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This book and [AgoM05] grew out of notes used to teach various types of computer
graphics courses over a period of about 20 years. Having retired after a lifetime of
teaching and research in mathematics and computer science, I finally had the time to
finish these books. The goal of these books was to present a comprehensive overview
of computer graphics as seen in the context of geometric modeling and the mathe-
matics that is required to understand the material. The reason for two books is that
there was too much material for one. The practical stuff and a description of the
various algorithms and implementation issues that one runs into when writing a geo-
metric modeling program ended up in [AgoM05], and the mathematical background
for the underlying theory ended up here. I have always felt that understanding the
mathematics behind computer graphics was just as important as the standard algo-
rithms and implementation details that one gets to in such courses and included a
fair amount of mathematics in my computer graphics courses.

Given the genesis of this book, the primary intended audience is readers who are
interested in computer graphics or geometric modeling. The large amount of mathe-
matics that is covered is explained by the fact that I wanted to provide a complete
reference for all the mathematics relevant to geometric modeling. Although computer
scientists may find sections of the book very abstract, everything that was included
satisfied at least one of two criteria:

(1) It was important for some aspect of a geometric modeling program, or
(2) It provided helpful background material for something that might be used in

such a program.

On the other hand, because the book contains only mathematics and is so broad in
its coverage (it covers the basic definitions and main results from many fields in math-
ematics), it can also serve as a reference book for mathematics in general. It could in
fact be used as an introduction to various topics in mathematics, such as topology
(general, combinatorial, algebraic, and differential) and algebraic geometry.

Two goals were very important to me while writing this book. One was to thor-
oughly explain the mathematics and avoid a cookbook approach. The other was to
make the material as self-contained as possible and to define and explain pretty much
every technical term or concept that is used. With regard to the first goal, I have tried

Preface



very hard to present the mathematics in such a way that the reader will see the moti-
vation for it and understand it. The book is aimed at those individuals who seek such
understanding. Just learning a few formulas is not good enough. I have always appre-
ciated books that tried to provide motivation for the material they were covering and
have been especially frustrated by computer graphics books that throw the reader
some formulas without explaining them. Furthermore, the more mathematics that
one knows, the less likely it is that one will end up reinventing something. The success
or failure of this book should be judged on how much understanding of the mathe-
matics the reader got, along with whether or not the major topics were covered 
adequately.

To accomplish the goal of motivating all of the mathematics needed for geomet-
ric modeling in one book, even if it is large, is not easy and is impossible to do from
scratch. At some places in this book, because of space constraints, few details are pro-
vided and I can only give references. Note that I always have the nonexpert in mind.
The idea is that those readers who are not experts in a particular field should at least
be shown a road map for that field. This road map should organize the material in a
logical manner that is as easy to understand and as motivated as possible. It should
lay out the important results and indicate what one would have to learn if one wanted
to study the field in more detail. For a really in-depth study of most of the major topics
that we cover, the reader will have to consult the references.

Another of my goals was to state everything absolutely correctly and not to make
statements that are only approximately correct. This is one reason why the book is so
long. Occasionally, I had to digress a little or add material to the appendices in order
to define some concepts or state some theorems because, even though they did not
play a major role, they were nevertheless referred to either here or in [AgoM05]. In
those cases involving more advanced material where there is no space to really get
into the subject, I at least try to explain it as simply and intuitively as possible. One
example of this is with respect to the Lebesque integral that is referred to in Chapter
21 of [AgoM05], which forced the inclusion of Section D.4. Actually, the Lebesgue 
integral is also the only example of where a concept was not defined.

Not all theorems stated in this book are proved, but at least I try to point out any
potential problems to the reader and give references to where the details can be found
in those cases where proofs are omitted, if so desired. Proofs themselves are not given
for their own sake. Rather, they should be thought of more as examples because they
typically add insight to the subject matter. Although someone making a superficial
pass over the mathematical topics covered in the book might get the impression that
there is mathematics that has little relevance to geometric modeling, that is not the
case. Every bit of mathematics in this book and its appendices is used or referred to
somewhere here or in [AgoM05]. Sometimes defining a concept involved having to
define something else first and so on. I was not trying to teach mathematics for its
own interesting sake, but only in so far as it is relevant to geometric modeling, or at
least potentially relevant. When I say “potentially,” I am thinking of such topics as
algebraic and differential topology that currently appear in only minimal ways in mod-
eling systems but obviously will some day play a more central role.

It is assumed that the reader has had minimally three semesters of calculus and
a course on linear algebra. An additional course on advanced calculus and modern
algebra would be ideal. The role of Appendices B–F is to summarize what is assumed.
They consist mainly of definitions and statements of results with essentially no expla-
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nations. The reason for including them is, as stated earlier, to be self-contained.
Readers may have learned the material at some point but forgotten the details, such
as a definition or the precise statement of a theorem. A reader who does not under-
stand some particular material in the appendices may not understand the discussion
at those places in the book where it is used. The biggest of the appendices is Appen-
dix B, which consists of material from modern algebra. This appendix is needed for
Chapters 7, 8, and 10, although not that much of it is needed for Chapters 7 and 8.
Only Chapter 10 on algebraic geometry needs a lot of that background. This is the
one place where using this text in the context of a course would be a big advantage
over reading the material on one’s own because an instructor who knows the mate-
rial would actually be able to explain the important parts of it quite easily and quickly
even to students who have not had a prior course on modern algebra. The actual
applications of Chapter 10 to geometric modeling do not require that much knowl-
edge if one skips over the background and proofs of the theorems that lead up to
them. Hopefully, however, the reader with a minimal mathematics background will
be reduced to simply learning “formulas” in only a few places in this book.

The extensive material on topology, in particular algebraic and differential topol-
ogy, has heretofore not been found in books directed toward geometric modeling.
Although this subject is slowly entering the field, its coming has been slow. Probably
the two main reasons for this are that computers are only now getting to be power-
ful enough to be able to handle the complicated computations, and the material
involves exceptionally advanced mathematics that even mathematics majors would
normally not see until graduate school. It is not very surprising therefore that in cases
like this most of the advancement here will probably come from mathematicians who
either switch their research interest to computer science or who want to use com-
puters to make advances in their field. Having said that though, I also strongly feel
that there is much that can be explained to a nontopologist, and Chapters 6–8 are an
attempt to do this. A similar comment applies to the algebraic geometry in Chapter
10. It is because of my emphasis on explaining things that I suggested earlier that
mathematics students could also use this book to learn about this material, not just
computer scientists.

With regard to the bibliography, it is fairly small because the book is not addressed
to mathematicians per se. This meant that many good but advanced references that 
I could have given, but whose intended audience is research mathematicians, are
omitted. This lack of completeness is partially compensated by the fact that additional
references can be found in the references that are given.

The numbering of items in this book uses the following format: x.y.z refers to item
number z in section y of chapter x. For example, Theorem 6.5.7 refers to the seventh
item of type theorem, proposition, lemma, or example in section 5 of Chapter 6. Algo-
rithm 10.11.1 refers to the first algorithm in Section 11 of Chapter 10. Tables are num-
bered like algorithms. Figures are numbered by chapter, so that Figure 9.21 refers to
the twenty-first figure in Chapter 9. Exercises at the end of chapters are numbered by
section.

Cupertino, California Max K. Agoston
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C H A P T E R  1

Linear Algebra Topics

1.1 Introduction

This chapter assumes a basic knowledge and familiarity of linear algebra that is
roughly equivalent to what one would get from an introductory course in the subject.
See Appendix B and C for the necessary background material. In particular, we assume
the reader is familiar with the vector space structure of n-dimensional Euclidean
space Rn and its dot product and associated distance function. The object of this
chapter is to discuss some important topics that may not have been emphasized or
even covered in an introductory linear algebra course. Those readers with a weak
background in abstract linear algebra and who have dealt with vectors mostly in the
context of analytic geometry or calculus topics in R2 or R3 will also get a flavor of the
beauty of a coordinate-free approach to vectors. Proofs should not be skipped because
they provide more practice and insight into the geometry of vectors. The fact is that
a good understanding of (abstract) linear algebra and the ability to apply it is essen-
tial for solving many problems in computer graphics (and mathematics).

As in other places in this book we have tried to avoid generality for generality’s
sake. By and large, the reader can interpret everything in the context of subspaces of
Rn; however, there are parts in this chapter where it was worthwhile to phrase the
discussion more generally. We sometimes talk about inner product spaces, rather than
just sticking to Rn and its dot product, and talk about vector spaces over other fields,
the complex numbers C in particular. This was done in order to emphasize the general
nature of the aspect at hand, so that irrelevant details do not hide what is important.
Vector spaces over the complex numbers will be important in later chapters.

Geometry is concerned with lots of different types of spaces. This chapter is about
the simplest of these, namely, the linear ones, and some related topics. Hopefully,
much of the material that is covered is review except that we shall approach the
subject here, like in many other places, with a vector approach. Sections 1.2–1.5
review the definition and basic properties of k-dimensional planes in Rn. We also look
at the abstract definition of angle and some important concepts related to ortho-
gonality, such as that of the orthogonal projection of a vector. Next, in Sections 1.6
and 1.7 we discuss the extremely important concepts of orientation and convexity.



Some basic results on the diagonalization of maps and matrices in Section 1.8 lead
to a discussion of bilinear maps and quadratic forms in Section 1.9. Section 1.10
describes a general version of the three-dimensional cross product. Finally, Section
1.11 defines the generalized inverse of a transformation and matrix along with several
applications.

1.2 Lines

Our first goal in this chapter is to characterize linear subspaces of Euclidean space
and summarize some basic facts about them. There is not much to say about points,
the 0-dimensional linear subspaces, but the one-dimensional subspaces, namely,
“straight” lines, are a special case that is worth looking at separately.

First of all, let us consider lines in the plane. The usual definition of a line in this
case is as the set of solutions to a linear equation.

Definition. (The equation definition of a line in the plane) Any set L in R2 of the form

(1.1)

where a, b, and c are fixed real constants, is called a line. If a = 0, then the line is
called a horizontal line. If b = 0, then the line is called a vertical line. If b π 0, then 
-a/b is called the slope of the line.

Although an equation defines a unique line, the equation itself is not uniquely
defined by a line. One can multiply the equation for a line by any nonzero constant
and the resultant equation will still define the same line. See Exercise 1.2.1.

The particular form of the equation in our definition for a line is a good one from
a theoretical point of view, but for the sake of completeness we list several other well-
known forms that are often more convenient.

The slope-intercept form: The line with slope m and y-intercept (0,b) is defined by

(1.2)

The point-slope form: The line through the point (x1,y1) with slope m is defined
by

(1.3)

The two-point form: The line through two distinct points (x1,y1) and (x2,y2) is
defined by

(1.4)

Note that equations (1.2) and (1.3) above apply only to nonvertical lines.
When one wants to define lines in higher dimensions, then one can no longer use

a single equation and so we now give an alternative definition that works in all dimen-

y y
y y
x x

x x- =
-
-

-( )1
2 1

2 1
1 .

y y m x x- = -( )1 1 .

y mx b= + .

x y ax by c a b, , , , ,( ) + = ( ) π ( ){ }0 0
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sions. It is based on the intuitive geometric idea that a line is defined by a point and
a direction.

Definition. (The point-direction-vector definition of a line) Any subset L of Rn of
the form

(1.5a)

where p is a fixed point and v is a fixed nonzero vector in Rn, is called a line (through
p). The vector v is called a direction vector for the line L. By considering the compo-
nents of a typical point x = p + tv in L separately, one gets equations

. . .

(1.5b)

that are called the parametric equations for the line.

In the case of the plane, it is easy to show that the two definitions of a line agree
(Exercise 1.2.2). The definition based on the equation in (1.1) is an implicit defini-
tion, meaning that the object was defined by an equation, whereas the definition using
(1.5a) is an explicit definition, meaning that the object was defined in terms of a para-
meterization. We can think of t as a time parameter and that we are walking along
the line, being at the point p + tv at time t.

Note that the direction vector for a line is not unique. Any nonzero multiple of v
above would define the same line. Direction vectors are the analog of the slope of a
line in higher dimensions.

1.2.1. Example. To describe the line L containing the points p = (0,2,3) and q = (-2,1,-1).

Solution. The vector pq = (-2,-1,-4) is a direction vector for L and so parametric
equations for L are

1.2.2. Example. Suppose that the parametric equations for two lines L1 and L2 are:

(1.6)

Do the lines intersect?

Solution. We must solve the equations

y t

z t

= -
= - +

1 2

2

y t

z t

= +
= - +

2

1

L L1 21 2: :x t x t= - = +

x t

y t

z t

= -
= -
= -

2

2

3 4

x p tv tn n n= + Œ, ,R

x p tv

x p tv
1 1 1

2 2 2

= +
= +

p v R+ Œ{ }t t ,

1.2 Lines 3



for s and t. The first two equations imply that t = -1 and s = 0. Since these two values
also satisfy the third equation, the lines L1 and L2 intersect at the point (2,1,-2).

Note. A common mistake when trying to solve a problem like that in Example 1.2.2
is to use the same variable for both s and t. Just because lines intersect does not mean
that persons “walking” along the lines will get to the intersection point at the same
“time.”

Definition. Points are said to be collinear if they lie on the same line and non-
collinear, otherwise.

Definition. Let p, q Œ Rn. The set

(1.7)

is called the segment from p to q and is denoted by [p,q]. The points of [p,q] are said
to lie between p and q.

Note that [p,q] = [q,p] (Exercise 1.2.5). A segment basically generalizes the notion
of a closed interval of the real line, which explains the notation, but the two concepts
are not quite the same when n = 1 (Exercise 1.2.6). The following proposition gives a
very useful alternative characterization of a segment.

1.2.3. Proposition. Let p, q Œ Rn. Then

(1.8)

Proof. Let

In order to show that [p,q] = S we must prove the two inclusions [p,q] Õ S and
S Õ [p,q].

To prove that [p,q] Õ S, let x Œ [p,q]. Then x = p + tpq for some t with 0 £ t £ 1.
It follows that

so that x Œ S.
To prove that S Õ [p,q], let x Œ S. Since |px| + |xq| = |pq| = |px + xq|, the triangle

inequality implies that the vectors px and xq are linearly dependent. Assume without
loss of generality that px = txq. Then

px xq pq pq pq+ = + - =t t1 ,

S x px xq pq= + ={ }.

p q x R px xq pq, =[ ] Œ + ={ }n .

p pq+ Œ[ ]{ }t t 0 1,

1 2

2 1 2

1 2

- = +
+ = -

- + = - +

t s

t s

t s
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In other words,

(1.9)

It is easy to show that the only solutions to (1.9) are 0 £ t. But the equation px = txq
can be rewritten as

which shows that x Œ [p,q] since 0 £ t/(1 + t) £ 1.

The next proposition proves another fairly innocuous looking fact. It also plays a
key role in the proofs of a number of future theorems.

1.2.4. Proposition. Let p be a point on a line L. If c > 0, then there are two and
only two points x on L that satisfy the equation |px| = c.

Proof. Let q be a point on L distinct from p. Then any point x on L has the form 
x = p + spq and hence c = |px| = |s| |pq|. The only solutions to |s| = c/|pq| are s = ±t,
where t = c/|pq|. In other words,

and the proposition is proved.

Finally,

Definition. Let p, v, q Œ Rn. If v π 0, then the ray from p in direction v, denoted by
ray(p,v), is defined by

If p π q, then the ray from p through q, denoted by [pq >, is defined by

1.3 Angles

The intuitive notion of the angle between two vectors is something that one picks up
early, probably while studying Euclidean geometry in high school. In this section we
show that there is a very simple rigorous definition of this that is also very easy to
compute. Everything we do here holds for an arbitrary real vector space with an inner
product, but, for the sake of concreteness, we restrict the discussion to Euclidean
space with its standard dot product.

pq p pq> ( )[ = ,ray .

ray t tp v p v,( ) = + £{ }0 .

x p pq x p pq= + = -t or t

x p pq= +
+
t

t1

t t+ = +1 1

t txq xq xq xq+ = + .
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Definition. Let u, v Œ Rn. Define the angle q between the vectors u and v, denoted by
–(u,v), as follows: If either u or v is the zero vector, then q is zero; otherwise, q is that
real number such that

Note the purely formal aspect of this definition and that we need the Cauchy-
Schwarz inequality to insure that the absolute value of the quotient in (a) is not bigger
than 1 (otherwise there would be no such angle). The motivation behind the defini-
tion is the law of cosines from Euclidean geometry shown in Figure 1.1. To see this,
substitute |p|, |q|, and |p + q| for a, b, and c, respectively, and simplify the result.

Now if |u| = 1, then

which one will recognize as the length of the base of the right triangle with hypotenuse
v and base in the direction of u. See Figure 1.2. This means that we can give the fol-
lowing useful interpretation of the dot product:

Definition. Let u, v Œ Rn. If the angle between the two vectors u and v is p/2, then
they are said to be perpendicular and we shall write u ^ v. If the angle between them
is 0 or p, they are said to be parallel and we shall write u || v.

u v v n u∑ ( ) = is the signed  length of “the orthogonal projection of  on  whenever ” .1

u v v∑ = cos q,

cos q q p=
∑

£ £
u v
u v

, .and 0
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Figure 1.2. Interpreting the dot product.

a
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a2 + b2 – 2ab cos θ = c2
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p

q

Figure 1.1. The law of cosines.



Definition. Two vectors u and v in an arbitrary vector space with inner product •
are said to be orthogonal if u•v = 0.

1.3.1. Theorem. Let u, v Œ Rn.

(1) u ^ v if and only if u and v are orthogonal.
(2) u || v if and only if u and v are linearly dependent.

Proof. Most of the theorem follows easily from the definitions. Use the Cauchy-
Schwarz inequality to prove (2).

Although the words “orthogonal” and “perpendicular” have different connota-
tions, Theorem 1.3.1 shows that they mean the same thing and we have an extremely
easy test for this property, namely, we only need to check that a dot product is zero.
Checking whether two vectors are parallel is slightly more complicated. We must
check if one is a multiple of the other.

Finally, note that if u = (u1,u2, . . . ,un) is a unit vector, then ui = u•ei = cosqi, where
qi is the angle between u and ei. This justifies the following terminology:

Definition. If v is a nonzero vector, then the ith component of the unit vector 
is called the ith direction cosine of v.

1.4 Inner Product Spaces: Orthonormal Bases

This section deals with some very important concepts associated with arbitrary vector
spaces with an inner product. We shall use the dot notation for the inner product. The
reader may, for the sake of concreteness, mentally replace every phrase “vector space”
with the phrase “vector subspace of Rn or Cn,” but should realize that everything we
do here holds in the general setting.

Probably the single most important aspect of inner product spaces is the existence
of a particularly nice type of basis.

Definition. If v1, v2, . . . , vn are vectors in an inner product space, we say that they
are mutually orthogonal if vi • vj = 0 for i π j. A set of vectors is said to be a mutually
orthogonal set if it is empty or its vectors are mutually orthogonal.

Definition. Let V be an inner product space and let B be a basis for V. If B is a
mutually orthogonal set of vectors, then B is called an orthogonal basis for V. If, in
addition, the vectors of B are all unit vectors, then B is called an orthonormal basis.
In the special case where V consists of only the zero vector, it is convenient to call the
empty set an orthonormal basis for V.

Orthonormal bases are often very useful because they can greatly simplify com-
putations. For example, if we wanted to express a vector v in terms of a basis v1, v2,
. . . , vn, then we would normally have to solve the linear equations

v v v v= + + +a a an n1 1 2 2 . . .

1
v

v
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for the coefficients ai. On the other hand, if we have an orthonormal basis, then it is
easy to check that ai = v • vi and there is nothing to solve. Our first order of business
therefore is to describe an algorithm, the Gram-Schmidt algorithm, which converts an
arbitrary basis into an orthonormal one.

The Gram-Schmidt algorithm is an algorithm that actually can be applied to any
collection of vectors and will produce an orthonormal basis for the space spanned by
these vectors. We shall illustrate how this process works in the case of two and three
vectors.

Let v1 and v2 be two nonzero vectors. Then u1 = (1/|v1|)v1 is a unit vector. We want
to find a unit vector u2 that is orthogonal to u1 and so that u1 and u2 span the same
space as v1 and v2. Consider Figure 1.3. If we could find the orthogonal vector w, then
all we would have to do is make w have unit length to get u2 (assuming that w is not
zero). But w can easily be computed from the “orthogonal projection” v of v2 on u1
and we pointed out in Section 1.3 that v could be found using the dot product. The
following equations now summarize how one can compute the orthonormal basis u1
and u2:

(1.10)

where

To see that these computations really do produce orthogonal vectors it suffices to show
that the dot product of the vectors w and u1 is zero. But

Next, suppose that we want to construct an orthonormal basis for the space
spanned by three vectors v1, v2, and v3. See Figure 1.4(a). First, apply the construc-

w u v v u u u
v u v u u u

∑ = - ∑( )[ ]∑
= ∑ - ∑( ) ∑( )
=

1 2 2 1 1 1

2 1 2 1 1 1

0.

w v v

v v u u

= -
= ∑( )

2

2 1 1.

u
w

w2
1

=

u
v

v1
1

1
1

=
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u2

u1

v2

v1

v

w

Figure 1.3. A simple orthogonal projection.



tion above to find an orthonormal basis for the space spanned by v1 and v2. Assume
that u1 and u2 form such a basis. Now find the third vector u3 by projecting v3 to the
vector x in the subspace X spanned by u1 and u2. The difference w = v3 - x is a vector
orthogonal to X that is then normalized to have unit length (assuming again that it
is not zero). This leaves one question unanswered, namely, how does one compute x?
The example in Figure 1.4(b) motivates the answer. We see that the projection 
of (1,2,3) onto the plane is (1,2,0). This vector is the sum of two vectors (1,0,0) and
(0,2,0), which happen to be the orthogonal projections of (1,2,3) onto the vectors e1
and e2, respectively. It turns out that the only important property of e1 and e2 is that
these vectors form an orthonormal basis for the plane. We have now sketched the key
ideas needed for the general case. This leads to the recursive construction described
in Algorithm 1.4.1.

1.4 Inner Product Spaces: Orthonormal Bases 9

X

x

u2

u3

v3

v2
v1

u1

w

projection of
v3 onto X

(1, 2, 3)

(1, 2, 0)(0, 2, 0)

(1, 0, 0)

(a) (b)

Figure 1.4. More orthogonal projections.

Input:  a set of vectors S = { v1,v2, º ,vk } 
Output: an orthonormal basis B = { u1,u2, º ,um } for span(S) 

If  S = f , then return f . 

Let  s  = 1,  B = f , and m =  0 . 

Step 1: If s > k, then return B. 
Step 2: Let 

w  = vs -  (vs ∑  u1) u1 -  (vs ∑  u2) u2 - º -  (vs ∑ um) u .m

If w π 0 , then add  um+1  =  (1/|w|) w  to B and increment m. 
Increment s. 
Go to Step 1. 

Algorithm 1.4.1. The Gram-Schmidt algorithm.



1.4.1. Theorem. The Gram-Schmidt algorithm gives the correct result.

Proof. There are two parts to proving that the algorithm works. We have to show

(1) the vectors ui form an orthonormal set and
(2) they span the same space as the vj.

One uses induction in both cases. To prove (1) it suffices to check that w • ui = 0,
i = 1, 2, . . . , m, which is straightforward. This shows that orthogonality is preserved
as we go along.

To prove (2), assume inductively that at the beginning of Step 2

(1.11)

The inductive hypothesis (1.11) implies that w belongs to span (v1,v2, . . . ,vs), and
therefore so does um+1. This and (1.11) shows that

(1.12)

Now solve the equation for w in Step 2 of the algorithm for vs. Using the inductive
hypothesis (1.11), we see that vs lies in span(v1,v2, . . . ,vs-1,um) and this and another
use of the inductive hypothesis (1.11) shows that

(1.13)

The inclusions (1.12) and (1.13) imply that we actually have an equality of sets,
proving (2) and the theorem (modulo some special cases such as w = 0 that we leave
to the reader).

It should be clear that m = k in the Gram-Schmidt algorithm if and only if the
vectors v1, v2, . . . , vk are linearly independent. In the worst case, where S is empty or
v1 = v2 = . . . = vk = 0, then m = 0.

1.4.2. Corollary. Every subspace of an inner product space has an orthonormal basis.

1.4.3. Example. To find an orthonormal basis u1 and u2 for the subspace X in R3

spanned by the vectors v1 = (2,-1,1) and v2 = (-1,4,0).

Solution. Applying the Gram-Schmidt algorithm we get

To get u2, let

v v u u

w v v

= ∑( ) = - -( )
= - = ( )

2 1 1

2

2 1 1

1 3 1

, , ,

, , .

and

u
v

v1
1

1
1 1

6
2 11= = -( ), , .

span spans mv v v u u u1 2 1 2 1, , . . . , , , . . . , .( ) Õ ( )+

span spanm su u u v v v1 2 1 1 2, , . . . , , , . . . , .+( ) Õ ( )

span spans mv v v u u u1 2 1 1 2, , . . . , , , . . . , .-( ) = ( )
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Then

One can easily check that u1 and u2 are what we want.

Definition. Let X be a subspace of an inner product space V. The orthogonal com-
plement of X in V, denoted by X^, is defined by

Every vector in X^ is called a normal vector for X.

1.4.4. Theorem. If X is a subspace of an inner product space V, then the orthogo-
nal complement X^ of X is a subspace of V and

Conversely, if

where Y is a subspace with the property that every vector in Y is normal to X, then
Y = X^.

Proof. It is an easy exercise, left to the reader, to show that X^ is a subspace. We
prove that V is a direct sum of X and X^. Let u1, u2, . . ., uk be an orthonormal basis
for X. Define a linear transformation T : V Æ V by

It is easy to check that ker(T) = X^ and that v - T(v) belongs to ker(T). We also have
that

These facts imply the first part of the theorem. We leave the reader to fill in the details
and to prove the converse part (Exercise 1.4.1).

Definition. An inner product space V is said to be the orthogonal direct sum of
two subspaces X and Y if it is a direct sum of X and Y and if every vector of X is
orthogonal to every vector of Y.

By Theorem 1.4.4, if V is an orthogonal direct sum of X and Y, then 
Y = X^. Another consequence of Theorem 1.4.4 is that subspaces can be defined 
implicitly.

v v v v= ( ) + - ( )( )T T .

T or if kk kv v u u v u u v u u 0( ) = ∑( ) + ∑( ) + + ∑( ) =( )1 1 2 2 0. . . .

V X Y= ≈ ,

V X X= ≈ ^ .

X v V v w w X^ = Œ ∑ = Œ{ }0 for all .

u
w

w2
1 1

11
1 3 1= = ( ), , .
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1.4.5. Theorem. If X is a k-dimensional subspace of an n-dimensional inner
product space V, then there exist n-k orthonormal vectors n1, n2, . . . , nn-k, so that

Proof. Choose the vectors ni to be an orthonormal basis for the orthogonal 
complement of X.

Now let X be a subspace of an inner product space V. Let v Œ V. Since V = X ≈
X^, we can express v uniquely in the form v = x ≈ y, where x Œ X and y Œ X^.

Definition. The vector x, denoted by v||, is called the orthogonal projection of v on X
and the vector y, denoted by v^, is called the orthogonal complement of v with respect
to X.

Note that in the definition, because of the symmetry of the direct sum operator,
the orthogonal complement v^ of v with respect to X is also the orthogonal projec-
tion of v on X^. The next theorem shows us how to compute orthogonal projections
and complements.

1.4.6. Theorem. Let u1, u2, . . . , uk, k ≥ 1, be any orthonormal basis for a subspace
X in an inner product space V. Let v Œ V. If v|| and v^ are the orthogonal projection
and orthogonal complement of v on X, respectively, then

(1.14)

and

(1.15)

Proof. Exercise 1.4.2.

In Theorem 1.4.6 it is essential that we have an orthonormal basis, otherwise it
is easy to come up with examples that show equations (1.14) and (1.15) are false.

The next definition formalizes some common terminology.

Definition. Let u π 0 and v be vectors in an inner product space. Then the orthogo-
nal projection of v on u, denoted by v||, and the orthogonal complement of v with respect
to u, denoted by v^, are defined by

(1.16)

and

(1.17)v v v
u
u

u
u

^ = - ∑Ê
Ë

ˆ
¯ .

v v
u
u

u
u

|| = ∑Ê
Ë

ˆ
¯

v v v u u v u u v u u^ = - ∑( ) - ∑( ) - - ∑( )1 1 2 2 . . . .k k

v v u u v u u v u u|| = ∑( ) + ∑( ) + + ∑( )1 1 2 2 . . . k k

X u V n u= Œ ∑ = £ £ -{ }i for i n k0 1 .
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Clearly, the orthogonal projection of v on u is the same as the orthogonal projec-
tion of v on the subspace spanned by u and hence is really just a special case of the
earlier definition. A similar comment holds for the orthogonal complement. Another
way of looking at what we have established is that, given a subspace X, every vector
v can be decomposed into two parts, one “parallel” to X and the other orthogonal to
it. See Figure 1.5.

We finish this section with a look at some very important classes of matrices.

Definition. An n ¥ n real matrix A is said to be orthogonal if AAT = ATA = I, that is,
the inverse of the matrix is just its transpose.

1.4.7. Lemma.

(1) The transpose of an orthogonal matrix is an orthogonal matrix.
(2) Orthogonal matrices form a group under matrix multiplication.
(3) The determinant of an orthogonal matrix is ±1.
(4) The set of orthogonal matrices with determinant +1 forms a subgroup of the

group of orthogonal matrices.

Proof. Easy.

Definition. The group of nonsingular real n ¥ n matrices under matrix multiplica-
tion is called the (real) linear group and is denoted by GL(n,R). The subgroup of
orthogonal n ¥ n matrices is called the orthogonal group and is denoted by O(n). An
orthogonal matrix that has determinant +1 is called a special orthogonal matrix. The
subgroup of O(n) of special orthogonal n ¥ n matrices is called the special orthogonal
group and is denoted by SO(n).

The groups SO(n) and O(n) play an important role in many areas of mathemat-
ics and much is known about them and their structure. Here are two useful charac-
terizations of orthogonal matrices.

1.4.8. Theorem. There is a one-to-one correspondence between orthogonal 
matrices and orthonormal bases.

1.4 Inner Product Spaces: Orthonormal Bases 13
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Figure 1.5. Decomposing a vector with
respect to a subspace.



Proof. If we think of the rows of the matrix as vectors, then we get the corres-
pondence by associating to each matrix the basis of Rn, which consists of the rows 
of the matrix. A similar correspondence is obtained by using the columns of the
matrix.

1.4.9. Theorem. Assume n ≥ 1. Let u1, u2, . . . , un and v1, v2, . . . , vn be orthonor-
mal bases in a real inner product space V. If

(1.18)

then A = (aij) is an orthogonal matrix. Conversely, let A = (aij) be an orthogonal matrix.
If u1, u2, . . ., un is an orthonormal basis and if v1, v2, . . . , vn are defined by equation
(1.18), then the v’s will also be an orthonormal basis.

Proof. The theorem follows from the following identities

There is a complex analog of an orthogonal real matrix.

Definition. An n ¥ n complex matrix A is said to be unitary if AT = AT = I, that
is, the inverse of the matrix is just its conjugate transpose.

Lemma 1.4.7 remains true if we replace the word “orthogonal” with the word
“unitary.” In particular, the unitary matrices form a group like the orthogonal ones.

Definition. The group of nonsingular complex n ¥ n matrices under matrix multi-
plication is called the (complex) linear group and is denoted by GL(n,C). The subgroup
of unitary n ¥ n matrices is called the unitary group and is denoted by U(n). A unitary
matrix that has determinant +1 is called a special unitary matrix. The subgroup of U(n)
of special unitary n ¥ n matrices is called the special unitary group and is denoted by
SU(n).

The analogs of Theorems 1.4.8 and 1.4.9 hold in the complex case. We omit the
details. See, for example, [Lips68] or [NobD77]. We shall run into orthogonal and
unitary matrices again later in this chapter and in Chapter 2 when we talk about 
distance preserving maps or isometries.

1.5 Planes

Next, we define the higher-dimensional linear subspaces of Euclidean space. Certainly
vector subspaces of Rn should be such spaces, but “translations” of those should count
also.

AA

dst s t sj j
j

n

tj j
j

n

sj tj
j

n

a a a a= ∑ =
Ê
ËÁ

ˆ
¯̃

∑
Ê
ËÁ

ˆ
¯̃

=
= = =
Â Â Âv v u u

1 1 1

.

v u Ri ij j
j

n

ija a= Œ
=
Â

1
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Definition. Any subset X of Rn of the form

(1.19a)

where p is a fixed point and the v1, v2, . . . , vk are fixed linearly independent vectors
in Rn, is called a k-dimensional plane (through p). The dimension, k, of X will be
denoted by dim X. The vectors v1, v2, . . . , vk are called a basis for the plane.

Clearly, an alternative definition of a k-dimensional plane through a point p would
be to say that it is any set X of the form

(1.19b)

where V is a k-dimensional vector subspace of Rn. Furthermore, the subspace V is
uniquely determined by X (Exercise 1.5.1).

The (n - 1)-dimensional planes in Rn are especially interesting.

Definition. Any subset X of Rn of the form

(1.20)

where n is a fixed nonzero vector of Rn and d is a fixed real number, is called a 
hyperplane.

Note that if n = (a1,a2, . . . ,an) and p = (x1,x2, . . . ,xn), then the equation in (1.20)
is equivalent to the usual form

(1.21)

of the equation for a hyperplane. Note also that if p0 belongs to the hyperplane, then
by definition d = n • p0 and we can rewrite the equation for the hyperplane in the form

(1.22)

Equation (1.22) says that the hyperplane X consists of those points p with the prop-
erty that the vector p - p0 is orthogonal to the vector n. See Figure 1.6.

n p p∑ -( ) =0 0.

a x a x a x dn n1 1 2 2+ + + =. . .

p n p∑ ={ }d ,

X p v v V= + Œ{ },

X p v v v R= + + + + Œ{ }t t t t t tk k k1 1 2 2 1 2. . . , , . . . , ,
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Definition. Equation (1.22) is called the point-normal form of the equation for the
hyperplane defined by (1.20) or (1.21). The vector n is called a normal vector to the
hyperplane.

1.5.1. Example. Consider the hyperplane defined by z = 0. This equation can be
rewritten in the form

Note that (0,0,0) is a point in the hyperplane and (0,0,1) is a normal vector for it.

The next proposition justifies the phrase “plane” in the word “hyperplane.”

1.5.2. Proposition.

(1) A hyperplane X in Rn is an (n - 1)-dimensional plane. If X is defined by the
equation n • p = d, then any basis for the vector subspace

is a basis for X.
(2) Conversely, every (n - 1)-dimensional plane in Rn is a hyperplane.

Proof. To prove (1) note first that K is a vector subspace. This can be seen either by
a direct proof or by observing that K is the kernel of the linear transformation

defined by

It follows easily from Theorem B.10.3 that K is an (n - 1)-dimensional vector sub-
space of Rn. If p0 is any point of X, then it is easy to show that

proving the first part of the lemma. The converse, part (2), follows from Theorem
1.4.5. Exercise 1.5.2 asks the reader to fill in missing details.

1.5.3. Example. To find a basis for the (hyper)plane X in R3 defined by 
2x + y - 3z = 6.

Solution. There will be two vectors v1 and v2 in our basis. We use Proposition
1.5.2(1). The vector n = (2,1,-3) is a normal vector for our plane. Therefore, to find v1
and v2 is to find a basis for the kernel K of the map

p n pÆ ∑ .

X p q q K= + Œ{ }0 ,

T p n p( ) = ∑ .

T n: R RÆ

K p R n p= Œ ∑ ={ }n 0

0 0 0 0 1 0 0x y z-( ) + -( ) + -( ) = .
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The direct approach is to solve the equation n • p = 0, that is, 2x + y - 3z = 0, for two
noncollinear points v1 and v2. Alternatively, compute three noncollinear points p0, p1,
and p2 in X and set v1 = p0p1 and v2 = p0p2. For example, p0 = (1,1,-1), p1 = (3,0,0),
and p2 = (0,6,0) would give v1 = (2,-1,1) and v2 = (-1,5,0). By construction these vectors
v1 and v2 will also be a basis for K. The first approach that involves solving an equa-
tion for only two points rather than solving the equation 2x + y - 3z = 6 for three
points is obviously simpler; however, in other problems a plane may not be defined
by an equation.

Example 1.5.3 shows how one can find a basis for a plane if one knows some
points in it. A related question in the case of hyperplanes is to find the equation for
it given some points in it. To answer that question in R3 one can use the cross product.

Definition. Let v, w Œ R3. Define the cross product v ¥ w Œ R3 by

(1.23)

Now, formula (1.23) is rather complicated. The standard trick to make it easier to
remember is to take the formal determinant of the following matrix:

The coefficients of the symbols i, j, and k will then be the x-, y-, and z-component,
respectively, of the cross product.

We shall look at the cross product and its properties more carefully later in Section
1.10. Right now we shall only make use of the fact that the cross product of two vectors
produces a vector that is orthogonal to both of these vectors, something easily checked
from the formula.

1.5.4. Example. To find an equation for the hyperplane that contains the points 
p = (1,0,1), q = (1,2,0), and r = (0,0,3).

Solution. We have that

Therefore, an equation for the plane is

which reduces to

If we compare arbitrary k-dimensional planes and hyperplanes, we see that the
former have so far only an explicit definition in terms of parameterizations whereas

4 2 6x y z+ + = .

4 1 2 1 0 1 0, , , , , , ,( ) ∑ ( ) - ( )( ) =x y z

pq pr pq pr= -( ) = -( ) ¥ = ( )0 2 1 1 0 2 4 1 2, , , , , , , , .and

i j k

v v v

w w w
1 2 3

1 2 3

Ê

Ë
Á
Á

ˆ

¯
˜
˜

v w¥ = - - -( )v w v w v w v w v w v w2 3 3 2 3 1 1 3 1 2 2 1, , .
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the latter can also be defined implicitly via an equation using a normal vector. Actu-
ally, Theorem 1.4.5 corrects this situation and shows that an arbitrary k-dimensional
plane X can also be defined by means of normal vectors and hence an equation in the
following sense: If p0 is any point in the plane, then there exist n-k orthonormal
vectors n1, n2, . . . , nn-k, so that

(1.24)

Definition. Equation (1.24) is called the point-normals form of the equation for the
plane X.

Now normal vectors to hyperplanes are not unique, because any nonzero multi-
ple will determine the same hyperplane.

1.5.5. Lemma. If n1 and n2 are two normal vectors for a hyperplane X, then n1 and
n2 are parallel.

Proof. By hypothesis, X is defined by equations

Replacing n2 by a nonzero multiple if necessary, we may assume that d1 = d2.
Therefore,

for all p in X. It follows that

and

define the same hyperplane Y. But Y is an (n - 1)-dimensional vector subspace of Rn

and so has a unique one-dimensional orthogonal complement (Theorem 1.4.4). Since
the normal vectors n1 and n2 belong to this complement, they must be multiples of
each other and the lemma is proved.

Lemma 1.5.5 justifies the following definition:

Definition. Two hyperplanes are said to be parallel if they have parallel normal
vectors. Two hyperplanes are said to be orthogonal if they have orthogonal normal
vectors. A vector is said to be parallel or orthogonal to a hyperplane if it is orthogonal
or parallel, respectively, to a normal vector of the hyperplane.

Although we shall not do so here (except in the case of “oriented” hyperplanes
later on), it is actually possible to define an angle between arbitrary planes. See
[IpsM95], for example. One could then define parallel and orthogonal in terms of that
angle like we did for vectors. At any rate, with our definition, we are calling any two

n p2 0∑ =

n p1 0∑ =

n p n p1 2∑ = ∑

n pi id∑ = .

X p n p p= ∑ -( ) = £ £ -{ }i for i n k0 0 1 .
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hyperplanes defined by equations n • p = d1 and n • p = d2 parallel. They also have
the same bases. It is useful to generalize these definitions.

Definition. Let X and Y be s- and t-dimensional planes, respectively, with s £ t. If Y
has a basis v1 , v2 , . . . , vt , so that v1 , v2 , . . . , vs is a basis for X, then we say that X
is parallel to Y and Y is parallel to X.

1.5.6. Lemma. In the case of hyperplanes the two notions of parallel agree.

Proof. Exercise 1.5.5.

Next, we want to extend the notion of orthogonal projection and orthogonal com-
plement of vectors to planes. Let X be a k-dimensional plane with basis v1, v2, . . . , vk.
Let X0 be the vector subspace generated by the vectors vi, that is,

Note that X0 is a plane through the origin parallel to X.

1.5.7. Lemma. The plane X0 is independent of the choice of basis for X.

Proof. Exercise 1.5.6.

Definition. Let v be a vector. The orthogonal projection of v on X is the orthogonal
projection of v on X0. The orthogonal complement of v with respect to X is the orthog-
onal complement of v with respect to X0.

By Lemma 1.5.7, the orthogonal projection of a vector on a plane and its orthog-
onal complement is well defined. We can use Theorem 1.4.6 to compute them.

A related definition is

Definition. A vector is said to be parallel to a plane if it lies in the subspace spanned
by any basis for the plane. A vector is said to be orthogonal to a plane if it is orthog-
onal to all vectors in any basis for the plane. More generally, a plane X is said to be
parallel to a plane Y if every vector in a basis for X is parallel to Y and X is orthogo-
nal to Y if every vector in a basis for X is orthogonal to Y.

It is easy to show that the notion of a vector or plane being parallel or orthogo-
nal to another plane does not depend on the choice of bases for the planes. Note that,
as a special case, a vector will be parallel to a line if and only if it is parallel to any
direction vector for the line. Another useful observation generalizes and makes more
precise a comment in the last section. Specifically, given an arbitrary plane X in Rn,
any vector v in Rn can be decomposed into a part that is parallel to X and a part that
is orthogonal to it. See Figure 1.5 again. Finally, the new notion of parallel and orthog-
onal planes agrees with the earlier one.

1.5.8. Example. To find the equation for the plane X in R3 through the point p0 =
(1,3,2), which is parallel to the line

X v v v0 1 2= ( )span k, , . . . , .
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and orthogonal to the plane x - z = 2 .

Solution. If n = (a,b,c) is a normal for X, then n must be orthogonal to the direc-
tion vector (3,-1,0) for the given line and orthogonal to the normal (1,0,-1) for the
given plane, that is,

and

Solving these two equations gives that b = 3a and c = a. In other words, (a,3a,a) is a
normal vector for X. It follows that

or

is an equation for X.

We finish this section with two more definitions. The first generalizes the half-
planes Rn

+ and Rn
-.

Definition. Let p0, n Œ Rn with n π 0. The sets

and

are called the halfplanes determined by the hyperplane n • (p - p0) = 0. A halfline is
a halfplane in R.

A hyperplane in Rn divides Rn into three parts: itself and the two halfplanes on
either “side” of it. Figure 1.7 shows the two halfplanes in the plane defined by the line
(hyperplane) 2x + 3y - 6 = 0.

Sometimes one needs to talk about the smallest plane spanned by a set.

Definition. Let X Õ Rn. The affine hull or affine closure of X, denoted by aff (X), is
defined by

The following lemma justifies the definition of the affine hull of a set:

aff X P P X( ) = « { }is a plane which contains .

p R n p pŒ ∑ -( ) £{ }n
0 0

p R n p pŒ ∑ -( ) ≥{ }n
0 0

x y z+ + =3 12

1 3 1 1 3 2 0, , , , , ,( ) ∑ ( ) - ( )( ) =x y z

a c- = 0.

3 0a b- =

x t

y t

z

= +
= -
=

2 3

7
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1.5.9. Lemma.

(1) The intersection of an arbitrary number of planes is a plane.
(2) If X is a plane, then aff (X) = X.

Proof. This is left as an exercise for the reader (Exercises 1.5.3 and 1.5.4).

It follows from the lemma that affine hulls are actually planes. One can also easily
see that aff(X) is contained in any plane that contains X, which is why one refers to
it as the “smallest” such plane.

1.5.10. Theorem. Let p0, p1, . . . , pk Œ Rn. Then

Proof. Exercise 1.5.8.

Let X and Y be two planes in Rn. The definition implies that X and Y are the trans-
lations of unique vector subspaces V and W, respectively, that is,

for some p, q Œ Rn.

Definition. The planes X and Y in Rn are said to be transverse if

Two transverse lines in R3 are said to be skew.

Intuitively, two planes are transverse if their associated subspaces V and W span
as high-dimensional space as possible given their dimensions. To put it another way,
the intersection of V and W should be as small as possible. Sometimes this is referred
to as the planes being in general position. For example, the x- and y-axes are trans-
verse in Rn, but the x-axis and the parallel line defined by y = 1 are not. The xy- and
yz-plane are transverse in R3 but not in R4.

dim max dim dimV W V W«( ) = ( ) + ( ) -{ }0, .n

X p v v V Y q w w W= + Œ{ } = + Œ{ }and

aff t t tk k k ip p p p p p p p R00 1 0 1 1 0, , . . . , . . .{ }( ) = + + + Œ{ }
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1.6 Orientation

This section is an introduction to the concept of orientation. Although this intuitive
concept is familiar to everyone, probably few people have thought about what it means
and how one could give a precise definition.

The notion of orientation manifests itself in many different contexts. In everyday
conversation one encounters phrases such as “to the left of,” “to the right of,” “clock-
wise,” or “counterclockwise.” Physicists talk about right- or left-handed coordinate
systems. In computer graphics, one may want to pick normals to a planar curve in a
consistent way so that they all, say, point “inside” the curve. See Figure 1.8. A similar
question might be asked for normals in the case of surfaces. How can one tell in a
systematic way that our choice of normals is “consistent”? What does this really mean?

Probably the easiest way to demonstrate the orientability property for surfaces is
in terms of the number of “sides” that they have. Consider the cylinder in Figure 1.9(a).
This surface has the property that if one were a bug, the only way to get from the
“outside” to the “inside” would be to crawl over the edge. We express this by saying
that the cylinder is “two-sided” or orientable. Now, a cylinder can be obtained from
a strip of paper by gluing the two ends together in the obvious way. If, on the other
hand, we take this same strip of paper and first give it a 180-degree twist before we
glue the ends together, then we will get what is called a Moebius strip (discovered by
A.F. Moebius and independently by J.B. Listing in 1858). See Figure 1.9(b). Although
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the strip has two sides at any given point, we can get from one side to the other by
walking all the way around the strip parallel to the meridian. The Moebius strip is a
“one-sided” or nonorientable surface. In general, a simple-minded definition is to say
that a surface S is orientable (nonorientable) if one cannot (can) get from one side of
S at a point to the other side by walking along the surface.

