiable maps induce natural maps on tangent spaces.
Let

f: M" — Nk
be a differentiable map between differentiable manifolds. Let p be a point of M" and
let q = f(p). Define
Df,: Tp(M™) — Ty (NK)

as follows: Let v be any vector in the tangent space Tp(M") and let y(t) be any curve
lying M" with y(0) = p and y’(0) = v. Then
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Figure 8.14. Normal lines to a sphere pass L
through its center.

{

f Df,(v)
M — =
N
Y
foy
Figure 8.15. The derivative of a
differentiable map
between manifolds. 0
Df,(v) = (£ 1) (0). (8.7)

See Figure 8.15.
Definition. The map Dfj, is called the derivative of f at the point p.
8.4.9. Theorem.

(1) The map Df}, is a well-defined linear map.
(2) If M™ = R" and N¥ = R¥, then Df,, = Df(p).

Proof. There are two parts to the proof of (1). To show that the map is well defined
one must show that its definition does not depend on the curve y. In general, there
will be lots of curves y(t) satisfying y(0) = p and y’(0) = v. To show the linearity prop-
erty, observe that
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(foy) (0)=D(f-y)0)D),
and use the fact that D(foy)(0) is a linear map. The details are left as Exercise
8.4.4.

Part (2) says that the map Df,, generalizes the ordinary definition of the derivative
as defined in Section 4.3. Given a map f:R" — R, we defined a derivative Df(p). If
we think of R" and R¥ as differentiable manifolds, then we just defined a new deriv-
ative Df,. The two derivatives are the same linear maps because of the definitions

involved and the fact that the tangent spaces at points of R™ and R are just R” and
Rk, respectively (Theorem 8.4.3(2)).

8.4.10. Example. To compute Dfy at a point x € R for the map f:R — R defined by
f(x)=x>.

Solution. Let v e T (R) = R. The curve
v: L) >R, y(t)=x+tv,
satisfies y(0) = x and y’(0) = v. But
(Fop)(®) = (x+v),
so that
(foy) () =2(x+tv)v and (foy) (0)=2xv.

We leave it to the reader to check that this agrees with Df(x)(v). What would have hap-
pened if we had chosen the curve

Nt =x+(t3+t)v,
which also satisfies 1(0) = x and 1(0) = v? Well,
Eom(t) =[x+ (t3 + )]
and
(Fon) (1) = 2[x +(t3 + O3t +1)v,

so that (fo n)’(O) =2xv, which agrees with the answer we got using the curve y(t).
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8.5 Oriented Manifolds

This section returns to the topic of orientability. Section 1.6 looked at orientation in
the context of vector spaces, which amounted to studying local orientations. In
Section 7.5 we viewed orientation in the global context of (triangulated) pseudoman-
ifolds. Now we want to describe orientation in the context of differentiable manifolds.
The new definition will be compatible with the definition for pseudomanifolds, but
will make use of the differential structure that we are assuming.

Let MX be a k-dimensional submanifold of R™. Since each tangent space of M is
a vector space we can talk about orientations in these tangent spaces.

Definition. Let T:V — W be an isomorphism between two k-dimensional vector
spaces V and W. Define

T.: orientations of V — orientations of W (8.8a)

by
T ([vy,va, ..., vk]) =[T(vy), T(v,), ..., T(vy)], (8.8b)
where (vq,v,, . .. ,vg) is an ordered basis of V. If |t is an orientation of V, then T.(u) is

called the orientation of W induced by the isomorphism T.

It is easy to see that T, is a well-defined one-to-one correspondence between the
orientations of V and W. See Exercise 8.5.1.

Definition. Let ¢ be a map that associates to each p € MX an orientation of the
tangent space Tp(Mk) Such a choice is said to be a continuously varying ch01ce of ori-
entations if for every p € M there is an open nelghborhood V of p in M¥, a parame-
terization ®:U — V of V defined on an open set U in R¥, and an orientation p of R*
so that D®(q)..(1) = o(®(q)), for q € U.

The definition of continuously varying orientations is simpler than it may sound.
See Figure 8.16. For example, in the case of a surface all it says is that if, say, the
tangent plane at a point of the surface has been oriented in a “counter clockwise”
fashion, then the tangent planes at nearby points are also oriented the same way. We
want to exclude random choices of orientations—some counter clockwise and others
clockwise. Note that we only chose one orientation n of RX and not one in each T4(RY)
because all those tangent spaces are the same and equal to R¥ itself.

It is easy to show that the concept of continuously varying orientations does not
depend on any particular parameterization. See Exercise 8.5.2.

Definition. An orientation of a differentiable manifold M is any continuously varying
choice o of orientations for the tangent spaces of M. A manifold is said to be orientable
if it admits an orientation. An oriented manifold is a pair (M,c), where M is a mani-
fold and 6 is an orientation for M.
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Figure 8.16. Continuously varying
choice of orientation.

Rk

Exercise 8.5.3 describes another way to define the orientability of a manifold.

Definition. Let ®:U — M be a regular parameterization of a k-dimensional mani-
fold M. The orientation ¢ of M that associates to each p = ®(q) € M the orientation

00 0D oD
[E(Q),E(Q), . ,H(CI)} (8.9)
of the tangent space Tp(M) is called the standard orientation of M induced by ®.

Dealing with ordered bases is not very convenient and so we now describe a better
way to specify an orientation of a manifold in a common special case, but first some
definitions.

Definition. Let M* be a k-dimensional C" submanifold of R". A C" vector field of R™
defined over M is a C" (vector-valued) function

v: MKk 5 R,

The vector field v is called tangential to M or simply a C" vector field of M if v(p) €
Tp(M) for all p € M. The vector field v of R" is called normal to M or a C" normal
vector field of M in R" if v(p) is orthogonal to Tp(M) for all p € M. (The phrase “in
R"™ is often dropped if R" is clear from the context.) In any case we say that the vector
field is a unit vector field or a nonzero vector field if v(p) has unit length or is nonzero,
respectively, for all p € M.

Vector fields of manifolds associate vectors to points of a manifold with the vector
at a point lying in the tangent space (or plane) at that point. Figure 8.17(a) shows a
vector field of S'. Figure 8.17(b) shows a normal vector field of S' in R?. As usual, the
adjective “C™ will be suppressed. The two typical cases are continuous (C° or C™.
Nonzero vector fields are often normalized to unit vector fields.
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Figure 8.17. Tangent and normal vector T
fields on the circle.

() ()

Figure 8.18. Normal vector fields and
orientability.

With regard to the question of orientability, there is one case where normal vector
fields are especially interesting.

8.5.1. Theorem. Let M™ ! be a submanifold of R". Then M™! is orientable if and
only if M™! admits a nonzero normal vector field.

Proof. See Figure 8.18. Since the tangent space at every point of M" ! is an (n — 1)-
dimensional vector subspace of R", for each point p of M™! we can express R"
uniquely as an orthogonal direct sum of the tangent space Tp, = Tp(M™!) and a one-
dimensional subspace N, that is,

R" =T, ® N,

Suppose now that M™! is orientable. Then M™! admits a continuously varying
choice o of orientations for its tangent spaces. Assume that 6(p) = [vy,vz, . . ., vy_1] for
some ordered basis (vi,v, ... ,vyp_1) of Tp. C