One can define orientability also in terms of properties that relate more directly
to the intuitive meaning of “orient.” For example, an orientable surface is one where
it is possible to define a consistent notion of left and right or clockwise and counter-
clockwise. But what does “consistent” mean? If two persons are standing at different
points of a surface and they each have decided what to call clockwise, how can they
determine whether their choices are consistent (assuming that they cannot see each
other)? One way to answer this question is to have one of them walk over to where
the other one is standing and then compare their notions of clockwise. This leads to
the following approach to defining a consistent orientation at every point of a surface
S. Starting at a point p on the surface choose an orientation at p by deciding which
of the two possible rotations around the point is to be called clockwise. Now let q be
any other point of S (q may be equal to p). Walk to q along some path, all the while
remembering which rotation had been called clockwise. This will induce a notion of
clockwise for rotations at q, and hence an orientation at q. Unfortunately, there are
many paths from p to q (nor is there a unique shortest path in general) and, although
this may not seem immediately obvious, different paths may induce different orien-
tations. If an orientation at p always induces the same orientation at every point of
the surface no matter which path we take to that point, then S is called orientable.
Figure 1.9(b) shows that walking around the meridian of the Moebius strip will induce
an orientation back at the starting point that is opposite to the one picked at the begin-
ning. Therefore, we would call the Moebius strip nonorientable, and our new defini-
tion is compatible with the earlier one.

Orientability is an intrinsic property of surfaces. F. Klein was the first to observe
this fact explicitly in 1876. The sphere is orientable, as are the torus (the surface of a
doughnut) and double torus (the surface of a solid figure eight) shown in Figure 1.10.
Actually, since the torus will be a frequent example, this is a good time to give a slightly
more precise definition of it. It is a special case of a more general type of surface.

Definition. A surface of revolution in R3 is a space S obtained by revolving a planar
curve about a line in that plane called the axis of revolution. A meridian of S is a con-
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nected component of the intersection of S and a plane through the axis of revolution.
A circle of latitude of S is a connected component of the intersection of S and a plane
orthogonal to the axis of revolution. A torus is a surface of revolution where the curve
being revolved is a circle that does not intersect the axis of revolution.

See Figure 1.11. Note that meridians of surfaces of revolution meet their circles
of latitude in a single point. Note also that a surface of revolution may not actually
be a “surface” if the curve being revolved is not chosen carefully, for example, if it
intersects the axis. (The term “surface” will be defined carefully in Chapter 5.) Sur-
faces of revolution are also orientable.

There are surfaces without boundary that are nonorientable and the reader is
challenged to find one on his own (or wait until Chapter 6). One word of caution
though: Nonorientable surfaces without boundary cannot be found in R3 (see Exer-
cise 6.5.1.). One needs a fourth dimension.

Enough of this intuitive discussion of orientability. Let us move on to mathemat-
ical definitions. In this section we define the most basic concept, namely, what is
meant by the orientation of a vector space. This corresponds to a definition of the
local concept, that is, the notion of an orientation at a point.

Consider the problem of trying to define an orientation at the origin of R2. Let
(v1,v2) be an ordered basis. See Figure 1.12. We could use this ordered pair to suggest
the idea of counterclockwise motion. The only trouble is that there are many ordered
bases for R2. For example, the pair (w1,w2) in Figure 1.12 also corresponds to coun-
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terclockwise motion. Therefore, we need an appropriate equivalence relation. The key
to defining this relation is the matrix relating two ordered bases.

Let (v1,v2) and (w1,w2) be two ordered bases. Suppose that

for aij Œ R. Define (v1,v2) to be equivalent to (w1,w2) if the determinant of the matrix
(aij) is positive. Since we are dealing with bases, we know that the aij exist and are
unique and that the matrix (aij) is nonsingular. It is easy to see that our relation is an
equivalence relation and that we have precisely two equivalence classes because the
nonzero determinant is either positive or negative. We could define an orientation of
R2 to be such an equivalence class. As a quick check to see that we are getting what
we want, note that if w1 = v2 and w2 = v1, then

and the determinant of this matrix is -1, so that (v1,v2) and (v2,v1) determine differ-
ent equivalence classes.

Because we only used vector space concepts, it is easy to generalize what we just
did.

Definition. Let B1 = (v1,v2, . . . ,vn) and B2 = (w1,w2, . . . ,wn) be ordered bases for a
vector space V and let

We say that B1 is equivalent to B2, and write B1 ~ B2 if the determinant of the matrix
(aij) is positive.

1.6.1. Lemma. ~ is an equivalence relation on the set of ordered bases for V with
precisely two equivalence classes.

Proof. Exercise 1.6.1.

Definition. An orientation of a vector space V is defined to be an equivalence 
class of ordered bases of V with respect to the relation ~. Given one orientation of V,
then the other one is called the opposite orientation. The equivalence class of an ordered
basis (v1,v2, . . . ,vn) will be denoted by [v1,v2, . . . ,vn]. We shall say that the ordered basis
(v1,v2, . . . ,vn) induces or determines the orientation [v1,v2, . . . ,vn]. An oriented vector
space is a pair (V,s), where V is vector space and s is an orientation of it.

1.6.2. Example. To show that the ordered bases ((1,3),(2,1)) and ((1,1),(2,0)) deter-
mine the same orientation of the plane.

Solution. See Figure 1.13. Note that

w v Ri ij j
j

n

ija where a= Œ
=
Â

1

, .

aij( ) = Ê
Ë

ˆ
¯

0 1

1 0

v w wi i ia a= +1 1 2 2,
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and

1.6.3. Example. To show that the ordered bases ((1,3),(2,1)) and ((3,-1),(-1,3))
determine different orientations of the plane.

Solution. See Figure 1.13. Note that

and

Since arbitrary vector spaces do not have any special bases, one typically cannot
talk about a “standard” orientation, but can only compare ordered bases as to
whether they determine the same orientation or not. In the special case of Rn we do
have the standard basis (e1,e2, . . . ,en) though.
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Definition. [e1,e2, . . . ,en] is called the standard orientation of Rn.

The standard orientation corresponds to what is called a right-handed coordinate
system and the opposite orientation to a left-handed coordinate system.

It should be pointed out that the really important concept here is not the formal
definition of an orientation but rather the associated terminology. It is phrases like
“these two ordered bases determine the same or opposite orientations” or “this basis
induces the standard or non-standard orientation of Rn” that the reader needs to
understand.

Solving linear equations can be tedious and therefore it is nice to know that there
is a much simpler method for determining whether or not ordered bases determine
the same orientation or not in the case of Rn.

1.6.4. Lemma. Two ordered bases (v1,v2, . . . ,vn) and (w1,w2, . . . ,wn) of Rn deter-
mine the same orientation if and only if

have the same sign.

Proof. The details of the proof are left to the reader. The idea is to relate both bases
to the standard ordered basis (e1,e2, . . . ,en).

1.6.5. Example. The solutions to Examples 1.6.2 and 1.6.3 above are much easier
using Lemma 1.6.4. One does not have to solve any linear equations but simply has
to compute the following determinants:

Definition. Let V be a vector space. A nonsingular linear transformation T : V Æ V
is said to be orientation preserving (or sense preserving) if (v1,v2, . . . ,vn) and
(T(v1),T(v2), . . . ,T(vn)) determine the same orientation of V for all ordered bases (v1,v2,
. . . ,vn) of V. If T is not orientation preserving then it is said to be orientation revers-
ing (or sense reversing). More generally, if (V,s) and (W,t) are two oriented n-
dimensional vector spaces and if T : V Æ W is a nonsingular linear transformation
(that is, an isomorphism), then T is said to be orientation preserving if t = [T(v1),
T(v2), . . . ,T(vn)] for all ordered bases (v1,v2, . . . ,vn) of V with the property that s =
[v1,v2, . . . ,vn]; otherwise, T is said to be orientation reversing.

The identity map for a vector space is clearly orientation preserving. Exercise 1.6.7
asks you to show that whether or not a map is orientation preserving or reversing can
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be determined by checking the property on a single ordered basis. In the case of an
arbitrary linear transformation from a vector space to itself there is another simple
test for when it is orientation preserving or reversing.

1.6.6. Theorem. Let V be a vector space and let T : V Æ V be a nonsingular linear
transformation. The transformation T is orientation preserving if and only if 
det(T) > 0.

Proof. This theorem follows immediately from the definitions that are involved.

1.6.7. Theorem. Let V be a vector space and let T, Ti : V Æ V be nonsingular linear
transformations.

(1) The transformation T is orientation preserving if and only if T-1 is.
(2) Let T = T1 � T2 � . . . � Tk : V Æ V. The transformation T is orientation preserv-

ing if and only if the number of transformations Ti that are orientation revers-
ing is even.

Proof. This theorem is an immediate consequence of Theorem 1.6.6 and the 
identities

Definition. Let X be a plane in Rn with basis v1, v2, . . . , vk. An orientation of X
is an orientation of the linear subspace aff({v1,v2, . . . ,vk}) (which is X translated
to the origin) of Rn. An oriented plane is a pair (X,s), where X is a plane and s is
an orientation of X. The expression “the plane X oriented by (the ordered basis) 
(w1,w2, . . . ,wk)” will mean the oriented plane (X, [w1,w2, . . . ,wk]). An oriented line is
often called a directed line.

An oriented plane (X,s) will often be referred to simply as the “oriented plane X.”
In that case the orientation s is assumed given but just not stated explicitly until it is
needed. The orientation of an oriented line is defined by a unique unit direction
vector.

Normally, although they seem to make sense, expressions such as “the angle
between two lines” or “the angle between two planes in R3” are ambiguous because
it could mean one of two angles. In the oriented case one can make sense of that
however.

Definition. Let (X,s) and (Y,t) be oriented hyperplanes in Rn. Let s = [v1,v2, . . . ,
vn-1] and t = [w1,w2, . . . ,wn-1]. If vn and wn are normal vectors for X and Y, respec-
tively, with the property that (v1,v2, . . . ,vn) and (w1,w2, . . . ,wn) induce the standard
orientation of Rn, then the angle between the vectors vn and wn is called the angle
between the oriented hyperplanes (X,s) and (Y,t).

The angle between oriented hyperplanes is well defined (Exercise 1.6.5).
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Definition. Let L be an oriented line and let u be the unit vector that defines the
orientation of L. Let p and q be two points on L. The oriented or signed distance from
p to q, denoted by ||pq||, is defined by

It is easy to check that if p π q, then ||pq|| is just the ordinary (unsigned) distance
|pq| if the vector pq induces the same orientation on L as u and -|pq| otherwise 
(Exercise 1.6.6).

The angle between two vectors as defined in Section 1.3 is always a nonnegative
quantity, but sometimes it is convenient to talk about a signed angle, where the sign
of the angle is determined by the direction (counterclockwise or clockwise) that the
angle “sweeps” out.

Definition. Let u and v be two linearly independent vectors in the plane R2. If q is
the angle between u and v, define –s(u,v), the signed angle between u and v, by

This finishes our discussion of the local theory of orientation. We shall return to
the subject of orientation in Chapters 6 and 8 and define what is meant by an orien-
tation at a point of a “curved” space. We shall also consider global aspects of orien-
tation and what it might mean to say that an entire space is oriented. However, in
order not to leave the reader in a kind of limbo with respect to how the definitions of
this section fit into the whole picture, it is useful to give a brief sketch of what is to
come. Surfaces will serve as a good example.

Suppose that S is a smooth surface. What we mean by that is that S has a nice
tangent plane Tp at every point p that varies continuously as we move from point to
point. Let us call the point where the tangent plane touches the surface its “origin.”
Since every tangent plane Tp is a two-dimensional vector space, we already know what
it would mean to have an orientation sp for each Tp separately. The family of orien-
tations O = {sp} is called an orientation for S if the orientations sp vary continuously
from point to point. To explain what is meant by the notion of a continuously varying
orientation, note that there is a well-defined one-to-one projection pp of a neighbor-
hood of the origin in Tp onto a neighborhood of p in the surface. Figure 1.14 shows

– ( ) = ( )
= -

s u v u v R, , ,

,

q
q
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otherwise.

2

pq pq u= ∑ .
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this correspondence in the case of a curve. This means that if two points p and q are
close, then the map

is a well-defined bijection between a neighborhood of the origin in Tp and a neigh-
borhood of the origin in Tq. We can use this map to set up a correspondence between
ordered bases in the two tangent spaces. In this way we can compare orientations,
and we say that the orientations in O vary continuously if for nearby points sp and
sq correspond under pp,q. An oriented surface is a pair (S,O), where S is a surface and
O an orientation for S.

1.7 Convex Sets

Definition. A subset X of Rn is said to be convex if, for every pair of points p and q
in X, the segment [p,q] is entirely contained in X.

Examples of convex and nonconvex sets are shown in Figure 1.15(a) and (b),
respectively. The next proposition lists some basic facts about convex sets.

1.7.1. Proposition.

(1) Both the empty set and Rn are convex.
(2) Each halfplane in Rn is convex.
(3) The intersection of an arbitrary number of convex sets is convex.

Proof. Part (1) is trivial and parts (2) and (3) are left as exercises for the reader
(Exercise 1.7.1 and 1.7.2).

Because convex sets have many nice properties, it is convenient to introduce the
notion of the smallest convex set that contains a set.

p p pp,q q p= -1

30 1 Linear Algebra Topics

convex set non–convex
set

convex hull 
of (b)

(a) (b) (c)

Figure 1.15. Convex and nonconvex sets and a convex hull.



Definition. Let X Õ Rn. The convex hull or convex closure of X, denoted by conv(X),
is defined by

This definition is similar to the one for the affine hull of a set. Two facts justify it.
First, since each Rn is convex, we are never taking an empty intersection. Second, by
Lemma 1.7.1(3) convex hulls are actually convex. One can also easily see that conv(X)
is contained in any convex set that contains X, which is why one refers to it as the
“smallest” such set.

1.7.2. Proposition. If X is a convex subset of Rn, then conv(X) = X.

Proof. Exercise 1.7.3.

Definition. A bounded subset of Rn that is the intersection of a finite number of half-
planes is called a convex linear polyhedron.

The term “bounded” means that the set is contained in some closed disk about
the origin. See Section 4.2. For example, we do not want to call Rn itself a convex
linear polyhedron. A convex linear polyhedron is a special case of a linear polyhedron
that will be defined in Section 6.3. It seems natural to give the definition here in order
to show that the intersection of halfplanes produces many interesting and quite
general sets and at the same time proves that these sets are convex. See Figure 1.16.

Certain convex linear polyhedra are especially interesting.

Definition. Let k ≥ 0. A k-dimensional simplex, or k-simplex, is the convex hull s of
k + 1 linearly independent points v0, v1, . . . , and vk in Rn. We write s = v0v1 · · · vk. The
points vi are called the vertices of s. Often one writes sk to emphasize the dimension
of s. If the dimension of s is unimportant, then s will be called simply a simplex. If
{w0, w1, . . . , wj} Õ {v0, v1, . . . , vk}, then t = w0w1 · · · wj is called a j-dimensional face
of s and we shall write t � s.

Figure 1.17 shows some examples of simplices and shows that our use of the term
“k-dimensional” is justified. Note that R2 does not contain any three-dimensional

conv X C C X( ) = « { } is a convex set that contains .
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simplex. In general, Rn contains at most n-dimensional simplices because it is not
possible to find j linearly independent points in Rn for j > n + 1. Also, a simplex depends
only on the set of vertices and not on their ordering. For example, v0v1 = v1v0. K-
simplices are the simplest kind of building blocks for linear spaces called simplicial
complexes, which are defined in Chapter 6, and they play an important role in alge-
braic topology. They have technical advantages over other regularly shaped regions
such as cubes. In particular, their points have a nice representation as we shall show
shortly in Theorem 1.7.4.

1.7.3. Lemma.

(1) The set aff({v0,v1, . . . ,vk}) consists of the points w that can be written in the
form

(1.25)

(2) The set conv({v0,v1, . . . ,vk}) consists of the points w that can be written in the
form

Proof. To prove (1), let
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If w belongs to aff({v0,v1, . . . ,vk}), then we know from Theorem 1.4.4 that

This equation can be rewritten in the form

which shows that w belongs to S. Conversely, if w belongs to S, then

This equation can be rewritten in the form

Part (1) is proved.
To prove (2), let

We need to show that S is the smallest convex set containing {v0,v1, . . . ,vk}. We show
that S is convex first. Consider two points

in S and let t Œ [0,1]. Then

Clearly, 0 £ tai + (1 - t)bi. Furthermore,
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This also shows that tai + (1 - t)bi £ 1; hence the point p belongs to S, proving that S
is convex since p is a typical point on the segment from w to w¢.

Next, we show that S belongs to every convex set C containing the points v0, v1,
. . . , and vk. The case k = 0 is trivial. Assume that k ≥ 1 and that the statement has
been proved for all values smaller than k. Let

belong to S. Since not all ai can be zero, we may assume without loss of generality
that a0 π 0. The case a0 = 1 is trivial, and so assume that a0 < 1. Thus we can write

But

and 0 £ ai/(1 - a0) £ 1. By our inductive hypothesis

belongs to every convex set containing v1, v2, . . . , and vk. In particular, u belongs to
C. Since v0 belongs to C, it follows that w = a0v0 + (1 - a0)u belongs to C and we are
done. Therefore,

and (2) is proved.

An interesting consequence of Lemma 1.7.3(1) is that it gives us a homogeneous
way of defining a plane. We could define a k-dimensional plane as a set defined by k
+ 1 linearly independent points v0, v1, . . . , vk which satisfy equation (1.25) instead of
the definition we gave in Section 1.5 that involved a point and a basis.

Lemma 1.7.3(2) motivates the following definition.

Definition. An expression of the form
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and where the vi are any objects for which the expression makes sense is called a
convex combination of the vi.

1.7.4. Theorem. Let v0, v1, . . . , vk be k + 1 linearly independent points.

(1) Every point w of aff({v0,v1, . . . ,vk}) can be written uniquely in the form

(2) Every point w of the simplex s = v0v1 · · · vk can be written uniquely in the
form

Furthermore, the dimension and the vertices of a simplex are uniquely deter-
mined, that is, if v0v1 · · · vk = v0¢v1¢ . . . vt¢, then k = t and vi = vi¢ after a renum-
bering of the vi¢.

Proof. Lemma 1.7.3 showed that every point w has a representation as shown in (1)
and (2). We need to show that it is unique. Suppose that we have two representations
of the form

Then

The second to last equality sign follows from the fact that
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But the vectors v1 - v0, v2 - v0, . . . , and vk - v0 are linearly independent, so that 
ai = ai¢ for i = 1,2, . . . ,k, which then also implies that a0 = a0¢. This proves that the rep-
resentation for w is unique.

The rest of part (2) is left as an exercise.

Definition. Using the notation in Theorem 1.7.4(1), the ai are called the barycentric
coordinates of w with respect to the points vi. The point

is called the barycenter of the simplex s.

1.7.5. Example. Let v0 = (1,0), v1 = (4,0), and v2 = (3,5). We want to find the barycen-
tric coordinates (a0,a1,a2) of w = (3,1) with respect to these vertices.

Solution. We must solve

for a0, a1, and a2. Since a2 = 1 - a0 - a1, we really have to solve only two equations in
two unknowns. The unique solutions are a0 = 4/15, a1 = 8/15, and a2 = 1/5. The barycen-
ter of the simplex v0v1v2 is the point (8/3,5/3).

Theorem 1.7.4 shows that barycentric coordinates are another way to parame-
terize points, which is why that terminology is used. They are a kind of weighted sum
and are very useful in problems that deal with convex sets. In barycentric coordinates,
the point w in the definition would be represented by the tuple (a0,a1, . . . ,ak). The
barycenter would have the representation

Barycentric coordinates give information about ratios of volumes (or areas in
dimension 2). (For a general definition of volume in higher dimensions see Chapter
4.) Consider a simplex s = v0v1 · · · vk and a point w in it. Let (a0,a1, . . . ,ak) be the
barycentric coordinates of w. Let D be the volume of s and let Di be the volume of the
simplex with vertices v0, v1, . . . , vi-1, w, vi+1, . . . , vk. See Figure 1.18.

1.7.6. Proposition.

Proof. See [BoeP94].

Finally, barycentric coordinates are useful in describing linear maps between sim-
plices. Let f be a map from the set of vertices of a simplex s onto the set of vertices
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of another simplex t. Let s = v0v1 · · · vk and t = w0w1 · · · ws. If we express points of s
in terms of the (unique) barycentric coordinates with respect to its vertices, then f
induces a well-defined map

defined by

Definition. The map |f| is called the map from s to t induced by the vertex map f.

In Chapter 6 we shall see that the map f is a special case of what is called a sim-
plicial map between simplicial complexes and |f| is the induced map on their under-
lying spaces. The main point to note here is that a map f of vertices induces a map 
|f| on the whole simplex. (This is very similar to the way a map of basis vectors in a
vector space induces a well-defined linear transformation of the whole vector space.)
This gives us a simple abstract way to define linear maps between simplices, although
a formula for this map in Cartesian coordinates is not that simple. See Exercises 1.7.6
and 1.7.7.

1.8 Principal Axes Theorems

The goal of this section is to state conditions under which a linear transformation can
be diagonalized. We shall be dealing with vector spaces over either the reals or the
complex numbers. We refer to the main theorems of this section as “principal axes
theorems” because they can be interpreted as asserting the existence of certain coor-
dinate systems (coordinate axes) with respect to which the transformation has a par-
ticularly simple description. Such diagonalization theorems are special cases of what
are usually called “spectral theorems” in the literature because they deal with the
eigenvalues (the “spectrum”) of the transformation.
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In the final analysis, it will turn out that a transformation is diagonalizable if the
matrix associated with it is symmetric or Hermitian. Unfortunately, those properties
of a matrix are not independent of the basis that is used to define the matrix. For
example, it is possible to find a transformation and two bases, so that the matrix is
symmetric with respect to one basis and not symmetric with respect to the other. The
definition that captures the essence of the symmetry that we need is that of the
“adjoint” transformation.

1.8.1. Lemma. Let V be an n-dimensional vector space over a field k. If a:V Æ k is
a nonzero linear functional, then

Proof. Since a is nonzero, dim im(a) = 1 and so the lemma is an immediate conse-
quence of Theorem B.10.3.

If the vector space V has an inner product •, then it is easy to check that for each
u Œ V the map

defined by

is a linear transformation, that is, a linear functional. There is a converse.

1.8.2. Theorem. If a is a linear functional on an n-dimensional vector space V with
inner product •, then there is a unique u in V, so that

for all v in V.

Proof. If a is the zero map, then u is clearly the zero vector. Assume that a is
nonzero. Then by Lemma 1.8.1, the subspace X = ker(a) has dimension n - 1. Let u0
be any unit vector in the one-dimensional orthogonal complement X^ of X. We show
that

is the vector we are looking for. (The complex conjugate operation is needed in case
we are dealing with vector spaces over the complex numbers.) If v is an arbitrary
vector in V, then V = X ≈ X^ implies that v = x + cu, for some x in X and some scalar
c. But

u u u= ( )a 0 0

a v u v( ) = ∑

u* v v u( ) = ∑

u k* : V Æ

dim ker a( ) = -n 1.
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and

The existence part of the theorem is proved. To prove uniqueness, assume that there
is another vector u¢ in V with a(v) = u¢•v. Then (u - u¢)•v = 0 for all v in V. In par-
ticular, letting v = u - u¢, we get that

which implies that u = u¢ and we are done.

Next, assume that V is a vector space and T :V Æ V is a linear transformation.
Given v Œ V, define a linear functional Tv by

By Theorem 1.8.2, there is a unique vector v*, so that

Definition. The map

defined by

is called the adjoint of T.

1.8.3. Lemma. The adjoint map T* satisfies

for all v, w Œ V.

Proof. By definition, T(v)•w = Tw(v) = w*•v = T*(w)•v.

1.8.4. Lemma. The adjoint map T* is a linear transformation.

Proof. Using Lemma 1.8.3 and the linearity of the dot product, we have that

u v w u v w

u v u w

u v u w

u v w

∑ +( ) = ( ) ∑ +( )
= ( ) ∑ + ( ) ∑
= ∑ ( ) + ∑ ( )
= ∑ ( ) + ( )( )

T a b T a b

a T b T

a T b T

a T b T

*

* *

* * .

T Tv w v w( ) ∑ = ∑ ( )*

T* *v v( ) =

T * : V VÆ

Tv w v w( ) = ∑* .

T Tv w w v( ) = ( ) ∑ .

u u u u- ¢( ) ∑ - ¢( ) = 0,

u v u x u u u u∑ = ∑ +( ) = ∑ = ( )c c c a 0
2
.

a a a av x u u u( ) = +( ) = ( ) = ( )c c c 0
2
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Since this holds for all vectors u, we must have T*(av + bw) = aT*(v) + bT*(w), which
proves the lemma.

Definition. A linear transformation T :V Æ V is called self-adjoint if T = T*.

It follows from Lemma 1.8.3 that if a linear transformation T is self-adjoint 
then

One can prove the converse, namely

1.8.5. Lemma. If a linear transformation T :V Æ V satisfies

for all v, w Œ V, then T is self-adjoint.

Proof. The lemma follows from the fact that for all vectors v we have

1.8.6. Theorem. Let V be a real vector space and T :V Æ V a linear transformation.
If M is the matrix of T with respect to an orthonormal basis, then the matrix of the
adjoint T* of T with respect to that same basis is MT.

Proof. Let u1, u2, . . . , un be an orthonormal basis. By definition of the matrix for a
linear transformation and properties of orthonormal bases, the ijth entries of the
matrices for T and T* are T(ui) ·uj and T*(ui) ·uj , respectively. But

1.8.7. Corollary. The matrix for a self-adjoint linear transformation on a real vector
space with respect to an orthonormal basis is symmetric. Conversely, if the matrix for
a linear transformation over a real vector space with respect to an orthonormal basis
is symmetric, then the linear transformation is self-adjoint.

Proof. This is an easy consequence of Theorem 1.8.6.

Self-adjoint transformations are sometimes called symmetric transformations
because of Corollary 1.8.7. The complex analogs of Theorem 1.8.6 and Corollary 1.8.7
simply replace the transpose with the complex conjugate transpose and the self-
adjoint transformations in this case are sometimes called Hermitian.

We now return to the problem of when a linear transformation can be diagonal-
ized. We shall deal with real and complex vector spaces separately. The reason is that
eigenvalues are roots of the characteristic polynomial of a transformation. Although
polynomials always factor completely into linear factors over the complex numbers,

T T Ti j i j j iu u u u u u( ) ∑ = ∑ ( ) = ( ) ∑* * .

v w v w v w∑ ( ) = ( ) ∑ = ∑ ( )T T T* .

T Tv w v w( ) ∑ = ∑ ( ).

T Tv w v w( ) ∑ = ∑ ( ).
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this is not always the case over the reals. A polynomial may have no roots at all over
the reals.

1.8.8. Lemma. Every eigenvalue of a self-adjoint linear transformation T on a
complex vector space V with inner product • is real.

Proof. Let l be an eigenvalue for T and u a nonzero eigenvector for l. Then

Since u•u π 0, l = , that is, l is real.

1.8.9. Lemma. Let T be a self-adjoint linear transformation over a real n-
dimensional vector space V, n ≥ 1, with inner product •. Then

(1) The characteristic polynomial of T is a product of linear factors.
(2) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. By passing to the matrix A for T, (1) follows immediately from Lemma 1.8.8
because we can think of A as defining a complex transformation on Cn and every poly-
nomial of degree n factors into linear factors over the complex numbers. To prove (2),
assume that T(u) = lu and T(v) = mv for l π m. Then

Since l π m, it follows that u•v = 0, and we are done.

1.8.10. Theorem. (The Real Principal Axes Theorem) Let T be a self-adjoint trans-
formation on an n-dimensional real vector space V, n ≥ 1. Then V admits an ortho-
normal basis u1, u2, . . . , un consisting of eigenvectors of T, that is,

for some real numbers li.

Proof. The proof is by induction on n. The theorem is clearly true for n = 1. Assume,
therefore, inductively that it has been proved for dimension n - 1, n > 1. There are
basically two steps involved in the rest of the proof.

First, we need to know that the transformation actually has at least one real eigen-
value l. This was proved by Lemma 1.8.9(1). Let v be a nonzero eigenvector for l and
let u1 = v/|v|.

The second step, in order to use the inductive hypothesis, is to show that the
orthogonal complement W^ of W = <v> = <u1> is an invariant subspace of T. This
follows from the fact that if w Œ W^, then

v w w v w v w∑ ( ) = ∑ ( ) = ( ) ∑ = ∑ =T v T T* ,l 0

T i i iu u( ) = l

l l m mu v u v u v u v u v u v∑( ) = ∑ = ( ) ∑ = ∑ ( ) = ∑ = ∑( )T T .

l

l l l lu u u u u u u u u u u u u u∑( ) = ∑ = ( ) ∑ = ∑ ( ) = ∑ ( ) = ∑ = ∑( )T T T* .
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so that T(w) Œ W^. Clearly, S = T|W^ is a self-adjoint transformation on the (n - 1)-
dimensional vector space W^. The inductive hypothesis applied to S means that there
is an orthonormal basis u2, u3, . . . , un for W^ which are eigenvectors for S (and hence
for T). The vectors ui are obviously what we wanted, proving the theorem.

In the case of Theorem 1.8.10, the name “Principal Axes Theorem” comes from
its role in finding the principal axes of ellipses. The matrix form of Theorem 1.8.10 is

1.8.11. Theorem. If A is a real symmetric n ¥ n matrix, then there exists an orthog-
onal matrix P so that D = P-1AP is a diagonal matrix. In particular, every real sym-
metric matrix is similar to a diagonal one.

Proof. Simply let the columns of P be the vectors that form an orthonormal basis
of eigenvectors.

Note that Theorem 1.8.11 only gives sufficient conditions for a matrix to be similar
to a diagonal one. Nonsymmetric matrices can also be similar to a diagonal one. For
necessary and sufficient conditions for a matrix to be diagonalizable see Theorem
C.4.10.

In Theorem 1.8.11, the number s of positive diagonal entries of D is uniquely deter-
mined by A. We may assume that the diagonal of D has the s positive entries first, fol-
lowed by r - s negative entries, followed by n - r zeros, where r is the rank of A.

1.8.12. Example. Let

We want to find an orthogonal matrix P so that P-1AP is a diagonal matrix.

Solution. Consider A to be the matrix of a linear transformation T on R2. Now, the
roots of the characteristic polynomial

are 1 and 3, which are the eigenvalues of T. To find the corresponding eigenvectors,
we must solve

and

This leads to two pairs of equations

- + =
- =

x y
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0

0
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¯
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1 2
.

42 1 Linear Algebra Topics



and

In other words, the vectors v1 = (1,1) and v2 = (1,-1) are eigenvectors corresponding
to eigenvalues 1 and 3, respectively. Let u1 = (1/÷2,1/÷2) and u2 = (1/÷2,-1/÷2). If P is
the matrix with columns ui, then

1.8.13. Example. Let

We want to find an orthogonal matrix P so that P-1AP is a diagonal matrix.

Solution. The roots of the characteristic polynomial

are 1 and 4. To find the eigenvectors corresponding to the eigenvalue 1 we need to
solve the equations

The solution set X has the form

Applying the Gram-Schmidt algorithm to the basis (-1,1,0), (-1,0,1) produces the
orthonormal basis u1 = (-1/÷2,1/÷2,0) and u2 = (-1/÷6,-1/÷6,2/÷6) for X. Next, to find
the eigenvector for the eigenvalue 4, we need to solve
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The solutions to these equations have the form x(1,1,1). Let u3 = (1/÷3,1/÷3,1/÷3).
Finally, if P is the matrix whose columns are the ui, then

Definition. A linear transformation T is said to be normal if it commutes with its
adjoint, that is, TT* = T*T.

1.8.14. Theorem. (The Complex Principal Axes Theorem) Let T be a normal trans-
formation on an n-dimensional complex vector space V, n ≥ 1. Then V admits an
orthonormal basis u1, u2, . . . , un consisting of eigenvectors of T, that is,

for some complex numbers li.

Proof. See [Lips68].

The matrix form of Theorem 1.8.14 is

1.8.15. Theorem. If A is a normal matrix, then there exists an unitary matrix P so
that D = P-1AP is a diagonal matrix.

Proof. See [Lips68].

1.9 Bilinear and Quadratic Maps

This section describes some maps that appear quite often in mathematics. However,
we are not interested in just the general theory. Quadratic maps and quadratic forms,
in particular, have important applications in a number of areas of geometry and topol-
ogy. For example, the conics, which are an important class of spaces in geometry, are
intimately connected with quadratic forms. Other applications are found in Chapters
8 and 9.

Definition. A bilinear map on a vector space V over a field k is a function 
f :V ¥ V Æ k satisfying

(1) f(av + bv¢,w) = af(v,w) + bf(v¢,w), and
(2) f(v,aw + bw¢) = af(v,w) + bf(v,w¢),

for all v, v¢, w, w¢ Œ V and a, b Œ k.
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1.9.1. Example. The dot product on Rn is a bilinear map. More generally, an inner
product is a bilinear map.

1.9.2. Example. The determinant function on R2 (where we think of either the rows
or columns of the matrix as vectors in R2) is a bilinear map.

1.9.3. Example. Let A be an n ¥ n matrix. The map f :Rn ¥ Rn Æ R defined by

is a bilinear map.

1.9.4. Example. Let T be a linear transformation on Rn. The map f :Rn ¥ Rn Æ R
defined by

is a bilinear map.

Definition. Let f be a bilinear map on a vector space V. Let B = (v1,v2, . . . ,vn) be an
ordered basis for V and let aij = f(vi,vj). The matrix A = (aij) is called the matrix for f
with respect to the basis B. The determinant of A is called the discriminant of f with
respect to the basis B.

The matrix for a bilinear map clearly depends on the chosen basis. However, the
following is true:

1.9.5. Proposition. If B¢ = (v1¢,v2¢, . . . ,vn¢) is another ordered basis for V and if A¢
is the matrix of the bilinear map f with respect to B¢, then

where C = (cij) is the matrix relating the basis B to the basis B¢, that is,

Proof. This can be checked by a straightforward computation.

Definition. A real n ¥ n matrix A is said to be congruent to a real n ¥ n matrix B if
there exists a nonsingular matrix C such that A = CBCT.

It is easy to show that the congruence relation is an equivalence relation on the
set of all n ¥ n real matrices. We can rephrase Proposition 1.9.5.

1.9.6. Corollary. The matrix of a bilinear map is unique up to congruence, so that
the study of bilinear maps is equivalent to the study of congruence classes of matrices.

v vi ij j
j

n

c¢ =
=
Â

1

.

A CACT¢ = ,

f Tv,w v w( ) = ∑ ( )

f A Tv,w v w( ) =
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Definition. The rank of a bilinear map f is the rank of any matrix for f. A bilinear
map on an n-dimensional vector space is said to be degenerate or nondegenerate if its
rank is less than n or equal to n, respectively.

It follows from Proposition 1.9.5 that the rank of a bilinear map is well 
defined.

1.9.7. Proposition. The matrix associated to a symmetric bilinear map with respect
to any basis is a symmetric matrix.

Proof. Exercise.

Definition. A quadratic map on a vector space V over a field k is any map q :V Æ k
that can be defined in the form q(v) = f(v,v), where f is some bilinear map on V.
In that case, q is also called the quadratic map associated to f. The quadratic map 
q is said to be degenerate or nondegenerate if f is. A discriminant of q is defined to 
be discriminant of f with respect to some basis for V. The quadratic map q and the
bilinear map f are said to be positive definite if q(v) = f(v,v) > 0 for all v π 0.

1.9.8. Example. Let f be a bilinear map on R2 and assume that

The quadratic map q associated to f is then given by

We see that q is just a homogeneous polynomial of degree 2 in v1 and v2.

If the field k does not have characteristic 2 and if f is a symmetric bilinear map
with associated quadratic map q, then

In other words, knowledge of q alone allows one to reconstruct f, so that the concepts
“symmetric bilinear map” and “quadratic map” are really just two ways of looking at
the same thing.

The form of the quadratic map in Example 1.9.8 and others like it motivates 
what is basically nothing but some alternate terminology for talking about quadratic
maps.

Definition. A d-ic form over a field k is a homogeneous polynomial over k of degree
d in an appropriate number of variables. A linear or quadratic form is a d-ic form
where d is 1 or 2, respectively.

For example, 2x + 3y is a linear form in variables x and y and

x y z xy yz2 2 25 2 3+ - + +

f q q qv w v w v w, .( ) = +( ) - ( ) - ( )[ ]1
2

q a v a a v v a vv( ) = + +( ) +11 1
2

12 21 1 2 22 2
2.

f a v w a v w a v w a v wv w, .( ) = + + +11 1 1 12 1 2 21 2 1 22 2 2
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is a quadratic form in variables x, y, and z. Note that the quadratic form can be rewrit-
ten with symmetric cross-terms as

It follows that one can associate the symmetric matrix

with this form. More generally, if the field k does not have characteristic 2, such as,
for example, R or C, we can make the cross-terms symmetric with the trick shown in
the example above. It follows that in this case every quadratic form in n variables is
simply an expression of the type

where A = (aij) is a symmetric matrix. This means that every quadratic form defines
a unique quadratic map

on a vector space V in the following way: Choose an ordered basis B = (v1,v2, . . . ,vn)
for V. Let v Œ V and suppose that

Then

where x = (x1,x2, . . . ,xn). In this case also, the matrix for the associated bilinear map
is just the matrix A. Of course, for all this to make sense we are treating the xi as
values rather than variables, but we can see that from a theoretical point of view there
is no difference between the theory of quadratic forms and quadratic maps. This
explains why in the literature the terms “quadratic map” and “quadratic form” are
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ij i j
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n
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often used interchangeably. In particular, one uses the same terms, such as “degen-
erate,” “nondegenerate,” “positive definite,” or “discriminant” for both. One will some-
times also find the term “bilinear form” used instead of “bilinear map.”

Note. In this book we shall often use the more popular term “quadratic form” even
though we may interpret it as a quadratic map because that is typically more con-
venient computationally. Specifically, when the field k does not have characteristic 2,
we shall always feel free to switch between a quadratic form and the appropriate cor-
responding quadratic map with its unique associated symmetric bilinear map whose
symmetric matrix is unique up to congruence.

Now, an arbitrary quadratic form can be quite complicated. Key to understand-
ing them is the fact that one can always choose a basis, so that with respect to this
basis, the form has a nice simple structure.

1.9.10. Theorem. (The Principal Axes Theorem) Given a quadratic form q defined
on Rn, there exists an orthonormal basis for Rn with respect to which q has the 
form

The difference s - t is called the signature of the quadratic form or the associated 
symmetric bilinear map.

Proof. This is an immediate consequence of Theorem 1.8.11. The integers s and t,
and hence the signature, are independent of the basis and hence invariants of the
quadratic form.

If we do not insist on an orthonormal basis for the diagonalization of a quadratic
form, then there is a weaker version of Theorem 1.9.10. It is interesting because there
is a simpler algorithm for finding a diagonalizing basis for a quadratic form. Here is
its matrix form.

1.9.11. Theorem. If A is a real symmetric n ¥ n matrix of rank r, then A is con-
gruent to a unique diagonal matrix whose first s diagonal entries are +1, the next 
r - s entries are -1, and the remaining entries are zeros.

Proof. We sketch a proof. For more details, see [Fink72]. Assume that A is not the
zero matrix; otherwise, there is nothing to prove.

Step 1. To make A congruent to a matrix A1 that has a nonzero diagonal element.

If A has a nonzero diagonal element, then let A1 = A. If all diagonal elements of
A are zero, let aij be any nonzero entry of A. Let E be the elementary matrix Eji(1),
which has 1s on the diagonal, a 1 in the jith place, and zeros everywhere else. Let 
A1 = EAET. The matrix A1 is obtained from A by adding the jth row of A to the ith 
row followed by adding the jth column of the result to the ith column. It is easy to
see that the ith diagonal element of A1 is 2aij and hence nonzero.

q x x x x x x x wheren s s s s s t s t i1 2 1 1
2 2

1 1
2 2 0, , . . . , . . . . . . , .( ) = + + - - - >+ + + +l l l l l
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Step 2. To make A1 congruent to a matrix A2, which has a11 nonzero.

Let F = (fij) be the elementary matrix defined by

Then A2 = FA1FT is the matrix obtained from A1 by interchanging the first and ith 
diagonal element.

Step 3. To make A2 congruent to a matrix A3 in which the only nonzero element
in the first row or first column is a11.

Step 3 is accomplished via elementary matrices like in Step 1 that successively
add multiples of the first row to all the other rows from 2 to n and the same multi-
ples of the first column to the other columns.

After Step 3, the matrix A3 will have the form

where B is a symmetric (n - 1) ¥ (n - 1) matrix. Repeating Steps 1–3 on the matrix
B and so on will show that A is congruent to a diagonal matrix with the first r diag-
onal entries nonzero. By interchanging the diagonal entries like in Step 2 if necessary,
we may assume that all the positive entries come first. This shows that A is congru-
ent to a diagonal matrix

where di > 0. If

then HGHT has the desired form. To see why s is uniquely determined see [Fink72].

One nice property of the proof of Theorem 1.9.11 is that it is constructive.

1.9.12. Example. To show that the matrix

is congruent to a diagonal one with ±1s or 0 on the diagonal.
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Solution. We follow the steps outlined in Theorem 1.9.11. If the elementary 
matrices E, F, and G are defined by

then

Finally, define the elementary diagonal matrix H by

and observe that

Therefore, if M = HGFE, then MAMT = A2 is the desired matrix and we are done.

It is worth pointing out one consequence of Theorem 1.9.10.

1.9.13. Corollary. A positive definite quadratic form is nondegenerate and all of its
discriminants are positive.

Proof. We may assume that the vector space is Rn and then must have s = n in
Theorem 1.9.10. The discriminant is certainly positive with the respect to the ortho-
normal basis guaranteed by the theorem. The reason that the discriminant is always
positive is that the determinant of congruent matrices differs by a square.

1.10 The Cross Product Reexamined

In Section 1.5 we observed that R3 has not only a dot product but also a cross product.
Note that the cross product produces another vector, whereas the dot product was a
real number. Various identities involving the dot and cross product are known. The
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cross product is a “product” that behaves very much like the product in the case of
real numbers except that it is not commutative. The two operations of vector addi-
tion and the cross product make R3 into a (noncommutative) ring. Is there a similar
product in other dimensions? Unfortunately not, but the cross product does arise from
a general construction that applies to all dimensions and that is worth looking at
because it will give us additional insight into the cross product.

1.10.1. Theorem. Let v1, v2, . . . , vn-1 Œ Rn. Define a map T :Rn Æ R by

Then there is a unique u Œ Rn such that T(w) = u•w for all w.

Proof. This theorem is an immediate corollary to Theorem 1.8.2 because properties
of the determinant function show that T is a linear functional.

Definition. Using the notation of Theorem 1.10.1, the vector u is called the (gener-
alized) cross product of the vectors v1, v2, . . . vn-1 and is denoted by v1 ¥ v2 ¥ · · · ¥
vn-1.

1.10.2. Proposition. The generalized cross product satisfies the following basic
properties:

(1) It is commutative up to sign, that is,

for all permutations s of {1, 2, . . . , n - 1}.

(2) It is a multi-linear map, that is,

(3) (v1 ¥ v2 ¥ · · · ¥ vn-1)•vi = 0 , for all i.
(4) If the vectors vi are linearly independent, then the ordered basis

induces the standard orientation on Rn.

Proof. Facts (1) and (2) are immediate from the definition using properties of the
determinant. Fact (3) follows from the observation that the determinant of a matrix
with two equal rows is zero, so that each vi lies in the kernel of T in Theorem 1.10.1.

v v v v v v1 2 1 1 2 1, , ,◊ ◊ ◊ ¥ ¥ ◊ ◊ ◊ ¥( )- -n n

v v v v v v

v v v v v v v v v v

1 1 1 1

1 1 1 1 1 1

¥ ◊ ◊ ◊ ¥ ¥ ◊ ◊ ◊ ¥ = ¥ ◊ ◊ ◊ ¥ ¥ ◊ ◊ ◊ ¥( )
¥ ◊ ◊ ◊ ¥ +( ) ¥ ◊ ◊ ◊ ¥ = ¥ ◊ ◊ ◊ ¥ ¥ ◊ ◊ ◊ ¥( ) + ¥ ◊ ◊ ◊ ¥ ¢ ¥ ◊ ◊ ◊ ¥( )

- -
¢

- - -

a ai n i n

i i n i n i n

v v v v v vs s s s1 2 1 1 2 1( ) ( ) -( ) -¥ ¥ ◊ ◊ ◊ ¥ = ( ) ¥ ¥ ◊ ◊ ◊ ¥n nsign

T
n

w

v

v

w

( ) =

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃-

det

1

1

M
.

1.10 The Cross Product Reexamined 51



To prove (4), note that by definition

(1.26)

holds for all vectors w. When w is the vector v1 ¥ v2 ¥ · · · ¥ vn-1 we see that the left-
hand side of (1.26) is positive, which implies that the determinant is also. Now use
Lemma 1.6.4.

1.10.3. Proposition. In R3 the generalized cross product agrees with the usual cross
product as defined in Section 1.5.

Proof. This is Exercise 1.10.1.

The next proposition lists a few of the well-known properties of the cross product
in the special case of R3.

1.10.4. Proposition. The (generalized) cross product in R3 satisfies

(1) |u ¥ v| = |v| |w| sinq, where q is the angle between u and v.
(2) u ¥ (v ¥ w) = (u•w) v - (u•v) w

(u ¥ v) ¥ w = (u•w) v - (v•w) u
(3) |u ¥ v|2 = |u|2 |v|2 - (u•v)2

(4) (u1 ¥ u2)• (v1 ¥ v2) = (u1 •v1)(u2 •v2) - (u1 •v2)(u2 •v1)

Proof. Exercise 1.10.2.

One way to look at identity (3) in Proposition 1.10.4 is that the cross product meas-
ures the deviation from equality in the Cauchy-Schwarz inequality.

1.10.5. Example. Find the equation of the plane through (1,0,3) with basis 
v1 = (1,1,0) and v2 = (0,1,1).

Solution. By Proposition 1.10.2(3),

is a normal vector for the plane. Therefore, an equation for it is

or

x y z- + = 4.
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1.11 The Generalized Inverse Matrix

Let

be a linear transformation. Now normally one would not expect this arbitrary map T
to have an inverse, especially if m > n, but it turns out that it is possible to define
something close to that that is useful. Define a map

as follows: See Figure 1.19. Let b Œ Rn. The point b may not be in the image of T,
im(T), since we are not assuming that T is onto, but im(T) is a plane in Rn. There-
fore, there is a unique point c Œ im(T) that is closest to b (Theorem 4.5.12). If the
transformation T is onto, then obviously c = b. It is easy to show that T-1(c) is a plane
in Rm that is parallel to the kernel of T, ker(T). This plane will meet the orthogonal
complement of the kernel of T, ker(T)^, in a unique point a. For an alternative 
definition of the point a write Rm in the form

and let

It is easy to show that j is an isomorphism and a = j-1(c). In either case, we define
T+(b) = a.

Definition. The map T+ is called the generalized or Moore-Penrose inverse of T.

1.11.1. Lemma. T+ is a well-defined linear transformation.

Proof. Easy.

j = ( ) ( ) Æ ( )^ ^
T im Tker T : ker T .

Rm = ( ) ≈ ( )^
ker T ker T

T n m+ Æ: R R

T m n: R RÆ
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1.11.2. Example. Consider the map T :R2 Æ R defined by T(x,y) = x - y. Let b Œ R.
We want to show that the generalized inverse T+ :R Æ R2 is defined by

Solution. See Figure 1.20. The kernel of T, ker(T), is the line x = y in R2. The ortho-
gonal complement of ker(T) is the line L defined by x + y = 0. If a = T+(b), then a is
the point where the line T-1(b) meets L. Clearly, such a point a is just the orthogonal
projection of the vector (b,0) on L, that is,

for any unit direction vector u for L (Theorems 4.5.12 and 1.4.6). For example, we
could choose

Of interest to us is the matrix version of the generalized inverse. Let A be an 
arbitrary real m ¥ n matrix. Let T :Rm Æ Rn be the natural linear transformation 
associated to this matrix by the formula T(x) = xA.

Definition. The n ¥ m matrix A+ for the generalized inverse T+ is called the general-
ized inverse or pseudo-inverse or Moore-Penrose inverse matrix for A.

1.11.3. Theorem.

(1) The generalized inverse matrix A+ for a matrix A satisfies

AA A A A AA A A A A A and AA AA
T T+ + + + + + + += = ( ) = ( ) =, , , .

u = -( )1

2
1 1, .

a u u= ∑ ( )( ) = -( )b
b

, , ,0
2

1 1

T b
b+ ( ) = -( )
2

1 1, .
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(2) The generalized inverse matrix is uniquely defined by the identities in (1), that
is, if G is a matrix satisfying

then G = A+.

Proof. See [Penr55] or [RaoM71].

1.11.4. Corollary.

(1) If A is a real m ¥ n matrix of rank n, then A+ = (ATA)-1AT.
(2) If A is a real m ¥ n matrix of rank m, then A+ = AT(AAT)-1.

Proof. The Corollary follows from Theorem 1.11.3(2). For part (1), it is easy to check
that ATA is a nonsingular n ¥ n matrix and (ATA)-1AT satisfies the stated identities.
Part (2) follows from a similar argument.

1.11.5. Example. To compute the matrix A+ for the map T+ in Example 1.11.2 above.

Solution. In this case, we have that AT = (1 -1), so that ATA = 2 and

which agrees with our formula for T+.

A nice application of the generalized inverse matrix and Corollary 1.11.4 is to a
linear least squares approximation problem. Suppose that we are given a real m ¥ n
matrix A with n > m and b Œ Rn. We want to solve the equation

(1.27)

for x Œ Rm. Unfortunately, the system of equations defined by (1.27) is overdetermined
and may not have a solution. The best that we can do in general is to solve the 
following problem:

A linear least squares approximation problem: Given an m ¥ n matrix A with n > m
and b Œ Rn, find a point a0 Œ Rm that minimizes the distances |aA - b|, that is, find a0 so
that

(1.28)

It is easy to explain the name of the problem. Let

A a a a a and b b bij m n= ( ) = ( ) = ( ), , , . . . , , , , . . . , .a b1 2 1 2

a a b
a R

0A b A
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x bA =

A A A AT T+ -
= ( ) = -( )1 1
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1 1 ,
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Equation (1.28) is trying to find the minimum for

To put it another way, we are trying to find the m-plane X in Rm+1 through the origin
defined by an equation of the form

(1.29)

that best fits the data points pi = (a1i,a2i, . . . ,ami,bi) Œ Rm+1 in the sense that the sum
of the distances of the points pi to X is a minimum.

1.11.6. Theorem. If the matrix A in the linear least squares approximation problem
above has rank m, then there is a unique solution a0 defined by

Proof. This is clear from the definition of the generalized inverse and Corollary
1.11.4(2). The uniqueness follows from the fact that the kernel of the linear transfor-
mation associated to A is 0.

We need to point out that the planes defined by equation (1.29) are a subset of all
the m-planes through the origin, so that our particular approximation problem had
a bias built into it. Here is the usual statement of the unbiased general problem. One
uses squares of the distances to avoid having to deal with square roots. The mini-
mization problem has the same answer in either case.

The linear least squares approximation problem: Given a set of points pi in Rm+1 find
the m-plane X in Rm+1 with the property that the sum of the squares of the distances of
the points pi to X is a minimum.

Because of the bias in the allowed solution to our approximation problem,
Theorem 1.11.6 does not always solve the general problem. For example, consider the
points (-1,1), (-1,2), (-1,3), (1,1), (1,2), and (1,3) in R2. The line that best approxi-
mates this data is clearly the vertical line x = 0. Theorem 1.11.6 would give us simply
the point (0,0). The reason for this is that the vertical line does not have an equation
of the form (1.29). Of course, Theorem 1.11.6 does give the expected answer “most”
of the time but one must make sure that this answer does not lie in the set of planes
excluded by equation (1.29).

There is another special case where Theorem 1.11.6 does not give a satisfactory
answer, namely, in the case where b is zero and we have a homogeneous equation

(1.30)

A homogeneous equation like (1.30) always has a solution x = 0. This is what Theorem
1.11.6 would give us. Of course, this is the uninteresting solution and we are proba-
bly looking for a nonzero solution. We will be able to use Theorem 1.11.6 if we rewrite

x 0A = .

a b b0
1

= ( ) = ( ) ( )+ -
A A AAT T .
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1
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2
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things. Suppose that we look for a solution a = (a1,a2, . . . ,am) to equation (1.30) with
am π 0. Then equation (1.30) can be written in the form

There is actually no loss of generality in assuming that am = 1. This equation is again
of the form (1.27) and if we assume that the right-hand side of this equation is not
the zero vector, then we can again apply Theorem 1.11.6 and get what we want in the
same sense as before. The only problem however is that we could assume different
coordinates of a to be nonzero and for each choice we shall get different solutions.
The general point to remember then is that the approach to the linear least squares
problem that we described above works well but the answer that we get depends on
the assumptions that we make.

We finish this section with two results about decompositions of matrices.

1.11.7. Theorem. Let A be a real m ¥ n matrix of rank r. Then there exists an m ¥ m
orthogonal matrix U, an n ¥ n orthogonal matrix V, and a diagonal m ¥ n matrix

where s1 ≥ s2 ≥ . . . ≥ sr > 0, so that

(1.31)

Proof. See [ForM67] or [RaoM71].

Definition. The decomposition of A in equation (1.31) is called the singular value
decomposition of A. The ss are called the singular values of A.

The singular value decomposition of a matrix has useful applications. One 
interpretation of Theorem 1.11.7 is that, up to change of coordinates, every linear
transformation T :Rm Æ Rn of rank r has the form T(ei) = siei, 1 £ i £ r. More pre-
cisely, one can find orthonormal bases u1, u2, . . . , um of Rm and v1, v2, . . . vn of Rn,
so that T(ui) = sivi, 1 £ i £ r.

1.11.8. Theorem. Let A be a real m ¥ n matrix of rank r. If A has the singular value
decomposition shown in equation (1.31), then

and the n ¥ m matrix D+ is given by
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Proof. One uses Theorem 1.11.3(2) and shows that VD+UT satisfies the appropriate
identities.

1.12 EXERCISES

Section 1.2

1.2.1. Suppose that the equations

define the same line L. Show that a¢ = ka, b¢ = kb, and c¢ = kc for some nonzero real
number k.

1.2.2. Show that the equation form and point-direction-vector form of the definition of a line
in the plane agree.

1.2.3. Find the equation for all lines in the plane through the point (2,3).

1.2.4. Find the parametric equations of the line through the points (0,1,2) and (-1,-1,-1).

1.2.5. If p, q Œ Rn, show that [p,q] = [q,p].

1.2.6. Let a, b Œ R with a £ b. Show that the interval [a,b] consists of the same numbers as
the segment [a,b] where a and b are thought of as vectors. The difference between a
segment and an interval in R is that the interval [a,b] is defined to be empty if b < a,
whereas this is not the case for segments. In fact, as segments (in R1) [a,b] = [b,a].

1.2.7. Consider the line L through (1,-1,0) with direction vector (-1,-1,2). Find the two points
on L that are a distance 2 from the point (0,-2,2).

Section 1.3

1.3.1. Find the cosines of the angles between the following pairs of vectors. Which pairs are
perpendicular? Which pairs are parallel?

(a) (3,1), (1,3) (b) (1,2), (-4,2) (c) (1,2), (-4,-8) (d) (-3,0), (2,1)

Section 1.4

1.4.1. Fill in the missing details in the proof of Theorem 1.4.4.

1.4.2. Prove Theorem 1.4.6.

1.4.3. Find the orthogonal projection of (-1,2,3) on (1,0,1).

ax by c and a x b y c+ = ¢ + ¢ = ¢

D
r

+ =

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 0

0 1

1s

s

0

0 0

O
.

58 1 Linear Algebra Topics



1.4.4. Use the Gram-Schmidt algorithm to replace the vectors (1,0,1), (0,1,1), and (2,-3,-1) by
an orthonormal set of vectors that spans the same subspace.

1.4.5. This exercise shows that equation (1.14) in Theorem 1.4.6 gives the wrong answer if the
vectors ui do not form an orthonormal basis. Consider the vector v = (1,2,3) in R3. Its
orthogonal projection onto R2 should clearly be (1,2,0). Let u1 and u2 be a basis for R2

and let

(a) If u1 = (1,0,0) and u2 = , show that w π (1,2,0).

(b) If u1 = (2,0,0) and u2 = (0,3,0), show that w π (1,2,0).

Section 1.5

1.5.1. Suppose that X is a k-dimensional plane in Rn and that

where p, q Œ Rn and V and W are k-dimensional vector subspaces of Rn. Show that V = W.

1.5.2. Fill in the missing details in the proof of Proposition 1.5.2.

1.5.3. Prove that the intersection of two planes is a plane.

1.5.4. Prove that if X is a plane, then aff(X) = X.

1.5.5. Prove Lemma 1.5.6.

1.5.6. Prove Lemma 1.5.7.

1.5.7. (a) Prove that two lines in R2 are parallel if and only if they have parallel direction
vectors.

(b) Let L and L¢ be lines in R2 defined by the equations ax + by = c and a¢x + b¢y = c¢,
respectively. Prove that L and L¢ are parallel if and only if a¢ = ka and b¢ = kb for
some nonzero constant k.

1.5.8. Prove Theorem 1.5.10.

1.5.9. Find a basis for the plane x - 3y + 2z = 12 in R3.

1.5.10. Find the equation of all planes in R3 that are orthogonal to the vector (1,2,3).

1.5.11. Find the equation of the plane containing the points (1,0,1), (3,-1,1), and (0,1,1).

1.5.12. Find the equation for the plane in R3 that contains the point (1,2,1) and is parallel to
the plane defined by x - y - z = 7.

1.5.13. Find an equation for all planes in R3 that contain the point (1,2,1) and are orthogonal
to the plane defined by x - y - z = 7.

1.5.14. Find an orthonormal basis for the plane x + 2y - z = 3.

1.5.15. Let X be the plane defined by 2x + y - 3z = 7. Let v = (2,1,0).

(a) Find the orthogonal projection of v on X.
(b) Find the orthogonal complement of v with respect to X.

X p v v V q w w W= + Œ{ } = + Œ{ },

1
2

1
2

0, ,Ê
Ë

ˆ
¯

w v u u v u u= ∑( ) + ∑( )1 1 2 2.
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1.5.16. Find the point-normals equation for the line

1.5.17. Determine whether the halfplanes 2y - x ≥ 0, y - 2x + 2 ≥ 0, and -4y + 2x + 4 £ 0 have
a nonempty intersection or not.

1.5.18. Let V and W be subspaces of Rn of dimension s and t, respectively. Assume that s + t
≥ n. Prove that V is transverse to W if and only if one of the following holds:

(a) V + W = Rn.
(b) If v1, v2, . . . , vs and w1, w2, . . . , wt are bases for V and W, respectively, then the

vectors v1, v2, . . . , vs, w1, w2, . . . , wt span Rn.

1.5.19. Definition. Any subset X in Cn of the form

where p is a fixed point and the v1, v2, . . . , vk are fixed linearly independent vectors in
Cn is called a complex k-dimensional plane (through p). If k = 1, then X is called a
complex line.

(a) Prove that a complex line in C2 can also be expressed as the set of points (x,y) Œ
C2 satisfying an equation of the form

for fixed a, b, c Œ C with (a,b) π (0,0).
(b) Prove that the real points of a complex plane in Cn lie on a plane in Rn.

Section 1.6

1.6.1. Prove Lemma 1.6.1.

1.6.2. Determine whether the following pairs of ordered bases of R2 determine the same 
orientation:

(a) ((1,-2), (-3,2)) and ((1,0), (-2,3))
(b) ((-1,1), (1,2)) and ((1,-2), (1,-4))

Solve this exercise in two ways: First, use only the definition of orientation and then
check your answer using the matrix approach of Lemma 1.6.4.

1.6.3. Why is “Does ((1,-2), (-2,4)) induce the standard orientation of the plane?” a mean-
ingless question?

1.6.4. (a) Find a vector (a,b) so that the basis ((-2,-3), (a,b)) determines the standard orien-
tation of the plane.

(b) Find a vector (a,b,c) so that the basis ((2,-1,0), (-2,-1,0), (a,b,c)) determines the
standard orientation of 3-space.

ax by c+ = ,

X p v v v C= + + + + Œ{ }t t t t t tk k k1 1 2 2 1 2. . . , , . . . , ,

x t

y t

z t

= -
=
= +

1 3

2

3
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1.6.5. Show that the angle between oriented hyperplanes (X,s) and (Y,t) is well defined.
Specifically, show that it does not depend on the choice of the normal vectors vn and
wn for X and Y, in the definition.

1.6.6. Let L be an oriented line and let p and q be two points on L. Prove that

1.6.7. Let (V,s) and (W,t) be two oriented n-dimensional vector spaces and let T :V Æ W be
a nonsingular linear transformation. Show that T is orientation preserving if

for any one ordered bases (v1,v2, . . . ,vn) of V with the property that s = [v1,v2, . . . ,vn].

Section 1.7

1.7.1. Show that each halfplane in Rn is convex.

1.7.2. Show that if X1, X2, . . . , Xk are convex sets, then their intersection is convex.

1.7.3. If X is convex, show that conv(X) = X.

1.7.4. Show that conv({p0,p1}) = [p0,p1].

1.7.5. Let s be the two-dimensional simplex defined by the vertices v0 = (-2,-1), v1 = (3,0), and
v2 = (0,2). The points of s can be described either with Cartesian or barycentric 
coordinates (with respect to the vertices listed in the order given above).

(a) Find the Cartesian coordinates of the point p whose barycentric coordinates are 

(b) Find the barycentric coordinates of the point q whose Cartesian coordinates are
(0,0).

1.7.6. Show that the simplicial map from the 1-simplex [2,5] to the 1-simplex [3,7] that sends
2 to 3 and 5 to 7 agrees with the “standard” linear map between the intervals, namely,

1.7.7. Generalize Exercise 1.7.6 and show that the simplicial map from [a,b] to [c,d] agrees
with the standard linear map.

Section 1.8

1.8.1. Let

Find a matrix P so that P-1AP is a diagonal matrix.

A = Ê
ËÁ

ˆ
¯̃

1 2

3 2
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Section 1.9

1.9.1. Let

Find a nonsingular matrix C so that CACT is a diagonal matrix.

Section 1.10

1.10.1. Prove Proposition 1.10.3. (Hint: First show that, if e1, e2, and e3 are the standard basis
vectors in R3, then e1 ¥ e2 = e3, e1 ¥ e3 = - e2, and e2 ¥ e3 = e1.)

1.10.2. Prove Proposition 1.10.4.

Note: The properties will not be hard to prove if one uses the definition and basic
properties of determinants. This shows once again how valuable a good definition is
because some textbooks, especially in the physical sciences, deal with cross products
in very messy ways. Although it is our intuition which leads us to useful concepts, it
is usually a good idea not to stop with the initial insight but probe a little further and
really capture their essence.

1.10.3. Prove that if u, v Œ R3 are orthogonal unit vectors, then (u ¥ v) ¥ u = u.

1.10.4. Let u, v, w Œ R3. Prove

(a) u•(v ¥ w) =

(b) u•(v ¥ w) = v•(w ¥ u) = w•(u ¥ v).

(The quantity u•(v ¥ w) is called the triple product of u, v, and w.)
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C H A P T E R  2

Affine Geometry

2.1 Overview

The next two chapters deal with the analytic and geometric properties of some impor-
tant transformations of Rn. This chapter discusses the group of affine maps and its
two important subgroups, the group of similarities and the group of motions. Affine
maps are the transformations that preserve parallelism. Similarities are the affine
transformations that preserve angles. Motions are the distance-preserving similarities
and their study is equivalent to the study of metric properties of Euclidean space. As
a historical note, this reduction of geometric problems to algebra (namely the study
of certain groups in our case) was initiated by the German mathematician Felix Klein
at the end of the 19th century.

Except for some definitions and a few basic facts, the first part of the chapter (Sec-
tions 2.2–2.4) concentrates on the important special case of the plane R2. Presenting
a lot of details in the planar case where it is easier to draw pictures should make it
easier to understand what happens in higher dimensions since the generalizations are,
by and large, straightforward.

Motions are probably the most well-known affine maps and we analyze planar
motions in quite some detail in Section 2.2. Section 2.2.8 introduces the concept of a
frame. Frames are an extremely useful way to deal with motions and changing from
one coordinate system to another. It is not an overstatement to say that a person who
understands frames will find working with motions a triviality. There is a brief dis-
cussion of similarities in Section 2.3 and affine maps in Section 2.4. Parallel projec-
tions are defined in Section 2.4.1. Section 2.5 extends the main ideas from the plane
to higher dimensions. The important case of motions in R3 is treated separately in
Sections 2.5.1 and 2.5.2.

There is not enough space to prove everything in this chapter and it will be up to
the reader to fill in missing details or to look them up in the references. Hopefully,
the details we do provide in conjunction with what we did in Chapter 1 will make
filling in missing details easy in most cases. Unproved facts are included because it
was felt that they were worth knowing about and help as motivation for the next



chapter on projective transformations. References to where proofs may be found are
given in those cases where difficult results are stated but not proved.

Finally, we want to emphasize one point. The single most important topic in 
this chapter is that of frames. Frames are so simple (they are just orthonormal bases),
yet if the reader masters their use, then dealing with transformations will be a 
snap!

2.2 Motions

Definition. A transformation M:Rn Æ Rn is called a motion or isometry or congru-
ent transformation of Rn if

for every pair of points p, q Œ Rn.

In simple terms, motions are distance-preserving maps. If one concentrates on 
that aspect, then the term “isometry” is the one that mathematicians normally use
when talking about distance-preserving maps between arbitrary spaces. The term
“motion” is popular in the context of Rn.

2.2.1. Theorem.

(1) Motions preserve the betweenness relation.
(2) Motions preserve collinearity and noncollinearity.
(3) Motions send lines to lines.

Proof. To prove (1), let M be a motion and let C be a point between two points 
A and B. Let (A¢,C¢,B¢) = M(A,C,B). We must show that C¢ is between A¢ and B¢.
Now

The first and third equality above follows from the definition of a motion. The second
follows from Proposition 1.2.3. Using Proposition 1.2.3 again proves (1). Parts (2) and
(3) of the theorem clearly follow from (1).

2.2.2. Lemma. Let M be a motion. If

then

M M tM M t M tMC A A B A B( ) = ( ) + ( ) ( ) = -( ) ( ) + ( )1 .

C A AB A B= + = -( ) +t t t1 ,

¢ ¢
+

¢ ¢ + ¢ ¢

A B = AB

= AC CB

= A C C B .

M Mp q pq( ) ( ) = ,
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Proof. Let (A¢,B¢,C¢) = M(A,B,C). Since M is a motion,

The proof is divided into cases.

Case 1. 0 £ t £ 1.
Case 2. 1 < t.
Case 3. t < 0.

In Case 1, C is between A and B. By Proposition 1.2.4, only

are solutions to the equation

Of these, only X1 lies between A¢ and B¢. By part (1) of Theorem 2.2.1 we have that
C¢ = X1, which proves the lemma. The proofs in the other two cases are similar and
are left as exercises to the reader. Note that in Case 2 B is between A and C and in
Case 3 A is between C and B.

2.2.3. Lemma. Let L1 and L2 be two distinct lines in the plane which intersect in a
point C. Let P be any point not on either of these lines. Then there exist two distinct
points A and B on L1 and L2, respectively, so that P lies on the line L determined by
A and B.

Proof. See Figure 2.1. Let v1 and v2 be direction vectors for L1 and L2, respectively.
These vectors are linearly independent since the lines are not parallel. Let A = C + av1
be any point on L1 with a > 0 and let L be the line determined by P and A. To find
the intersection of L and L2, we must solve the equation

P PA C v+ = +s t 2

¢ ¢ = ¢ ¢A X A Bt .

X A A B X A A B1 2= ¢ + ¢ ¢ = ¢ - ¢ ¢t or t

¢ ¢ = = = ¢ ¢A C AC AB A Bt t .
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for real numbers s and t. This equation can be rewritten as

(2.1)

Since v1 and v2 are linearly independent, s cannot be 1 and equation (2.1) has a unique
solution for s and t. Let B = P + sPA.

2.2.4. Lemma. A motion M is a one-to-one and onto map.

Proof. The first part, that M is one-to-one, is easy, because if the distance between
the images of two points under M is zero, then so is the distance between the two
points by the definition of a motion.

Showing that M is onto is harder and we only prove it in the planar case here.
See [Gans69] for the general case. We begin by proving a stronger version of Theorem
2.2.1 (3).

Claim. M maps lines onto lines.

Let L be a line. We already know that M(L) is contained in a line L¢. Let C¢ be any
point of L¢. We must show that there is a point C in L with M(C) = C¢. To this end,
choose any two distinct points A and B of L and let (A¢,B¢) = M(A,B). Then C¢ = A¢ +
tA¢B¢ for some t. It follows from Lemma 2.2.2 that C¢ = M(A + tAB) and the claim is
proved.

We are ready to prove that planar motions are onto. See Figure 2.2. Let P¢ be any
point of R2. We must show that P¢ = M(P) for some point P. Take three noncollinear
points A, B, and C and let (A¢,B¢,C¢) = M(A,B,C). Let L1¢ be the line that contains the
points A¢ and B¢ and let L2¢ be the line that contains A¢ and C¢. We just showed that
all the points on these two lines are in the image of M. Assume that P¢ is not on these
two lines. By Lemma 2.2.3 there are two points D¢ and E¢ on these lines so that P¢ is
on the line L¢ determined by D¢ and E¢ and hence in the image of M. The planar case
of Lemma 2.2.4 is proved.

Although much of what we shall prove about motions depends only on their dis-
tance-preserving property and not on their domain, the domain can be important.
The following example shows that Lemma 2.2.4 definitely uses the fact that the
domain of the motion is all of the plane:

sa t sv v PC1 2 1- = -( ) .
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2.2.5. Example. Let X = { (x,y) | x > 0 } Õ R2 and define the distance-preserving map
T:X ÆX by T(x,y) = (x + 1,y). The map T is clearly not onto.

2.2.6. Theorem. Motions form a group under composition.

Proof. Exercise.

The idea of a motion as a distance-preserving map is intuitively simple to under-
stand, but it is not very useful for making computations. In the process of deriving a
simple analytical description of motions, we shall not only get a lot of geometric
insights but also get practice in using linear algebra to solve geometric problems. We
begin our study of motions with an approach that is used time and again in mathe-
matics. Namely, if faced with the problem of classifying a set of objects, first isolate
as many simple and easy-to-understand elements as possible and then try to show
that these elements can be used as building blocks from which all elements of the
class can be “generated.”

2.2.1 Translations

The simplest types of motions are translations.

Definition. Any map T:Rn ÆRn of the form

(2.2)

where v is a fixed vector, is called a translation of Rn. The vector v is called the trans-
lation vector of T.

Writing things out in terms of coordinates, it is easy to see that a map T(x1,x2,
. . . ,xn) = (x1¢,x2¢, . . . ,xn¢) is a translation if and only if it is defined by equations of 
the form

(2.3)

· · ·

where the ci are fixed real numbers. Clearly, (c1,c2, . . . ,cn) is the translation vector of
T in this case.

2.2.1.1. Theorem. Translations are motions.

Proof. This is a simple exercise for the reader.

Here are several simple interesting properties of translations.

2.2.1.2. Proposition. A translation T with nonzero translation vector v satisfies the
following properties:

x x cn n n
¢ = + ,

x x c2 2 2
¢ = +

x x c1 1 1
¢ = +

T p = p v( ) + ,
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(1) T has no fixed points.
(2) T takes lines to lines with the same direction vector (or slope, in the case of

the plane).
(3) The only lines fixed by T are those with direction vector v. In the case of the

plane, the only lines fixed by T are those whose slope is the same as the slope
of one of their direction vectors.

Proof. (1) and (2) are left as exercises for the reader. To prove (3), consider a line L
through a point p0 with direction vector w. If T fixes L, then T maps a point p0 + tw
on L to another point on L that will have the form p0 + sw. Therefore,

and so w is a multiple of v. The converse is just as easy.
In case of the plane, assume that the line L fixed by T is defined by the equation

(2.4)

The line L has slope -a/b (the case of a vertical line where b is zero is left as an exer-
cise for the reader). If v = (h,k), then the slope of v is k/h. Choose a point (x,y) on L.
Since T(x,y) = (x + h,y + k) is assumed to lie on L, that point must also satisfy equa-
tion (2.4), that is,

Using the identity (2.4) in this last equation implies that ah + bk = 0. This shows that
k/h = -a/b and we are done.

2.2.2 Rotations in the Plane

Another intuitively simple motion is a rotation of the plane.

Definition. Let q Œ R. A map R:R2 ÆR2 of the form R(r,a) = (r,a+q), where points
have been expressed in polar coordinates, is called a rotation about the origin through
an angle q.

See Figure 2.3. Using polar coordinates was an easy way to define rotations about
the origin, but is not convenient from a computational point of view. To derive the
equations for a rotation R in Cartesian coordinates, we use the basic correspondence
between the polar coordinates (r,a) and Cartesian coordinates (x,y) for a point p:

(2.5)

Let R(x,y) = (x¢,y¢). Since R(r,a) = (r,a+q),

x r

y r

=
=

cos

sin

a
a

a x h b y k c+( ) + +( ) = .

ax by c+ = .

p w p w

p w v
0 0

0

+ = +( )
= + +

s T t

t ,
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(2.6)

Substituting (2.5) into (2.6) leads to

2.2.2.1. Theorem. The equations for a rotation R about the origin through an angle
q are

(2.7)

In particular, such a rotation is a linear transformation with matrix

(2.8)

2.2.2.2. Theorem. Rotations about the origin are motions.

Proof. This is proved by direct computations using the definition of a motion and
Theorem 2.2.2.1.

2.2.2.3. Example. The equations for the rotation R through an angle p/3 are

Furthermore, notice that the inverse of a rotation through an angle q is just the rota-
tion through the angle -q, so that given a rotation it is easy to write down the equa-
tions for the inverse. In our example the equations for the inverse are

x x y= ¢ + ¢
1
2

3
2

¢ = +y x y
3

2
1
2

.

¢ = -x x y
1
2

3
2

cos sin

sin cos

q q
q q-

Ê
Ë

ˆ
¯.

¢ = +y x in y oss c  q q
¢ = -x x ycos sin q q

¢ = ( ) = -
¢ = ( ) = +

x r r r

y r in r in r os

cos + cos cos sin sin 

s + cos s sin c  
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Figure 2.3. Defining a rotation with polar coordinates.



We did not have to solve the first set of equations for x and y directly.

2.2.2.4. Example. Continuing Example 2.2.2.3, suppose that we would like to find
the image L¢ of the line L defined by equation -3x + 2y = 2.

Solution. All we have to do is substitute for x and y:

Simplification of the terms and omitting the “¢”on the variables gives that the equa-
tion for L¢ is

Of course, we could also have found two points p and q on L and then computed the
equation for the line through the two points R(p) and R(q), but that would be more
work.

So far we have only considered rotations about the origin, but it is easy to define
rotations about an arbitrary point.

Definition. Let p Œ R2. The general rotation R about p through an angle q is defined
by the equation R = TR0T-1, where T is the translation that sends the origin to p and
R0 is the rotation about the origin through the angle q. The point p is called the center
of the rotation.

Note that a general rotation is a motion since it is a composite of motions.

2.2.2.5. Example. To find the equations for the rotation R about the point (-3,-1)
through the angle p/3.

Solution. The translation T that sends the origin to (-3,-1) and its inverse T-1 are
defined by the equations

The equations for the rotation R0 about the origin through the angle p/3 were already
computed in Example 2.2.2.3. Therefore, the equations for R = TR0T-1 are

¢ = +( ) - +( ) -x x y
1
2

3
3

2
1 3
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The form of the solution to Example 2.2.2.5 generalizes to

2.2.2.6. Theorem. The equations for a rotation R about a point p = (a,b) through
an angle q are

Proof. Exercise.

Three interesting properties of rotations are

2.2.2.7. Proposition.

(1) The only fixed point of a rotation that is not the identity map is its 
center.

(2) All rotations change the slope of a line unless the rotation is through an angle
of 0 or p.

(3) Only the rotations through an angle of 0 or p have a fixed line.

Proof. We shall only give a proof of (2). The proof of (1) is left as an exercise and
(3) is an immediate consequence of (2).

We already know from Proposition 2.2.1.2 that translations do not change 
slopes. Therefore it suffices to prove (2) for rotations R about the origin. Let L
be a line defined by the equation ax + by = c. If R is a rotation through an angle 
q and L¢ = R(L), then substituting for x and y using the equations for R-1 we get 
that

is an equation for L¢. The proof of (2) in the special case where either L or L¢ is ver-
tical is easy and is left as an exercise. In the rest of the discussion we assume that
slopes are defined. It follows that the slope for L¢ is

But this quotient can never equal the slope of L which is -a/b unless sinq = 0, that is,
q = 0 or p. (Simply set the two expressions equal and simplify the resulting equation
to get b2 sinq = -a2 sinq.) This proves the result.

b a c
a b c

sin os
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q q
q q
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2.2.3 Reflections in the Plane

Another important type of motion is a reflection. Such a motion can be defined 
in several ways. After giving our definition we shall discuss some of these other 
characterizations.

Definition. Let L be a line in the plane. Define a map S :R2 ÆR2, called the reflec-
tion about the line L, as follows: Choose a point A on L and a unit normal vector N
for L. If P is any point in R2, then

(2.9)

The line L is called the axis for the reflection S.

The reader will find Figure 2.4 helpful as we discuss the geometry behind reflec-
tions. First, note that W = (PA•N)N is just the orthogonal projection of the vector PA
onto N. Define a point Q by the equation

Intuitively, it should be clear that Q is the point on L as shown in Figure 2.4. This
does not follow from the definition however and must be proved. The following string
of equalities:

shows that Q satisfies the point-normal form of the equation AX•N = 0 for the points
X on the line (or hyperplane) L, so that Q does indeed lie on L. Furthermore, it is
easy to check that AQ is the orthogonal projection of AP on L. This means that, if V
is a unit direction vector for L, then AQ = (AP•V)V and we could have defined the
reflection S by

(2.10)S P P PA AQ( ) = + +( )2 .

AQ• N PQ AP N PA • N N AP N PA • N AP • N= +( ) = ( ) +[ ] = + =• • 0

PQ W PA • N N= = ( ) .

S P P P PA • N N( ) = ¢ = + ( )2 .
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W = (PA·N)N

Figure 2.4. Defining a reflection in the
plane.
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This definition has the advantage that one does not need to know a normal vector for
the line (only a direction vector or a second point B on the line). Of course, finding a
normal vector to a line in the plane is trivial. On the other hand, our normal vector
definition of a reflection will generalize to higher dimensions later.

Finally, since

we see that Q is the point where the line through P that is orthogonal to L meets L.
Therefore, another definition of S(P) is that we solve for that point Q and then define

(2.11)

To put it another way, the segment PP¢ is perpendicular to the line L and intersects
the line at its midpoint Q.

2.2.3.1. Theorem. Let S be the reflection about a line L.

(1) The definition of S depends only on L and not on the point A and the normal
vector N that are chosen in the definition. The three definitions of a reflection
specified by equations (2.9), (2.10), and (2.11) are equivalent.

(2) If t is chosen so that P + tN is the point where the line through P with direc-
tion vector N meets the line L, then S(P) = P + 2tN.

(3) The fixed points of S are just the points on its axis L.
(4) If L is the axis of a reflection S and L¢ is a line orthogonal to L, then 

S(L¢) = L¢.
(5) Reflections are motions.

Proof. Exercise.

2.2.3.2. Example. To find the reflection Sx about the x-axis.

Solution. If we choose A = (0,0) and N = (0,1), then PA = -P and

or

In other words, Sx has equations

(2.12)

2.2.3.3. Example. To find the reflection S about the line L defined by the equation
2x - y + 2 = 0.

¢ =
¢ = -

x x

y y.

S x y x yx , , .( ) = -( )

Sx P P P( ) = + -( ) ( )[ ] ( )2 0 1 0 1• , , ,

S P P PQ( ) = + 2 .

Q P PA • N N= + ( ) ,
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Solution. Let A = (-1,0), N = (1/÷5
–
)(2,-1), and let P, Q, P¢ be as shown in Figure 2.5.

Then PA = (-x-1,-y). Using the formulas in the definition of a reflection, it follows that

Since S(P) = P + 2PQ , we get that the equations for S are

(2.13)

To check our answer note that S(-3,1) evaluates to (1,-1), which is what it should be.
Again see Figure 2.5. Our equations also give that S(A) = A and S(B) = B.

2.2.3.4. Proposition. If S is the reflection about the line L defined by the equation
ax + by + c = 0, then

(2.14)

Proof. The proof of this formula is based on Theorem 2.2.3.1(2). We know that N =
(a,b) is a normal vector for L (although it may not be a unit vector). Therefore, if P
= (x,y), to find the point Q shown in Figure 2.4, we need to find t so that P + tN lies
on L. But

implies that

a x ta b y tb c+( ) + +( ) + = 0

S x y x y
ax by c

a b
a b, , , .( ) = ( ) +

- - -
+

( )2
2 2

¢ = + +y x y
4
5

3
5

4
5

.

¢ = - + -x x y
3
5

4
5

8
5

PQ = - - -( ) -( )È
ÎÍ

˘
˚̇

-( )

= - + - - +Ê
Ë

ˆ
¯

x y

x y x y

, , • , ,

, .

1
1

5
2 1

1

5
2 1

4
5

2
5

4
5

2
5

1
5

2
5

L

Q

P (x,y)

(–3,1)

A
(1,–1)

P¢(x¢,y¢)

Figure 2.5. Example 2.2.3.3.
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We get our equation by substituting this t into

2.2.3.5. Example. We redo Example 2.2.3.3 using equation (2.14).

Solution. In this case

so that

This equation simplifies to the same equation for S as before.

A final and more systematic way to compute reflections, one that is easier to
remember conceptually (given that one understands translations, rotations about the
origin, and the reflection about the x-axis), is based on the often useful general prin-
ciple that complicated problems should be solved by successively reducing them to
simpler ones until one arrives at a primitive problem whose solution is known.

Case 1 (The primitive problem). The equation for the reflection Sx about the 
x-axis.

This problem was solved in Example 2.2.3.2 above and we got equations (2.12).

Case 2. The equation for a reflection about a line through the origin.

This case can be reduced to the Case 1 by first rotating the line to the x-axis, then
using the equation from Case 1, and finally rotating back.

Case 3 (The general case). The equation for a reflection about an arbitrary line.

By translating the line to a line through the origin we can reduce this case to Case
2, find the equation for that case, and then translate back.

The steps outlined in Cases 1–3 lead to the following characterization of a reflection:

2.2.3.6. Theorem. Every reflection S in the plane can be expressed in the form

where T is a translation, R is a rotation about the origin, and Sx is the reflection about
the x-axis.

S T R S RTx= - -1 1 ,

S x y x y
x y

, , , .( ) = ( ) +
- + -

-( )2
2 2

5
2 1

t
x y

=
- + -2 2

5
,

S tP P PQ P N( ) = + = +2 2 .

t
ax by c

a b
=

- - -
+2 2

.



Proof. Exercise.

2.2.3.7. Example. To find the equation for the reflection S about the line in Example
2.2.3.3 using this approach.

Solution. First translate the line L to a line L¢ that passes through the origin via the
translation

Next, let R be the rotation about the origin through the angle -q defined by

R will rotate L¢ into the x-axis because q is the angle that the line L makes with the
x-axis. The equations for R and R-1 are

Finally, if Sx is the reflection about the x-axis, then S is just the composite T-1R-1SxRT.
Since the equations for all the maps are known, it is now easy to determine the equa-
tions for S and they will again turn out to be the same as the ones as equations (2.13).

The reader might wonder at this point why we bothered to describe the solution
in Example 2.2.3.7 since it is more complicated than the one in Example 2.2.3.3. In
this instance, the method of Example 2.2.3.7 should simply be considered to be a case
of trying to give the reader more insight into how to solve a geometric problem. The
approach might not be efficient here but will be in other situations. It is important to
realize that there are two types of complexity: one, where we dealing with something
that is intellectually difficult, and the other, which may take a lot of time but only
involves intellectually simple steps. This is the case with the solution in Example
2.2.3.7. Actually, this type of question will probably come up again later on in this
chapter because there are usually many ways to solve problems. Any particular
problem may very well have an extremely elegant solution that a human might find.
On the other hand, a computer is not able to deal with problems on a case-to-case
basis and needs a systematic approach.

2.2.4 Motions Preserve the Dot Product

2.2.4.1. Theorem. If M is a motion with the property that M(0) = 0, then M is a
linear transformation, that is,

R x y R x y

y x y y x y

: x =
1

5
: x =

1

5
¢ + ¢ -

¢ = - + ¢ = +

-2

5

2

5
2

5

1

5

2

5

1

5

1

.

cos =
1

5
q q p, .0 2£ £

T: x = x +1

y = y

¢
¢

76 2 Affine Geometry



for all vectors u and v and real numbers a and b.

Proof. We shall show that M is a linear transformation in two steps.

Claim 1. M(u + v) = M(u) + M(v).

Define a vector w by the equation

(2.15)

This equation can be rewritten as

(2.16)

See Figure 2.6. Since M(0) = 0 (which implies that |M(p)| = |p| for any vector p), we
can use equation (2.15) and Lemma 2.2.2 to conclude that

(2.17)

Similarly, equation (2.16) and Lemma 2.2.2 implies that

(2.18)

Substituting the expression for M(w) in equation (2.18) into equation (2.17) and sim-
plifying the result proves Claim 1.

Claim 2. M(cv) = cM(v), for any real number c.

This follows from Lemma 2.2.2 (let A = 0, B = v, and t = c in that Lemma). Theorem
2.2.4.1 is proved.

M M M Mw u v u( ) = ( ) + ( ) - ( )( )1
2

.

M Mu v w+( ) = ( )2 .

w u v u= + -( )1
2

.

u v w+ = 2 .

M a b a M b Mu v u v+( ) = ( ) + ( ),
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M(u + v) = 2M(w)

M(v)

M (w)

M(u)

u w

v

u + v

Figure 2.6. Proving motions are linear
transformations.



2.2.4.2. Theorem. Every motion M can be written uniquely in the form M = T1M0
= M0T2, where Ti is a translation and M0 is a motion that fixes the origin, that is, 
M0(0) = 0.

Proof. Define the translation T1 by T1(p) = p + M(0) and let M1 = T1
-1M.

Clearly, M1(0) = 0 and M = T1M1. Similarly, if we define the translation T2 by
T2(p) = p - M-1(0) and let M2 = MT2

-1, then M2(0) = 0 and M = M2T2. Next, we 
show that M2 = M1. But by Theorem 2.2.4.1, the motions Mi are linear transforma-
tions and so

and

Therefore, for all p,

The special case where p is 0 shows that -M2(M-1(0)) = M(0). In other words, we can
cancel those terms to get that M2(p) = M1(p). The uniqueness part of the theorem is
proved in a similar way.

2.2.4.3. Lemma. Let M be a motion and assume that M(0) = 0. Then M(u)•M(v) =
u•v for all vectors u and v.

Proof. The following string of equalities hold because M is a distance preserving
map and, by Theorem 2.2.4.1, also a linear transformation:

Now cancel the terms u•u and v•v from both sides and divide by 2.

2.2.4.4. Theorem. If M is a motion, then

for all points A, B, and C.

Proof. By Theorem 2.2.4.2 we can express M in the form M = TM0, where T is a
translation and M0 is a motion with M0(0) = 0. It is easy to check that

M M M MA B A B( ) ( ) = ( ) ( )0 0

M M M MA B A C AB• AC( ) ( ) ( ) ( ) =•

u •u u • v v • v u v u v

u v u v

u u u v v v

u •u u v v • v

+ + = +( ) +( )
= +( ) +( )
= ( ) ( ) + ( ) ( ) + ( ) ( )
= + ( ) ( ) +

2

2

2

•

•

• • •

•

M M

M M M M M M

M M

M M M M M2 2
1

1p 0 p 0( ) - ( )( ) = ( ) + ( )- .

M M T M M Mp p p 0( ) = ( ) = ( ) - ( )( )-
2 2 2 2

1 .

M T M M Mp p p 0( ) = ( ) = ( ) + ( )1 1 1
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and

The theorem now follows from Lemma 2.2.4.3 applied to M0.

2.2.4.5. Corollary. Motions preserve angles.

See Figure 2.7. There is a converse to the results proved above.

2.2.4.6. Theorem. A map that preserves the length of vectors and the angles
between them also preserves distance, that is, it is a motion.

Proof. Exercise 2.2.4.1.

2.2.5 Some Existence and Uniqueness Results

Let P1, P2, . . . , Pk and P1¢, P2¢, . . . , Pk¢ , k ≥ 1, be two sequences of points in the plane.
We would like to determine when there is a motion M that sends Pi to Pi¢. Since
motions always preserve distances, a minimal requirement is that |PiPj| = |Pi¢Pj¢| for
all i and j. Is this enough though?

Case 1. k = 1.

There is no problem in this case. For example, the translation T(Q) = Q + P1P1¢
would do the job. In fact, so would M = RT, where R is any rotation about P1¢. In other
words, there are an infinite number of distinct motions that send P1 to P1¢.

Case 2. k = 2.

Assume, without loss of generality, that P1 π P2. Consider the translation T defined
in Case 1 that sends P1 to P1¢. By hypothesis, |P1¢T(P2)| = |P1¢P2¢|. Let a be the angle
between the vectors P1¢T(P2) and P1¢P2¢ and let R be the rotation about the point P1¢
through the angle a. See Figure 2.8. It is easy to show that the motion M = RT does
what we want, as does the motion M¢ = SRT, where S is the reflection about the line
through P1¢ and P2¢. M and M¢ are clearly distinct.

Case 3. k = 3.

M M M MA C A C( ) ( ) = ( ) ( )0 0 .
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Figure 2.7. Motions preserve angles.



Let M and M¢ be the motions defined in Case 2 that send P1 and P2 to P1¢ and
P2¢, respectively. By hypothesis, |Pi¢M(P3)| = |Pi¢P3¢| for i = 1,2. The next lemma 
shows that either M or M¢ does what we want, namely, either M(P3) = P3¢ or
M¢(P3) = P3¢.

2.2.5.1. Lemma. Let A, B, and C be three noncollinear points in the plane. The 
only vectors X in the plane that satisfy the two equations |AX| = |AC| and |BX| = |BC|
are X = C and X = R(C), where R is the reflection about the line L determined by A
and B.

Proof. Assume that X π C.

Claim. The midpoint D = (C+X) of the segment [C,X] lies on the line L.

See Figure 2.9. Once the claim is proved we are done because the definition of D
implies that X = C + 2CD, which is where the reflection sends the point D. Consider
the following identities:

CD• AD C X C C X A

AX AC AC AX

AX AC

= +( ) -Ê
Ë

ˆ
¯ +( ) -Ê

Ë
ˆ
¯

= -( ) +( )

= -( )
=

1
2

1
2

1
2

1
2

1
4
0

2 2

•

•

1
2
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Similarly, one can show that CD•BD = 0. It follows easily from this that the 
vectors AD and BD are parallel and that D lies on L. This proves the claim and the
lemma.

Case 4. k > 3.

We claim that if the first three points P1, P2, and P3 are linearly independent, then
the map defined in Case 3 that sends them to P1¢, P2¢, and P3¢, respectively, will already
send all the other points Pi, i > 3, to Pi¢. Figure 2.10 shows how the argument pro-
ceeds. In Figure 2.10(a) we show three circles with centers P1, P2, and P3 and radius
P1Pi, P2Pi, and P3Pi, respectively. The point Pi lies on the intersection of these circles.
Figure 2.10(b) shows the corresponding circles around the image points. One has to
show that Pi will get sent to the intersection of those circles and that this is the same
as the point Pi¢.

We have just given a constructive proof of the following theorem.

2.2.5.2. Theorem. (The Existence Theorem for Motions) Given points P1, P2, . . . ,
Pk and P1¢, P2¢, . . . , Pk¢ with the property that |PiPj| = |Pi¢Pj¢| for all i and j, then there
is motion M, so that M(Pi) = Pi¢.

Proof. See [Gans69] for missing details in the discussion above.

Now that we have answered the question of the existence of certain motions, let
us look at the issue of uniqueness more closely?

2.2.5.3. Theorem. A motion that has two distinct fixed points fixes every point on
the line determined by those points.

Proof. Let M be a motion and assume that M(A,B) = (A,B) for two distinct points
A and B. Let L be the line determined by A and B and let C be any point of L. If C
= A + tAB, then Lemma 2.2.2 implies that M(C) = M(A) + tM(A)M(B). In other words,
M(C) = C and the theorem is proved.

2.2.5.4. Theorem. Any motion of the plane that leaves fixed three noncollinear
points must be the identity.
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Figure 2.10. Case 4 of the existence theorem.
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Proof. Let A, B, and C be three noncollinear points and let M be a motion with
M(A,B,C) = (A,B,C). Let P be any other point in the plane. We would like to show that
M(P) = P. By Theorem 2.2.5.3, M is the identity on the three lines determined by the
points A, B, and C. If P lies on these lines we are done; otherwise, Lemma 2.2.3 implies
that P lies on a line through two distinct points that lie on two of these lines. Using
Theorem 2.2.5.3 we can again conclude that M fixes P.

2.2.5.5. Corollary. Two motions of the plane that agree on three noncollinear points
must be identical.

Proof. Let M and M¢ be motions and assume that M(A,B,C) = M¢(A,B,C) for three
noncollinear points A, B, and C. Consider the motion T = M-1M¢. Since T(A,B,C) =
(A,B,C), Theorem 2.2.5.4 implies that T is the identity, that is, M = M¢.

2.2.5.6. Corollary. Every motion of the plane is a composite of a translation, a rota-
tion, and/or possibly a reflection.

Proof. This follows from the construction in Case 3 above and Corollary 2.2.5.5.

Theorem 2.2.5.3 raises the question whether a motion of the plane that fixes two
distinct points is actually the identity map. That is not the case. Reflections, such 
as the map T(x,y) = (x,-y), can leave all the points of a line fixed but still not be the
identity.

2.2.5.7. Theorem. A motion M of the plane that fixes two distinct points A
and B is either the identity map or the reflection about the line L determined by A
and B.

Proof. By Theorem 2.2.5.3, M fixes all the points on the line L. Let C be any point
not on L. Lemma 2.2.5.1 shows that C gets mapped by M either to itself or to its reflec-
tion C¢ about the line L. The theorem now follows from the Corollary 2.2.5.5 since we
know what M does on three points.

2.2.6 Rigid Motions in the Plane

2.2.6.1. Lemma. Every rotation R of the plane can be expressed in the form R =
R0T1 = T2R0, where R0 is a rotation about the origin and T1 and T2 are translations.
Conversely, if R0 is any rotation about the origin through a nonzero angle and if T is
a translation of the plane, then both R0T and TR0 are rotations.

Proof. Suppose that R = TR0T-1, where R0 is a rotation about the origin and T is a
translation. By Theorem 2.2.4.2 we can move the translations to either side of R0,
which proves the first part of the lemma. The other part can be proved by showing
that certain equations have unique solutions. For example, to show that TR0 is a rota-
tion, one assumes that it is a rotation about some point (a,b) and tries to solve the
equations

x a y b y c-( ) - -( ) - +cos sin +a = x cos sinq q q q



for a and b. The details are left as an exercise.

2.2.6.2. Theorem. The set of all translations and rotations of the plane is a sub-
group of the group of all motions. The set of rotations by itself is not a group.

Proof. To prove the theorem one uses Lemma 2.2.6.1 to show that the composites
of translations and rotations about an arbitrary point are again either a translation
or a rotation.

Definition. A motion of the plane that is a composition of translations and/or 
rotations is called a rigid motion or displacement.

Rigid motions are closely related to orientation-preserving maps. We defined that
concept in Section 1.6 for linear transformations and we would now like to extend
the definition to motions. Motions are not linear transformations, but by Theorem
2.2.4.2 they differ from one by a translation. Intuitively, we would like to say that a
motion M of the plane is “orientation preserving” if for every three noncollinear points
A, B, and C the ordered pairs of basis vectors (AB,AC) and (M(A)M(B),M(A)M(C))
determine the same orientation of R2. See Figure 2.11. This definition would be messy
to work with and so we take a different approach.

Let M be a motion in Rn. By Theorem 2.2.4.2 we can write M uniquely in the form
M = TM0, where T is a translation and M0 is a motion that fixes the origin. Theorem
2.2.4.1 implies that M0 is a linear transformation.

Definition. The motion M is said to be orientation preserving if M0 is. Otherwise, M
is said to be orientation reversing.

2.2.6.3. Theorem.

(1) A motion M is orientation preserving if and only if M-1 is orientation 
preserving.

(2) The composition MM¢ of two motions M and M¢ is orientation preserving if and
only if either both are orientation preserving or both are orientation reversing.

(3) The composition M1M2 . . . Mk of motions Mi is orientation preserving if and
only if the number of orientation-reversing motions Mi is even.

Proof. The proof is left as an exercise. It makes heavy use of Theorem 2.2.4.2 to
switch translations from one side of a motion that fixes the origin to the other.

x a in y b os in y os d-( ) + -( ) + +s c + b = x s cq q q q
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2.2.6.4. Theorem.

(1) Translations and rotations of the plane are orientation-preserving motions.
(2) Reflections are orientation-reversing motions.

Proof. The fact that translations are orientation-preserving motions follows imme-
diately from the definition since the identity map is certainly orientation preserving.
To prove that rotations are orientation preserving, it suffices to show, by Theorem
2.2.6.3, that any rotation R about the origin is orientation preserving since an arbi-
trary rotation is a composition of translations and a rotation about the origin. The
fact that such an R is orientation preserving follows from Theorems 1.6.6 and 2.2.2.1
and the fact that the matrix for the linear transformation R has determinant +1. This
proves (1).

To prove (2) note that the reflection Sx about the x-axis is a linear transformation
with equation (2.12) that clearly has determinant -1 and hence is orientation revers-
ing. Next, Theorem 2.2.3.6 showed that an arbitrary reflection can be written in the
form T-1R-1SxRT, where T is a translation and R is a rotation about the origin. Prop-
erty (2) now follows from (1) and Theorem 2.2.6.3.

We can also justify Theorem 2.2.6.4(2) geometrically based on the intuitive idea
mentioned earlier that a motion of the plane is orientation reversing if for some three
noncollinear points A, B, and C the ordered pairs of basis vectors (AB,AC) and
(M(A)M(B),M(A)M(C)) determine opposite orientations for R2. To see this we shall
use the same notation as in the definition of a reflection in Section 2.2.3. If P is a
point not on L, then clearly AQ and QP form a basis for R2 and

The determinant of the matrix of coefficients that relates the original basis to the
transformed one is -1. This means that the two bases are in opposite orientation
classes.

2.2.6.5. Theorem. A motion of the plane is orientation preserving if and only if it
is a rigid motion.

Proof. Exercise.

Although it takes three points to specify a general motion of the plane, two points
suffice in the special case of rigid motions.

2.2.6.6. Theorem. If M is a rigid motion of the plane and if M fixes two distinct
points, then M is the identity.

Proof. This theorem is an immediate consequence of Theorems 2.2.5.7 and 2.2.6.4.

2.2.6.7. Corollary. Two rigid motions of the plane that agree on two distinct points
must be identical.

T TQ P QP AQ QP( ) ( ) = ¢ = ◊ + -( ) ◊0 1 .

T TA Q AQ AQ QP( ) ( ) = = ◊ + ◊1 0
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Proof. The proof of this corollary is similar to the proof of Corollary 2.2.5.5.

2.2.6.8. Corollary. If two orientation-reversing motions of the plane agree on two
distinct points, then they must be identical.

Proof. If M and M¢ are the two orientation-reversing motions, then M¢ M-1 is a rigid
motion that fixes two distinct points and hence is the identity map. It follows that 
M = M¢.

2.2.6.9. Theorem. A rigid motion of the plane that has a fixed point p is a rotation
about p.

Proof. Exercise.

2.2.7 Summary for Motions in the Plane

We have defined motions and have shown that a motion of the plane is completely
specified by what it does to three noncollinear points and that it can be described in
terms of three very simple motions, namely, translations, rotations, and reflections.
To understand such motions it suffices to have a good understanding of these three
primitive types.

Planar motions are either orientation preserving or orientation reversing with
rigid motions being the orientation-preserving ones. Reflections are orientation
reversing. Another way to describe a planar motion is as a rigid motion or the com-
position of a rigid motion and a single reflection. In fact, we may assume that the
reflection, if it is needed, is just the reflection about the x-axis.

Combining various facts we know, it is now very easy to describe the equation of
an arbitrary motion of the plane.

2.2.7.1. Theorem. Every motion M of the plane is defined by equations of the form

(2.19)

where a2 + b2 = 1. Conversely, every such pair of equations defines a motion.

Proof. Let M(0) = (c,d) and define a translation T by T(P) = P + (c,d). Let M¢ =
T-1 M. Then M = TM¢ and M¢ fixes the origin.

Case 1. M is orientation preserving.

In this case M¢ is orientation preserving and must be a rotation about the origin
through some angle q (Theorem 2.2.6.9). Let a = cosq and b = - sinq. Clearly the equa-
tion for M has the desired form.

Case 2. M is orientation reversing.

¢ = ± - +( ) +y bx ay d,

¢ = + +x ax by c
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Let S be the reflection about the x-axis, that is, S(x,y) = (x,-y). Since M¢ is orien-
tation reversing, it follows that the motion R = SM¢ is orientation preserving, but R
also fixes the origin. Therefore, R must be a rotation about the origin through some
angle q. Note that SR = SSM¢ = M¢. Define a and b as in Case 1. It is again easy to see
that the equation for M = TM¢ = TSR has the desired form.

This proves the first part of Theorem 2.2.7.1. The second part is Exercise 2.2.7.1.
See also the next example.

2.2.7.2. Example. Let us show directly, without using Theorem 2.2.7.1, that the
transformation M defined by the equations

is a motion.

Solution. Define a translation T by T(x,y) = (x,y) + (5,7). Let R be the rotation about
the origin through the angle -p/6 and let S be the reflection about the x-axis. It is easy
to see that M = TSR and hence is a motion since it is a composite of motions.

Theorem 2.2.7.1 shows that motions can be represented by five real numbers (the
a, b, c, d, and ±1 depending on the sign). Rigid motions can be represented by four
real numbers. Chapter 20 in [AgoM05] describes a very compact way to represent
motions in terms of quaternions. The fact that a motion is defined by five numbers
leads to another way to solve for a motion when it is given in terms of some points
and their images. One simply solves the equations in Theorem 2.2.7.1 for the unknown
coefficients. Solving for five unknowns turns out to be not as complicated as it may
sound in this case.

Next, we would like to give a more complete geometric characterization of
motions than that given in Corollary 2.2.5.6.

2.2.7.3. Lemma. Every orientation-reversing motion M that fixes the origin is a
reflection about a line through the origin.

Proof. Let p be a nonzero point. If M fixes p, then Theorem 2.2.5.7 implies that M
is the reflection about the line through the origin and p and we are done. Assume
therefore that p¢ = M(p) π p. Let q be the midpoint of the segment [p,p¢] and let S be
the reflection about the line through the origin and q. Clearly, S and M agree on 0
and p. By Corollary 2.2.6.8 they are the same map.

Definition. A glide reflection is the composite of a reflection about a line L followed
by a translation with nonzero translation vector parallel to L. (See Figure 2.12.)

2.2.7.4. Theorem. Every orientation-reversing motion M is a reflection or a glide
reflection.

Proof. If M fixes the origin, then the theorem is true by Lemma 2.2.7.3. Assume
therefore that M(0) = p is distinct from the origin and let T be the translation that
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1
2

3
2

7

¢ = + +x x y
3

2
1
2

5



sends the origin to p. Let M¢ = T-1M. Then M¢ is an orientation-reversing motion that
fixes the origin and hence a reflection by Lemma 2.2.7.3. Since M = TM¢, M is a glide
reflection and we are done.

2.2.7.5. Theorem. Every motion M is either a translation, rotation, reflection, or
glide reflection.

Proof. If M is a rigid motion, then M is a translation or rotation by Theorem 2.2.6.2.
If M is not a rigid motion, that is, if it is orientation reversing, then M is a reflection
or glide reflection by Theorem 2.2.7.4.

One final word about why the term “congruent transformation” is sometimes used
instead of “motion.” The reader may recall the notion of “congruent figures” from
his/her Euclidean geometry course in high school, which most likely was never given
a really precise definition. Well, we can do so now.

Definition. Two figures are said to be congruent if there is a motion that carries one
into the other.

2.2.8 Frames in the Plane

Before leaving the subject of motions in the plane we want to discuss another
approach to defining them – one that will be especially powerful in higher dimen-
sions.

Definition. A frame in R2 is a tuple F = (u1,u2,p), where p is a point and u1 and u2
define an orthonormal basis of R2. If the ordered basis (u1,u2) induces the standard
orientation, then we shall call the frame an oriented frame. The lines determined by
p and the direction vectors u1 and u2 are called the x-, respectively, y-axis of the frame
F. The point p is called the origin of the frame F. (e1,e2,0) is called the standard frame
of R2. To simplify the notation, we sometimes use (u1,u2) to denote the frame (u1,u2,0).

Frames can be thought of as defining a new coordinate system. See Figure 2.13.
They can also be associated to a transformation in a natural way. If F = (u1,u2,p) is a
frame and if ui = (ui1,ui2) and p = (m,n), then define a map TF by the equations

(2.20)¢ = + +y u x u y n12 22 .

¢ = + +x u x u y m11 21
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In matrix form, TF is the map

(2.21)

Claim 1. TF is a motion.

Proof. Since (u1,u2) is an orthonormal basis, we have that

If follows easily from this that the equations (2.20) have the form of the equations in
Theorem 2.2.7.1, proving the claim.

If we think of a frame as defining a new coordinate system, then we can coordi-
natize the points in the plane with respect to it.

Definition. The coordinates of a point with respect to a frame are called the frame
coordinates. The frame coordinates with respect to the standard frame are called world
coordinates.

Since TF maps the origin (0,0) to p, (1,0) to p + u1, and (0,1) to p + u2, we can
think of TF as mapping frame coordinates to world coordinates.

There is a converse to Claim 1. Let M be a motion defined by the equations

Let u1 = (a,c), u2 = (b,d), and p = (m,n).

Claim 2. (u1,u2) is an orthonormal basis and (u1,u2,p) is a frame.
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Proof. This also follows from Theorem 2.2.7.1 since by that theorem c = -kb and 
d = ka for some k = ±1 and a2 + b2 = 1.

Claims 1 and 2 can be summarized by saying that there is a one-to-one corre-
spondence between frames and motions. The special case where p = 0 shows that
there is a one-to-one correspondence between orthonormal bases and motions that
fix 0.

2.2.8.1. Example. Consider the rotation R about the origin defined by

The vectors and clearly form an orthonormal basis.

Definition. The motion TF, usually simply denoted by F, is called the motion defined
by F.

Using “F” to denote both the frame F and the motion TF should not cause any
confusion since it will always be clear from the context as to whether we are talking
about the frame or the map.

The observations above lead to a simple way to get the inverse of a motion. 
Consider equations (2.20) again. Let R be the motion

and T, the translation

(Note that R is actually a rotation if the frame is oriented.) Then, as maps, F = TR
and F-1 = R-1T-1. But it is easy to check that

which shows that the inverses of the matrices

are just their transposes. Considering Example 2.2.8.1 again, note that the transpose of
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is its inverse. Therefore, F-1 is the map defined by

(2.22)

or, in terms of equations,

(2.23)

Equations (2.20)–(2.23) are fundamental and worth remembering. They summarize
the main relationship between frames and motions.

We finish this discussion of frames with several examples.

2.2.8.2. Example. To find the equations for the rotation about the origin which
rotates the point A = (2,0) into B = (1,÷3

–
).

Solution. All we have to do is to normalize B to

and combine this vector with the orthogonal vector

(chosen so that the pair induces the standard orientation) to get the frame F = (u1,u2).
This frame defines the desired rotation.

2.2.8.3. Example. To find a motion M that sends the origin to the point A = (3,0)
and the directed x-axis to the directed line L1 shown in Figure 2.14.

Solution. Define a frame F = (u1,u2,A) by

Then M = F does the job. In fact, M is a rigid motion.
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Example 2.2.8.3 easily generalizes to finding a motion that maps the x-axis and
the origin to any other line and point. By taking the inverse of this map we can map
an arbitrary line to the x-axis. We can go a step further:

2.2.8.4. Example. Again consider Figure 2.14. We find a motion M that sends the
point A = (3,0) to the point C = (0,3) and the directed line L1 to the directed line L2.

Solution. Following the approach used in Example 2.2.8.3 we can map the x-axis to
the line L2 using the map G, where G is the frame (w1,w2,C) and

If F is the frame defined in Example 2.2.8.3, then M = GF-1 is a rigid motion that will
do what we want. In terms of equations we have
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Looking over the solution for Example 2.2.8.4, a reader might wonder if there was
a special reason for choosing the particular orthonormal bases (u1,u2) and (w1,w2).
Not really. The important observation is that no matter what the choice, the three
points A, A + u1, and A + u2 will get sent to the points C, C + w1, and C + w2. The line
determined by the points A and A + u1 will get sent to the line determined by C and
C + w1. We could have replaced the bases by (u1, ±u2) and (w1, ±w2) or (-u1, ±u2) and
(-w1, ±w2) and we would have gotten an answer to our problem. On the other hand,
if we want to get a rigid motion then things are not quite so arbitrary. We still have
choices, but the bases must induce the same orientation of the plane. In particular,
we would not be able to pick (u1,u2) and (w1,-w2), for example.

It is easy to see from Example 2.2.8.4 that frames can easily be used to solve the
general problem of mapping one directed line and point to another directed line and
point. The user should compare this approach to how the problem would be solved
without frames. The underlying mathematics is really the same. The orthonormal
bases have the cosines of angles that are used for the rotation contained in them
implicitly. Recall that the components of a unit vector are just direction cosines. Nev-
ertheless, with frames one simply has to build orthonormal bases and this is easier
than messing with angles directly.

Finally, one can also use frames to define motions that send three points to another
three points. For example, suppose that we want to define a motion M that sends
points A, B, and C to points A¢, B¢, and C¢, respectively. See Figure 2.15. Let 
F = (u1,u2,A) be the frame obtained from the normalized AB and the orthogonal 
complement of AC with respect to AB. Let F¢ = (u1¢,u2¢,A¢) be the frame obtained in
a similar way from A¢, B¢, and C¢. Then M = F¢F-1.

2.2.8.5. Example. To find the motion M that sends A(-2,1), B(0,2), C(-2,4) to
A¢(4,0), B¢(6,-1), C¢(4,-3), respectively.

Solution. See Figure 2.16. The first task is to define the frames F = (u1,u2,A) and 
F¢ = (u1¢,u2¢,A¢) so that M = F¢F-1. To get the orthonormal bases we apply the Gram-
Schmidt algorithm to the bases (AB,AC) and (A¢B¢,A¢C¢). We leave this as an exercise
for the reader. One gets
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Figure 2.15. Using frames to define motions.



and

Equations (2.22) and (2.21) imply that

and

This leads to the following equations for M:
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Figure 2.16. Example 2.2.8.5.



It is easy to check that this motion sends the points A, B, C to A¢, B¢, C¢.

The astute reader may have noticed just by looking at Figure 2.16 that there are
easier ways to solve Problem 2.2.8.5. For example, the motion M can also be obtained
by translating A to A¢ and then reflecting about the x-axis. However, to emphasize a
point made earlier, using frames is a systematic approach that can be programmed
on a computer. Computers cannot “look.”

2.3 Similarities

Definition. A map S :Rn ÆRn is called a similarity transformation, or simply a sim-
ilarity, if

for all p, q Œ Rn and some fixed positive constant r.

Clearly, motions are similarities, because they correspond to the case where r is
1 in the definition. On the other hand, the map S(p) = 2p is a similarity but not a
motion. In fact, S an example of a simple but important class of similarities.

Definition. A map R:Rn ÆRn of the form R(p) = rp, r > 0, is called a radial
transformation.

2.3.1. Theorem. Radial transformations are similarities.

Proof. Exercise.

The next theorem shows that similarities are not much more complicated than
motions.

2.3.2. Theorem. If S is a similarity, then S = MR, where M is a motion and R is a
radial transformation. Conversely, any map of the form MR, where M is a motion and
R is a radial transformation, is a similarity.

Proof. This is easy because if we use the notation in the definitions for a similarity
and a radial transformation, then R-1S is a motion M.

2.3.3. Corollary. Every similarity in the plane can be expressed by equations of the form

(2.24)

where (a,b) π (0,0). (The r in the definition of a similarity is in this case.)
Conversely, every map defined by such equations is a similarity.

2.3.4. Theorem. Similarity transformations

a b2 2+

¢ = ± - +( ) +y bx ay n,

¢ = + +x ax by m

S S rp q pq( ) ( ) =
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(1) preserve the betweenness relation,
(2) preserve collinearity and noncollinearity,
(3) map lines onto lines, and
(4) are one-to-one transformations of Rn onto itself.

Proof. This theorem follows from Theorem 2.3.2 and some obvious facts about
radial transformations. In the planar case, it can also be proved directly like it was
done in the case of motions.

2.3.5. Theorem. The similarity transformations form a group that contains the
group of motions as a subgroup.

Proof. Obvious.

2.3.6. Theorem. A similarity transformation in the plane is completely specified by
its action on three noncollinear points.

Proof. Use Theorem 2.3.2.

2.3.7. Theorem. Similarity transformations in the plane preserve angles.

Proof. By Theorem 2.3.2, since motions preserve angles, it suffices to show that
radial transformations preserve angles, which is easy.

2.4 Affine Transformations

Definition. A one-to-one and onto mapping T :Rn Æ Rn that maps lines onto lines
is called an affine transformation.

Actually, one can characterize affine transformations in a slightly stronger fashion.

2.4.1. Theorem. Any one-to-one and onto map of Rn onto itself that preserves
collinearity is an affine transformation.

Proof. The only thing that needs to be shown is that lines get mapped onto lines.
This is shown in a way similar to what was done in the proof of Lemma 2.2.4 and left
as an exercise.

2.4.2. Theorem. The set of affine transformations in Rn forms a group that con-
tains the similarities as a subgroup.

Proof. Exercise.

Affine transformations, like motions and similarities, have a simple analytic
description. Before we get to the main result for these maps in the plane, we analyze
transformations with equations of the form
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(2.25a)

where

(2.25b)

2.4.3. Theorem. The set of transformations defined by equations (2.25) form a
group under composition.

Proof. This is straightforward. The main observation is that since the determinant
in (2.25b) is nonzero, the transformations have inverses. It is also easy to show that
the inverses are defined by equations of the same form.

The transformations defined by equations (2.25) clearly include the motions and
similarities. It is worth noting that they are simply the composition of a linear trans-
formation of the plane followed by a translation. There are two other interesting
special cases.

Definition. The linear transformation of the plane defined by the equations

(2.26)

is called a (local) scaling transformation. It is a global scaling transformation if a = d.

Note that the scaling transformation defined by equations (2.26) is orientation
reversing if ad < 0. It will be a similarity if a = d > 0. It is easy to check that the inverse
of the scaling transformation above is the scaling transformation

Definition. A linear transformation of the plane defined by equations

(2.27a)

is called a shear in the x-direction. A linear transformation defined by equations

(2.27a)

is called a shear in the y-direction.

It is easy to show that the inverse of a shear is a shear. See Exercise 2.4.1.
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2.4.4. Theorem. Every transformation of the plane defined by equations (2.25) is a
composition of translations, rotations, shears, and/or scaling transformations. Con-
versely, every composition of such maps can be described by equations of the form
(2.25).

Proof. Let M be defined by equations (2.25) and set M0 = TM, where T is the trans-
lation with translation vector (-m,-n). Then M0(0) = 0 and M0 is a nonsingular linear
transformation. Let r = |M0(e1)|, let R be the rotation about the origin that rotates 
the unit vector (1/r)M0(e1) into e1, and let M1 = RM0. It follows that M1 is defined by
equations

Define a linear transformation S by

Since a linear transformation is completely defined once it is defined on a basis, S is
well defined. In fact, it is easy to show that S is a shear in the x-direction defined by
equations

Figure 2.17 shows the effect of the maps R and S. The map M2 = SM1 is now the
scaling transformation defined by

To summarize, M = T-1R-1S-1M2 and the first part of the theorem is proved. Since the
converse of the theorem is obvious, Theorem 2.4.4 is proved.

¢ =y sy.

¢ =x rx

¢ = - +y
s
t

x y.

¢ =x x

S tv v e e w e2 2 2 2 2 2( ) = ( ) = =• .

S v v1 1( ) =

M s t1 2 2 1 2e v e e( ) = = + .

M r1 1 1 1e v e( ) = =

rotation
R

w2

v1shear
S

v2 = M1(e2)

v1 = M1(e1)

M0(e2)

M0(e1)e2

e1

q

Figure 2.17. The rotation and shear in the proof of Theorem 2.4.4.



2.4.5. Theorem. Any three noncollinear points in the plane can be mapped into any
other three noncollinear points by a unique transformation M with equations (2.25).

Proof. Let (A,B,C) and (A¢,B¢,C¢) be two triples of noncollinear points. Let T1 and T2
be the translations that send A and A¢, respectively, to the origin 0. Let T1(A,B,C) =
(0,B1,C1) and T2(A¢,B¢,C¢) = (0,B2,C2). See Figure 2.18. Since the vectors B1 and C1 and
the vectors B2 and C2 are bases for R2, there is a linear transformation M0 with
M0(B1,C1) = (B2,C2). The map M = T2

-1M0T1 does what we want.
To prove the uniqueness of M, suppose there is another such map M¢, then 

M-1M¢(A,B,C) = (A,B,C). As usual, it therefore suffices to show that any map T defined
by equations (2.25) that fixes three noncollinear points A, B, and C is the identity map.
There are many ways to prove this. For example, we may assume that A = 0, so that
T is linear transformation. Then B and C are a basis for the plane and since T is
defined by what it does on a basis, it must be the identity everywhere.

We return to affine transformations.

2.4.6. Theorem. An affine transformation of the plane that fixes three noncollinear
points is the identity map.

Sketch of proof. Suppose that the affine transformation T fixes the noncollinear
points A, B, and C. The property of T we shall use over and over again is that if P and
Q are distinct points, then T maps the line through P and Q into the line through T(P)
and T(Q). Let LB be the line through B that is parallel to the line through A and
C. Let LC be the line through C that is parallel to the line through A and B. See 
Figure 2.19. Then T(LB) Õ LB and T(LC) Õ LC because parallelism is preserved. It
follows that if D is the intersection of the lines LB and LC, then T(D) = D. Next, let L
be the line through D that is parallel to the line through B and C and let E be the
intersection of L and the line through A and B. Clearly, E = A + 2AB. By an argument
similar to the one that showed that T fixes D, we must have T(E) = E. It is easy to
continue this type of argument to show that T fixes all points in the form A + mAB +
nAC, m, n Œ Z. From here it is only a small step to show that T fixes all points in the
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form A + rAB + sAC for all rational numbers r and s. These points are a dense set of
points in the plane. The final step handles the points where r or s are irrational. See
[Gans69].

2.4.7. Corollary. An affine transformation of the plane is completely determined by
what it does to three noncollinear points.

Proof. Showing that the corollary follows from Theorem 2.4.6 uses an, by now stan-
dard, argument that is left as an exercise for the reader.

We are ready to state and prove a fundamental theorem about affine maps.

2.4.8. Theorem. Every affine transformation of the plane can be described uniquely
by equations of the form (2.25). The determinant in (2.25b) is called the determinant
of the affine transformation. Conversely, every such pair of equations defines an affine
transformation.

Proof. We start with the converse. A transformation T defined by equations (2.25)
has an inverse that is again defined by linear equations of the same form. Let f(x,y) 
= 0 be the equation of a line L. Then the set L¢ = T(L) is defined by the equation 
f(T-1(x,y)) = 0. This shows that L¢ is a line and that T is an affine map.

Next, let T be an affine map and choose three noncollinear points. By Theorem
2.4.5 there is a map M defined by equations (2.25) that agrees with T on those points.
Since we just showed that T is an affine map, we have two affine maps that act the
same on three noncollinear points. By Corollary 2.4.7, T = M and the theorem is
proved.

Because of Theorem 2.4.8 everything proved for the maps defined by equations
(2.25) holds for affine maps. We restate these properties to emphasize their validity
for affine maps.

(1) Every affine map in the plane is a composition of translations, rotations,
shears, and/or scaling transformations. Conversely, every composition of such
maps is an affine map.

(2) There is a unique affine transformation in the plane that maps three non-
collinear points into any other three noncollinear points.
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2.4.9. Theorem. The only affine transformations of the plane that preserve angles
are similarities.

Sketch of proof. Let T be an affine transformation that preserves angles. Choose
noncollinear points A, B, and C. If T(A,B,C) = (A¢,B¢,C¢), then one can show that

for some r > 0. Let U be the radial transformation U(p) = (1/r)p and let (A≤,B≤,C≤) =
(UT)(A,B,C). There is a unique motion M such that (A≤,B≤,C≤) = M(A,B,C). Now S =
U-1M is a similarity that agrees with T on A, B, and C. By Corollary 2.4.7, T and S
must be the same transformations.

Definition. The ratio of division of three distinct points A, B, and P on an oriented
line L in Rn, denoted by (AB,P), is defined by

(||AP|| and ||PB|| are the signed distances on the oriented line L.)

2.4.10. Proposition. Let A, B, and P be distinct points on an oriented line L. If 
P = A + tAB = (1 - t)A + tB, then

In particular, (AB,P) is independent of the orientation of L.

Proof. See Figure 2.20. The proof is a straightforward consequence of the fact that
AP = tAB and PB = (1 - t)AB.

Using Proposition 2.4.10 it is easy to show that the ratio of division (AB,P) is 
positive if P belongs to the segment [A,B] and negative otherwise.

2.4.11. Proposition. Let T be an affine transformation of the plane. If A,B Œ R2,
then

AB,P( ) =
-
t

t1
.

AB,P
AP
PB

( ) = .

¢ ¢ = ¢ ¢ = ¢ ¢ =A B AB B C BC A C ACr r and r, ,
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for all t.

Proof. By Theorem 2.4.8, there is a nonsingular 2 ¥ 2 matrix M and a point P,
so that T(Q) = QM + P for all Q. Now all one has to do is use this formula for T to
evaluate both sides of the equation and show that they are equal.

2.4.12. Theorem. Affine transformations of the plane preserve the ratio of division.

Proof. The theorem is an easy consequence of Propositions 2.4.10 and 2.4.11.

2.4.13. Theorem. Affine transformations in the plane multiply area by the absolute
value of their determinant.

Proof. See [Gans69].

Theorem 2.4.13 points out one of the main intuitions one should have about deter-
minants, namely, that they are intrinsically connected with how transformations
expand or shrink area, volume, etc. A precise definition of volume will be given in
Chapter 4.

Definition. The equiaffine or equiareal group is the group of affine transformations
with determinant ±1.

Recall our earlier comments how geometric properties are intimately connected
to certain groups of transformations. Here are three groups, the “metric” groups, and
their associated “metric” properties:

Definition. Affine properties are properties preserved only by affine transformations
(and not by projective transformations, which we will define shortly).

Some affine properties are betweenness, the ratio of division, parallelism, and the
concurrence of lines.

Definition. Two figures F and F¢ are affinely equivalent if there is an affine transfor-
mation T with T(F) = F¢.

Any two segments, angles, triangles, parallelograms, lines, parabolas, ellipses, and
hyperbolas are affinely equivalent. This means that one can use special simple figures
to prove things about general figures!

2.4.14. Example. To prove that the midpoints of all parallel chords of a parabola
X are collinear and lie on a line parallel to the axis. See Figure 2.21(a).

motions similarities equiaffine

distance angle size area

c c c

T t t t T tT1 1-( ) +( ) = -( ) ( ) + ( )A B A B
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Solution. Since all parabolas are affinely equivalent we may restrict ourselves to the
special case of the parabola defined by the equation y = x2 and the family of chords
determined by the lines y = mx + b, where m is fixed and b ≥ 0. See Figure 2.21(b).
To find the intersection of the lines with the parabola, we must solve the equation 
mx + b = x2. The two solutions are

The midpoint Q = (u,v) of such a chord is defined by

and

which proves the result.

Finally, note that one could have developed affine geometry without first coordi-
natizing points. We could make points, lines, etc., undefined terms and use axioms to
define their properties. This is the synthetic geometry approach. Coordinates could be
introduced at a later stage. The point is that, in the context of affine geometry, the
exact lengths of geometric figures are not important. At most it is relative size that
counts, that is, the ratios of segments.

2.4.1 Parallel Projections

Definition. Let v be a nonzero vector in Rn and let W be the family of parallel lines
with direction vector v. Let Lp denote the line in W through the point p. If X is a
hyperplane in Rn not parallel to v, then define a map

v
mx b mx b m b

=
+ + +

=
+1 2

2

2
2

2
,

u
x x m

=
+

=1 2

2 2

x
m m b

and x
m m b

1

2

2

24
2

4
2

=
+ +

=
- +

.

midpoints

X

axis

parallel
chords

(a) (b)

Q

y = x2
y = mx + b

Figure 2.21. Midpoints of parallel chords for parabola are parallel to axis.



by

The map pW is called the parallel projection of Rn onto the plane X parallel to v. If v is
orthogonal to X, then pW is called the orthogonal or orthographic projection of Rn onto
the plane X; otherwise, it is called an oblique parallel projection. In general, if X and
Y are any subsets of Rn, then the map that sends p in X to Lp « Y in Y (wherever it
is defined) is called the parallel projection of X to Y.

Figure 2.22 shows a parallel projection of a line L onto a line L¢ and Figure 2.23,
a parallel projection of a plane X onto a plane X¢. Note that the ratio of distances is
preserved in the case of parallel projections of a line onto another line. What this
means is that, referring to Figure 2.22, the ratio

is independent of A and B. This is not the case for parallel projections of one plane
onto another. For example, in Figure 2.23 the ratios

AB
A B¢ ¢

pW p L Xp( ) = « .

pW : R Xn Æ
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lines.

Figure 2.23. A parallel projection between
planes.



are probably not the same.

2.4.1.1. Example. To find the parallel projection T of R3 onto the plane X defined
by the equation

parallel to v = (3,1,1).

Solution. Clearly, given a point p, if t is chosen so that p + tv belongs to X, then
T(p) = p + tv. Let p = (x,y,z). Solving

for t, gives t = (1/2) (-x + 2y - z). It follows that T is defined by the equations

2.4.1.2. Theorem. A parallel projection between two hyperplanes in Rn preserves
parallelism, concurrence, betweenness, and the ratio of division.

Proof. Easy.

2.4.1.3. Theorem. Any map of the plane onto itself that is a composition of 
parallel projections is an affine map. Conversely, every affine map in the plane is a
composite of parallel projections.

Sketch of proof. The first statement follows from the fact that lines are preserved.
Now let T be an affine map. Assume that A, B, and C are noncollinear points with
T(A,B,C) = (A¢,B¢,C¢). First, project R2 to a plane X that contains A and B so that C
gets sent to a point C1. Next, project X back to R2 in such a way as to send C1 to C¢.
It follows that the composite of these two projections sends A to A, B to B, and C to
C¢. Repeat this process on A¢ and B¢. See Figure 2.24.

The construction in the proof of Theorem 2.4.1.3 shows that any affine map can
be realized as a composite of at most six projections.

¢ = - + + +z x y z
1
2

1
2

3
2

.

¢ = - + - +y x y z
1
2

2
1
2

3
2

¢ = - + - +x x y z
1
2

3
3
2

9
2

x t y t z t+( ) - +( ) + +( ) =3 2 3

x y z- + =2 3

AB
A B

BC
B C¢ ¢ ¢ ¢

and
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2.5 Beyond the Plane

Up to now, although some things applied to Rn, most of the details were specifically
about transformations in the plane. The fact is that much of what we did generalizes
to higher dimensions.

We start with motions of Rn.

2.5.1. Theorem. Every motion M:Rn Æ Rn can be expressed by equations of the
form

(2.29)

where AM = (aij) is an orthogonal matrix. Conversely, every such system of equations
defines a motion.

Proof. The discussion in Section 2.2.8 on frames showed that the theorem is valid
for motions in the plane. For the general case, assume without loss of generality that
M(0) = 0. The key facts are Theorem 2.2.4.1, which says that M is a linear trans-
formation (and hence is defined by a matrix), and Lemma 2.2.4.3, which says that
M(u)•M(v) = u•v, for all vectors u and v. The rest of the proof simply involves ana-
lyzing the conditions M(ei) •M(ej) = ei •ej = dij and is left as an exercise (Exercise 2.5.1).

In studying motions in the plane we made use of some important special motions,
such as translations, rotations, and reflections. Translations already have a general
definition. The natural generalization of the definition of a reflection is to replace lines
by hyperplanes.

Definition. Let X be a hyperplane in Rn. Define a map S :Rn Æ Rn, called the reflec-
tion about the hyperplane X, as follows: Let A be a point in X and let N be a normal

◊ ◊ ◊ ◊ ◊
¢ = + + + +x a x a x a x cn n n nn n n1 1 2 2 . . .

¢ = + + + +
¢ = + + + +

◊ ◊ ◊ ◊ ◊

x a x a x a x c

x a x a x a x c
n n

n n

1 11 1 12 2 1 1

2 21 1 22 2 2 2

. . .

. . .
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vector for X. If P is any point in Rn, then S(P) = P + 2PQ, where PQ is the orthogo-
nal projection of PA on N. See Figure 2.25.

2.5.2. Theorem. Let S be a reflection about a hyperplane X.

(1) The definition of S depends only on the hyperplane and not on the point A
and normal vector N that are chosen for it in the definition.

(2) If t is chosen so that P + tN is the point where the line through P with direc-
tion vector N meets the plane X, then S(P) = P + 2tN.

(3) The fixed points of S are just the points of X.
(4) If L¢ is a line orthogonal to X, then S(L¢) = L¢.
(5) Reflections about hyperplanes are motions.

Proof. The details of the proof are left as an exercise for the reader because it is
essentially the same as the proof of Theorem 2.2.3.1. That proof did not really use the
fact that vectors were two-dimensional.

2.5.3. Example. To find the reflection S about the plane X defined by the equation

Solution. Let A be any point in X. Since N = (1,-2,-2) is a normal vector for 
X, if P is any point, then it is easy to show that the orthogonal projection of 
PA on N is just tN, where t is chosen so that P + tN lies in X. Let P = (x,y,z). 
Solving

for t, gives 

t = (1/9)(-x + 2y + 2z + 3).

Since S(P) = P + 2tN, it follows that S has equations

x t y t z t+( ) - -( ) - -( ) =2 2 2 2 3

x y z- - =2 2 3.

A

N

P

X

Q

P¢

Figure 2.25. Defining a reflection in
higher dimensions.



Generalizing the concept of a rotation is a little less obvious. The simplest way to
get a definition is in a roundabout way by defining a rigid motion first and then use
the orientation-preserving nature of these maps.

Definition. Let M be a motion of Rn and suppose the equations for M are as shown
in Theorem 2.5.1. The motion M is said to be a rigid motion if the matrix (aij) is a
special orthogonal matrix.

In analogy to the planar case we get

2.5.4. Theorem. A rigid motion of Rn is an orientation-preserving map. Conversely,
every orientation-preserving motion of Rn is a rigid motion.

Proof. Exercise.

Definition. A rigid motion R of Rn that fixes some point p is called a rotation. In
that case, we say that R is a rotation about p. The point p is called a center of the 
rotation.

Is this definition of a rotation really what we want and does it generalize the intu-
itively simple notion of a rotation in the plane? Theorem 2.2.6.9 certainly shows that
the new definition is compatible with the old one.

2.5.5. Theorem. (The Principal Axis Theorem) Every rotation R in R3 is a “rotation
about some line.” More precisely, with respect to some appropriate coordinate system,
R is just the rotation about the z-axis through an angle q, that is, the equations for R
in that coordinate system are just

(2.30)

In general, if R is a rotation in Rn, then we can choose a coordinate system 
with respect to which the n ¥ n matrix of coefficients in the equation for R has the
form

¢ =z z.

¢ = +y x in y oss cq q
¢ = -x x ycos sinq q

¢ = - + -z x y z
4
9

8
9

1
9

4
3

.

¢ = + - -y x y z
4
9

1
9

8
9

4
3

¢ = + + +x x y z
7
9

4
9

4
9

2
3
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Conversely, every transformation of Rn whose equation has such a matrix of coeffi-
cients is a rotation.

Proof. See [Lips68]. Note that rotations about the origin are linear transformations
so that one can talk about their associated matrices.

Theorem 2.5.5 suggests that the expression “rotation about a point” is perhaps
misleading in higher dimensions. Although it might be better to say “rotation about
a line,” we shall keep it in order to have a uniform terminology since it makes per-
fectly good sense in the plane. Actually, we shall see shortly in the next section that
one should really talk about directed lines here because the expression “rotation about
a line through an angle q” is ambiguous.

The main theorems about motions in Rn can now be stated. Their proofs are very
similar to the proofs of the corresponding theorems about motions in the plane and
are omitted.

2.5.6. Theorem.

(1) A motion in Rn is completely determined by what it does to n + 1 linearly inde-
pendent points.

(2) A rigid motion in Rn is completely determined by what it does to n linearly
independent points.

(3) Every motion in Rn can be described as a composition of a translation, a rota-
tion about the origin, and/or a reflection.

(4) Every rigid motion in Rn is a composition of a translation and/or a rotation
about the origin.

Proof. Exercise.

Facts about similarities and affine maps in the plane also generalize to Rn.

2.5.7. Theorem. Every similarity transformation can be expressed by equations of
the form (2.29) where (aij) = (dbij), d > 0, and (bij) is an orthogonal matrix. Conversely,
every such system of equations defines a similarity.

Proof. Exercise.
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2.5.8. Theorem.

(1) Every affine transformation T in Rn can be expressed uniquely in the form

where A is an n ¥ n nonsingular matrix and v is a fixed vector in Rn. The deter-
minant of A is called the determinant of the affine transformation. Conversely,
every such equation defines an affine transformation.

(2) An affine transformation is completely specified by its action on n + 1 linearly
independent points.

(3) The similarity transformations are the angle-preserving affine maps of Rn.
(4) Affine transformations in Rn multiply volume by the absolute value of their

determinant.

Proof. Exercise.

Definition. A map T :Rn Æ Rn is said to preserve barycentric coordinates if, for all 
vi Œ Rn and real numbers ai,

(2.28)

2.5.9. Theorem. Affine maps in Rn preserve barycentric coordinates. Conversely,
any one-to-one and onto transformation that preserves barycentric coordinates is an
affine map.

Proof. We prove the first part. Let T be an affine map. By Theorem 2.5.8(1),

where A is an n ¥ n matrix. It follows that

2.5.10. Corollary. Affine maps in Rn preserve the ratio of division.
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Proof. This follows form Proposition 2.4.10 and Theorem 2.5.9.

Definition. If A = (aij) is an n ¥ n nonsingular diagonal matrix, then the transfor-
mation T :Rn Æ Rn defined by

is called a (local) scaling transformation. It is a global scaling transformation if all the
diagonal elements in A are equal, that is, a11 = a22 = . . . = ann.

Note that a scaling transformation is orientation reversing if |A| < 0. It will be a
similarity if a11 = a22 = . . . = ann > 0. It is easy to check that the inverse of a scaling
transformation is a scaling transformation.

Facts about parallel projections, such as Theorems 2.4.1.2 and 2.4.1.3, also gen-
eralize to Rn. Finally, we generalize frames. See Figure 2.26. These will be especially
helpful in higher dimensions as we shall see in Section 2.5.2.

Definition. A frame in Rn is a tuple F = (u1,u2, . . . ,un,p), where p is a point and the
ui define an orthonormal basis of Rn. If the ordered basis (u1,u2, . . . ,un) induces the
standard orientation of Rn, then we call the frame an oriented frame. The oriented line
through the point p with direction vector ui is called the ui-axis of the frame F. In the
case of 3-space, the oriented lines through the point p with direction vectors u1,u2, and
u3 are also called the x-, y-, and z-axis of F, respectively. The point p is called the origin
of the frame F. (e1,e2, . . . ,en, 0) is called the standard frame of Rn. Again, to simplify
the notation, we sometimes use (u1,u2, . . . ,un) to denote the frame (u1,u2, . . . ,un,0).

Sometimes one wants to transform frames.

Definition. Let F = (u1,u2, . . . ,un,p) be a frame in Rn. If M is a motion of Rn, define
the transformed frame M(F) by

M F M M M M M M Mn( ) = ( ) - ( ) ( ) - ( ) ( ) - ( ) ( )( )u 0 u 0 u 0 p1 2, , . . . , , .

T Ap p( ) =
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Figure 2.26. Frames in R3.



A transformed frame is clearly a frame. The following generalization to planes is
also useful.

Definition. A frame for a k-dimensional plane X in Rn is a tuple F = (u1,u2, . . . ,uk,p),
where p Œ X and u1, u2, . . . , and uk are an orthonormal basis for X.

Just like in the two-dimensional case, frames can be thought of as defining a coor-
dinate system for a space and we can coordinatize its points with respect to it. We
shall again call the coordinates of a point with respect to a frame the frame coordi-
nates. The frame coordinates with respect to the standard frame of Rn are called world
coordinates. Frames can also be thought of as motions.

Definition. Let F = (u1,u2, . . . ,un,p) be a frame in Rn. Define a motion TF, called the
motion defined by F and usually simply denoted by F, by

(2.32)

Like in the earlier two-dimensional case, using “F” to denote both the frame F and
the motion TF should not cause any confusion since it will always be clear from the
context as to whether we are talking about the frame or the map.

Clearly, TF is a motion. In fact, if T is the translation with translation vector p and
if R is the motion that is the linear transformation with matrix

then TF = TR. If the frame F is oriented, then R is a rotation because of our 
hypothesis that the ordered basis u1, u2, . . . , un determines the standard orien-
tation. Furthermore, since we are dealing with motions and orthonormal bases, 
the matrix of the inverse of R is just the inverse of the matrix for R. It follows 
that

(2.33)

Note. In the context of frames as coordinate systems we could have also allowed for
nonorthogonal frames, that is, tuples (v1,v2, . . . ,vk,p) where we only require that the
vectors are linearly independent. This would correspond to skew coordinate systems
and might be a useful concept in certain situations. The only complication is that
finding inverses is no longer as trivial as it is for an orthogonal matrix. Other than
that, though, there is nothing new.
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2.5.1 Motions in 3-Space

In this section we look at the mechanics of transforming objects in 3-space. This may
not seem as easy as it was in the plane, but if we break the general problem into a
sequence of simple primitive ones, then it will become easy again.

Rigid motions are composites of rotations and/or translations. Is is useful to have
some alternate characterizations of rotations. The first characterization comes from
the Principal Axis Theorem (Theorem 2.5.5), which says that every rotation is a rota-
tion about an axis. Before we can make use of this way of looking at a rotation we
must resolve an ambiguity that we alluded to in a comment immediately following
Theorem 2.5.5. Suppose that v is a direction vector for the axis. If we consider a plane
orthogonal to the axis of the rotation, the notion of counterclockwise for this plane,
which is what is normally used to define the positive direction for an angle, will
depend on whether we are looking down on this plane from a point on the axis in the
v or -v direction. The only way that this ambiguity in the expression “a rotation about
a line through a given angle” can be avoided is by requiring the line to be oriented.

The axis-angle representation of a rotation: Here we represent a rotation by a
triple (p,u,q), where the point p and unit (direction) vector u specify the axis and q
is the angle of rotation determined according to the following rule:

The rotation orientation rule: Think of u as being the z-axis for a coordinate
system at p. Stand at p + u and look towards the “origin” p. The counterclockwise
direction in the “x-y plane” of this coordinate system will then determine the positive
direction for an angle. See Figure 2.27. More precisely, choose vectors u1 and u2 so
that (u1,u2,u) forms an orthonormal basis for R3 that induces the standard orienta-
tion. Then (u1,u2) induces the desired orientation on the x-y plane of the coordinate
system from which “clockwise” and “counterclockwise” are determined. The rule can
also be expressed in terms of the so-called “right-hand rule,” that is, if one lets the
thumb of one’s right hand point in the direction of u, then the curl of the fingers will
specify the positive direction of angles. See Figure 2.27 again.
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Note that the direction vector u that is chosen for the axis matters because 
(p,-u,q) = (p,u,-q).

Definition. The rotation defined by the triple (p,u,q) is called the rotation about the
directed line defined by the point p and direction vector u through the angle q.

We can represent a rotation more compactly by incorporating the angle of the
rotation in the length of the direction vector for the axis.

A compact axis-angle representation of a rotation: Here a pair (p,v) represents
the rotation whose axis-angle representation is (p,v/|v|,|v|).

The next two characterizations of rotations are in terms of rotating about coor-
dinate axes. Fortunately, when it comes to rotations we only need to know the equa-
tions of the rotations about the coordinate axes by heart. It is therefore worthwhile
to summarize those before moving on since the equations for all other rotations can
be derived from them.

The equations and matrices for the rotations about the coordinate axes:

rotation about x-axis rotation about y-axis rotation about z-axis

(2.34)

(2.35)

Note that the minus sign in the equation and matrix of a rotation about the y-axis is
different from the other rotations. The reason is that we are expressing things in world
coordinates and when looking down the y-axis, the x-axis is pointing to the left which is
the wrong direction because angles are oriented according to the basis (-e1,e3).

2.5.1.1. Theorem. Consider a coordinate system specified by a frame F =
(u1,u2,u3,p). If R is a rotation about p, then R is the composite of a rotation R1 about
the x-axis of F through an angle a, a rotation R2 about the y-axis of F through an
angle b, and finally a rotation R3 about the z-axis of F through an angle t.

Proof. Assume first that we are rotating about the origin and F is the standard frame.
With this hypothesis, R is a linear transformation and has matrix

(2.36)

The rotations R1, R2, and R3 would also be linear transformations and we know their
matrices from (2.35). Therefore, using the abbreviations
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the matrix for R3R2R1 would be

(2.37)

To prove the theorem, all we have to do is set the matrices in (2.36) and (2.37) equal
to each other and solve for a, b, and t. This is not hard using the first row and last
column. If cb π 0, then

(2.38a)

(2.38b)

(2.38c)

where atan2(y,x) is basically the arctangent tan-1(y/x), except that the sign of both x
and y are used to determine into which quadrant the angle falls. See Appendix A for
a precise definition.

The case of an arbitrary frame F is an easy consequence of this case that we leave
as an exercise. The theorem is proved.

Note. In the proof of Theorem 2.5.1.1, only one choice had to be made in defining
a, b, and t and that was the choice of the positive square root of the sum of squares
of a11 and a21. This amounts to restricting b to lying in the interval [-p/2,p/2]. With
this restriction, the a, b, and t are uniquely determined for R.

Definition. Given a rotation R, the angles a, b, and t in Theorem 2.5.1.1 are called
the roll, pitch, and yaw angles of R, respectively. The tuple [a,b,t,p] is called a roll-
pitch-yaw representation of the rotation R (with respect to the frame F). [a,b,t] will
denote the roll-pitch-yaw representation in the case where p is the origin.

The terminology of “roll,” “pitch,” and “yaw” comes from aviation and navigation.
Roll is the twisting motion about the lengthwise axis of a ship or airplane. Pitch is
the dipping or rising motion of the bow or nose. Yaw is the side-to-side twisting
motion in its horizontal plane about a vertical axis. The note following the theorem
above shows that the roll, pitch, and yaw angles are unique if the pitch angle lies in
the interval [-p/2,p/2].

Instead of rotating about the axes of a fixed coordinate system as is done in 
the case of the roll-pitch-yaw representation of a rotation we can do our rotations
about axes in each successive new coordinate system. The choice of axes is up 
to us.

2.5.1.2. Theorem. Consider a coordinate system specified by a frame F =
(u1,u2,u3,p). If R is a rotation about p, then R is the composite of a rotation S1 about
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the x-axis of F through an angle a, a rotation S2 about the y-axis of S1(F) through an
angle b, and finally a rotation about the z-axis of S2(S1(F)) through an angle t.

Proof. We shall again only consider the case where F is the standard frame and p
is the origin. If R1, R2, and R3 are the rotations about the standard coordinate axes
defined in Theorem 2.5.1.1, then

so that S3S2S1 = R1R2R3. Note that this composition is in the opposite order of the
composition of the maps in Theorem 2.5.1.1, but the matrix for S3S2S1 will be similar
to the one shown in (2.37). Therefore we can set this matrix equal to the matrix for
R and solve for the angles just like in Theorem 2.5.1.1.

Definition. Given a rotation R, the angles a, b, and t in Theorem 2.5.1.2 are called
the X-Y-Z Euler angles of R. The tuple [a,b,t,p] is called an Euler angle representation
of the rotation R (with respect to the frame F). [a,b,t] will denote the Euler angle 
representation in the case where p is the origin.

The term Euler angles is also used in the case of any other choice of axes. For
example, if one were to rotate about the z-, y-, and z-axis, then one would get the 
Z-Y-Z Euler angles for a rotation, and so on. We shall only look at Euler angles in 
the X-Y-Z case. The others are similar. The proofs of Theorems 2.5.1.1 and 2.5.1.2
show us how to compute the roll, pitch, yaw or Euler angles of a rotation. We 
shall not pursue the subject here. These angles are often used to describe motions in
robotics.

Let us return to the main subject matter of this section, which is how to derive
equations for rigid motions. Since translations are trivial, we now work through an
example to show how one typically computes equations for geometrically defined 
rotations. The idea is to express an arbitrary rotation in terms of rotations about the
x-, y-, and z-axis.

2.5.1.3. Example. To show that any nonzero vector v can be rotated into one of the
coordinate axes by a composition of two rotations about coordinate axes.

Solution. We sketch the construction in case we want to rotate v into the z-axis.
Rotating into the x- or y-axis would be done in a similar way. Let w by the orthogo-
nal projection of v onto the y-z plane. See Figure 2.28(a). A rotation R1 about the x-
axis through an angle a, where a is the angle that w makes with the z-axis (or e3),
will move v into a vector v¢ in the x-z plane. See Figure 2.28(b). A second rotation R2
about the y-axis through the angle b, where b is the angle that v¢ makes with the z-
axis, will rotate v¢ into the z-axis. The composition R2R1 then does what we want,
namely, move v into the z-axis.

2.5.1.4. Example. To find the rotation R that rotates the plane X defined by

S R

S S R S

S S S R S S

1 1

2 1 2 1
1

3 2 1 3 2 1
1
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to the x-y plane.

Solution. See Figure 2.29. The idea is to express R as a composite of our basic rota-
tions about the coordinate axes. Recall that motions map planes to planes and so to
define R we only need to define an R that does the right thing on three noncollinear
points in X. We shall use O = (0,0,0), A = (2,0,-3), and B = (0,1,-3) and deal with the
points A and B one at a time. Let R1 be the rotation about the y-axis through an angle
q1 defined by

The matrix for R1 is

cos sin .q q1 1
2

13

3

13
= =and

3
2

3 0x y z+ + =

z z

(b)(a)

y

x

v¢
w v

y

x

a b

Figure 2.28. Rotating a vector into the z-axis.

z

y

B(0,1,–3)
A(2,0,–3)

x

q1

Figure 2.29. Example 2.5.1.4.



It follows that

Let R2 be the rotation about the x-axis through an angle q2 where

R2 will move B1 to the x-y plane and leave A1 fixed. Finally, R = R2R1 will be the rota-
tion we are looking for because R leaves the origin fixed and maps the points A and
B to the x-y plane. The matrix for R2 is

and so the matrix for R is

Before leaving this problem, let us look at another possible question. What is the 
equation for the plane X1 = R1(X)? Note that, by definition, (x1,y1,z1) belongs to 
X1 if and only if R1

-1(x1,y1,z1) belongs to X. Therefore, since the matrix for 
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substituting into the equation for X gives that

that is,

is the equation for X1. This shows that X1 contains the x-axis and is orthogonal to the
y-z plane, justifying our construction. This finishes Example 2.5.1.4.

2.5.2 Frames Revisited

The last section described what might be called the geometric approach to defining
motions in R3. Some of the computations got rather complicated. The power of frames
comes from their ability to define a motion M in terms of an orthonormal basis, which
is typically easier to define than the rotations and reflections that might describe M
if we were to use the approach from the last section. We saw some of this in Section
2.2.8, but it is especially going to pay off here. As our first example we redo Example
2.5.1.4.

2.5.2.1. Example. To find the rotation R that rotates the plane X defined by

to the x-y plane.

Solution. We use the same notation as in Example 2.5.1.4. See Figure 2.29. Apply-
ing the Gram-Schmidt algorithm to the basis A(2,0,-3) and B(0,1,-3) for X gives us
an orthonormal basis

The equation for X tells us that n = (3/2,3,1) is a normal vector for the plane. Let
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and consider the frame F = (u1,u2,u3). The rotation R defined by F-1 then solves the
problem. The matrix for R is the same one as we got before, namely,

Actually, the fact that we got the same answer is accidental since the problem is under-
constrained and there are many rotations that rotate X to the x-y plane.

2.5.2.2. Example. To find the rotation R which rotates the plane X defined by the
equation y - z = 0 to the x-y plane.

Solution. By inspection it is clear that the vectors

are an orthonormal basis of R3 with u1 and u2 a basis for X. See Figure 2.30. Define
the orthogonal matrix A by

A is matrix for the rotation R we are looking for. It is easy to check that uiA = ei. Note
that
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Figure 2.30. Example 2.5.2.2.



and that eiA-1 = ui.

The approach used in the last two examples generalizes.

2.5.2.3. Example. To find a rigid motion M that moves the origin to the point p =
(0,0,1) and the x-y plane to the plane X defined by x + y + 2z = 2. See Figure 2.31.

Solution. All we have to do is to find an orthonormal basis (u1,u2,u3), so that u1 and
u2 are a basis for X. Then the motion defined by the frame F = (u1,u2,u3,p) will do the
job. The equation for X tells us that n = (1,1,2) is a normal vector for X. There are many
ways to find a basis for X. Clearly, (2,0,-1) is a vector orthogonal to n. Therefore, let

2.5.2.4. Example. To find a rigid motion M which moves the point p = (0,0,1) to
the point q = (0,-1,0) and the plane X defined by x + y + 2z = 2 to the plane Y defined
by -x - y + z = 1.

Solution. Let F be the frame defined in Example 2.5.2.3. The motion F-1 will map
the plane X to the x-y plane and p to the origin. We simply need to define a frame 
G = (w1,w2,w3,q) that will send the x-y plane to the plane Y and the origin to q and
set M = GF-1. This is another problem like the one in Example 2.5.2.3. Let
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Figure 2.31. Example 2.5.2.3.



It follows that

For emphasis, we note that the solutions to the last four examples are not unique.
For example, to define M in Example 2.5.2.4 we could have picked any orthonormal
basis (u1,u2) for X. It is essential however that one picks an orthonormal basis,
namely, a basis that consists of unit vectors that are mutually orthogonal. If either
of these conditions does not hold, then answers will be wrong.

2.6 EXERCISES

Section 2.2

2.2.1. Prove Theorem 2.2.1(2) and (3).

2.2.2. Prove that motions send triangles to triangles.

2.2.3. Prove that motions send rays to rays.

Section 2.2.1

2.2.1.1. Prove Theorem 2.2.1.1.

2.2.1.2. Prove Proposition 2.2.1.2(2).

Section 2.2.2

2.2.2.1. Prove Proposition 2.2.2.7(1).

2.2.2.2. Find the rotation about the point (1,2) through an angle of p/6.

2.2.2.3. Let R be a rotation about the origin through an angle p/3. Let L be the line determined
by the two points (2,4) and (4,4-2/÷3

–
). Show by direct computation that the angles

that L and L¢ = R(L) make with the x-axis differ by p/3.

2.2.2.4. Find the rotation R about the point (2,3) that sends (6,3) to (4,3 + ÷3
–
).

2.2.2.5. Let R be the rotation about (-1,2) through an angle of -p/6. Let L be the line deter-
mined by the points (2,4) and (5,1). Find the equation for L¢ = R(L).

2.2.2.6. If R is the rotation about the origin through an angle of p/3 degrees and if T is the
translation with translation vector (-1,2), then find the equation for RT and describe
the map in geometric terms as precisely as possible.
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Section 2.2.3

2.2.3.1. Prove Theorem 2.2.3.1.

2.2.3.2. Find the reflection S about the line L defined by the equation 2x + y = 2. Find S(-5,0)
and S(0,4).

(a) Solve the problem using the definition like in Examples 2.2.3.2 and 2.2.3.3 but
check your answer using Proposition 2.2.3.4.

(b) Solve the problem using the reductive method like in Example 2.2.3.7.

2.2.3.3. Let S be the reflection about the line L through the points (2,3) and (4,1). Find the
equation for S like you were asked to do in Exercise 2.2.3.2.

2.2.3.4. Suppose that R1 and R2 are reflections about the lines L1 and L2, respectively. Let R =
R2R1.

(a) If L1 and L2 intersect in a point A, show that R is a rotation about A. Find the rela-
tionship between the angle of this rotation and the angle between the two lines.

(b) If L1 is parallel to L2, show that R is a translation.

Section 2.2.4

2.2.4.1. Prove Theorem 2.2.4.6.

Section 2.2.7

2.2.7.1. Prove the converse to Theorem 2.2.7.1.

2.2.7.2. Which of the transformations M below are motions? Explain your answers. In par-
ticular, express those that are in the form of a composite of a translation, rotation,
and/or reflection:

2.2.7.3. (a) Find the equation for the rigid motion M which sends A(2,-1), B(4,1) to A¢(-3,3),
B¢(-1,1), respectively. Use only translations, rotations, and/or reflections.

(b) Find the equation of another motion that sends A and B to A¢ and B¢,
respectively.

2.2.7.4. Find the equation of the motion M that sends A(-2,1), B(0,2), and C(-2,4) to A¢(4,0),
B¢(6,-1), and C¢(4,-3), respectively. Use only translations, rotations, and/or reflections.
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2.2.7.5. Show that any motion of the form

is a reflection about a line through the origin.

2.2.7.6. Explain why

is an orientation reversing motion that is not a reflection. On the other hand, M has
a fixed line. Find it.

2.2.7.7. Show that every orientation reversing motion is a composite of a rigid motion and a
single reflection.

2.2.7.8. Prove the following:

(a) Every motion can be expressed as a composition of at most three reflections.
(b) Every motion with one fixed point is the composite of at most two reflections.

Section 2.2.8

2.2.8.1. Use frames to find a motion that sends the line L through A(2,1) and B(3,3) to the 
x-axis and the point A to the origin.

2.2.8.2. Use frames to find a motion which sends the line 2x + 3y = 5 to the line x -
2y = 3.

2.2.8.3. Solve Exercise 2.2.7.3 using frames.

2.2.8.4. Use frames to find the equations of the motion that sends the points A(-1,3), B(0,1),
and C(-2,1) to A¢(3,2), B¢(2,0), and C¢(1,2), respectively.

2.2.8.5. Consider the lines

Assuming that the lines are oriented to the right, find the transformation that con-
verts from world coordinates to the coordinate system where L1 and L2 are the x- and
y-axis, respectively.

Section 2.3

2.3.1. Find the equations of the similarity S that sends the points A(-1,3), B(0,1), and C(-2,1)
to A¢(0,6), B¢(2,2), and C¢(4,6), respectively.
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Section 2.4

2.4.1. Prove that the inverse of the shear

is a shear and find its equations.

2.4.2. Find the affine map that sends A(1,0), B(0,3), and C(4,2) to A¢(-1,2), B¢(0,1), and C¢(1,3),
respectively.

Section 2.4.1

2.4.1.1. Let X be the plane defined by x - 2y + z = 1.

(a) Define the orthogonal projection of R3 onto X.
(b) Define the parallel projection of R3 onto X parallel to v = (1,0,2).

Section 2.5

2.5.1. Fill in the missing details in the proof of Theorem 2.5.1.

2.5.2. Using the definition, find the equation of the reflection S about the plane x - 2y +
2z = 1.

Section 2.5.1

2.5.1.1. Show that the following motion is a rotation and find its axis and angle of rotation:

2.5.1.2. Using translations and rotations about the coordinate axes, find the equation of 
a rigid motion that sends the plane X defined by 2x - 3y + 2z = 1 to the x-y 
plane.

2.5.1.3. Given a unit cube with one corner at (0,0,0) and the opposite corner at (1,1,1), derive
the transformations necessary to rotate the cube by q degrees about the main diago-
nal (from (0,0,0) to (1,1,1)) in the counterclockwise direction when looking along the
diagonal toward the origin. Use rotations about the coordinate axes.
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2.5.1.4. Show that the motion

is a screw motion, where

Definition. A motion in R3 of the form RT, where R is a rotation that is not the iden-
tity map and T is a translation with translation vector parallel to the line that R is
rotating about, is called a screw motion.

2.5.1.5. Find the equations for the rotation whose roll-pitch-yaw representation is (p/2,p/3,p).

2.5.1.6. Find the equations for the rotation whose X-Y-Z Euler angle representation is
(p/2,p/3,p).

Section 2.5.2

2.5.2.1. Solve Exercise 2.5.1.2 using frames.

2.5.2.2. Solve Exercise 2.5.1.3 using frames.

2.5.2.3. Use frames to find the equations of the motion that sends the points A(1,0,0), B(0,1,0),
C(0,0,1), and D(1,2,1) to

respectively.
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C H A P T E R  3

Projective Geometry

3.1 Overview

The last chapter outlined some of the basic elements of affine geometry. This chapter
looks at projective geometry. Some general references that look at the subject in more
detail than we are able to here are [Ayre67], [Gans69], and [PenP86].

Like in the last chapter, we shall start with dimension two (Sections 3.2–3.4) and
only get to higher dimensions in Section 3.5. In order to motivate the transition from
affine geometry to projective geometry we begin by studying projective transforma-
tions in affine space. Section 3.2 starts off by looking at central projections and leads
up to a definition of a projective transformation of the plane. We shall quickly see
that, in contrast to affine geometry, we have to deal with certain exceptional cases that
make the statement of definitions and theorems rather awkward. Mathematicians do
not like having to deal with results on a case-by-case basis. Furthermore, the exis-
tence of special cases often is a sign that one does not have a complete understand-
ing of what is going on and that there is still some underlying general principle left
to be discovered. In fact, it will become clear that Euclidean affine space is not the
appropriate space to look at when one wants to study projective transformations and
that one should really look at a larger space called projective space. This will allow
us to deal with our new geometric problems in a uniform way.

Projective space itself can be introduced in different ways. One can start with a syn-
thetic and axiomatic point of view or one using coordinates. Lack of space prevents us
from discussing both approaches and so we choose the latter because it is more prac-
tical. In Section 3.3 we introduce homogeneous coordinates after a new look at points
and lines that motivates the point of view that projective space is a natural coordinate
system extension of Euclidean space. This leads to a definition and discussion of the
projective plane P2 in Section 3.4. Some of its important analytic properties are
described in Section 3.4.1. Sections 3.4.2 and 3.4.3 define projective transformations
of P2 and show how affine transformations are just special cases if one uses homoge-
neous coordinates. We then generalize to higher dimensions in Section 3.5. The impor-
tant special case of 3-dimensional projective transformations is considered in Section
3.5.1. Next we study conics (Sections 3.6 and 3.6.1) and quadric surfaces (Section 3.7).



We finish the chapter with several special topics. Section 3.8 discusses a generalization
of the usual central projection. Section 3.9 describes the beautiful theorem of Pascal
and some applications. The last topic of the chapter is the stereographic projection.
Section 3.10 describes some of its main properties.

3.2 Central Projections and Perspectivities

Definition. Let O be a fixed point of Rn. For every point p of Rn distinct from O, let
Lp denote the line through O and p. If Y is a hyperplane in Rn not containing O, then
define a map

by

The map pO is called the central projection with center O of Rn to the plane Y. If X is
another hyperplane in Rn, then the restriction of pO to X, pO|X :X Æ Y, is called the
perspective transformation or perspectivity from X to Y with center O.

Note that our terminology makes a slight distinction between central projections
and perspectivities. Both send points to a plane, but the former is defined on all of
Euclidean space, whereas the latter is only defined on a plane; however, they clearly
are closely related.

Clearly, from the point of view of formulas, one would not expect our new maps
to be complicated because they simply involve finding the intersection of a line with
a hyperplane. Let us look at some simple examples to get a feel for what geometric
properties these maps possess. First, consider perspectivities between lines in R2.
Figure 3.1 shows the case where the two lines parallel. In this case, the ratio of the
distance between points and the distance between their images is constant. The per-
spectivity is one-to-one and onto. It preserves parallelism, concurrence, ratio of divi-
sion, and betweenness.

What happens when the two lines are not parallel? See Figure 3.2. The point V
on L has no image and the point W on L¢ has no preimage. These points are called
vanishing points. Betweenness is not preserved as is demonstrated by the points A,
B, and C in Figure 3.2. Furthermore, the fact that betweenness is not preserved leads
to other properties not being preserved. In particular, segments, rays, and ratios of
division are not preserved, and distances are distorted by different constants.

Next, consider perspectivities between planes. When the planes are parallel, things
behave pretty well just like for parallel lines. The interesting case is when the planes
are not parallel. Consider a perspectivity with center O from a plane X, which we shall
call the object plane, to another plane Y, which we shall call the view plane. The fol-
lowing facts are noteworthy.

pO p pp L Y L Y( ) = «
=

,  if  intersects  in a single point,

undefined, otherwise.

po
n: R YÆ
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See Figure 3.3(a).

(1) The rectangle ABCD in the object plane gets mapped to the trapezoid A¢B¢C¢D¢
and the lines L1 and L2 through A,C and B,D, respectively, get mapped to the lines L1¢
and L2¢ through A¢,C¢ and B¢,D¢.

(2) The parallel lines L1 and L2 get mapped to lines that intersect at a point E¢ in
the view plane. The point E¢ has the property that OE¢ is parallel to the object plane.

A

A¢ B¢ C¢

B C
L

L¢

O Figure 3.1. A perspectivity between parallel
lines.
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Figure 3.2. A perspectivity between
skew lines.
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Figure 3.3. A perspectivity between skew planes.



The point E¢ is called a vanishing point. The horizon plane, which is the plane through
OE¢ parallel to the object plane, intersects the view plane in a line called a vanishing
line or horizon. Note that the perspectivity is undefined at every point of the vanish-
ing line.

(3) Not only E¢ but each point of the vanishing line is called a vanishing point.
One can show that every such vanishing point comes from the projection of a family
of parallel lines. Another way to put this is that a perspectivity between nonparallel
planes maps parallel lines into intersecting lines.

For the next facts, see Figure 3.3(b).

(4) The intersecting lines L3 and L4 through F,J and G,J, respectively, map to par-
allel lines L3¢ and L4¢ in the view plane. The point J has the property that OJ is par-
allel to the view plane. The point J is also called a vanishing point. The plane through
OJ parallel to the view plane, intersects the object plane in a line also called a van-
ishing line. Not only J but each point of this vanishing line is called a vanishing point.
Note that the perspectivity maps no point of Rn onto any point of the vanishing line
in the object plane.

(5) One can show that every collection of lines in the object plane that intersect
in a point on the vanishing line map to parallel lines in the view plane. Again, another
way to put this is that a perspectivity between nonparallel planes maps every family
of lines that intersect on the vanishing line in the object plane into a family of par-
allel lines.

(6) Closed figures can go to open figures and vice versa. For example, the trian-
gle FGJ gets mapped to an unbounded region in the view plane bounded by the
segment [F,G] and the lines L¢3 and L¢4.

Another fact that is true but not explicitly shown in Figure 3.3 is:

(7) Circles can project onto ellipses, parabolas onto hyperbolas; in fact, every non-
degenerate conic can project into any other nondegenerate conic (see Section 3.6.1
and Theorem 3.6.1.1).

As an interesting aside, a consequence of the above is that the reason that we 
see a “horizon” when looking out over the ocean has nothing to do with the fact 
that the earth is round. We would see this even if the earth were flat. The only 
difference is that, in our case of a round earth, one sees the mast of an approaching
ship on the horizon before one sees its hull. This would not happen if the earth were
flat.

Perspectivities are a special case of what are called projective transformations. A
quick definition of these would be to say that they are composites of perspectivities,
but, keeping in line with the way we developed the affine transformations, we shall
make this a theorem and phrase our definition in terms of invariant properties. Fur-
thermore, in this section the goal will be to outline the theory of projective transfor-
mations within affine space (Rn). Let us see how far we can go.

Definition. Properties that are preserved by parallel and central projections are
called projective properties or projective invariants.
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130 3 Projective Geometry

The figures above pointed out aspects of some specific perspectivities. What are
the abstract invariant properties that characterize such maps in general? Earlier we
mentioned some geometric properties that perspectivities between lines do not pre-
serve. Is there anything that all perspectivities preserve? Yes, there is, and it is called
the cross-ratio.

Definition. Let A, B, C, and D be distinct collinear points on an oriented line L.
The cross-ratio in which B and C divide A and D, denoted by (AD,BC), is defined to
be the following quotient of ratios of division:

where || || denotes the signed distance between points of the oriented line L.

Although developed by the ancient Greeks, the modern development of the cross-
ratio is due to A.F. Moebius (Der Barycentrische Calcul, 1827) and independently to
M. Chasles (various publications from 1829–1865). The term “cross-ratio” was coined
by W.K. Clifford in 1878.

Because the ratios of division are independent of the orientation of the line, so is
the cross-ratio. The cross-ratio can be (and is often) defined for points A, B, C, and
D, where only three of those four points are distinct if one defines it to be • in the
duplicate point case. We shall not do so here.

To explain the somewhat mysterious concept of cross-ratio, we first look at the
case of four numbers a, b, c, and d. See Figure 3.4. By definition

(3.1)

Figure 3.4(a) shows the intervals involved in the formula. Figure 3.4(b) shows some
values of (ad,bc), where we fixed a, c, and d and let b vary. We see that the cross-ratio
changes from (d - c)/(c - a) to 0 as b increases from -• to a. It then increases from
0 to • as b increases from a to d. The cross-ratio decreases from (d - c)/(c - a) to -•
as b decreases from +• to d. In general, if one fixes three distinct points A, C, and D
on a line L, then the function
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Figure 3.4. The cross-ratio for four numbers.
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is a one-to-one, onto, and continuous function. This fact is easily deduced from 
equation (3.1).

Now, it is easy to check that the formula on the right-hand side of equation (3.1)
is invariant under affine maps. Although the x-axis may seem like a very special line,
all lines look like it once they are parameterized. We prove the following fundamental
theorem of projective geometry.

3.2.1. Theorem. Both parallel projections and perspectivities between hyperplanes
preserve the cross-ratio.

Proof. By Theorem 2.4.1.2 parallel projections preserve the ratio of division. There-
fore, parallel projections preserve the cross-ratio. Before we get to a proof of the
theorem in the case of perspectivities, we derive a formula for the ratio of division.
Assume that we have points A, B, and D on an oriented line L and that O is a point
not on the line. See Figure 3.5(a). If nA and nD are unit vectors that are orthogonal to
the vectors OA and OD, respectively, then

(3.2)

and

(3.3)

because the quantities in equations (3.2) and (3.3) are just the signed lengths of the
perpendiculars dropped from B to the lines through O, A, and O, D, respectively.

Next, let u be a unit direction vector for L that induces its orientation. Define real
numbers a and b by

(3.4)AB u= a ,

BD n BO nD D• • ,=

AB n OB nA A• • ,=
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Figure 3.5. Perspectivities preserve the cross-ratio.



and

(3.5)

Note that a and b are just the signed distances between A, B, and B, D, respectively.
Equations (3.4) and (3.5) imply that

(3.6)

and

(3.7)

Finally, let vB be the unit vector in direction OB, that is,

(3.8)

Equations (3.2), (3.3), (3.6), (3.7), and (3.8) lead to the following formula for the ratio
of division (AD,B):

(3.9)

This formula shows why the ratio of division is not a projective invariant. It depends
on the direction vector u of the line L containing the points.

We return to the proof of Theorem 3.2.1. Consider Figure 3.5(b). We need to show
that (AD,BC) = (A¢D¢,B¢C¢). If we define

then a derivation similar to the one that led to equation (3.9) shows that

(3.10)

Equations (3.9) and (3.10) show that

(3.11)

The right-hand side of equation (3.11) depends only on angles defined by the rays
through O (actually the sines of the angles between the rays) and not on where the
points lie on the rays. Dividing the two ratios of division eliminated the other depend-
encies. Therefore, we would get the same value for (A¢D¢,B¢C¢), specifically because 
vB = vB¢ and vC = vC¢. Theorem 3.2.1 is proved.

There is an important and computationally useful consequence of the projective
invariance of the cross-ratio. See Figure 3.6. If A(x1,y1), B(x2,y2), C(x3,y3), and D(x4,y4)
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are distinct collinear points that have distinct x-coordinates, then one can compute
their cross-ratio from their x-coordinate values. In other words, if A¢(x1,0), B¢(x2,0),
C¢(x3,0), and D¢(x4,0) are the projections of the points on the x-axis, then

Similarly, one can use the y-coordinates if those are distinct.

3.2.2. Example. To compute the cross-ratio of the points A(2,0), B(0,-1), C(6,2),
and D(8,3) on the line L defined by the equation x - 2y - 2 = 0, assuming that L is
oriented to the right.

Solution. By definition of the cross-ratio, we have that

Since the x-coordinates 2, 0, 6, and 8 of the points are distinct, an easier way to
compute the cross-ratio is to use these values and formula (3.1):

The answer is the same.

We point out another interesting geometric consequence of Theorem 3.2.1. Since
the cross-ratio is preserved by a perspectivity, it follows that the view of four collinear
points is completely determined once one knows the position of three of those points
in the view. For example, consider a railroad track that consists of two rails and
equally spaced ties or a ladder with equally spaced rungs. What are the possible per-
spective views of this track or ladder? Well, the position and relative spacing of any
three of these ties or rungs in the view can be quite arbitrary except for some minor
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constraints, but from then on the relative spacing of the remaining ties or rungs in
the view is fixed. See Figure 3.7.

Returning to our analysis of parallel and central projections, the next definition
is the best we can do in the context of affine geometry.

Definition. A projective transformation or projectivity of a plane X to itself is a “map”
T such that

(a) The domain of T is either X or X minus a line L. The range of T is either X
or X minus a line L¢.

(b) T is one-to-one.
(c) T preserves collinearity when defined.
(d) T preserves the cross-ratio when defined.

3.2.3. Theorem. A projective transformation has the following properties:

(1) Ordinary lines go to ordinary lines.
(2) The map sets up a natural one-to-one correspondence between lines.
(3) A family of concurrent lines goes into a family of concurrent lines or a family

of parallel lines.
(4) A family of parallel lines goes into a family of parallel lines or a family of con-

current lines.
(5) Conics go to conics. More precisely, any nondegenerate conic may be mapped

onto any other nondegenerate conic by a projective transformation.

Proof. See [Gans69]. Theorem 3.2.3 can be proved directly or deduced from
Theorem 3.2.5 below.

3.2.4. Theorem. There is a unique projective transformation in which a given line
L has no image and which sends given noncollinear points A, B, and C into given
noncollinear points A¢, B¢, and C¢, respectively.

Proof. See [Gans69].
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Figure 3.7. The view of three railroad
ties determines the rest.
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The next theorem gives a nice geometric characterization of projective transfor-
mations and generalizes Theorem 2.4.1.2.

3.2.5. Theorem. Every projective transformation is the composite of a sequence of
parallel or central projections not more than one of which is central. Conversely, every
transformation of the plane that is a composite of parallel and central projections is
a projective transformation.

Proof. See [Gans69].

In other words, projective transformations are the transformations that preserve
projective properties.

3.2.6. Example. The similarity T: R Æ R defined by T(x) = 3x is a composite of two
central projections with centers at P1 = (0,-1) and P2 = (0,3). See Figure 3.8.

3.2.7. Theorem. (The Fundamental Theorem of Projective Geometry for the Plane)
There is a unique projective transformation that sends four given points A, B, C, and
D into another four given points A¢, B¢, C¢, and D¢, respectively, if no three in either
set are collinear.

Proof. See [Gans69].

Finally, there is the question as to what the equations for a projective transfor-
mation might look like.

Definition. A transformation of the plane of the form

where
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Figure 3.8. A similarity produced by two
central projections.
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is called a fractional transformation.

3.2.8. Theorem. Every projective transformation is a fractional transformation and
conversely.

Proof. See [Gans69].

3.2.9. Theorem. The set of all projective transformations is a group containing the
planar affine transformations as a subgroup.

Proof. This is obvious. The planar affine transformations correspond to the frac-
tional transformations above where c1 = c2 = 0 and c3 = 1.

This is as far as we shall take things in affine space. Clearly, one of the unpleasant
aspects of perspectivities in this context is that they are not defined everywhere, nor are
they onto. Basically, there are “missing” points. We shall have more to say about that
shortly, but a few comments are appropriate now because it prepares the reader for the
concept of “ideal point” and we also want to relate perspectivities to parallel projec-
tions. We know what the missing points are in the case of a perspectivity of the type
shown in Figure 3.3. We need to add some points, both to the view plane and the object
plane. Suppose we add a new point to a plane for each of its families of parallel lines.
If L is a line, then let L• denote this new point associated to the family of lines paral-
lel to L. L• will be called an ideal point. With these new points, we could extend our
definition of the perspectivity by saying that the point J in Figure 3.3(b) should map to
L3

• and L1
• should map to E¢ in Figure 3.3(a). This would give us a one-to-one and onto

map between these extended planes, which are ordinary planes together with their 
ideal points. In addition, with these new points we could consider parallel projections
between hyperplanes as a special case of perspectivities if we allow the center of
projection to be an ideal point.

3.3 Homogeneous Coordinates

One of the key ideas in the study of analytic projective geometry is that of homoge-
neous coordinates. The standard Cartesian coordinates are sometimes referred to as
“nonhomogeneous” coordinates and are simply one of many ways to specify points
in space with real numbers. Other ways are polar coordinates in the plane and cylin-
drical and spherical coordinates in 3-space. Barycentric coordinates are a type of
“homogeneous” coordinates. They specify points relative to a fixed set of points.

Out of the many ways that one can coordinatize points, which is the most con-
venient depends completely on the type of problem we are trying to solve. Homoge-
neous coordinates are just another way of coordinatizing points. Historically they find

a a a

b b b

c c c

1 2 3

1 2 3

1 2 3

0π



their roots in Moebius’ work on barycentric coordinates (Der Barycentrische Calcul,
1827) and the fact that they are useful with central projections. Here we motivate 
their definition by looking at the relationship between points and solutions to linear 
equations.

We shall start with the real line R. What we are about to do may seem a little silly
at first, but if the reader will bear with us, it should make more sense in the end.
Linear equations in R have the form

(3.12)

We can think of R as the set of solutions to all equations of the form (3.12). Equation
(3.12) is homogeneous in a and b, but not in x. We can achieve more symmetry by
introducing another variable Y and consider the equation

(3.13)

The trivial solution (X,Y) = (0,0) is uninteresting and will be excluded from consider-
ation. Note that if we have a solution x to equation (3.12), then we have a solution
(x,1) to equation (3.13). In fact, (kx,k) will also be a solution to (3.13) for all k π 0.
Conversely, if (X,Y) is a solution to (3.13), then X/Y is a solution to (3.12) if Y π 0. In
short, each solution x to (3.12) gives rise to a class of solutions (kx,k), k π 0, to (3.13)
and each class of solutions (kX,kY) to (3.13) with k π 0 and Y π 0 gives rise to a unique
solution X/Y to (3.12).

Definition. Let x Œ R and let (X,Y) be any pair of real numbers with Y π 0. If 
x = X/Y, then X and Y are called homogeneous coordinates for x. One typically uses
the expression “(X,Y) are homogeneous coordinates for x” in that case.

Note that if (X,Y) are homogeneous coordinates for a real number x, then so are
(kX,kY) for any k π 0.

3.3.1. Example. (-2,1), (-4,2), and (8,-4) are all homogeneous coordinates for the
real number -2.

What about the solutions to (3.13) with Y = 0? Since X π 0 in that case, they are
all multiples of (1,0). In conclusion, all the solutions to (3.13) fall into classes each of
which corresponds to a unique solution to (3.12) except for the one extra class of solu-
tions (k,0). We can think of these classes as points. The set of these “points” will be
called the “projective line.” It can be thought of as consisting of the real numbers with
one additional point added (the one corresponding to Y = 0). The extra point is called
an ideal point. All this will be formalized in the next section.

Next, we look at the more interesting case of the plane. The essential ingredients
in the analytic development of the affine (Cartesian) plane are points, which are pairs
(x,y), and lines, which are the set of solutions (x,y) to an equation of the form

(3.14)

Note the following semi-duality in this context:

ax by c with a b+ + = ( ) π ( )0 0 0, , , .

aX bY with a b+ = ( ) π ( )0 0 0, , , .

ax b with a+ = π0 0, .
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(a) Points on a line are the solutions (x,y) to equation (3.14) keeping a, b, and c
fixed.

(b) Lines (through the fixed point (x,y)) are the solutions (a,b,c) to equation (3.14)
keeping (x,y) fixed.

In (a) we are dealing with nonhomogeneous solutions and in (b) they are homoge-
neous. We can make the solutions homogeneous in both cases by introducing a new
variable Z. Furthermore, to obtain complete symmetry, we restate the equation (3.14)
in the form

(3.15)

Because equation (3.15) always has the trivial solution (0,0,0), and because this solu-
tion is uninteresting, we shall always exclude it from any discussion.

Clearly, if (X,Y,Z) is a solution to (3.15) with Z π 0, then (X/Z,Y/Z) is a solution 
to (3.14). Conversely, if (x,y) is a solutions to (3.14), then (x,y,1) is a solution to 
(3.15), as is (kx,ky,k) for any real k. What this discussion is leading up to is that instead
of thinking of points as coordinatized by pairs (x,y) of real numbers we can think of
them as coordinatized by triples (X,Y,Z), or rather by classes of triples.

Definition. Let p be any point in the plane R2. Let (X,Y,Z) be any triple of real
numbers with Z π 0. If x = X/Z and y = Y/Z are the Cartesian coordinates for p, then
X, Y, and Z are called homogeneous coordinates for p. One typically uses the expres-
sion “(X,Y,Z) are homogeneous coordinates for p” in that case.

Note that if (X,Y,Z) are homogeneous coordinates for a point (x,y), then so are
(kX,kY,kZ) for any k π 0.

3.3.2. Example. (-1,2,1), (2,-4,-2), and (-4,8,4) are all homogeneous coordinates
for the Cartesian point (-1,2).

So far in our correspondence between the solutions to (3.14) and (3.15) we
excluded the solutions to (3.15) that have Z = 0. What about these solutions?

Suppose that (X,Y,0) is a solution to (3.15) and that (a,b) π (0,0).

Case 1. a π 0: If Y = 0, then X = 0. Since the solution (0,0,0) is not allowed, we must
have Y π 0 and X = (-b/a)Y. In other words, every solution has the
form ((-b/a)Y,Y,0).

Case 2. b π 0: This time we can solve for Y and every solution has the form 
(X,(-a/b)X,0), with X π 0.

We can combine cases 1 and 2 to conclude that every solution must have the form
(-bt,at,0) for some t π 0. Alternatively, we could have deduced this from the observa-
tion that the only vectors (X,Y) that are orthogonal to (a,b) are scalar multiples of 
(-b,a). In any case, we see that there is only one extra class of solutions. Let us call
each class of solutions (X,Y,Z) to (3.15) informally a point and the set of these
“points.” the “projective plane.” (Precise definitions are given in the next section.). The
extra points where Z = 0 will be called ideal points.

aX bY cZ with a b c+ + = ( ) π ( )0 0 0 0, , , , , .
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Recall that equations for lines are not unique. Also, if L is the line defined by equa-
tion (3.14), then the family of lines parallel to L is obtained as solutions to equations
where we fix a and b in (3.14) but let c vary (Exercise 1.5.7(b)). Looking at this another
way, what we have just shown is that there is a one-to-one correspondence between
families of parallel lines in the plane and ideal points, namely, to the family of lines
parallel to L we associate the ideal point that is the class of solutions to (3.15) deter-
mined by (-b,a,0). That such a correspondence exists was foreshadowed in the dis-
cussion at the end of Section 3.2.

Finally, the equations in (3.14) give rise to all of the equations in (3.15) except
the equation cZ = 0, that is, Z = 0. Thus there is only one equation in (3.15) not arising
from a line in the plane, but this is precisely the equation that defines the ideal points.
It should not be surprising if, as we shall do in the next section, one defines a “line”
in the projective plane to mean a set of points determined by the solutions to a linear
equation of the form shown in (3.15). Then lines in the projective plane will corre-
spond to solutions to linear equations just like in the Euclidean plane.

3.4 The Projective Plane

The informal discussion of linear equations and their solutions in the previous section
led to homogeneous coordinates and suggested a new way of looking at points in the
plane. We shall now develop these observations more rigorously. Although we are only
interested in the projective line and plane for a while, we start off with some general
definitions so that we do not have to repeat them for each dimension.

3.4.1. Lemma. The relation ~ defined on the points p of Rn+1 - 0 by p ~ cp, for c π
0, is an equivalence relation.

Proof. This is an easy exercise.

Definition. The set of equivalence classes of Rn+1 - 0 with respect to the relation ~
defined in Lemma 3.4.1 is called the n-dimensional (real) projective space Pn. In more
compact notation (see Section 5.4 and the definition of a quotient space),

The special cases P1 and P2 are called the projective line and projective plane, respec-
tively. If P Œ Pn and P = [x1, x2, . . . , xn+1], then the numbers x1, x2, . . . , xn+1 are called
homogeneous coordinates of P. One again typically uses the expression “(x1,x2, . . . , xn+1)
are homogeneous coordinates for P” in that case.

Note that P0 consists of the single point [1]. We can think of points in P1 or P2 as
equivalence classes of solutions to (3.13) or (3.15), or alternatively, as the set of lines
through the origin in R2 or R3, respectively. Other characterizations of the abstract
spaces Pn will be given in Section 5.9. There are actually many ways to introduce coor-
dinates for their points. In the next section we shall see how this can be done for P1

and P2.
It is easy to check that the maps

P R 0n n= -( )+1 ~.
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and

are one-to-one. Therefore, by identifying the corresponding points, we shall think of
these maps as inclusion maps and get a commutative diagram

The “inclusion” maps i above are called the standard imbeddings of R in P1 and R2 in
P2. In particular, we shall consider the Euclidean plane as a subset of the projective
plane.

The two notions of “homogeneous coordinates” and “projective space” are really
quite inseparable. Homogeneous coordinates define the natural coordinate systems
for projective space. Even if they are only used to coordinatize points of Euclidean
space, one is dealing with projective space at least implicitly.

Definition. The points of Pn - Rn are called ideal points. All the other points are
called real points.

The projective line P1 has only one ideal point [1,0], which we shall denote by •
and so, as a set, P1 can be identified with the union R » {•}. Furthermore, with the
natural topology, the real points of the space that “converge” to ±• as numbers would
converge to the ideal point •. In other words, P1 is a circle topologically.

The projective plane P2 is another space that is probably new to the reader. What
does it really “look” like topologically? We shall postpone a careful answer to this ques-
tion to Chapter 5 because this chapter has different goals. However, note that the ideal
points of P2 are the points of the form [X,Y,0]. There is a natural correspondence
between those points and the points [X,Y] of P1, that is, the set of ideal points in the
projective plane look like a copy of the projective line. To put it another way, a good
way to think of the projective plane is as the standard Euclidean plane with a circle
added at infinity. As sets, P2 = R2 » P1. In Section 5.9 we shall give some other defi-
nitions that produce spaces topologically equivalent to the space P2 defined above.
For example, we shall see that we can think of the projective plane as a disk with
antipodal points on its boundary identified. The points derived from the boundary
correspond to the ideal points. See Figure 3.9(a). This also leads to another way of
thinking of P2, namely, as the union of a Moebius strip and a disk with the two bound-
aries (both are circles) glued together. See Figure 3.9(b). In this chapter, however, we
are not interested in the projective plane from the point of view of topology but in
terms of its algebraic and analytic structure. As an analogy, note that R2 looks like an
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open disk topologically, but that is not a useful way of looking at it if one wants to
use its vector space structure.

It should be pointed out that there is actually nothing special about ideal 
points even though their name would suggest otherwise. From an intrinsic point 
of view, every point of Pn looks like every other point of Pn. The reader needs to 
understand what really happened here. Projective spaces are abstract sets (sets of
equivalence classes) and we decided to coordinatize their points, that is, we decided
to associate a tuple of numbers with each point. Although our choice of coordinates
is a natural one, it is only one out of infinitely many ways that one can assign coor-
dinates to the points of these abstract sets. In the case of P2, our chosen coordinates
imbedded R2 in P2 in a special way. Which points end up being called ideal points 
is totally a function of how R2 is imbedded. Their special nature is purely an artifact
of the construction. For example, one can think of a sphere as the Euclidean plane
with one extra point “at infinity” added. This would seem to make this one point
special, but it is only special because of the particular representation. A sphere,
thought of in the abstract, has all points and their neighborhoods looking the same.
We shall return to the issue of coordinates in the next section and Sections 8.13 and
10.3.

Notation. If � is the line in the plane defined by equation (3.14), let �• denote the
ideal point [-b,a,0].

It follows from the discussion in the previous section that the association of �•

with the family of lines parallel to � sets up a one-to-one correspondence between
ideal points and families of parallel lines in the plane.

Definition. A line in P2 is any subset L of P2 of the form

Points of P2 that lie on a line are said to be collinear.

The tuple (a,b,c) that defines the line L above is not unique because any non-
zero multiple defines the same line. On the other hand, it is easy to show that the 

L = [ ] + + = ( ) π ( ){ }X Y Z aX bY cZ, , , , .0 0 0 0for fixed a,b,c

a

disk with antipodal boundary
points identified

disk glued to Moebius strip
along their boundary

a

Moebius
strip

a

a

disk

(a) (b)

Figure 3.9. Visualizing the projective plane.



correspondence between L and [a,b,c] sets up a one-to-one and onto correspondence
between lines L in P2 and points [a,b,c] in P2.

Notation. Given a line � in R2 defined by the equation

or a line L in P2 defined by the equation

we shall let [�] and [L] denote the point [a,b,c] in P2.

With this notation, consider a line L and assume that [L] = [a], where a Œ R3. It
follows that L is just the set of all points [p] in P2, so that

(3.16)

This gives us a complete duality between points on a line and lines on a point in P2.
This observation was already implicit in our discussion earlier of equation (3.15). We
make this duality a little more explicit.

Definition. Given a statement concerning the projective plane, the dual of that state-
ment is the statement where every occurrence of the words “point” or “collinear” is
replaced by “line” or “concurrent,” respectively, and vice versa.

The principle of duality in the projective plane: Given any theorem for the 
projective plane, its dual is also a theorem.

The duality principle is very useful in the study of projective geometry. Even
though it will only get an occasional mention in this book, it is worth being aware of
it.

All lines are alike in P2 (topologically they are circles), but with our imbedding of
R2 in P2, we can distinguish between two types of lines.

Definition. An ordinary line L in P2 is a line that consists of an ordinary line � in
the Euclidean plane with an ideal point adjoined, that is, a line of the form L = � »{�•}.
(See Exercise 3.4.1.) The line defined by the equation Z = 0, which consists of the set
of ideal points, is called the ideal line.

Note that there is no such thing as “parallel” lines in the projective plane.

3.4.2. Theorem. Every pair of distinct lines in P2 intersects in a point.

Proof. Since every line has an ideal point, every line intersects the ideal line. It 
suffices to show that two ordinary lines intersect. The only possible problem could
come from two lines whose real parts in R2 are parallel, but those will intersect in
their common ideal point.

a p• .= 0

aX bY cZ+ + = 0,

ax by c+ + = 0

142 3 Projective Geometry



Theorem 3.4.2 is nice because arguments therefore do not have to contain special
cases to deal with nonintersecting lines.

3.4.1 Analytic Properties of the Projective Plane

This section describes some analytic properties of P2.

3.4.1.1. Theorem. Three distinct points [X1,Y1,Z1], [X2,Y2,Z2], and [X3,Y3,Z3] of P2

are collinear if and only if

(3.17)

Proof. We basically have to find numbers a, b, and c, not all zero, so that

The theorem is now an easy consequence of basic facts about when such systems of
equations admit nontrivial solutions.

3.4.1.2. Corollary. The line in P2 determined by two distinct points [X1,Y1,Z1] and
[X2,Y2,Z2] has equation

(3.18)

Proof. Simply apply Theorem 3.4.1.1 to points [X,Y,Z], [X1,Y1,Z1], and [X2,Y2,Z2]
and expand the determinant in the theorem by minors using the top row of the matrix.

3.4.1.3. Theorem. If the lines Li in P2 defined by equations

are distinct, then they intersect in the point [(a1,b1,c1) ¥ (a2,b2,c2)].

Proof. This follows from the fact that the cross product of two vectors is 
orthogonal to both of the vectors.

3.4.1.4. Theorem. Let L be the line in P2 determined by two distinct points 
P1 = [p1] and P2 = [p2], pi Œ R3.

(1) Every point of L can be written in the form P = [sp1 + tp2] for some real
numbers s and t that are not both zero. Furthermore, P1, P2, and P are distinct points
if st π 0. If P = [s¢p1 + t¢p2], then (s¢,t¢) = c(s,t), for some nonzero constant c.
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(2) Every point of L other than P1 can be expressed uniquely in the form 
[sp1 + p2]. By allowing s to equal • and using the convention that [sp1 + p2] = P1 when
s = •, we shall say in the future that every point of L can be so expressed. Similarly,
every point of L can be expressed uniquely in the form [p1 + tp2], where the point for
t = • is identified with P2.

Proof. The fact that every point Q = [q] of L can be written in the form [sp1 + tp2]
follows form the fact that the vector q must be a linear combination of the vectors p1
and p2 because the determinant (3.17) is zero. Showing that P1, P2, and P are distinct
points if st π 0 is straightforward. Applying Theorem 3.4.1.1 to those three points
implies that they lie on L because the fact that the bottom row is a linear combina-
tion of the top two rows means that the determinant in the theorem is zero. This basi-
cally proves (1). The existence part of (2) follows easily from (1). The uniqueness part
of (2) is easily checked.

Note that identifying [sp1 + p2] with P1 when s = • is reasonable because

The same argument justifies identifying [p1 + tp2] with P2 when t = •.
Theorem 3.4.1.4(2) can be interpreted as saying that every line in P2 can be para-

meterized by the extended reals R*. In the first parameterization we have in effect
made P1 the new ideal point. P2 is the new ideal point for the second. The parame-
terizations are not unique because they depend on the choice the two distinct points
with respect to which they are defined. More importantly, the next example shows
that it also depends on the representatives p1 and p2 we have chosen.

3.4.1.5. Example. Consider the line L defined by the points P1 = [1,3,2] and 
P2 = [-1,0,4]. By Theorem 3.4.1.4(2),

The point Q = [0,3,6] on L would be assigned the parameter s = 1. On the other hand,
P1 = [2,6,4] and choosing the representative (2,6,4) for P1 would have represented L as

and assigned the parameter 1/2 to Q.

Next, we would like to define the cross-ratio for four points on a line in P2. One
approach would be to take advantage of our earlier definition of the cross-ratio for
points in R2. The only complication is that one of the points might be an ideal point
and one would have to give special definitions in those cases. It would be nice to give
a more intrinsic definition. Although a metric-free definition was given by C.G. von
Staudt (Beiträge zur Geometrie der Lage, 1847), the modern approach is based on 
metric considerations. We shall use a coordinate-based approach using homogeneous
coordinates. In the end, one would of course want to check that all definitions agree.
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An inherent problem when using coordinates is that one has to show that different
coordinatizations give the same answer.

Let A, B, C, and D be four distinct points on a line L in P2. We shall denote the
cross-ratio in which B and C divide A and D by (AD,BC). Here are two definitions for
it:

Definition 1. Assume that A = [a] and D = [d] and express B and C in the form 
[a + kd] and [a + k¢d], respectively, for some nonzero k and k¢. Define

(3.19)

Definition 2. Let P = [p] and Q = [q] be any distinct points of L and express A,
B, C, and D in the form [p + aq], [p + bq], [p + cq], and [p + dq], respectively. 
Define

(3.20)

3.4.1.6. Theorem. The two definitions in equations (3.19) and (3.20) of the cross-
ratio (AD,BC) of four distinct points A, B, C, and D on a line in the projective plane
are well defined and agree.

Proof. The proof consists of some straightforward computations.
To prove that Definition 1 is well defined, let A = [sa] and D = [td] and let 

B = [(sa) + m(td)] and C = [(sa) + m¢(td)]. We must show that

Now, (sa) + m(td) = e(a + kd) and (sa) + m¢(td) = f(a + k¢d) for nonzero constants 
e and f. It follows that

Since the vectors a and d are linearly independent, s = e = f, ek = mt, and fk¢ = m¢t,
which easily implies that our two ratios are the same.

To prove that Definition 2 is well defined, one needs to show that it depends 
neither on the choice of P and Q nor on their representatives. The independence of
their representatives is easy to show. For the rest, first replace P by P¢ = [p¢ ], p¢ = p
+ sq, express the points A, B, C, and D in terms of P¢ and Q as [p¢ + a¢q], [p¢ + b¢q],
[p¢ + c¢q], and [p¢ + d¢q], respectively, and compare the new expressions with the old
ones. One will find that a = s + a¢, b = s + b¢, etc., so that it is easy to check that
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Similarly, one shows that replacing Q by Q¢ will preserve formula (3.20). Let Q¢ = [q¢],
q¢ = p + tq. Express the points A, B, C, and D in terms of P and Q¢ and relate the new
expressions with the old ones. The details are left to the reader.

Finally, to show that Definition 1 and 2 agree, choose P = A and Q = D. In this
case, a = 0 and d = •. These values imply that the quotient in (3.20) is just b/c, the
same value that Definition 1 asserts. This proves the theorem.

We shall give a third definition of the cross-ratio shortly. First, we study the
problem of coordinatizing the points of the projective line and plane. Let us start with
lines. The standard way that one assigns coordinates (real numbers) to a line in
Euclidean space (thought of as an abstract set of vectors without coordinates) is to
decide on a unit of distance, pick a start point o (the “zero”), and pick a direction for
the line that defines which half with respect to o will get positive numbers and which
will get negative numbers. We can accomplish this by picking two points: the start
point o and another point u (the “+1”) that is a unit distance form o. See Figure
3.10(a). Each point p of the line is then assigned the number t, where p - o = t(u -
o). Note how o and u get assigned the numbers 0 and 1, respectively. What is differ-
ent about a line in P2 is that it is topologically a circle. Picking two points on a circle
does not orient it. In Figure 3.10(b), which of the points A or B is “between” O and
U? Figure 3.10(a) shows that this is not a problem for a line in R2. For a circle or pro-
jective line we have to pick three points, but it is convenient to pick them in a special
way. This will also restore the dependency on representations of points that we lost
in Theorem 3.4.1.4. The next lemma is the basic property we need.

3.4.1.7. Lemma. Let I = [i1] = [i2], O = [o1] = [o2], and U = [u1] = [u2] be three 
distinct points on a line in P2. If

(3.21)

then i1 = ci2, o1 = co2, and u1 = cu2, for some c π 0.

Proof. Let i1 = ai2, o1 = bo2, and u1 = cu2. Equations (3.21) imply that

Since the vectors i2 and o2 are linearly independent, we must have a = b = c.

The importance of Lemma 3.4.1.7 is the following:
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Figure 3.10. Defining when a point
is between two points.



3.4.1.8. Corollary. Using the notation in Theorem 3.4.1.4, if we require the repre-
sentatives p1 and p2 to always add up to a representative of a fixed point, then the
parameterization described in part (2) of that theorem will depend only on the points
P1 and P2 but not on their representatives.

Consider the projective line P1 and the three special points [1,0], [0,1], and [1,1]
that correspond to the points •, 0, and 1. Note how the coordinates of the standard
representatives of the first two points add up to the coordinates of the representative
of the third. We are ready to coordinatize points in projective space.

Definition. Let L be a line in P2 and let I, O, and U be three distinct points on L.
Choose representations I = [i], O = [o], and U = [u] for the points so that i + o = u.
The map

defined by

is called the standard parameterization of L with respect to the points I, O, and U. Using
the standard identification of P1 and R* we shall also describe the map j with the 
formulas

3.4.1.9. Theorem. The standard parameterization of a line L with respect to three
of its points is a one-to-one and onto map that depends only on the points and not
on their representatives.

Proof. The theorem follows from Corollary 3.4.1.8.

Definition. Let j be the standard parameterization of a line L in P2 with respect to
points I, O, and U. If P Œ L and if j-1(P) = [X,Y], then (X,Y) will be called the homo-
geneous coordinates of P with respect to the coordinate system defined by I, O, and U.
Let x = X/Y or • depending on whether Y π 0 or Y = 0. The number x will be called
the (extended real or affine) coordinate of P with respect to the given coordinate system.
The points [1,0], [0,1], and [1,1] define the standard coordinate system for P1 and the
coordinates with respect to it are called the standard coordinates.

Let

(3.22a)

be the standard parameterization of a line L with respect to the coordinate system
defined by points Ik, Ok, and Uk on L, k = 1,2. Express Ik, Ok, and Uk in the form 
Ik = [ik], Ok = [ok], and Uk = [uk] with ik + ok = uk. By Theorem 3.4.1.4 there are con-
stants a, b, c, and d, so that

jk : P L1 Æ

j jx x and( ) = +[ ] •( ) =i o I,

j X Y X Y,[ ]( ) = +[ ]i o

j : P L1 Æ
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(3.22b)

3.4.1.10. Theorem. Given the parameterizations jk in (3.22a) and the constants a,
b, c, and d in equations (3.22b), the map

has the form

(3.22c)

If we identify P1 with R* and consider Y as a map from R* to R*, then the map Y
has on the form

(3.22d)

Proof. The theorem follows from the following string of equalities:

The determinant in (3.22c) is nonzero because i1 and o1 are linearly independent.
Equation (3.22d) is obtained by factoring out a Y and making the substitution x = X/Y.

Theorem 3.4.1.10 should be taken as a statement about how coordinates change
as one moves from one coordinate system for a projective line to another. Specifically,
we have

3.4.1.11. Corollary. Using the notation in Theorem 3.4.1.10, the map

(3.23)

maps the homogeneous coordinates (X,Y) of a point of the line L with respect to the
coordinate system defined by I1, O1, and U1 to the homogeneous coordinates of the
same point with respect to the coordinate system defined by I2, O2, and U2. Conversely,
every such map corresponds to a change of coordinates.

3.4.1.12. Example. Suppose the standard coordinates for a point P in P1 are
5 = [5,1]. What are the coordinates of P with respect to the coordinate system defined
by I = 2 = [2,1], O = 3 = [3,1], and U = 7 = [7,1]?

X Y X Y
a c

b d
with

a b

c d
( ) Æ ( )ÊË

ˆ
¯ π 0,

j

j

1 1 1

2 2 2 2

2 2

2

X Y X Y

X a c Y b d

aX bY cX dY

aX bY cX dY

,

, .

[ ]( ) = +[ ]
= +( ) + +( )[ ]
= +( ) + +( )[ ]
= + +[ ]( )

i o

i o i o

i o

y x
ax b
cx d

( ) =
+
+

.

y X Y aX bY cX dY with
a b

c d
, , .[ ]( ) = + +[ ] π 0

y j j= Æ-
2

1
1

1 1: P P

o i o1 2 2= +b d .

i i o1 2 2= +a c ,



Solution. First of all, we must find representatives i and o for I and O, respectively,
so that i + o = (7,1). Since the equation

has solution a = -4 and b = 5, we can let i = (-8,-4) and o = (15,5). Next, the standard
parameterization j of P1 with respect to the given I, O, and U is defined by

Since j(5/6) = 5, it follows that 5/6 are the coordinates of P in the new coordinate
system. Alternatively, we could follow the proof of Theorem 3.4.1.10 and solve the
system of equations

for a, b, c, and d to get a = 1/4, b = -3/4, c = 1/5, and d = -2/5. Then

which leads to the same answer.

We are ready for the third definition of the cross-ratio (AD,BC) of four distinct
points A, B, C, and D on a line L in P2.

Definition 3. Let j be the standard parameterization of L with respect to a coordi-
nate system I, O, and U. If j([a1,a2]) = A, j([b1,b2]) = B, j([c1,c2]) = C, and j([d1,d2])
= D, then define

(3.24)

3.4.1.13. Theorem. The definition of the cross-ratio (AD,BC) of four distinct points
A, B, C, and D on a line L in the projective plane via equation (3.24) is well defined
and agrees with those in equations (3.19) and (3.20).

Proof. To show that the definition is independent of the coordinate system one only
needs to show that the right-hand side of equation (3.24) is unchanged under a trans-
formation of the form in equation (3.23). A straightforward computation does that.
Next, it suffices to show agreement with Definition 1. Let j be the standard parame-

AD BC, .( ) =

a a

b b

d d

c c
d d

b b
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c c

1 2

1 2

1 2
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5 1

1
4

1
5

3
4

2
5

1
2

3
5

5
6

( )
- -

Ê

Ë

Á
ÁÁ

ˆ

¯

˜
˜̃ = Ê

Ë
ˆ
¯ ´

0 1 8 4 15 5, , ,( ) = - -( ) + ( )b d

1 0 8 4 15 5, , ,( ) = - -( ) + ( )a c

j x x x x
x
x

( ) = - -( ) + ( )[ ] = - + - +[ ] =
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terization of L with respect to the points A = [a], D = [d], and C = [c] with a + d = c.
Then j(1,0) = A, j(0,1) = D, j(1,1) = C, and the right-hand side of equation (3.24) eval-
uates to b2/b1. Now, j(b1,b2) = B = [a + kd] = j(1,k), which implies that k = b2/b1. In
the notation of Definition 1, the cross-ratio (AD,BC) was defined to be k/k¢, but k¢ = 1
here, so that the theorem is proved.

For yet another derivation and explanation of the projective invariance of the
cross-ratio see [Blin98].

We now move on to parameterizing points in the projective plane. What we did
for a projective line will generalize in a natural way. Three points were enough to
determine a coordinate system for R2. We need a fourth for P2.

Definition. Let I, J, O, and U be four points of P2 no three of which are collinear.
Choose representations I = [i], J = [j], O = [o], and U = [u] for the points so that 
i + j + o = u. The map

defined by

is called the standard parameterization of P2 with respect to the coordinate system I, J,
O, and U. Using the standard inclusion of R2 in P2 we shall also describe the map j
with the formulas

3.4.1.14. Theorem. The standard parameterization of P2 with respect to four of its
points is a one-to-one and onto map that depends only on the points and not on their
representatives.

Proof. The theorem follows from the natural analogs of Theorem 3.4.1.4, Lemma
3.4.1.7, and Corollary 3.4.1.8, whose proofs are left as exercises for the reader.

Definition. Let j be the standard parameterization of P2 with respect to points I, J,
O, and U. If P Œ P2 and if j-1(P) = [X,Y,Z], then (X,Y,Z) will be called the homoge-
neous coordinates of P with respect to the coordinate system defined by I, J, O, and U.
For those points P for which Z π 0, let x = X/Z and y = Y/Z and call the pair (x,y) the
(affine) coordinates of P with respect to the given coordinate system. The points [1,0,0],
[0,1,0], [0,0,1], and [1,1,1] define the standard coordinate system for P2 and the coor-
dinates with respect to it are called the standard coordinates.

3.4.1.15. Example. Suppose the standard coordinates for a point P in P2 are
(1,2) = [1,2,1]. What are the coordinates of P with respect to the coordinate system
defined by I = (-3,0) = [-3,0,1], J = (0,-2) = [0,-2,1], O = (-1,-1) = [-1,-1,1], and 
U = (-2,-1) = [-2,-1,1]?

j jx y x y and x y x y, , , ,( ) = + +[ ] [ ]( ) = +[ ]i j o i j0

j X Y Z X Y Z, ,[ ]( ) = + +[ ]i j o

j : P P2 2Æ
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Solution. The representatives i = (-3,0,1), j = (0,-2,1), and o = (1,1,-1) for I, J, and
O, respectively, have the property that they add up to a representative for U. The stan-
dard parameterization j of P2 with respect to the given I, J, O, and U is defined by

Solving the equation j(x,y) = (1,2) for x and y gives that x = 0 and y = -1/2. Therefore,
P has coordinates (0,-1/2) with respect to the given coordinate system.

Let

(3.25a)

be the standard parameterization of P2 with respect to the coordinate system defined
by Ik, Jk Ok, and Uk, k = 1,2. Express Ik, Jk Ok, and Uk in the form Ik = [ik], Jk = [jk],
Ok = [ok], and Uk = [uk] with ik + jk + ok = uk. Because the vectors ik, jk, and ok are
linearly independent, there are constants ai, bi, and ci, so that

(3.25b)

3.4.1.16. Theorem. Given the parameterizations jk in (3.25a) and the constants ai,
bi, and ci in equations (3.25b), the map

has the form

(3.25c)

With respect to the standard inclusion of R2 in P2 the map Y has on the form

(3.25d)

Proof. The proof is a straightforward computation similar to the proof of Theorem
3.4.1.10.

Like Theorem 3.4.1.10, Theorem 3.4.1.16 should be taken as a statement about
how coordinates change as one moves from one coordinate system of the projective
plane to another. In other words, we have

y x y
a x a y a
c x c y c
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= - + - +( )[ ] ´ - + - +( )( )

3 0 1 0 2 1 1 1 1
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3.4.1.17. Corollary. Using the notation in Theorem 3.4.1.16, the map

(3.26)

maps the homogeneous coordinates (X,Y,Z) of a point of P2 with respect to the coor-
dinate system defined by I1, J1, O1, and U1 to the homogeneous coordinates of the
same point with respect to the coordinate system defined by I2, J2, O2, and U2. Con-
versely, every such map corresponds to a change of coordinates.

3.4.2 Two-dimensional Projective Transformations

This section defines the natural transformations associated to the projective plane 
and discusses some of their analytic properties. The next definition is in the spirit 
of the definitions of the affine transformations in Chapter 2 and the approach in
Section 3.2.

Definition. A projective transformation or projectivity of P2 is any one-to-one and
onto map T : P2 Æ P2 that preserves collinearity and the cross-ratio of points.

Compare this definition with the one in Section 3.2 and note that we no longer
have to add provisions about things being defined. Our definition has become much
cleaner. However, to make working with such transformations easy we need to derive
their analytic form.

Recall the fractional transformations of the plane defined in Section 3.2. Trans-
lating them into equations dealing with homogeneous rather than Cartesian coordi-
nates leads to the following homogeneous system of equations:

(3.27)

3.4.2.1. Theorem. The system of equations in (3.27) determines a well-defined one-
to-one and onto transformation T: P2 Æ P2, which preserves collinearity and the cross-
ratio. In other words, the system in (3.27) determines a projectivity. Conversely, every
projectivity of P2 can be described via a system of equations as in (3.27).

Proof. The first part of the theorem is fairly straightforward. For the second, see
[Gans69].

Definition. The matrix

a b c
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a b c
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0



will be called a matrix for the projective transformation defined by (3.27). (We choose
this matrix rather than the transpose because we shall let vectors operate on the left
to be consistent with what we do with matrices for linear transformations.)

Note that the coefficients in the system of equations in (3.27) are not uniquely
determined by the projective transformation. If one were to multiply every coefficient
by some fixed nonzero number, the new coefficients would define the same transfor-
mation. This is why we defined a matrix for a projective transformation rather than
the matrix. The entries of the matrix are unique up to such a common multiple
however.

3.4.2.2. Theorem. The projectivities of P2 form a group under composition.

Proof. This is straightforward.

Next, let us relate the projectivities defined here with the transformations defined
in Chapter 2. First of all, it is clear that the projectivities defined in Section 3.2 are
just the projectivities of P2 restricted to R2.

Definition. An affine transformation of P2 is any projectivity T of P2 with the prop-
erty that T(R2) Õ R2.

One can show that the set of affine transformations forms a subgroup of the group
of projective transformations. Also, if T is an affine transformation, then T must nec-
essarily send ideal points to ideal points. In other words, if T ([x,y,z]) = [x¢,y¢,z¢], then
z = 0 implies that z¢ = 0. Using the notation in (3.27) this means that c1x + c2y = 0 for
all x and y. The only way that this can be true is if c1 = c2 = 0. This shows that the
equations for an affine transformation have the form

(3.28a)

and that they have matrices of the form

(3.28b)

Note that we could have normalized the c3 in (3.28a) and (3.28b) to be 1.
The equations show that the affine transformations of P2 are just the extensions

of the affine transformations of R2 as defined in Chapter 2. (Simply translate the equa-
tions found in Chapter 2 into equations using homogeneous coordinates.) In particu-
lar, the similarities and motions of R2 extend to transformations of P2. The equations
for motions in terms of homogeneous coordinates have the form

a b

a b
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1 1

2 2

3 3 3

0

0
Ê
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ˆ

¯
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π
x a x a y a z
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z c z

where
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y

(x,y)

x¢
x

–1/a

Figure 3.11. A standard central projection.

(3.29)

where a2 + b2 = 1.
Comparing the results of Section 3.2 with the corresponding results for the pro-

jective plane, it is clear that the projective plane has simplified the mathematics. Aside
from theoretical gains though, of what practical value is all of this?

3.4.3 Planar Maps and Homogeneous Coordinates

This section shows how homogeneous coordinates can simplify defining maps in 
the plane, in particular central projections and perspectivities. The reason is that all
(projective) transformations can be expressed uniformly via matrices. Matrices are
convenient from the point of view of computations and it is advantageous to be able
to represent the composition of transformations by matrix products. This is not pos-
sible with Cartesian coordinates. The problem is that translations cannot be expressed
as matrices when one uses Cartesian coordinates.

Consider the projective transformation

defined by the matrix

This is a very special projectivity that is closely related to the central projection of the
plane onto the x-axis from the point (0,-1/a) on the y-axis. The latter sends the point
(x,y) in the plane to the point (x/(ay + 1),0) on the x-axis. To see this, consider Figure
3.11 and note that by similarity of triangles

M U aa( ) =
Ê

Ë
Á
Á

ˆ

¯
˜
˜

1 0 0

0 1

0 0 1

.

Ua : P P2 2Æ

¢ =z z,

¢ = - + +y bx ay dz

¢ = + +x ax by cz
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On the other hand,

This shows that the central projection

onto the x-axis from the point (0,-1/a) on the y-axis can be represented by the matrix

as long as one uses the homogeneous coordinate representation for points. This means
that one can also use matrix algebra to deal with central projections.

3.4.3.1. Example. Find the central projection C of the plane onto the line L defined
by the equation x - y = 2 from the point P = (5,1). Show that C(5,4) = (5,3).

Solution. See Figure 3.12. Since we now know how compute central projection onto
the x-axis from points on the y-axis, the idea will be to reduce this problem to one of
that type. One way to achieve this situation is to translate P to (1,-1) and then to
rotate about the origin through an angle of -p/4. Let T be this translation and R the
rotation. Then P¢ = RT(P) = (0,- ) and C = T-1R-1SRT, where S = C1/ is the central22
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Figure 3.12. A central projection example.



156 3 Projective Geometry

projection from the point P¢ onto the x-axis. The matrices for these maps with respect
to homogeneous coordinates are:

Multiplying these matrices together gives that

In other words, C is defined by the equations

Since

and

it follows that C(5,4) = (5,3). We could also have deduced this by substituting 5 for x
and 3 for y in the equations above.
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Frames could also be used to solve problems like the one in Example 3.4.3.1. See
Section 3.5.1.

There is another interesting aspect to the projectivity Ua. Consider the lines

through (0,-1/a) and with slope m. Note that

In particular,

This shows that the center (0,-1/a) of the central projection has been mapped to “infin-
ity” and the two lines have been mapped to the lines

respectively. See Figure 3.13. In general, lines through (0,-1/a) are mapped to verti-
cal lines through their intersection with the x-axis. Furthermore, the central projec-
tion from (0,-1/a) has been transformed into an orthogonal projection of R2 onto the
x-axis. Dually, the vertical lines x = c are mapped to lines through (c,0), which inter-
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sect in (0,1/a). See Figure 3.14. The point (0,1/a) is called a vanishing point. The reader
should recall the discussion of vanishing points in Section 3.2.

The last observation about the map Ua is that it is a well-defined map on all of
projective space even though the affine central projection with center (0,-1/a) is not,
since it is not defined for the points on the line y = -1/a. The simple-minded expla-
nation for this discrepancy is that affine central projections involve a division, so that
one has to worry about zero denominators, whereas the associated projective trans-
formations do not.

Finally, consider the projective transformation Ua,b : P2 Æ P2 defined by the matrix

(3.30)

The affine map T that it induces also has a simple geometric description. Let T1 be
the parallel projection in direction e3 of the x-y plane onto the plane X defined by

Let T2 be the perspectivity with center (0,0,-1) from X back to the x-y plane. It is easy
to show that T = T2T1. See Figure 3.15. The point P in the figure gets mapped to Q in
the plane X by T1 and then to P¢ by T2.

3.5 Beyond the Plane

Central projections, perspectivities, projective transformations, fractional transfor-
mations, and homogeneous coordinates can all be defined in a straight forward

ax by z+ - = 0.
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Figure 3.14. A vanishing point.
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manner for Rn, but restricting ourselves to Rn would lead to the same shortcomings
that we saw for R2. The proper setting for all these maps is again projective space. 
N-dimensional projective space Pn was defined in Section 3.4. This section briefly
describes how the definitions and results of the last few sections extend.

First of all, in analogy with P2, one can think of Pn as the set of lines through the
origin in Rn+1. Furthermore, there is again a natural imbedding of Rn into Pn.

Definition. The map

defined by

is called the standard imbedding of Rn in Pn.

Identifying a point p of Euclidean space with its image i(p) in projective space
allows us to consider Rn as a subset of Pn. We shall do so from now on and consider i as
an inclusion map. Also, by identifying [x1,x2, . . . , xi,xi + 1] in Pi with [x1,x2, . . . , xi,0,xi+1] in
Pi+1, we get natural inclusions Pi Ã Pi+1 and a commutative diagram

Definition. The points of Pn - Rn are called ideal points. All the other points are
called real points.

The ideal points in Pn are the points of the form [x1, . . . , xn, 0]. They can also be
thought of as corresponding to families of parallel lines in Rn. Lines, planes, etc., in
Pn are defined in terms of solutions to appropriate sets of homogeneous equations.
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zFigure 3.15. A geometric explanation of
the transformation defined by
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Definition. A (projective) hyperplane in Pn is any subset of Pn of the form

Definition. A k-dimensional projective plane in Pn is any subset of Pn of the form

where (ai1,ai2, . . . ,ai,n+1), i = 1, . . . ,n - k, are a fixed set of n - k linearly independent
vectors. A one-dimensional projective plane in Pn is called a (projective) line.

One can show that a projective hyperplane in Pn is just an (n - 1)-dimensional
projective plane. A k-dimensional projective plane should be thought of as an imbed-
ded Pk (see Corollary 3.5.2 below). The ideal points in Pn form a hyperplane defined
by the equation

A projective line either consists entirely of ideal points or is an ordinary lines in Rn

together with the single ideal point associated to the family of lines in Rn parallel to
that ordinary line.

Define a map

Definition. The map p is called the standard projection of Pn onto Rn.

Note that the map p is not defined on all of Pn. It corresponds to finding the inter-
section of the line through the origin and (x1, x2, . . . , xn+1) in Rn+1 with the plane xn+1 = 1.

Like in the projective plane, there are many ways to coordinatize the points of Pn.
One can also define the cross-ratio of four points on a projective line.

Definition. A projective transformation or projectivity of Pn is any one-to-one and
onto map T : Pn Æ Pn that preserves collinearity and the cross-ratio of points.

One can prove that projective transformation of Pn are defined by means of 
homogeneous equations in n + 1 variables and can be described by means of 
(n + 1) ¥ (n + 1) nonsingular matrices.

Definition. Two figures F and F¢ are projectively equivalent if there is an projective
transformation T with T(F) = F¢.
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3.5.1. Theorem. (The Fundamental Theorem of Projective Geometry for Pn) Given
two sets {Pi} and {Pi¢} of n + 2 points in Pn with the property that no n + 1 points of
either set lies in a hyperplane, then there is a unique projective transformation T of
Pn that sends Pi to Pi¢.

Proof. The proof is analogous to what we did for P2.

3.5.2. Corollary. Given two k-dimensional projective planes X and Y in Pn, there is
a projective transformation T of Pn that sends X onto Y.

The reader should remember two fundamental ideas: One is that, as was pointed
out earlier, whenever one works with homogeneous coordinates one is really dealing
with projective space, whether one is consciously thinking about that or not, because
those coordinates are the natural coordinates for projective space. Second, if one has
to deal with (projective) transformations of Rn, then it is often simpler to translate
the problem into one involving Pn, to solve the corresponding problem in that space,
and finally to map the answer back down to Rn (equivalently, solve the problem using
homogeneous coordinates first). This idea can be expressed very compactly by the
commutative diagram

If one needs to deal with a transformation f, then deal with its lift F to Pn instead,
where F is defined by the equation f = pFi with i and p the standard inclusion and
projection, respectively. (Recall that p is actually not defined on all of Pn.)

3.5.1 Homogeneous Coordinates and Maps in 3-Space

The homogeneous coordinates of a point (x,y,z) in R3 are a 4-tuple

Every projective transformation of R3 is an affine transformation or a composite of
an affine transformation and a single perspectivity. The affine part can in turn be
decomposed into a composition of translations, rotations, reflections, shearings, or
local scaling. Using homogeneous coordinates, we can express such a map either as
a product of 4 ¥ 4 matrices that correspond to the maps in that composition or via a
single 4 ¥ 4 matrix whose parts can be described as shown below:

X Y Z W where W X W y Y W and Z W, , , , , , .( ) π = = =  and x  z0

F

f

Pn Pn

Rn Rn

Æ
i ≠ » » Ø p

Æ
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The above matrix for a projective transformation is not unique. One can always mul-
tiply each entry by a fixed nonzero constant and the resultant matrix will also repre-
sent the same transformation.

As before, there is one matrix that is of particular interest. Consider the matrix

This matrix represents a map Ca : R3 Æ R2 that is the central projection of R3 onto
the x-y plane from the point (0,0,-1/a) on the z-axis (the analog of the planar map Ca
in Section 3.4.3). To see this, note that

In other words,

which agrees with what this particular central projection should do.

3.5.1.1. Example. Find the central projection S of R3 from the origin onto the plane
X defined by the equation 2x - y + z = 6.

Solution. We shall solve this problem in three different ways. The first and most
trivial solution is simply to find the intersection of lines through the origin with the
plane X. Now the parametric equation of the line L through the origin and the point
(x,y,z) are

C x y z
x

az
y

aza , , , ,( ) =
+ +

Ê
Ë

ˆ
¯1 1

x y z M x y aza1 0 1[ ] = +[ ].

M
a
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Ê
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Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

1 0 0 0

0 1 0 0

0 0 0

0 0 0 1
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rotation, reflection
shearing, local scaling

perspective
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a21 a22 a23 a24
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translation global scaling

a33
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But (x¢,y¢,z¢) belongs to X if and only if

that is,

In other words, S is defined by the equations

A second way to solve the problem is to transform the problem into simpler ones.
The y-, x-, and z intercepts of X are the points A(0,-6,0), B(3,0,0), and C(0,0,6), respec-
tively. See Figure 3.16. To find the map S, we shall reduce this problem to one we can
handle by describing S as a composition of three maps for which we already know
how to derive the equations. First of all, let T be the linear transformation of R3, which
sends A to A¢(0,-6,6), B to B¢(3,0,6), and C to C¢ = C. It is easy to see that T sends the
plane X to the plane defined by z = 6. Next, let R be the translation that translates this
plane to the x-y coordinate plane. Then RT sends the origin to (0,0,-6). It follows that
S = T-1R-1C1/6RT. The maps have the following matrices (with respect to homogeneous
coordinates):
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Multiplying these matrices together (in the opposite order from the maps) we get that
S has matrix

(3.31)

This means that the homogeneous equations for S are

Dividing through by w¢ leads to the same nonhomogeneous equations for S as before.
Note that these equations give the right results for the points A, B, and C.

A third solution to the problem uses strictly rigid motions and frames. (The trans-
formation T above is not a rigid motion.) Our first goal is to find an orthonormal basis
u1, u2, and u3 for 3-space so that the first two vectors are an orthonormal basis for
X. To find u1 and u2 we use the Gram-Schmidt algorithm on any basis of X. Using
the basis AB and AC leads to

Since the equation for X implies that (2,-1,1) is a normal vector for X we can let

Let F be the frame (u1,u2,u3). Then F-1 transforms a point (x,y,z) into F-coordinates
(x¢,y¢,z¢). In this coordinate system the plane X becomes the plane X¢ defined by 
the equation z¢ = . (X was a distance from the origin.) In other words, if R is
the translation with translation vector (0,0,- ), then6
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In homogeneous coordinates the matrices for F-1 and F are

respectively. Since the homogeneous matrix for R-1C1/ R is

a simple multiplication of matrices gives us the same homogeneous matrix for S as
in (3.31). This shows that our new answer to the problem agrees with the two previ-
ous answers.

If all one wants is the equations for S in Cartesian coordinates, then clearly the
first solution to this problem is the simplest. The second solution was given mainly
to emphasize the fact that any transformation can be used in solving such problems
as long as they preserve the relevant aspects of the problem, in this case lines and
intersections of lines. Affine maps clearly do that. However, sometimes, as in com-
puter graphics applications, one is really after the equations for the central projection
in frame F coordinates. This amounts to finding the equations for the transformation
R-1C1/ RF-1 above. In that case the approach taken in the third solution needs to be
followed and this is what one must fully understand since the first two approaches
are not relevant here.

3.5.1.2. Example. Use frames to find the central projection C of the x-y plane onto
the line L defined by the equation x - y = 2 from the point p = (5,1).

Solution. See Figure 3.17. This is the same problem as in Example 3.4.3.1. We want
a frame F = (u1,u2,p) so that u1 is a basis for L and u2 is normal to L and points from
p “to” L. A natural choice is

The direction of u1 does not matter here. Since the distance from p to L is , if we
let T be the translation with translation vector - , then2
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It is easy to check that our answer agrees with the one in Example 3.4.3.1.

3.6 Conic Sections

This section defines the classic conic sections or conics and discusses their geometry.
We analyze the equations that define them and derive the well-known formulas that
are used to classify them. An excellent general reference on the geometry of these
curves is [HilC99]. All our points and sets in this section are assumed to lie in R3.

Definition. Let X be a plane, C a circle in X, and p a point not contained in X. The
union of all the lines through p and a point of the circle C is called a (circular) cone.
The point p is called the vertex of the cone. The line through p and the center of the
circle C is called the axis of the cone. If the axis of the cone is orthogonal to X, then
the cone is called a right circular cone; otherwise it is called an oblique circular cone.

Note. We are using very common terminology here, but we should point out that
the term “cone” is being used here in the sense of a “cone of lines.” In other contexts
like topology a more accurate term for what we are calling a “cone” would be “double
cone.” See Section 5.4.

Definition. A conic section is any set of points obtained as the intersection of a cir-
cular cone and a plane. It the plane passes through the vertex of the cone, then the
conic section is called degenerate; if not, the conic section is called nondegenerate.

See Figure 3.18 for examples of some conic sections. The next theorem is helpful
in deriving an analytic version of the definition of a conic section.

3.6.1. Theorem. Every nondegenerate conic section is a set of points in a plane that
is either a circle with positive radius or a set with the property that the ratio e of the

C FT C TF= - -1
1 2

1.
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distance of each of its points from a fixed point p to the distance of the point from a
fixed line L not passing through p is constant.

Proof. See [Eise39].

Definition. Using the notation in Theorem 3.6.1 with respect to some noncircular,
nondegenerate conic section C, the fixed point p is called the focus, the fixed line L
is called the directrix, and the constant e is called the eccentricity of C. The conic
section is called an ellipse, parabola, or hyperbola depending on whether e < 1, e = 1,
or e > 1, respectively. Ellipses and hyperbolas are often called central conic sections.
Define the focus of a circle to be its center and its eccentricity to be 0. (We can make
the definition of a circle match that of the other conic sections completely by think-
ing of the directrix of a circle as a line at infinity and the limiting case for an ellipse
where we let its directrix move further and further away from the focus.)

See Figure 3.19. Conic sections can also be constructed via string constructions.
See [HilC99]. For example, we can trace out an ellipse by tying the two ends of a string
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of fixed length to the foci, stretching the string tightly with a pencil, and drawing all
the points that can be reached by the pencil in that way. See Figure 3.20. The next
theorem expresses this geometric characterization and related ones for the hyperbola
and parabola mathematically.

3.6.2 Theorem

(1) An ellipse can be defined as a set of points such that the sum of their distances
to two fixed points is constant. The two points are the foci of the ellipse.

(2) A hyperbola can be defined as a set of points such that the difference of their
distances to two fixed points is constant. The two points are the foci of the
hyperbola.

(3) A parabola can be defined as a set of points such that the sum of their dis-
tances to a fixed point and a fixed line is constant.

Proof. See [Eise39] or [Full73].

Definition. Two central conic sections in the plane are said to be confocal if they
have the same foci.

One can show that the family of confocal ellipses for two fixed foci covers the
plane with each point in the plane belonging to a unique ellipse in the family. A similar
fact holds for confocal hyperbolas. See [HilC99]. Furthermore, if an ellipse and a
hyperbola have the same foci, then the two curves intersect orthogonally.

Definition. The points of a conic section where it intersects the line through the
focus that is orthogonal to the directrix are called the vertices of that conic section.

It is easy to show that parabolas have one vertex and ellipses and hyperbolas have
two vertices. Now let C be a conic section and let L1 be the line through its focus p
that is orthogonal to the directrix. Define a point O as follows: If C is a parabola, then
O is its vertex, otherwise, we have two vertices and O is the midpoint of the segment
that has them as end points. Let L2 be the line through O orthogonal to L1. The orthog-
onal lines L1 and L2 determine a natural coordinate system for our conic section. Let
u1 = Op/|Op|, and let u2 be a unit direction vector for L2.

Definition. The coordinate system for the plane containing the conic section C
determined by the frame (u1,u2,O) is called the natural coordinate system for the conic
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section. If C is a parabola, then L1 is called its axis. If C is an ellipse, then L1 and L2
will be called the major and minor (coordinate) axis of C, respectively. If C is a 
hyperbola, then L1 and L2 will be called the transverse and conjugate (coordinate) axis
of C, respectively. In the case of either an ellipse or hyperbola the point O is called its
center.

Figure 3.21 shows the coordinate systems and coordinate axes for parabolas,
ellipses, and hyperbolas. Ellipses and hyperbolas are called central conic sections
because they have a center. One can show that the conic sections are symmetric about
their axes, meaning that if a point belongs to them, then the reflected point about
their axes will belong to them also.

In the case of the plane R2, we can use Theorem 3.6.1 and write out the constraints
on the distances of points from the focus and directrix in terms of an equation. It is
easily seen to be a quadratic equation. Let us look at the equations for some special
well-known cases in their natural coordinate system.

The parabola: y2 = 4ax (3.32)

Focus: (a, 0), a > 0
Directrix: x = -a
Eccentricity: e = 1
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The ellipse: (3.33)

Focus: (c, 0)

Directrix:

Eccentricity: , where c ≥ 0 and c2 = a2 - b2

The segments [(-a,0),(a,0)] and [(0,-b),(0,b)] are also sometimes called the major
and minor axis of the ellipse, respectively, or simply the principal axes.

The hyperbola: (3.34)

Focus: (c, 0)

Directrix:

Eccentricity: , where c2 = a2 + b2

The segments [(-a,0),(a,0)] and [(0,-b),(0,b)] are also sometimes called the trans-
verse and conjugate axis of the hyperbola, respectively. The asymptotes of the
hyperbola are the lines y = ±bx/a.

Because of the symmetry present in the case of a hyperbola and ellipse, they actu-
ally have two foci and directrices. The second of the pair is obtained by reflecting the
ones given above about the y-axis.

The discussion above shows that conic sections are solutions to quadratic equa-
tions. To connect the two we start from the other direction.

Definition. An (affine) conic is any subset of R2 defined by an equation of the 
form

where (a,b,c) π (0,0,0).

Our object is to show that the terms “conic” and “conic section” refer essentially
to the same geometric spaces. To that end it is convenient to rewrite the equation
defining a conic in the form
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Although this may look a little artificial right now, it prevents a factor of 2 from enter-
ing equations at a later stage and so we shall use this form of the equation from now
on. In any case, to understand the solution set of our quadratic equation, the idea will
be to transform it into a simpler one. We shall show that in the nondegenerate cases
a simple change in coordinate systems will change the general quadratic equation
(3.35) into one of the equations (3.32), (3.33), or (3.34). The main problem is finding
a change in coordinates that will eliminate the xy term.

We start off by describing two straightforward simple-minded but ad hoc
approaches to solve our problem. The second is actually good enough to give us the
formulas that one uses to convert (3.35) to one of the standard forms. However, there
are also some well-defined invariants associated to (3.35), which can tell us right away
what sort of curve one has without actually transforming the equation. To be able to
prove that these invariants work as specified is what motivates us to present a third,
more elegant approach to analyzing (3.35) using homogeneous coordinates and the
theory of quadratic forms.

The first simple-minded approach uses a form of “completing the square.” Prob-
ably the most straightforward way to do this is to rewrite the equation as

where a1 satisfier a = a1
2. The substitution

will then produce an equation in x¢ and y¢ that has no x¢y¢ term. Although this sub-
stitution is satisfactory in some applications and produces simple formulas, it has the
disadvantage that the linear transformation of coordinates to which it corresponds is
not a rigid motion and may deform shapes in undesirable ways. Thus, since the xy
term arises from a rotation of the axes of the conic, a second and “better” way to 
eliminate this term is via a rotation about the origin. Consider the substitution

which corresponds to rotating the conic about the origin through an angle -q. This
substitution will transform equation (3.35) into an equation in x¢ and y¢ for which the
coefficient of the x¢y¢ term is

Setting this expression to zero and using some simple trigonometric identities gives
the equation

2 2 2 2b a h-( ) + -( )sin cos cos sin .q q q q

y y y= ¢ + ¢sin cosq q

x x y= ¢ - ¢cos sinq q

¢ =y y
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If a = b, then cos2q = 0, which means that q is ±45 degrees. If a π b, then the solution
can be written either as

(3.36a)

or

(3.36b)

Note that if q1 and q2 are angles satisfying (3.36b) where we use the + and - sign,
respectively, in the formula, then

which shows that the angles differ by 90 degrees. We shall see that this basically
affirms that the “axes” of the conic are perpendicular. In any case, there is an angle q
which will eliminate the x¢y¢ cross-term in equation (3.35). Thus, we end up with an
equation of the form

(3.37)

The rest of the steps involved in analyzing equation (3.35) are very simple. Equa-
tion (3.37) still has some linear terms that need to be eliminated if the corresponding
quadratic term is present. This is done by completing the square in the standard way.
For example, if a¢ π 0, then make the substitution

From this one sees that, in the nondegenerate case, equation (3.38) splits into two
cases. If a¢b¢ = 0, then (3.35) represents a parabola; otherwise, (3.35) represents an
ellipse or hyperbola depending on whether the sign of a¢b¢ is positive or negative.

In summary, we have shown how some simple manipulations of equation (3.35)
enable us to determine the geometry of the solution set. However, we have glossed
over some degenerate cases. For example, a degenerate case of equation (3.35) occurs
when it factors into two linear terms, that is, that it can be written in the form

(3.38)

In this case the equation represents a pair of lines. To be able to detect the special
cases, and all the other cases for that matter, in a nice simple way, we need to make
use of some more powerful tools. In particular, we need to switch to homogeneous
coordinates and projective space.
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Definition. A conic in the projective plane, or a projective conic, is a set of points in
P2 whose homogeneous coordinates (x,y,z) satisfy a quadratic equation of the form

(3.39)

where (a,b,d) π (0,0,0).

First, projective conics are well defined in the sense that if one homogeneous coor-
dinate representative of a point in P2 satisfies equation (3.39), then they all do. Second,
every conic in the plane defines a unique projective conic because, switching to homo-
geneous coordinates, equation (3.35) changes into

(3.40)

Third, the condition that at least one of the values a, b, and d be nonzero is simply
the analog of the condition on the coefficients of an affine conic. It is an extremely
artificial condition at the projective level. The fact is that when someone says “conic”
one thinks of ellipses, hyperbolas, and parabolas. We were trying to exclude grossly
degenerate cases of equation (3.39) such as 0 = 0, which would have all of P2 as its
solution. The projective conics we are after are the “nondegenerate” ones that are
defined below. Our condition on the coefficients happens to capture (with foresight)
the equation form of the conic sections. Having said this, the fact that one can give a
complete analysis of the solutions to the general quadratic equation (3.39) is inter-
esting on its own, independent of any relation to conic sections. This equation-solving
mindset is the context in which we will be working right now.

Now equation (3.40) is also the convenient form for projective conics. Consider
the quadratic form

and its matrix

(3.41)

Note that equation (3.40) can be rewritten in matrix form as

(3.42)

Conversely, equation (3.42) defines a projective conic for any symmetric 3 ¥ 3 matrix
A satisfying (a,b,h) π (0,0,0). The next theorem shows that projective conics are actu-
ally very easy to describe if one chooses the correct coordinate system.

3.6.3. Theorem. We can coordinatize projective space P2 in such a way that in the
new coordinate system the equation of the projective conic defined by equation (3.40)
has one of the following forms:
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(3.43a)

(3.43b)

(3.43c)

Proof. By Theorem 1.9.11, any symmetric matrix, the matrix A in (3.41) in particu-
lar, is congruent to a diagonal matrix with ±1 or 0 along the diagonal. This clearly
implies the result since A is not the zero matrix. Note that since we are working in
projective space here the change of coordinates transformations that produce equa-
tions (3.43) are projective and not affine transformation in general.

Translating things back to Euclidean space, it is easy to see that equations (3.43a)
and (3.43b) correspond to cases where the solution set to (3.35) is either empty or
consists of lines. Equations (3.43c) is the case where A is nonsingular.

Definition. The affine conic defined by equation (3.35) or the projective conic
defined by equation (3.40) is said to be nondegenerate if the matrix A in (3.41) is non-
singular; otherwise it is said to be degenerate.

Note. The definition of a nondegenerate conic has the advantage of simplicity but
has a perhaps undesirable aspect to it, at least at first glance. If A is nonsingular, then
one possibility for equation (3.43c) is

This equation has no real nonzero solutions. Therefore, a “nondegenerate” conic
could be the empty set. For that reason, some authors add the condition that a conic
be nonempty before calling it nondegenerate. On the other hand, we would get a non-
empty set if we were to allow complex numbers and we were talking about conics in
the complex plane. See Section 10.2.

We have just seen that matrix A in (3.41) determines one important invariant for
conics, but there is another. Consider the quadratic form that is the homogeneous
part of equation (3.35), namely,

(3.44)

Let

(3.45)

be the matrix associated to q2. By Theorem 1.9.10 there is a change of basis that will
diagonalize B, that is, in the new coordinate system q2 will have the form

B
a h

h b
= Ê

Ë
ˆ
¯

q x y ax hxy by2
2 22, .( ) = + +

x y z or x y2 2 2 2 20 1 0+ + = + + =( )using Cartesian coordinates .

x y z2 2 2 0+ ± =

x z2 2 0± =

z2 0=
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The numbers a¢ and b¢ are just the eigenvalues of the transformation associated to B
and are the roots of the characteristic polynomial for B. Since the change corresponds
to a linear change of variables, in this new coordinate system equation (3.35) will
have been transformed into an equation of the form (3.37). We now have all the pieces
of the puzzle.

3.6.4. Theorem. Define numbers D, D, and I for equation (3.35) by

(1) The quantities D, D, and I are invariant under a change of coordinates via a
rigid motion (translation or rotation).

(2) If D π 0, then equation (3.35) defines a nondegenerate conic. More precisely,

(a) D > 0: We have an ellipse if ID < 0 and the empty set otherwise.
(Note that since a and b have the same sign in this case, the sign
of ID is the same as the sign of bD or aD.)

(b) D < 0: We have a hyperbola.
(c) D = 0: We have a parabola.

(3) If D = 0, then equation (3.35) factors into two factors of degree one (the con-
verse is also true) and defines the empty set, a point, or a pair of lines. The
pair of lines may be parallel, intersecting, or coincident. More precisely,

(a) D > 0: We get a single point.
(b) D < 0: We get two intersecting lines.
(c) D = 0:

D = = = - = +
a h f

h b g

f g c

D
a h

h b
ab h and I a b, , .2

q x y a x b y2
2 2¢ ¢( ) = ¢ ¢ + ¢ ¢, .
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b π 0: There are three cases depending on E = g2 - bc.

E > 0: We get two parallel lines.
E < 0: We get the empty set.
E = 0: We get a single line.

b = 0: Then h = 0. There are three cases depending on F = f2 - ac.

F > 0: We get two parallel lines.
F < 0: We get the empty set.
F = 0: We get a single line.

Proof. Part (1) follows from properties of the determinant and the trace function (I
is the trace of the matrix B). The main ideas behind the proof of (2) have been sketched
above. The condition on the product ID in (2)(a) is equivalent to saying that I and D
have opposite signs. The effect that the signs of I and D have on the conic is best seen



by looking at the matrices after they have been diagonalized. The details of the rest
of the proof are lengthy and messy but not hard. They basically only involve rewrit-
ing equation (3.35) and solving for various conditions. See [Eise39].

Theorem 3.6.4 tells us the conic that equation (3.35) represents but does not
directly tell us the transformation that transforms it to our standard equations. The
basic steps in finding this transformation were sketched earlier. We summarize the
results along with some additional details below. They are divided into three cases
that subdivide into the subcases in Theorem 3.6.4. Again see [Eise39]. For a slightly
different approach, see [RogA90].

Let C be the conic defined by equation (3.35). Our object is to find a rigid motion M
so hat M(C) is defined by the standard equation for a conic. The transformation M will
have the form RT, where T is a translation and R is a rotation about the origin.

Case 1: D π 0 (the central conics if D π 0)

The “center” of the conic is at

(3.46)

Let T be the translation that sends (x0,y0) to the origin. The conic C¢ = T(C) will have
its center at the origin. It follows that replacing x by x + x0 and y by y + y0 will elim-
inate the linear terms in (3.35) and give us an equation for C¢ of the form

(3.47)

Let q be an angle defined by equations (3.36) and let R be the rotation about the origin
through the angle -q. This will rotate an axis of the conic into the x-axis. The equa-
tion for C≤ = R(C¢) is obtained by replacing x by x cos q - y sin q and y by x sin q + y
cos q in equation (3.47). We will get

(3.48)

In fact, a¢ and b¢ are the roots of

(3.49)

that is,

(3.50)

Equation (3.49) is actually the characteristic equation for the matrix B in (3.45)
(Theorem C.4.8(3)), so that a¢ and b¢ are the eigenvalues of B. In other words, instead of
dealingwith angles directly, find an orthonormal pair u1 and u2 of eigenvectors for B. Let

(3.51)x y x y( ) = ¢ ¢( )ÊË
ˆ
¯

u

u
1

2

¢ =
+ + -( ) +

¢ =
+ - -( ) +

a
a b a b h

and b
a b a b h

2 2 2 24
2

4
2

.

x Ix D2 0- + = ,

¢ ¢ + ¢ ¢ + =a x b y
D

2 2 0
D

.

ax hxy by2 22 0+ + + =constant .

x
hg bf

D
y

hf ag
D0 0=

-
=

-
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and substitute the x and y that one gets from equation (3.51) into equation (3.47).
This will also produce equation (3.48).

Case 2: D = 0 and D π 0 (parabola)

One can show that the vertex of the parabola is at (x0,y0), where x0 and y0 are the
solution to the equations

(3.52)

and

(3.53)

Furthermore,

(3.54)

is the equation of the axis of the parabola. Therefore, translate the origin to the vertex
of the parabola and then rotate about that point through an angle -q, where

(3.55)

These transformations will change equation (3.35) into

(3.56a)

where

(3.56b)

Case 3: D = 0 and D = 0 (degenerate cases)

If b π 0, then equation (3.35) reduces to

(3.57)

If b = 0 (and also h = 0), then we get

(3.58)x
f f ac

a
=

- ± -2

.

y
hx g g bc

b
=

- +( ) ± -2

.

p
ag hf

I a h
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+2 2

.
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Alternatively, rotate about the origin through the angle -q, where q is defined by
equation (3.55). This changes equation (3.35) into

(3.59)

If there are real roots to this equation, then we get a factorization

which corresponds to one or two straight lines.

3.6.5. Example. To transform

(3.60)

into standard form.

Solution. We have

Therefore, I = 125, D = det (A) = -250000, and D = det (B) = 2500 and we fall into Case
1. In fact, D > 0, D π 0, and ID < 0 means that we have an ellipse. After translating the
center of the ellipse, defined by equation (3.46), to the origin, we can finish the reduc-
tion of equation (3.60) in two ways: we can rotate through the angle specified by equa-
tions (3.36), or we could use the eigenvector approach indicated by equation (3.51).
Of course, we could also just simply use equations (3.48) and (3.50), but, although
this may seem simpler, the advantage of the other two methods is that they also give
us the coordinate transformation that transforms the standard coordinate system 
into the one in which the curve has the standard form. One often needs to know this
transformation.

We start with the angle approach. Using equation (3.46), the center (x0,y0) of the
curve turns out to be (2,3). Substituting x + 2 and y + 3 for x and y in equation (3.60) gives

(3.61)

We now want to rotate the coordinate axes through an angle -q, where, using formula
(3.36b),

We arbitrarily choose 3/4, so that

tan .q = -
4
3

3
4

or

52 72 73 100 02 2x xy y- + - = .

A and B=
-

- -
-

Ê

Ë
Á
Á

ˆ

¯
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˜

=
-

-
Ê
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ˆ
¯

52 36 4

36 73 147

4 147 333

52 36

36 73
.

52 72 73 8 294 333 02 2x xy y x y- + + - + =
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and the equation for the rotation R about the origin through the angle -q is

Let C be the curve defined by (3.60). Then the curve C≤ = RT(C) has equation

(3.62)

and we are done.
Next, we use the eigenvalue approach. The eigenvalues are the roots of equation

(3.49), which reduces to

in this case. To solve for the eigenvectors for eigenvalues 25 and 100 we must solve

that is,

respectively. The solutions for the first equation are x = (4/3)y, so that u1 = (4/5,3/5) is
a unit eigenvector for eigenvalue 25. The solutions for the second equation are x =
(-3/4)y, so that u2 = (-3/5,4/5) is a unit eigenvector for eigenvalue 100. The sub-
stitution specified by equation (3.51) would then again give us equation (3.62). It 
corresponds to the same rotation R described above.

One point that one needs to be aware of when using the eigenvalue approach is
that there is some leeway as to our choice of eigenvectors. Our only real constraint is
that the orthonormal basis (u1,u2) induce the standard orientation of the plane
because we want a rigid motion, specifically, a rotation. On the other hand, (u2,-u1)
would have been a legitimate alternative choice. This would have reduced our conic
equation to

But then, there are always basically two standard forms to which a general conic equa-
tion can be reduced. Which one we get depends on our choice of which axis we call
the x- and y-axis.

4 4 02 2x y+ - = .

x and x y   y  ( ) -
-

Ê
Ë

ˆ
¯ = ( ) ( )ÊË

ˆ
¯ = ( )27 36

36 48
0 0

48 36

36 27
0 0 ,

x y I B and x y I B( ) -( ) = ( ) -( ) =25 0 100 02 2 ,
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4
5
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5
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3.6.6. Example. To transform

(3.63)

into standard form.

Solution. We have

Therefore, I = 25, D = det (A) = 0, and D = det (B) = 0. By Theorem 3.5.1.3(3.c) we are
dealing with two parallel lines since E = 02 - 16(-100) = 1600. Equation (3.59) implies
that (3.63) can be transformed into

via a rotation through an angle -q, where tan q = -4/3 .
Note that equation (3.57) implies that (3.63) is equivalent to

which can easily be checked.

This finishes our discussion of the main results about quadratic equations in two
variables. In the process we have proved the following:

3.6.7. Theorem. Every nonempty conic is a conic section. Conversely, if we coor-
dinatize the intersecting plane in the definition of a conic section, then the conic
section is defined by an equation of the form (3.35) in that coordinate system, that is,
it is a conic.

Theorem 3.6.7 justifies the fact that the term “conic” and “conic section” are used
interchangeably.

3.6.1 Projective Properties of Conics

This section looks at some projective properties of conics. There is an important corol-
lary to Theorem 3.6.3.

3.6.1.1. Theorem. All nonempty nondegenerate (affine) conics are projectively
equivalent.

Proof. Since the conic is nonempty and nondegenerate, Theorem 3.6.3 implies that
it is projectively equivalent to a conic with equation

y x= - ±
4
3

10
3

,

25 100 02y - =

A and B=
-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

= Ê
Ë

ˆ
¯

16 12 0

12 9 0

0 0 100

16 12

12 9
.

16 24 9 100 02 2x xy y+ + - =
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This shows that every such conic is projectively equivalent to the unit circle and we
are done.

3.6.1.2. Example. To show that the conic y = x2 is projectively equivalent to the unit
circle.

Solution. Passing to homogeneous coordinates, the conic is defined by the equation

(3.64)

with associated symmetric matrix

Using elementary matrices, we shall now show that A is congruent to a diagonal
matrix. First of all, if E is the elementary matrix E23(-1), then

Next, let F be the elementary matrix E32(1/2). Then

Finally, if G is the elementary matrix E33(2), then

It follows that if
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then MAMT is the diagonal matrix A3, that is, our conic is projectively equivalent to
the unit circle

and we are done.

Example 3.6.1.2 leads us to some observations about the relationship between a
conic in R2 and the associated projective conic in P2. Consider the solutions to equa-
tion (3.64). One of the solutions (in P2) is the ideal point which has z = 0. Substitut-
ing this value into (3.64) defines the line x = 0 in R2. In other words, the parabola y
= x2 corresponds to the conic in P2, which contains the same real points and has one
additional ideal point corresponding to the line x = 0. As another example, consider
the hyperbola

(3.65)

The homogeneous equation for this conic is

(3.66)

The ideal points with z = 0 lead to the equations

(3.67a)

and

(3.67b)

which define two lines in R2. It follows that the conic in P2 defined by (3.66) is topo-
logically a circle that consists of the points defined by the real roots of equation (3.65)
together with two extra (ideal) points associated to the lines in (3.67a) and (3.67b).
Intuitively, if we were to walk along points (x,y) on the curve (3.65) where these points
approach either (+•,+•) or (-•,-•) we would in either case approach the ideal point
associated to the line defined by equation (3.67a). Letting x and y approach either 
(-•,+•) or (+•,-•) would bring us to the ideal point associated to the line defined by
equation (3.67b).
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3.6.1.3. Theorem. A conic can be found that passes through any given five points.
It is unique if no four of these points is collinear.

Proof. We use homogeneous coordinates and need to show that we can always find
a nondegenerate equation of the form

which is satisfied for the points. One such equation is

For the rest, see [PenP86].

Next, we look at some problems dealing with fitting conics to given data. The 
following fact is used in justifying the constructions.

3.6.1.4. Lemma. If C1 and C2 are affine conics with equations C1(x,y) = 0 and 
C2(x,y) = 0, then

or

is the equation of a conic Cl that passes through the intersection points of the two
given conics. If C1 and C2 have exactly four points of intersection, then the family Cl,
l Œ R*, of conics consists of all the conics through these four points and each one is
completely determined by specifying a fifth point on it.

Proof. See [PenP86].

Our design problems will also involve tangent lines and so we need to define those.
Tangent lines play an important role when studying the geometry of curves. There are
different ways to define them depending on whether one is looking at the curve from
a topological or algebraic point of view. The definition we give here is specialized to
conics. More general definitions will be encountered in Chapter 8 and 10. Our present
definition is based on the fact that, at a point of a nondegenerate conic, the line that
we would want to call the tangent line has the property that it is the only line through
that point that meets the conic in only that point.

C x y C x y C x y• ( ) = ( ) - ( ) =, , ,1 2 0
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3.6.1.5. Theorem. Let C be a nondegenerate conic in P2. Any line L in P2 intersects
C in 0, 1, or 2 points. Given any point p on C, there is one and only one line that inter-
sects C in that single point.

Proof. This fact is easily checked if C is a circle. See Figure 3.22. The general case
follows from the fact that any nonempty nondegenerate conic is projectively equiva-
lent to a circle.

Definition. If a line L meets a nondegenerate conic C in a single point p, then L is
called the tangent line to C at p. This definition applies to both the affine and projec-
tive conics.

3.6.1.6. Theorem. If a nondegenerate conic is defined in homogeneous coordinates
by the equation

then, in terms of homogeneous coordinates, the equation of the tangent line L to the
conic at a point P0 is

(3.68)

In particular, [L] = [p0Q].

Proof. The line defined by equation (3.68) clearly contains [p0]. It therefore suffices
to show that if another point satisfied equation (3.68), then the conic would be degen-
erate. See [PenP86].

3.6.1.7. Corollary. The equation of the tangent line at a point (x0,y0) of a conic
defined by equation (3.35) is

Proof. Obvious.

ax hy f x hx by g y fx gy c0 0 0 0 0 0 0+ +( ) + + +( ) + + + = .

p pQ
T

0 0= .

p pQ T = 0,
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We now describe solutions to five conic design problems in the plane R2. The fact
that the solutions are indeed correct follows easily from the above, in particular by
repeated use of Lemma 3.6.1.4. See [PenP86] for details.

Conic design problem 1: To find the equation of the conic passing through 
four points p1, p2, p3, and p4 that has a given line L through one of these points 
as tangent line. Assume that at least two of the points do not lie on L. If three points
lie off L, then no two of them are allowed to be collinear with the fourth. See Figure
3.23.

Solution. Assume that L is the tangent line at p1 and that p2 and p3 do not lie on
L. Let L2 be the line through p1 and p2, let L3 be the line through p1 and p3, and let
L4 be the line through p2 and p3. Let [L] = [a,b,c] and [Li] = [ai,bi,ci]. Define symmetric
3 ¥ 3 matrices Q1 and Q2 by

Let Ci(x,y) = 0 be the quadratic equation associated to Qi. Let p4 = (x4,y4). If

then there is a unique l so that Cl(x4,y4) = 0 and that is the equation of the conic we
want.

3.6.1.8. Example. To find the conic that passes through the points p1, p2 = (2,-2),
p3 = (2,2), p4 = (5,0), and that has tangent line L at p1 for the case where p1 and L
have the values

Solution for (a): See Figure 3.24(a). We have the following equations for the lines
Li:

a x b x( ) = -( ) + = ( ) = ( ) - =    1p L p L1 1 0 1 0 3 0 3 0, , : , , :

C x y C x y C x yl l l, , , ,( ) = ( ) + -( ) ( )1 21

Q a b c a b c a b c a b c and

Q a b c a b c a b c a b c

T
t

T

T T

1 4 4 4 4 4

2 2 2 2 3 3 3 3 3 3 2 2 2

1
2
1
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Figure 3.23. Conic design problem 1.



Therefore,

Solving Cl(5,0) = 0 for l gives l = 8/7, so that our conic is the ellipse

Solution for (b): See Figure 3.24(b). We have the following equations for the lines
Li:

This time

Solving Cl(5,0) = 0 for l gives l = 8/5, so that our conic is the hyperbola

Conic design problem 2: To find the equation of the conic passing through three
points p1, p2, and p3 that has two given lines L1 and L2 through two of these points
as tangent lines. Assume that the three points are not collinear and that the intersec-

C x y x y8 5
2 24 4 3 4 0, .( ) = - -( ) + + =

C x y x x x y x yl l l, .( ) = -( ) -( ) + -( ) + -( ) - -( )3 2 1 2 6 2 6

L4 2 0: x - =

L3 2 6 0: x y- - =

L2 2 6 0: x y+ - =

C x y x y8 7
2 24 2 9 36 0, .( ) = -( ) + - =

C x y x x x y x yl l l, .( ) = +( ) -( ) + -( ) + +( ) - +( )1 2 1 2 3 2 2 3 2

L4 2 0: x - =

L3 2 3 2 0: x y- + =

L2 2 3 2 0: x y+ + =
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tion of the two lines is neither of the points where L1 and L2 are tangent to the conic.
See Figure 3.25.

Solution. Assume that L1 and L2 are tangent lines at p1 and p2, respectively. Let L3
be the line through p1 and p2 and let [Li] = [ai,bi,ci]. Define symmetric 3 ¥ 3 matrices
Q1 and Q2 by

Let Ci(x,y) = 0 be the quadratic equation associated to Qi. Let p3 = (x3,y3). If

then there is a unique l so that Cl(x3,y3) = 0 and that is the equation of the conic we
want. Equivalently, if

then there is unique l so that (x3,y3,1)Ql(x3,y3,1) = 0.

3.6.1.9. Example. To find the conic that passes through the points p1 = (4,-4) and
p2 = (4,4), has tangent lines

at those points, and also passes through the point

Solution. First note that the line L3 through p1 and p2 is clearly defined by

L3 4 0: x - =

a b c( ) = ( ) ( ) = ( ) ( ) = -( )   3 3 3p p p0 0 1 0 1 0, , ,

L2 2 4 0: ,x y+ + =

L1 2 4 0: ,x y- + =

Q Q Ql l l= + -( )1 21 ,

C x y C x y C x yl l l, , , ,( ) = ( ) + -( ) ( )1 21

Q a b c a b c a b c a b c and Q a b c a b c
T T T
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Figure 3.25. Conic design problem 2.



and

Case p3 = (0,0): See Figure 3.26(a). The equation Cl(0,0) = 0 leads to the impos-
sible condition l = 0. This corresponds to the case l = •. Therefore, the conic we are
looking for is the parabola

Case p3 = (1,0): See Figure 3.26(b). The equation Cl(1,0) = 0 leads to the solu-
tion l = -9/16. This time our conic is the ellipse

Case p3 = (-1,0): See Figure 3.26(c). The equation Cl(-1,0) = 0 leads to the solu-
tion l = 25/16. This time our conic is the hyperbola

C x y x x y- ( ) = - + + =9 16
2 24 68 9 64 0, .

C x y x y x y x y x• ( ) = - +( ) + +( ) - -( ) = -, .2 4 2 4 4 4
2 2

C x y x y x y xl l l, .( ) = - +( ) + +( ) + -( ) -( )2 4 2 4 1 4
2
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Figure 3.26. The conics that solve Example 3.6.1.7.



The next three design problems continue to decrease the number of specified
points and increase the number of specified lines. Rather than solving them directly
as we did for the first two problems, we shall note the duality of points and lines in
projective space (as shown by equation (3.16) in Section 3.4) and essentially get our
new solutions from those above using this duality. There will be little new that has to
be proved. Mainly, we have to translate facts about points appropriately.

Definition. A line conic in the projective plane is a set of lines L that satisfy the 
equation

where [L] = [a] and Q is a symmetric 3 ¥ 3 matrix.

3.6.1.10. Theorem. The set of tangent lines L to the nondegenerate point conic
defined by

is the line conic defined by

where [L] = [a].

Proof. This theorem is an easy consequence of Theorem 3.6.1.5. We have replaced
the point [p] by the line [a], where a = pQ, which is tangent to the conic at p. Turning
this around, the point [aQ-1] corresponds to the line [a].

Conic design problem 3: To find the equation of the conic that passes through two
points and is tangent to three lines, such that one of the lines passes through the first
point, another passes through the second point, and the third line is arbitrary. The
lines are not allowed to be concurrent and the neither of the first two lines can contain
both points. See Figure 3.27(a).

Solution. We dualize the solution to design problem 2. Assume that the conic passes
through p1 and p2 and has tangent lines L1 and L2 at those points. Let L3 be the other
tangent line. Let p3 be the intersection of L1 and L2, and let pi have homogeneous
coordinates [xi,yi,zi]. Define symmetric 3 ¥ 3 matrices Q1 and Q2 by

Let [L3] = [a3,b3,c3]. If

Q Q Ql l l= + -( )1 21 ,

Q x y z x y z x y z x y z and Q x y z x y z
T T T

1 1 1 1 2 2 2 2 2 2 1 1 1 2 3 3 3 3 3 3
1
2

= ( ) ( ) + ( ) ( )( ) = ( ) ( ), , , , , , , , , , , , .

a aQ T- =1 0,

p pQ T = 0

a aQ T = 0,

C x y x x y25 16
2 24 68 25 64 0, .( ) = + - + =
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then there is a unique l so that (a3,b3,c3)Ql(a3,b3,c3)T = 0 and Ql
-1 is the symmetric

matrix that defines the (point) conic we want.

We leave the solutions of the next two design problems as exercises for the reader
(Exercise 3.6.1.6 and 3.6.1.7). Note however that the requirements are stronger than
for the point analog because we need Q-1. See [PenP86].

Conic design problem 4: To find the equation of the conic that passes through one
point, is tangent to a line through this point, and is also tangent to three other lines.
None of the last three lines may contain the given point and no three of the four lines
are allowed to be concurrent. See Figure 3.27(b).

Conic design problem 5: To find the equation of the conic that is tangent to five
lines, no three of which are allowed to be concurrent. See Figure 3.27(c).

3.7 Quadric Surfaces

This section defines quadric surfaces and discusses the equations that define them.

Definition. A quadratic surface is a set S of points in Rn whose coordinates satisfy
an equation

where q is a quadratic polynomial function in n variables and not all the coefficients
of the monomial terms in q of total degree 2 vanish. A quadratic surface in R3 is called
a quadric surface.

By definition, quadric surfaces are the solution sets of arbitrary quadratic equa-
tion in three variables of the form

(3.69)ax by cz dxy exz fyz gx hy iz j2 2 2 0+ + + + + + + + + = .

q x x xn1 2 0, , . . . , ,( ) =
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where at least one of the six coefficients a, b, c, d, e, or f is nonzero. Such equations
define surfaces in general.

In trying to analyze the type of surface that equation (3.69) can give rise to, the
hard part is getting rid of the xy, xz, and yz cross terms. One can, like in the 2-
variable case, use a rotation to change the coordinate system to one in which the 
equation has the form

(3.70)

One could, for example, use the roll-pitch-yaw representation for a rotation about the
origin. This involves three unknowns. Substituting the rotated points into (3.69) and
then setting the coefficients of the cross terms to 0, would give three equations in three
unknowns which could be solved, but this is starting to get too complicated and messy.

The more elegant way to eliminate the cross terms in equation (3.69) or quadratic
equation in any number of variables is to use the theory of quadratic forms. Like in
the 2-variable case let

be the associated quadratic form. It follows again from Theorem 1.9.10 that q is 
diagonalizable and there is a suitable coordinate system in which equation (3.69) has
the form (3.70). If any quadratic term is present in (3.70), then the corresponding
linear term, if there is one, can be eliminated by completing the square similar to the
way it was done in Section 3.6. The analysis depends on whether a¢, b¢, or c¢ are zero,
and if not, on whether they are positive or negative. The resulting cases are easy to
analyze and lead to the following theorem.

3.7.1. Theorem. Any equation of the form (3.69) can be transformed via a rigid
motion into one of the following fourteen types of equations (equivalently, there is a
coordinate system, called the natural coordinate system for the quadric, with respect
to which equation (3.69) has the following form):

(1) Ellipsoid:

(2) Hyperboloid of one sheet:

(3) Hyperboloid of two sheets:

(4) Empty set:

(5) Point:

(6) Cone:

(7) Elliptic or hyperbolic paraboloid:
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(8) Elliptic or hyperbolic cylinder:

(9) Empty set:

(10) Line:

(11) Two intersecting planes:

(12) Parabolic cylinder:

(13) One or two parallel planes: x2 = a2

(14) Empty set: x2 = -a2, where a π 0

Proof. See [Divi75] for more details.

Figure 3.28 shows a few of the types of solutions to equation (3.69). Most of the
solutions are nice quadratic surfaces, but some solutions are degenerate.

Definition. The coordinate planes of a quadric in its natural coordinate system 
that are planes of symmetry for the quadric are called the principal planes of the
quadric.

Ellipsoids and hyperboloids of one or two sheets have three principal planes. The
elliptic paraboloid has two. Below are some geometric properties of quadrics. See
[HilC99].

(1) A quadric and a plane always intersect in a conic curve.
(2) If a = b for the surfaces (1)–(3), (6), the elliptic paraboloid in (7), and the ellip-

tic cylinder in (8) of Theorem 3.7.1, then we get surfaces of revolution. For example,
the ellipsoid is then just an ellipse revolved about its major or minor axis. The hyper-
boloid of two sheets is obtained by revolving a hyperbola about its axis. The hyper-
boloid of one sheet is obtained by revolving a hyperbola about the perpendicular
bisector of the segment between its two foci. This type of surface can also be obtained
by rotating a line skew with the axis of revolution about that axis. The general case
of the just mentioned surfaces where a π b is gotten by starting with a surface of rev-
olution of that type, fixing a plane through its axis, and pulling all the points of the
surface away from that plane in such a way that the distances of the points from the
plane change by a fixed ratio.

(3) The elliptic, hyperbolic, and parabolic cylinders, the hyperboloid of one sheet,
and the hyperbolic paraboloid are ruled surfaces in that they are swept out by a family
of straight lines. (See Chapter 9 for more on ruled surfaces.) The last two are doubly
ruled surfaces, that is, they are swept out by two distinct families of straight lines.

(4) There is a string construction for the ellipsoid. We use an ellipse and hyper-
bola in orthogonal planes, where the foci F1 and F2 of the ellipse are the vertices of
the hyperbola and the foci of the hyperbola are the vertices V1 and V2 of the ellipse.
See Figure 3.29. Tie a string to one of the vertices of the ellipse, say V1. Now loop the
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Figure 3.28. Some quadric surfaces.
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Figure 3.29. A string construction for the ellipsoid.



string around the near branch of the hyperbola with vertex F1 (at point A in the figure),
then around the outside of the ellipse (at point B in the figure), and finally attach it
to F2. If we pull the string tight at some point P, then the locus of those points P will
trace out one quarter of an ellipsoid. By attaching the string at corresponding differ-
ent locations we can get the rest of the ellipsoid. Because of the similarity of this con-
struction with that for the ellipse, one makes the following definitions.

Definition. The ellipse and hyperbola used to construct the ellipsoid are called the
focal curves (the focal ellipse and focal hyperbola) of the ellipsoid. In general, given any
quadric, we say that two conics in orthogonal principal planes for this quadric are
focal curves for the quadric if they are confocal with the intersection of the principal
planes with the quadric. Two quadric surfaces with the same focal curves are called
confocal.

Only ellipsoids and hyperboloids of one or two sheets have focal curves. The family
of all confocal quadrics of one of those three types that have a fixed pair of focal curves
fill up all of space. The tangent planes of the three just-mentioned confocal families
are mutually orthogonal at a point of intersection. (For a precise definition of a
tangent plane see Chapter 8.)

Next, we state the analog of Theorem 3.6.4 for the surface case. We rewrite 
equation (3.69) as

(3.71)

Define matrices A and B by

(3.72)

3.7.2. Theorem. Define D, D, I, and J for equation (3.71) by

(1) The quantities D, D, I, and J are invariant under a change of coordinates via
rigid motions (translations and/or rotations).

(2) If D π 0, then let r1, r2, and r3 be the nonzero eigenvalues of the matrix B in
(3.72).

I tr B a b c and J bc ca ab f g h= ( ) = + + = + + - - -, .2 2 2

D = ( ) = = ( ) =det , det ,A
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In case (a) and (b), equation (3.71) can be reduced to

and in case (c) to

(3) If D = 0, then equation (3.71) defines a paraboloid or cylindrical surface gen-
erated by a conic in a plane (types (8) and (12) in Theorem 3.7.1) unless the
surface is degenerate. More precisely, let ri be the nonzero eigenvalues of the
matrix B in (3.72).

(a) D π 0:

Equation (3.71) can be reduced to

r x r y
r r

z1
2

2
2

1 2
2 0+ +

-
=

D
.

r x r y r z1
2

2
2

3
2 0+ + = .

r x r y r z
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2
2

2
3

2 0+ + + =
D

.
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(a) D < 0:

I D > 0, J > 0: We have an ellipsoid.
Not both I D > 0 and J > 0: We have an hyperboloid of two sheets.

(b) D > 0:

I D > 0, J > 0: The empty set.
Not both I D > 0 and J > 0: We have an hyperboloid of one sheet.

(c) D = 0:

I D > 0, J > 0: A single point.
Not both I J > 0 and J > 0: We have a cone.

D < 0, J > 0: We have an elliptic paraboloid.
D > 0, J < 0: We have an hyperbolic paraboloid.

(b) D = 0:

If

then the surface is degenerate and reduces to a plane or a pair of planes.
Otherwise, it is a cylindrical surface of one of the following types:

J > 0: a real elliptic cylinder or the empty set.
J < 0: a hyperbolic cylinder.
J = 0: a parabolic cylinder.

Alternatively, let k be the number of nonzero eigenvalues of the matrix B
in (3.72). Then equation (3.71) can be reduced to one of the following:

a h l

h b m

l m d

a f l

f c n

l n d

b g m

g c n

m n d

= = = 0,



k = 1: r1x2 + 2my = 0 (parabolic cylinder)  ,  or
r1x2 + d = 0 (two planes)

k = 2: r1x2 + r2y2 + d = 0
(If solutions exist, then we get an elliptic or hyperbolic
cylinder if d π 0 and two planes if d = 0.)

Proof. See [Eise39].

3.7.3. Theorem. The equation of the tangent plane to a quadric surface at a point
(x0,y0,z0) defined by equation (3.71) is

Proof. See [Eise39]. (We again refer the reader to Chapter 8 for a precise definition
of a tangent plane).

For a classification of quadratic surfaces in Rn see [PetR98].

3.8 Generalized Central Projections

The standard central projections as defined in Section 3.2 have a center that is a point.
When dealing with higher-dimensional spaces it is sometimes convenient to allow the
“center” to be an arbitrary plane.

Definition. Let On-k-1 be a fixed (n - k - 1)-dimensional plane in Rn. If Yk is a k-
dimensional plane in Rn, define a map

by

The map pO is called the generalized central projection with center O of Rn to the plane
Y. If Xk is another k-dimensional plane in Rn, then the restriction of pO to X, pO|X :
X Æ Y, is called the generalized perspective transformation or generalized perspectivity
from X to Y with center O.

3.8.1. Theorem. The generalized perspectivity pO|X from X to Y with center O is a
projective transformation.

Proof. It is not hard to show that pO|X is a composition of ordinary central projec-
tions and parallel projections.

pO p O p Y O p Y( ) = ( ) « ( )
=

aff , ,  if aff ,  intersects  in a single point,

undefined, otherwise.

pO R Y: n Æ

ax hy fz l x by hx gz m y cz fx gy n z

lx my nz d
0 0 0 0 0 0 0 0 0

0 0 0 0

+ + +( ) + + + +( ) + + + +( )
+ + + + = .
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Our next task is to show that working with generalized central projections is just
as easy as with ordinary central projections. We extend the notion of a frame and
borrow some of the next terminology from computer graphics.

Definition. A generalized frame in Rn is a tuple F = (u1,u2, . . . ,uk+1,p), where the 
ui form an orthonormal set of vectors in Rn and p is point of Rn. The (n - k - 1)-
dimensional plane B for which F is a point-normals representation is called the base
plane of F and denoted by base(F). If uk+2, uk+3, . . . , and un are an orthonormal basis for
B, then the frame G = (u1,u2, . . . ,un,p) is called an augmented frame for F. The vector
uk+1 is called the view direction of F. Any k-dimensional plane V that passes through a
point o = p + duk+1, for some d > 0, and has basis u1, u2, . . . , and uk is called a view plane
for F. The view plane V is said to be a distance d in front of B. The frame (u1,u2, . . . ,uk,o)
is called the view plane coordinate system and the point o is called the origin of the view
plane.

Before moving on to the general case, it is helpful to work out the computational
details in the special case of R3. Assume that p = (0,-1/a,0), F = (e1,e2,p), and that the
view plane V is the x-axis and has origin 0. See Figure 3.30. By an argument similar
to the one in Section 3.5.1 one can easily show that the generalized central projection
with respect to F and V

is defined by

The map Ca can also be described as an orthogonal projection parallel to the z-axis
to the x-y plane followed by an ordinary central projection of R2 onto the x-axis from

C x y z x
x

aya , , , , , , .( ) = ¢( ) =
+

Ê
Ë

ˆ
¯0 0

1
0 0

Ca : R V3 Æ
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Figure 3.30. A basic generalized central
projection in R3.



the point (0,-1/a,0). In other words, using homogeneous coordinates the map Ca is
defined by the matrix

Now for an arbitrary generalized frame F = (u1,u2,p) in R3, let V be a view plane for
F that is a distance d in front of B = base(F) and that has origin o. See Figure 3.31.
Let p be the generalized central projection of R3 on V with center p. Suppose that we
would like to determine a formula for p(p) in view plane coordinates for an arbi-
trary point p Œ R3. Choose an orthonormal basis u3 for B and let G = (u1,u2,u3,p) be
the corresponding augmented frame for F. The map G-1 maps world coordinates into
the coordinates of the frame G. Let T be the translation q Æ q - (0,d,0). Then p =
C1/dTG-1. If we use homogeneous coordinates, the p can be expressed in terms of a
matrix, like in Section 3.5.1. Actually, because of all the zeros in the matrix Ma, the
computations can be simplified. To compute p(q) we only need to compute the dot
product of q with u1 and keep track of that. More precisely,

Now back to the general problem in Rn. Given a generalized frame F = (u1,u2, . . . ,
uk+1,p) in Rn, the problem that interests us is to determine the generalized central pro-
jection p with center B = base(F) of Rn to a view plane V that is a distance d in front of
B. There is again the important special case where p = (-1/a)ek+1, F = (e1,e2, . . . ,ek+1,p),
and the view plane V is Rk with origin 0. Using homogeneous coordinates the general-
ized central projection Ca in this case is defined by the matrix

p q
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The general case p is reduced to this special case using a motion like before. Choose
an orthonormal basis for B and let G = (u1,u2, . . . ,un,p) be the corresponding aug-
mented frame for F. The map G-1 maps world coordinates into the coordinates of the
frame G. Let T be the translation q Æ q - dek+1. Then p = C1/dTG-1. The affine version
of the map is

3.9 The Theorems of Pascal and Brianchon

It did not seem appropriate to leave the subject of projective geometry without men-
tioning two well-known and beautiful theorems.

3.9.1. Theorem.

(1) (Pascal’s Theorem) If the vertices A, B, C, D, E, and F of a hexagon in P2, no
three of which are collinear, lie on a nondegenerate conic, then the pairs of
opposite sides intersect in collinear points, that is, the intersection points

are collinear, where LPQ is the line through points P and Q. See Figure 3.32.
(2) Conversely, if the pairs of opposite sides of a hexagon in P2, no three of whose

vertices are collinear, intersect in collinear points, then the vertices of the
hexagon lie on a nondegenerate conic.

Proof. See [Gans69] or [Fari95].

Pascal proved his theorem in 1640. There are affine versions of these theorems
but they are not as elegant because one has to add assumptions that intersections
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exist. The book [HilC99] has a nice discussion about the connection between Pascal’s
theorem and other results.

The converse of Pascal’s theorem is actually more interesting because it allows
one to construct any number of points on a conic through five points no three of which
are collinear. Also, by letting the points A and F and the points C and D coalesce we
get a construction for the points on a conic given three points and the tangent lines
at the first two points. For example, in Figure 3.33 (which uses notation compatible
with that in Theorem 3.9.1) we are given the three points A = F, C = D, and B and
tangent lines LAF and LCD at the points A and C, respectively. The figure shows how
an arbitrary line L through the intersection of LAF and LCD determines a unique new
point E on the conic. Note that since the line L can be parameterized by the angle
that it makes with the line LAF, our construction also produces a parameterization of
the points on the conic.

The dual of Pascal’s Theorem is called Brianchon’s Theorem after C.J. Brianchon,
who proved it in 1806 before the principle of duality in P2 was formulated. Of course,
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given that principle, there would have been nothing to prove. The dual of Theorem
3.9.1(2) holds also, again by the principle of duality.

3.10 The Stereographic Projection

The subject matter of this last section is not really part of projective geometry as such
but of geometry in a general sense. The map we shall describe shows up in many
places, including topology and complex analysis. It has many interesting properties
but we shall only take time to discuss those that are relevant to this book. A good ref-
erence for more information is [HilC99].

Definition. The stereographic projection of the n-sphere

is defined by

Note that pn|Sn-1 is the identity map on Sn-1. The map pn can be described geo-
metrically as follows: If x Œ Sn - {en+1} and if Lx is the ray that starts at en+1 and passes
through x, then pn(x) is the point that is the intersection of Lx with Rn. See Figure
3.34 for the case n = 2. It is easy to check that pn is one-to-one and onto, so that we
may think of Sn as

where • is the “point of Rn at infinity.” Using terminology introduced later in Chapter
5, Sn can be thought of as the one-point compactification of Rn. The map pn extends
to a one-to-one and onto map
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by mapping en+1 to •. This map is also called the stereographic projection of the 
n-sphere.

The identification of the two space Sn and Rn
• using pn gives us a one-to-one cor-

respondence between maps of Sn and Rn
•. Specifically, for any map

define

by

Alternatively, pn(h) is the unique map that makes the following diagram 
commutative:

3.10.1. Theorem.

(1) If X is an k-dimensional sphere in Sn that misses the point en+1, then X¢ =
pn(X) is a k-dimensional sphere in Rn.

(2) If X is an k-dimensional sphere in Sn through the point en+1, then X¢ = pn(X)
is a k-dimensional plane in Rn.

Proof. Consider the case of circles and n = 2. The argument for part (1) proceeds as
follows. Let X be a circle in S2 that does not pass through e3. Figure 3.35 shows a ver-
tical slice of the three-dimensional picture. The points A and B are points of X and
A¢ and B¢ are the image of A and B, respectively, under the stereographic projection.
The tangent planes at the points of X envelop a cone with vertex C. One can show
that the image C¢ of C under the stereographic projection is then the center of the
circle X¢. See [HilC99]. Part (2) follows from the fact that a circle through e3 is the
intersection of a plane with the sphere. The general case of spheres and arbitrary k-
dimensional spheres is proved in a similar fashion.

If we consider a plane as a “sphere through infinity,” then Theorem 3.10.1 can be
interpreted as saying that the stereographic projection takes spheres to spheres. With
this terminology we can now also talk about sphere-preserving transformations of both
Sn and Rn

•. (Note that in Rn these would be the maps that send a sphere to a sphere
or a plane and a plane to a plane or a sphere. We would have had a problem talking
about such “sphere-preserving” transformations in Rn because we would have to allow
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these transformations to not be defined at a point and not onto a point. We had a
similar problem with affine projective transformations.) The sphere-preserving trans-
formations of Rn

• are easy to characterize. First, any similarity of Rn extends to a map
of Rn

• to itself by sending • to •. Call such a map of Rn
• an extended similarity.

3.10.2. Theorem.

(1) An extended similarity of Rn
• is a sphere-preserving map. Conversely, every

sphere-preserving maps of Rn
• that leave • fixed is an extended similarity.

(2) An arbitrary sphere-preserving maps of Rn
• is a composition of an extended

similarity and/or a map pn (h), where h is a rotation of Sn around a great circle
through en+1.

Proof. See [HilC99].

Another interesting and important property of the stereographic projection is that
there is a sense in which it preserves angles. Let p be any point of Sn other than en+1.
Let u and v be linearly independent tangent vector to Sn at p. See Figure 3.36. Tangent
vectors will be defined in Chapter 8. For now, aside from the intuitive meaning, take
this to mean that u and v are tangent to circles Cu and Cv, respectively, in Sn through
p and that “tangent at a point p of a circle with center c” means a vector in the plane
containing the circle that is orthogonal to the vector cp. Let p¢, Cu¢, and Cv¢ in Rn be
the images of p, Cu, and Cv, respectively, under the stereographic projection. The
vectors u and v induce an orientation of the circles Cu and Cv (think of u and v as
velocity vectors of someone walking along the circles) and these orientations induce
orientations of the circles Cu¢ and Cv¢ via the stereographic projection. Choose tangent
vectors u¢ and v¢ to the circles Cu¢ and Cv¢ at p¢ that match their orientation. Let q be
the angle between the vectors u and v and q¢ the angle between u¢ and v¢.

3.10.3. Theorem. The stereographic projection is an angle-preserving or conformal
map, that is, q = q¢.
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Proof. See [HilC99].

3.10.4. Corollary. All sphere-preserving maps of Rn
• are angle preserving.

Proof. This is an immediate consequence of Theorems 3.10.2 and 3.10.3.

Now let X be a (n - 1)-sphere in Rn with center c and radius r. Let X¢ be the sphere
in Sn that is mapped onto X by the stereographic projection. Choose a point p on X
and let p¢ be the point of Sn (in X¢) that maps onto p. Let s be the rotation of Sn

around the great circle through p¢ and en+1 that maps p¢ to en+1. Then Y¢ = s(X¢) is a
sphere through en+1 and its projection to Rn is a plane Y. Let R be the reflection of
Rn about Y.

Definition. The map

is called an n-dimensional inversion of Rn
• with respect to the sphere X, or simply an

inversion in a sphere.

3.10.5. Theorem. The map m is defined analytically as follows:

(1) m(c) = •.
(2) Let p Œ Rn, p π c. Let q be the point on X where the ray Z from c through p

intersects X. Then m(p) is that unique point z on Z defined by the equation

Proof. See Figure 3.37. For a proof see [HilC99].

cp cz cq= =2 2r .

m s s= ( ) ( ) Æ-
• •p Rpn n
n n1 : R R
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3.10.6. Theorem. Every circle-preserving map of Rn
• is the composite of at most

three inversions.

Proof. See [HilC99].

Finally, there is an interesting connection between the stereographic projection
and Poincaré’s model of the hyperbolic plane. To learn about this we again refer the
reader to [HilC99]. Recall that one of the big developments in geometry in the 19th

century was the discovery of non-Euclidean geometry. The big issue was whether the
axiom of parallels was a consequence of the other axioms of Euclidean geometry. The
axiom of parallels asserts that given a line and a point not on the line, there is a unique
line through the point that is parallel to the line, that is, does not intersect it. This
axiom does not hold in other geometries. In the plane of elliptic geometry there is no
parallel line because all lines intersect. In hyperbolic geometry there are an infinite
number of lines through a point that are parallel to a given line.

3.11 EXERCISES

Section 3.4

3.4.1. Let � be an ordinary line in R2. Carefully prove that the set

in P2 is in fact a line in P2.

Section 3.4.1

3.4.1.1. Find the equation of the line in P2 through the points [2,-3,1] and [1,0,1].

3.4.1.2. Find the intersection of the lines

in P2.

- + - = + =X Y Z and X Z2 0 2 0

L = » { }•l l
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3.4.1.3. Find the cross-ratio of the points [1,0,1], [0,1,1], [2,-1,3], and [3,1,2] in P2.

3.4.1.4. The points I = [0,1,-1], O = [1,0,-2], and U = [2,-4,0] belong to a line L in P2.

(a) Find the coordinates of the point [1,2,-4] on L with respect to I, O, and U.
(b) Find the coordinates of the point [1,2,-4] with respect to I¢ = [1,0,-2], O¢ =

[0,1,-1], and U¢ = [1,1,-3].
(c) Find the transformation j that maps the coordinates with respect to I, O, and U

to the coordinates with respect to I¢, O¢, and U¢.

3.4.1.5. Consider the points I = [0,1,-1], J = [1,0,1], O = [1,0,-2], and U = [2,-4,0] in P2.

(a) Find the coordinates of the point [1,2,-4] with respect to I, J, O, and U.
(b) Find the coordinates of the point [1,2,-4] with respect to I¢ = [1,0,-2], J¢ = [3,1,1],

O¢ = [0,1,-1], and U¢ = [1,1,-3].
(c) Find the transformation j that maps the coordinates with respect to I, J, O, and

U to the coordinates with respect to I¢, J¢, O¢, and U¢.

Section 3.4.3

3.4.3.1. Let T be the central projection that projects R2 onto the line L defined by 2x - 3y + 6
= 0 from the point p = (5,1).

(a) Find the equation for T in two ways:

(1) Using homogeneous coordinates and projective transformations
(2) Finding the intersection of lines from p with L

(b) Find T(7,1) and T(3,4).

Section 3.5.1

3.5.1.1. Let T be the central projection that projects R3 onto the plane X defined by x + y + z
= 1 from the point p = (-1,0,0).

(a) Find the equations for T in three ways:

(1) Using the usual composites of rigid motions and central projections and
homogeneous coordinates

(2) Via the method of frames
(3) Finding the intersections of lines through p with the plane

(b) Find T(9,0,0) and T(4,0,5).

Section 3.6

3.6.1. Consider the conic defined by the equation

(a) Is the conic an ellipse, hyperbola, or parabola?
(b) Find its natural coordinate system.
(c) Determine its focus and directrix.

31 10 3 21 10 3 124 20 3 42 20 3 1 02 2x xy y x y- + + -( ) + -( ) - + = .

206 3 Projective Geometry



Section 3.6.1

3.6.1.1. Find the projective transformation (like in Example 3.6.1.2) that transforms the conic

into the unit circle.

3.6.1.2. Find the tangent line to the conic in Exercise 3.6.1.1 at the point (0,1).

3.6.1.3. Find the equation of the conic through the points p1 = (1,1), p2 = (2,1+(3/2) ), 
p3 = (5,1), p4 = (4,1-(3/2) ) and that has tangent line x - 1 = 0 at the point p1.

3.6.1.4. Find the equation of the conic through the points p1 = (1,2), p2 = (-3,2), and 
p3 = (-1,1) and which has tangent lines y - x - 1 = 0 and x + y + 1 = 0 at the point 
p1 and p2, respectively.

3.6.1.5. Find the equation of the conic through the points p1 = (2,-1) and p2 = (4,-2) that has
tangent lines y = -1 and x + y - 2 = 0 at those points, respectively, and is also tangent
to the line 2x - y - 1 = 0.

3.6.1.6. Solve conic design problem 4.

3.6.1.7. Solve conic design problem 5.

Section 3.7

3.7.1. Consider the following quadric surface

(a) Determine its type.
(b) Find its tangent plane at the point (0,0,1).

Section 3.10

3.10.1. Show that the inverse

of the stereographic projection is defined by
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C H A P T E R  4

Advanced Calculus Topics

4.1 Introduction

The object of this chapter is to introduce basic topological concepts as they apply to
Rn and to cover some important topics in advanced calculus. The reader is assumed
to have had the basic three-semester sequence of calculus and it is not our intent to
redo that material here. Our emphasis will be on multivariable functions and their
properties, the assumption being that the reader has a reasonable understanding of
functions of a single variable. Proofs are given in those cases where it was thought 
to be helpful in understanding some new ideas or if they involved some geometric
insights.

Section 4.2 introduces the topological concepts. We limit the discussion to those
that are specifically needed for advanced calculus and leave the more general study
of topology to Chapter 5. Section 4.3 describes the derivative of vector-valued func-
tions of several variables and related results that generalize well-known properties of
real-valued functions of a single variable. The inverse function theorem and the
implicit function theorem are discussed in Section 4.4. These are such important the-
orems and get used so often that we give a fairly detailed outline of their proofs. Many
results in differential topology and algebraic geometry would be impossible without
them. Next, Section 4.5 develops the basic results regarding critical points of func-
tions and this leads to Morse theory, which is described in Section 4.6. The problem
of finding zeros of functions is addressed in Section 4.7. Section 4.8 reviews basic
facts about integrating functions of several variables. Finally, in Sections 4.9 and 4.9.1,
we start a brief overview of the topic of differential forms and their integrals that will
be continued in Section 8.12.

4.2 The Topology of Euclidean Space

Topology is the study of the most basic properties of point sets such as, what is meant
by a neighborhood of a point, what open and closed sets are, and what makes a func-



tion continuous. It is the foundation of calculus, analysis, and any sort of geometric
investigations. In this section we look only at some of the important definitions 
as they apply to Euclidean space. Chapter 5 will study abstract topological spaces.
Because we shall encounter many of the same definitions there in a more general
context, we shall postpone some proofs and results to that chapter to avoid stating
and proving theorems twice. By and large, this section is simply a collection of defi-
nitions and essentially immediate consequences. By carefully asking “what does this
mean?” the reader should have little difficulty in proving most theorems.

Unless stated otherwise, all points and sets in this section belong to Rn for some
fixed but arbitrary n.

Definition. A set N is said to be a neighborhood of a point p if it contains an open
ball about p, that is, there exists an e > 0 such that Bn(p,e) Õ N.

The important part of the neighborhood N is that it contains some open ball about
p. We do not care whether it contains some other “junk.” For example, the open inter-
val (-1,1) together with the set {-100,23,5} would be called a neighborhood of the
origin in R. Note also that this definition and many others depend on the dimension
of the Euclidean space with respect to which we are making the definition. For
instance, the interval (-1,1) is a neighborhood of the origin for R but not for R2. The
open unit ball B2, on the other hand, is a neighborhood of the origin for R2.

Definition. A subset X of Rn is called an open set if for all points p in X there is 
an e > 0 such that Bn(p,e) Õ X. X is said to be a closed set if the complement of X,
Rn - X, is open.

Specifying the open sets of a set is what defines its “topology.” (A precise 
definition of the term “topology” is given in Chapter 5). “Open” and “closed” are dual
concepts. The open interval (0,1) is an open set in R and the closed interval [0,1] is a
closed set. Our definitions are compatible with the old usage of the terms. A set does
not have to be either open or closed. For example, the “half-open” (“half-closed”) inter-
val (0,1] is neither. The set Rn is both open and closed as is the empty set f but these
are the only subsets of Rn that are both open and closed. A single point is always a
closed set. In practice, sets tend to be open if the “<” relation is used in their defini-
tion and closed if the “£” relation is used.

4.2.1. Proposition

(1) The arbitrary union of open sets is an open set.
(2) A finite intersection of open sets is open.
(3) The arbitrary intersection of closed sets is a closed set.
(4) A finite union of closed sets is closed.

Proof. Part (1) is easy. To prove (2), let O1, O2, . . . , Ok be open sets and let p be a
point in their intersection. Since each Oi is an open set, there exists an ei > 0, so that
Bn(p,ei) Õ Oi. If

e e e e= { }min , , . . . , ,1 2 k
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then the open ball Bn(p,e) is contained in all the sets Oi and hence in their intersec-
tion, proving (2). Parts (3) and (4) follow from parts (1) and (2) and the identity

The identities

show that arbitrary intersections of open sets need not be open and arbitrary unions
of closed sets need not be closed.

Definition. A point p is a limit or accumulation point of a set X if every neighbor-
hood of p meets X in a point other than p. More precisely, for every e > 0,

An isolated point of X is a point of X that has a neighborhood containing no point of
X other than itself (that is, it is not a limit point).

For example, 1 is a limit point of (0,1), but 1.0001 is not because
B1(1.0001,0.00005) is disjoint from (0,1). A point p in the set X is not necessarily a
limit point of X. Only those points whose neighborhoods contain infinitely many
points of X are. For example, if X = [0,1] » {2}, then 2 is an isolated point and not a
limit point of X, but every point in [0,1] is a limit point of X.

Definition. The closure of a set X, denoted by cl(X), is defined by

For example,

The closure of the set of rationals in the reals is the reals.

4.2.2. Proposition

(1) For every set X, cl(X) is a closed set.
(2) If X is closed, then cl(X) = X.

Proof. We prove (1) and leave (2) as an exercise (Exercise 4.2.4). We need to show
that

Y R X= - ( )n cl
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is an open set. Let p Œ Y. See Figure 4.1. Since p œ cl(X), there is an e > 0, so 
that Bn(p,e) « X = f. To show that Bn(p,e) does not contain any limit point of X, let
q Œ Bn(p,e) and let r = e - |pq|. Then

so that q is not a limit point of X.

Definition. Let X Õ Rn. The boundary of X, denoted by bdry(X), is defined by 

bdry(X) = {p | every neighborhood N of p meets both X and its complement,
that is, 

The interior of X, denoted by int(X), is defined by

See Figure 4.2. For example, if n = 1, then

Note that boundary points of a set do not necessarily belong to the set. The bound-
ary of the set of rationals in the reals is all of the reals and the interior of this set is
empty. For “nice” sets the boundary and the interior are the obvious sets; however,

bdry and0 1 0 1 0 1 0 1, , int , , .( )( ) = { } [ ]( ) = ( )

int .X p X p N N X( ) = Œ Õ{ } has a neighborhood  with 

N X N R X« π « -( ) πf fand n }.

B q B p R Xn n nr, , ,( ) Õ ( ) Õ -e
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Figure 4.2. A boundary point p and an interior point
q of a set X.



Exercise 4.2.6 shows that the definitions may have some unexpected consequences in
certain cases.

The boundary and interior of a set change if we change the containing space Rn.
For example, the boundary of [0,1] in R2 is all of [0,1] and its interior is the empty
set.

4.2.3. Proposition

(1) The boundary of a set is a closed set.
(2) If X Õ Rn, then bdry(Rn - X) = bdry(X).
(3) A set X is closed if and only if bdry(X) Õ X.
(4) The interior of a set is an open set.
(5) int(X) = X - bdry(X).

Proof. Easy.

Definition. A subset X of Rn is called a bounded set if X Õ Bn(r) for some r > 0. If
X is not bounded, then it is said to be unbounded.

For example, the set of integers is an unbounded set in R. Of course, the whole
set R is an unbounded subset of R. The interval [-1,10] is a bounded set because it
is contained in (-50,50) = B1(50).

Definition. Let X be a subset of Rn. If S = {Ua} is a collection of subsets of Rn whose
union contains X, then S is called a cover of X. If all the Ua are open sets in Rn, then
S is called an open cover of X. If all the Ua are closed sets in Rn, then S is called a
closed cover of X.

For example, {(1/n,1 - 1/n) | n = 2, 3, . . . } is an open cover of the subset (0,1) of
R.

Definition. A subset X of Rn is said to be compact if every open cover of X has a
finite subcover, that is, there is a finite collection of sets from the cover that already
cover X.

4.2.4. Theorem. (The Heine-Borel-Lebesque Theorem) A subset X of Rn is compact
if and only if it is closed and bounded.

Proof. We shall prove half of the theorem, namely, that a compact set is closed and
bounded, and leave the converse to the next chapter (Theorem 5.5.6). One reason for
proving at least part of the theorem here is to show how the property of covers having
finite subcovers gets used. Basically, when one has a finite collection of objects, e.g.,
numbers, then one can talk about the smallest or largest. This is not possible with
infinite collections.

Assume that X is a compact subset of Rn. To prove that X is closed we need to
show that Rn - X is open. Let p Œ Rn - X. For every x Œ X there is a ball neighbor-
hood Ux and Vx of p and x, respectively, such that Ux « Vx = f. See Figure 4.3. The
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collection {Vx} is an open cover of X. Since X is compact, there is a finite subcover
{Vxi}1£i£k. It follows that

is an open neighborhood of p contained in Rn - X and so Rn - X is open.
Next, we show that X is bounded. For every x Œ X, the ball Bx = Bn(|x| + 1)

contains x in its interior. Let {Bxi}1£i£k be a finite subcover of the open cover {Bx}.
If r = max1£i£k {|xi| + 1}, then X Õ Bn(r).

The Heine-Borel-Lebesque theorem is one of the fundamental theorems in analy-
sis because it abstracts an essential property of sets that is needed to make many
results dealing with continuous functions valid. Although the “correct” definition of
compactness is in terms of open covers of sets, the theorem is often used to justify
defining a set to be compact if it is closed and bounded. This definition is certainly
easier to understand if one is not very familiar with analysis. Since the concepts are
equivalent, it does not matter much from a practical point of view. At any rate, it
follows that all closed intervals [a,b], all disks Dn(p,r), and all spheres Sn are compact.

The definitions above were all relative to a fixed Euclidean space Rn. For example,
if we were to say that a set is open, then we really are, more accurately, saying that
it is open in Rn. It is important to have a version of these definitions that is relative
to other spaces besides Rn. Specifically, we want to be able to talk about sets that are
open in X with respect to any other given space X.

Definition. A subset A of a set X in Rn is said to be open in X, or relatively open, if
there is an open set O in Rn with the property that A = O « X. A is said to be closed
in X, or relatively closed, if X - A is open in X.

For example, the subset

of the plane is not open in the plane, but it is open in the unit circle S1 because A is
the intersection of S1 with the open set
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Figure 4.3. Proving that compact sets are closed.



See Figure 4.4.
It is easy to show that the relative concepts of open and closed do not depend on

Rn. Specifically, if X is also a subset of Rm, then A will be open/closed in X with respect
to Rn if and only if it is open/closed with respect to Rm. Although we shall not give
the formal definitions, we now also get the obvious relative concepts of limit point of
A in X, closure of A in X, and boundary of A in X.

Next, we turn to the topology of continuity. Invariably, whenever one defines some
structure in mathematics it is useful to define maps (“morphisms”) that preserve this
structure. Since the only topological structure that we have on Rn at the moment is
that of open sets, it is natural to define these maps in terms of them. We begin with
a notion of limits.

Definition. We say that a sequence of points p1, p2, . . . has a limit point p, and write

if for every e > 0 there is an N so that i > N implies that

When it comes to functions, it is assumed that the reader has seen the usual e-d
type definition for continuity, at least in the case of real-valued functions of one vari-
able. That definition extends to functions of more variables almost verbatim.

Let X Õ Rm and Y Õ Rn.

Definition. Let f :X Æ Y and let p Œ X. We say that the function f has a limit L at p
and write

if L Œ Y and for every e > 0 there is a d > 0 so that 0 < |q - p| < d and q Œ X implies
that
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The function is said to be continuous at p if

This leads to the classical definition of a continuous function.

First definition of a continuous function. The function f :X Æ Y is said to be 
continuous if it is continuous at every point of X.

There are conceptually better and cleaner definitions. The motivation for our new
definitions lies in the fact that one can rewrite the definition of continuity of a func-
tion f at a point p as follows:

(4.1)

Second definition of a continuous function. A function f :X Æ Y is said to be 
continuous if f-1(V) is open in X for every open set V in Y.

Third definition of a continuous function. A function f :X Æ Y is said to be 
continuous if f-1(V) is closed in X for every closed set V in Y.

The second and third definitions are the “right” definitions, which extend to
abstract topological spaces as will be seen in Chapter 5. The second is actually the
most common. Since the next theorem shows that the three definitions are in fact
equivalent, we shall not distinguish between them.

4.2.5. Theorem. The three definitions of continuity are equivalent.

Proof. We show that the first and second definitions are equivalent and leave the
rest as an exercise for the reader. Assume that f is continuous with respect to the 
first definition. Let V be an open set in Y. We need to show that U = f-1(V) is open in
X. See Figure 4.5. Let p be any point in U and let q = f(p). Choose e > 0 so that 
Oq = Bn(q,e) « Y Õ V. By statement (4.1), there is a d > 0 so that f(Op) Õ Oq, where
Op = Bm(p,d) « X. Therefore, p belongs to an open subset Op of X that is contained
in U. Since p was an arbitrary point of U, we have shown that U is an open set in X.

Conversely, assume that f is continuous with respect to the second definition of
continuity. Let p Œ X and set q = f(p). Let e > 0. Then Oq = Bn(q,e) « Y is an open set

For every fn   there is a  so that f me d d e> > ( ) «( ) Õ ( )( ) «0 0 B p X B p Y, , .

lim .
q p

q p
Æ

( ) = ( )f f

f q L( ) - < e.
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in Y and U = f-1(Oq) is open in X. Therefore, there is a d > 0, so that Op = Bm(p,d) «
X Õ U. Clearly, f(Op) Õ Oq. In other words, f is continuous at p. We are done.

4.2.6. Proposition. The composition of continuous maps is continuous.

Proof. The proof is easy using the second or third definition of continuity.

Definition. If a function f :X Æ Y is not continuous at a point p but

exists, then the point p is called a removable discontinuity of the function f (because
we could make f continuous at p simply by redefining f to equal L at p). Any other
point p where f is discontinuous is called an essential discontinuity.

For example, consider the functions f, g :R Æ R defined by

The function f has a removable discontinuity at 0, whereas the function g has an essen-
tial discontinuity there.

If a function f :X Æ Y is continuous it is continuous at every point. If e > 0, then
the first definition of continuity gives us a d > 0 so that points within d of a point p
will get mapped to a point within e of f(p). However, it is important to realize that the
d depends on p. It may change from point to point. A nice situation is one where one
can choose a d that will work for all points.

Definition. A function f :X Æ Y is said to be uniformly continuous if for every e > 0
there is a d > 0 so that for all p, q Œ X with |q - p| < d we have that |f(q) - f(p)| < e.

Uniform continuity is a very important concept in analysis.

4.2.7. Example. It is not hard to show that the function

is continuous but not uniformly continuous. For a fixed e, the d that works at a point
x gets smaller and smaller as x approaches 0. The core problem is that (0,1] is not
compact.

4.2.8. Theorem. If f :X Æ Y is a continuous function and if X is compact, then f is
uniformly continuous.

Proof. See [Buck78] or [Eise74]. See also Theorem 5.5.13.

The following property is weaker than uniform continuity but is sometimes 
adequate:

f f x x: , , ,0 1 1( ] Æ ( ) =R

f x x f

x x g

( ) = π ( ) =
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1 0 0 2

1 0 0 2
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Æ
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Definition. A function f :X Æ Y is said to satisfy a Lipschitz condition on X if there
is constant M > 0, so that |f(q) - f(p)| £ M | p - q| for all p, q Œ X.

Definition. A function f :X Æ Y is said to be a homeomorphism if it is one-to-one
and onto and both it and its inverse are continuous.

To a topologist all homeomorphic spaces look alike and the main problem is to
classify spaces up to homeomorphism.

Definition. A set X is said to be connected if X cannot be written as the union of
two subsets A and B that are nonempty disjoint open sets in X.

4.2.9. Theorem. Every connected subset of R is either R itself or an interval of the
form [a,b], (a,b), (a,b], [a,b), (-•,a], (-•,a), [a,•), or (a,•).

Proof. See [Eise74].

A more intuitive notion of connectedness is the following:

Definition. A set X is said to be path-connected if for all points p and q in X there
is a continuous function f : [0,1] Æ X with f(0) = p and f(1) = q.

4.2.10. Proposition. A path-connected space is connected.

Proof. See [Eise74].

The converse of Proposition 4.2.10 is not necessarily true.

Definition. A component of a set is a maximal connected subset.

Next, we describe some properties that are preserved by continuous maps.

4.2.11. Theorem. The continuous image of a compact set is compact.

Proof. Let X be a compact set and let f :X Æ Y be a continuous onto map. Let {O¢a}
be an open cover of Y and let Oa = f-1(O¢a). By continuity of f, each Oa is open in X.
In fact, {Oa} is an open cover of X. Since X is compact, there is a finite subcover
{Oai}1£i£k. Clearly, {O¢ai} is a finite cover of Y and the theorem is proved. See also
Theorem 5.5.8.

4.2.12. Theorem. The continuous image of a connected set is connected.

Proof. Let X be a connected set and let f :X Æ Y be a continuous map which is onto
Y. Suppose that Y is not connected. Then Y = O1 » O2, where Oi is open in Y and
O1 « O2 = f. But then X would be a disjoint union of open sets f-1(O1) and f-1(O2),
which would contradict the connectedness of X. Note that since f is onto, neither 
f-1(O1) nor f-1(O2) is empty.
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Definition. The support of a function f :Rn Æ R is the closure of the set of points
where f is nonzero. (See Figure 4.6.)

4.3 Derivatives

Given a function f :R Æ R, the usual definition of the derivative for f at a point a is

(4.2)

if the limit exists. This works fine for functions of one variable, but just like the single
number “slope” cannot capture the direction of vectors in dimension larger than two,
we need a different definition of derivative in higher dimensions.

Definition. Let U be an open subset of Rn. A function f :U Æ Rm is said to be 
differentiable at p Œ U if there is linear transformation T :Rn Æ Rm such that

(4.3)

In that case, T will be called the derivative of f at p and will be denoted by Df(p).

See Figure 4.7. Note that if n = m = 1, then equation (4.3) is simply a rewrite of
the equation in (4.2) if we define T(h) = f¢(a)h. In other words, in arbitrary dimen-
sions, the derivative needs to be replaced by a linear transformation rather than
having it simply be a real number. The fact that a linear transformation from the reals
to the reals could be specified by a real number obscured what was really going on.

4.3.1. Proposition. The linear transformation T in equation (4.3) is unique if it
exists.

Proof. Suppose that S is another linear transformation satisfying equation (4.3)
where T is replaced by S. Then

lim .
h

f f T
Æ
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=
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Now tp Æ 0 as t Æ 0, for any p Œ Rn. Therefore, if p π 0, then we can let tp play the
role of h above to get

so that S(p) = T(p).

One should think of the derivative as the linearization of a function. No one linear
transformation approximates f. Instead, there are lots of linear transformations, one
at every point, which locally approximate f. The linear map Tp defined by

(4.4)

whose graph is a plane, is what approximates the graph of f in a neighborhood of p.

Definition. The graph of the linear transformation Tp :Rn Æ Rm defined by equation
(4.4) is called the tangent plane to the graph of f at the point (p,f(p)) in Rn ¥ Rm. If 
n = m = 1, then it is usually called the tangent line.

The current notion of a tangent plane is rather special. We shall have much more
to say about tangent planes and begin to see their importance in Chapter 8.

4.3.2. Example. The derivative of f(x) = x2 at a is defined by Df(a)(x) = 2ax.

Proof. Let
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We must show that the limit L exists and is zero. But

Figure 4.8 shows the graph of the linear map Df(1)(x), which is the derivative of f at
1, and the graph of the linear function T1(x) defined by equation (4.4), which defines
that tangent line to f at (1,1).

4.3.3. Example. The derivative of f(x,y) = x2 at (a,b) is defined by Df(a,b)(x,y) = 2ax.

Proof. We must show that

But

because

Example 4.3.3 highlights one problem for those readers who are new to the 
definition of vector-valued function derivatives. The notation Df(a,b)(x,y) looks very
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complicated because it contains so many variables. One needs to look beyond the
notation. We are simply defining a linear map T(x,y), but one that varies as we move
from one point (a,b) to another. If the reader will bear with us, we shall soon intro-
duce a more common and more compact notation for the derivative, namely the 
Jacobian matrix of partial derivatives, that will eliminate the excess of symbols. 
The advantage of the current notation however is that there is absolutely no ambi-
guity about it whereas the same cannot be said about some instances of the partial
derivative notation.

Now, since we clearly do not want to compute derivatives via limits, we need some
basic facts that will aid in their computation.

4.3.4. Proposition

(1) If f is a constant map, then Df = 0.
(2) If f is a linear transformations, then Df = f.
(3) The derivative at the point (a,b) of the map f(x,y) = xy is defined by Df(a,b)(x,y)

= bx + ay.
(4) If f and g are two differentiable functions with the same domain and range,

then f + g is differentiable and D(f + g) = Df + Dg.

Proof. The proposition follows in a straightforward manner from the definition of
the derivative and is left as an exercise (Exercise 4.3.1).

The next proposition reduces the problem of finding the derivative of a vector-
valued function to finding the derivative of real-valued functions of several variables.

4.3.5. Proposition. Let U be an open subset of Rn and let f :U Æ Rm. If f(p) =
(f1(p), . . . ,fm(p)), where fi :Rn Æ R, then f is differentiable at p if and only if each fi
is and

Proof. This is again straightforward. See [Spiv65].

4.3.6. Theorem. (The Chain Rule) Let U and V be open sets in Rn and Rm, respec-
tively. Suppose that we have maps f :U Æ Rm, g :V Æ Rk and that f(U) Õ V. If f is 
differentiable at p in U and g is differentiable at q = f(p), then the composite 
g ∞ f :Rn Æ Rk is differentiable at p and

Proof. See [Spiv65]. The proof is similar to the one for functions of one variable.

It is very important that one understands the chain rule for derivatives. Not only
does it lead to many differentiation formulas (starting with only a few basic ones) but
it gets used over and over again in practical problems. Lots of nice formulas would
be impossible without it. One immediate corollary is that the derivative of vector-
valued functions satisfies the usual properties of a derivative.

D g f Dg Dfo o( )( ) = ( ) ( )p q p .

Df Df Dfmp h p h p h( )( ) = ( )( ) ( )( )( )1 , . . . , .
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4.3.7. Corollary. Let U be an open set in Rn and let f, g :U Æ R be functions that
are differentiable at p Œ U.

(1) D(f + g)(p) = Df(p) + Dg(p)
(2) D(fg)(p) = f(p)Dg(p) + g(p)Df(p)
(3) If g(p) π 0, then

Proof. We prove (1) to show how the chain rule gets used. The rest are left as an
exercise. Define functions m(p) = (f(p),g(p)) and s(p,q) = p + q. Clearly, (f + g)(p) =
s(m(p)). Therefore, the chain rule, Proposition 4.3.4(2), and Proposition 4.3.5 and
imply that

4.3.8. Example. Let f(u) = (sinu,u2), g(x,y) = x2 + 3xy, and G(u) = g(f(u)). Find the
derivative DG.

Solution. In this problem, it is of course easy to compose the functions f and g to
get

and

On the other hand, using the chain rule we do not need to compute G(u) directly. Note
that

and

It follows that

which agrees with the first answer.

Although the chain rule lets us compute the derivatives of many functions, its
direct use is rather messy. To make computations still easier, we use the chain rule to
determine the matrix for the linear transformation Df(p).
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Let f :Rn Æ R and let p Œ Rn.

Definition. The limit

if it exists, is called the ith partial derivative of f of order 1 at p and denoted by Dif(p)
or ∂f/∂xi(p).

Note that the ith partial derivative is just the ordinary derivative h¢(0) of the 
composite function h(t) = f(g(t)), where g(t) = p + tei.

Since partial derivatives are again functions, one can take partial derivatives of
those to get the higher partial derivatives.

Definition. If k > 1, then define the (mixed) partial derivative Dii, . . . , ik f(p) of order k
recursively by:

Does it matter in which order the partial derivatives are taken? Usually not.

4.3.9. Theorem. If Di,jf and Dj,if are continuous in an open neighborhood contain-
ing p, then

Proof. See [Spiv65].

Some common notation for partial derivatives is:

Finally, the following notation often comes in handy to simplify expressions.

Notation. Let f :Rn Æ Rm be differentiable. If f(x) = (f1(x),f2(x), . . . ,fm(x)), then

Definition. Let A be an open set in Rn and let f :A Æ R. If f is continuous, it is said
to be of class C0. Let k ≥ 1. The function f is said to be of class Ck if its partial deriv-
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atives of order r exist and are continuous for 1 £ R £ k. The set of such functions is
denoted by Ck(A). If f :A Æ Rm, then f is said to be of class Ck if all the component
functions are of class Ck. C1 functions are often called continuously differentiable
functions. If f is of class Ck for all k, then we say that f is of class C•. A C• function
is also called a smooth function.

4.3.10. Theorem. Let U be an open subset of Rn. If f :U Æ Rm is differentiable at p,
then the jth partial derivatives Djfi(p) exist for all i and the m ¥ n matrix (Djfi(p)) is
the transpose of what we have called the matrix for the linear transformation Df(p)
with respect to the standard bases of Rn and Rm.

Proof. This is an easy consequence of the definitions and the chain rule. See [Spiv65]
for details.

Definition. With the notation and hypotheses of Theorem 4.3.10, the matrix (Djfi(p))
is called the Jacobian matrix and will be denoted by f ¢(p). Using the more common
partial derivative notation,

If m = n, then the determinant of the n ¥ n Jacobian matrix f ¢(p) is called the Jaco-
bian of f at p. If m = 1, then it is often convenient to treat the 1 ¥ n matrix f ¢(p) as a
vector in Rn.

Note. With our definition, the matrix f ¢(p), thought of as a transformation, will act
on vectors on the right and not on the left as is the case everywhere else in this book.
The reason for departing from our usual convention regarding the matrix of a linear
transformation and using the transpose here is to be compatible with how most people
define the Jacobian matrix in terms of partials. If m = n = 1, the new notation f ¢(p)
will also be compatible with the old notation for the derivative of a function of one
variable if we think of a number as a 1 ¥ 1 matrix.

4.3.11. Theorem. Let U be an open subset of Rn and let f :U Æ Rm and assume that
each Djfi exists in a neighborhood of a point p and is continuous at p. Then f is 
differentiable at p.

Proof. See [Spiv65].

Assuming that one can take partial derivatives of ordinary real-valued functions,
we now show via some examples how easy it is to find derivatives of vector-valued
functions and how the derivatives really do correspond to approximating the func-
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tions by linear functions. In the three examples below, the functions should be thought
of intuitively as parameterizations of certain sets. The derivative will then correspond
to the tangent line or plane at the appropriate points of those sets.

4.3.12. Example. To find the derivative of p(q) = (cosq,sinq) at q = p/4.

Solution. By Theorem 4.3.10

Therefore,

The graph of the function

is in fact the tangent line to the circle at p(p/4).

4.3.13. Example. To find the derivative of f(x,y) = x2 + y2 at (x,y) = (1,0).

Solution. By Theorem 4.3.10, f¢(a,b) = (2a,2b). Therefore,

The graph of

is the tangent plane to the graph of f at (1,0).

4.3.14. Example. To find the derivative of f(q,z) = (cosq,sinq,z) at (0,2).

Solution. By Theorem 4.3.10

so that Df(a,b)(h,k) = ((-sina)h,(cosa)h,k). Clearly, the map
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is the tangent plane at (1,0,2) to the cylinder of radius 1 centered on the z-axis, which
is the surface parameterized by f.

Up to now we have been dealing with the derivative of a function as a linear map
(which is what it is), but the reader probably has also noticed that this is a little 
cumbersome and we end up with complicated looking expressions even if we use the
Jacobian matrix. This is not how most people deal with derivatives. To get more of
the look and feel of how most people really work, we use the following consequence
of the chain rule.

4.3.15. Theorem. Let g1, . . . , gm :Rn Æ R, f :Rm Æ R be functions that are contin-
uously differentiable at a Œ Rn and (g1(a), . . . , gm(a)) Œ Rm, respectively. Define F :Rn

Æ R by F(x) = f(g1(x), . . . , gm(x)). Then

(4.5)

Proof. See [Spiv65].

Equation (4.5), which is really just the chain rule, comes in very handy when 
computing derivatives and is usually written informally as

(4.6)

Nevertheless, one needs to be aware of the fact that the Df notation of a derivative in
equation (4.5) is more precise and one should always return to that if one has any
problems carrying out a computation. Specifically, although notation of the type 
∂f/∂x is the more common notation for the ith partial derivative it can sometimes 
be ambiguous whereas the other notation Dif(p) is not. A typical case where ambi-
guities can arise is in the application of the chain rule like in equation (4.6). For
example, if f(u,v) is a function and u = g(x,y) and v = h(x,y), then equation (4.6) turns
into

Although this way of writing the chain rule makes it easy to remember the rule, the
formula must be interpreted carefully. For one thing, the f’s appearing on the right
hand side of the equation are different from the f on the left hand side. In the first
case, we are considering f to be a function of u and v and, in the second, we are 
considering f to be a function of x and y. One should really write
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where F(x,y) = f(u(x,y),v(x,y)). Sloppiness may be acceptable, but only as long as one
knows how to express things correctly when needed.

4.3.16. Example. Given z = x2 + 3xy, x = sinu, and y = u2, to find dz/du. Note that
this is really just a restatement of the problem in Example 4.3.8.

Solution. We have

This answer clearly agrees with the earlier one.

4.3.17. Example. Let u = f(x - ct) + g(x + ct). To show that

Solution. Define r(x,t) = x - ct and s(x,t) = x + ct. Then u(x,t) = f(r(x,t)) + g(s(x,t)).
The result follows from the following computations:

and

Definition. Let f :Rn Æ R be a function that is differentiable at a point p. Then the
gradient of f at p, denoted by —f (p), is defined to be the Jacobian matrix f¢(p), that is,

A generalization of partial derivatives is the directional derivative.

Definition. Let U be an open subset of Rn and let f :U Æ R. Let v be an arbitrary
nonzero vector. If p Œ U and if the limit

lim
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exists, then that limit is called the directional derivative of f in the direction v and is
denoted by Dvf(p).

The directional derivative at a point p is essentially the derivative of the curve
obtained by intersecting the graph of f with a vertical plane through p. See Figure 4.9.
Some books require that v be a unit vector. Although this is a natural requirement in
some application (see Examples 4.3.19 and 4.3.20 below), there is no reason to assume
this in the definition. In fact, part (2) of the next proposition shows a useful linear
relationship in the general case.

4.3.18. Proposition

(1) Dvf(p) = —f(p)•v. In particular, .

(2) The directional derivative is a linear function of its direction vector, that is, if
v, w Œ Rn and a, b Œ R, then

Proof. To prove part (1), define functions t and g by

The chain rule implies that

But Dvf(p) is just g¢(0) and so we are done. Part (2) follows easily from (1) because
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Figure 4.9. The directional derivative.



4.3.19. Example. To find Dvf when v = (-1,2) and f(x,y) = x2y + exy.

Solution. Since —f (x,y) = (2xy + yexy,x2 + xexy), it follows that

4.3.20. Example. To find the directional derivative for

.

at (0,0) in the direction making an angle of 60 degrees with the x-axis.

Solution. The unit direction we want is v = (1/2)(1, ). Since —F(x,y) = (ex cosy,-ex

siny), it follows that

4.3.21. Example. To find the directional derivative of

along the curve g(u) = (e-u,2sinu + 1,u - cosu) at the point g(0) on the curve.

Solution. What we are after is the directional derivative of F in the direction of the
unit tangent vector to the curve g(u) at 0. We shall see in Section 8.4 that the tangent
vector v(u) to the curve at u can be obtained by differentiating the component func-
tions of the curve, so that v(u) = (-eu,2cosu,1+sinu) and v(0) = (-1,2,1). Let u be
the unit vector in the direction v(0). Since —F(x,y,z) = (2xyz3,x2z3,3x2yz2) and g(0) =
(1,1,-1), our answer is

Here are two more basic theorems for vector-valued functions that extend well-
known results from the case of ordinary functions of one variable.

4.3.22. Theorem. (The Generalized Mean Value Theorem) Let f :Rn Æ Rm be a 
differentiable function. If p, q Œ Rn, then

for some p* Œ [p,q].

Proof. See [Buck78].

The next theorem is a generalization of Taylor’s theorem. We shall only state it for
the 2-variable case. First, it is convenient to define a differential operator
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which, when applied to a real-valued function f(x,y), gives

For example,

Definition. Let f(x,y) be of class Cn in a neighborhood of a point (x0,y0). Then

is called the Taylor polynomial of f of degree n at x0.

4.3.23. Example. To find the Taylor polynomial g(x,y) of degree 2 at (1,2) for the
function

Solution. Now

so that

4.3.24. Theorem. (The Taylor Polynomial Theorem) Let f(x,y) be of class Cn+1 in a
neighborhood of a point (x0,y0). Then

where
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for some point (x*,y*) on the line segment from (x0,y0) to (x,y).

Proof. Let p = (x,y), p0 = (x0,y0), and define

The theorem follows easily from the chain rule and the basic Taylor polynomial for
functions of one variable applied to F (Theorem D.2.3). See [Buck78] .

So far in this section differentiability was a notion that was defined only for a
function f whose domain A was an open set; however, one can define the derivative
of a function also in cases where its domain is a more general set. Basically, all one
has to be able to do is extend the function f to a function F defined on an open set
containing A. One then defines the derivative of f to be the derivative of F and shows
that this value does not depend on the extension F one has chosen. In fact, one only
really needs local extensions, that is, for every point in A we need to be able to extend
f to a differentiable function on a neighborhood of that point.

Definition 1. Let A be an arbitrary subset of Rn. A map f :A Æ Rm is said to be of
class Ck or a Ck map on A if there exists an open neighborhood U of A in Rn and a 
Ck map

that extends f, that is, f = F | (U « A). If k ≥ 1, then the rank of f at a point p is the
rank of DF at p.

Definition 2. Let A be an arbitrary subset of Rn. A map f :A Æ Rm is said to be of
class Ck or a Ck map at a point p in A if there exists a neighborhood Up of p in Rn

and a Ck map

that extends f | (Up « A). If k ≥ 1, then the rank of f at the point p is the rank of DF at
p. The map f is a Ck map if it is of class Ck at every point p in A.

4.3.25. Theorem. The definitions of Ck maps on a set or at a point are well defined.
The two definitions of Ck maps on a set are equivalent. The notion of rank is well
defined in all cases. If the set A is open, then the definitions agree with the earlier 
definition of differentiability and rank.

Proof. For details see [Munk61].

Notice that neither definition actually defined a derivative although we did define
the rank of the map. Since the extensions F are not unique, it is not possible to define
a derivative in general. In certain common cases, such as rectangles or disks where
boundary points have nice “half-space” neighborhoods, the derivative is defined
uniquely. Actually, in such cases, one could simply define the derivative at such a point

F m
p pU R: Æ

F m: U RÆ

F t f t t( ) = + -( )( ) Œ[ ]p p p0 0 0 1, , .
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as “one-sided” limits, extending the idea of the derivative at the endpoints of a 
function defined on a closed interval [a,b]. All the theorems and definitions in this
section will be applicable.

4.4 The Inverse and Implicit Function Theorem

Definition. Let U and V be open subsets of Rn. A Ck map f :U Æ V, k = • or k ≥ 1,
that has a Ck inverse is called a Ck diffeomorphism of U onto V. A C• diffeomorphism
will be called simply a diffeomorphism.

Because diffeomorphisms are one-to-one and onto maps, one can think of them
as defining a change of coordinates. Another definition that often comes in handy is
the following:

Definition. Let U be an open subset of Rn and let f :U Æ Rn. If p Œ U, then f is called
a local (Ck) diffeomorphism at p if f is a (Ck) diffeomorphism of an open neighborhood
of p onto an open neighborhood of f(p).

4.4.1. Lemma. If a differentiable map f :Bn(r) Æ Rn satisfies

then it satisfies the Lipschitz condition

Proof. Use Taylor series and the mean-value theorem.

4.4.2. Theorem. (The Inverse Function Theorem) Let U be an open subset of 
Rn. Let f :U Æ Rn be a Ck function, k ≥ 1, and assume that Df(x0) is nonsingular at x0
Œ U. Then f is a local Ck diffeomorphism.

Outline of proof. By composing f with linear maps if necessary one may assume
that x0 = f(x0) = 0 and that Df(x0) is the identity map. Next, let g(x) = f(x) - x. It follows
that Dg(0) is the zero map and since f is at least C1, there is a small neighborhood
Bn(r) about the origin so that

Claim. For each y Œ Bn(r/2) there is a unique x Œ Bn(r) such that f(x) = y.

See Figure 4.10. To prove the existence of x note that Lemma 4.4.1 implies 
that

∂
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(4.7)

for x Œ Bn(r). Define x0 = 0, x1 = y, and xm+1 = y - g(xm), for m ≥ 1. Our hypotheses
imply that

and so |xm| £ 2|y| for all k. It follows that the xm converge to a point x with |x| £ 2|y|,
that is, x Œ Bn(r). Furthermore, x = y - g(x), so that f(x) = y. To prove that x is unique,
assume that f(x1) = y. Then

so that x - x1 = 0. The claim is proved.
The claim shows that

exists. The map f-1 is continuous because

implies that

We still need to show that f-1 is differentiable in addition to being continuous.
Since f is differentiable, we have that

(4.8)
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We must show that an equation similar to (4.8) holds for f-1. The obvious candidate
for Df-1 is A = (Df)-1. Applying A to both sides of equation (4.8) gives

where h1(y,y1) = -h(f-1(y),f-1(y1)). Now

and the right-hand side of this equation goes to zero (the first term goes to zero and
the second is bounded by 2). This shows that f-1 is differentiable. The continuity of
D(f-1) follows from the fact that the matrix for this map is defined by the composite
of the maps

where we identify the space GL(n,R) of nonsingular real n ¥ n matrices with Rn2
.

If f is of class Ck, then one can show in a similar fashion that f-1 is also.

To prove the first application of the inverse function theorem we need two lemmas.

4.4.3. Lemma. Let U be an open subset of Rn that contains the origin. Let f :U Æ
Rm, n £ m, be a Ck map with f(0) = 0 and k ≥ 1. Assume that Df(0) has rank n. Then
there is a Ck diffeomorphism g of one neighborhood of the origin in Rm onto another
with g(0) = 0 and such that

holds in some neighborhood of the origin in Rn.

Proof. The hypothesis that Df(0) has rank n means that the n ¥ m Jacobian matrix
(∂fi/∂xj) has rank n. Because we can interchange coordinates if necessary, there is no
loss in generality if we assume that

Consider the map F :U ¥ Rm-n Æ Rm defined by

Since F(x1, . . . ,xn,0, . . . ,0) = f(x1, . . . ,xn), F is an extension of f. Furthermore, the
determinant of (∂Fi/∂xj) is just the determinant of
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which is nonzero. The inverse function theorem now implies that F has a local inverse
g that is a Ck diffeomorphism of one neighborhood of the origin in Rm onto another.
Therefore,

and the Lemma is proved.

4.4.4. Lemma. Let U be an open subset of Rn that contains the origin. Let f :U Æ
Rm, n ≥ m, be a Ck map with f(0) = 0 and k ≥ 1. Assume that Df(0) has rank m. Then
there is a Ck diffeomorphism h of one neighborhood of the origin in Rn onto another
with h(0) = 0 and such that

holds in some neighborhood of the origin in Rn.

Proof. Again, by interchanging coordinates if necessary, we may assume that

Define F :U Æ Rn by

Our hypothesis implies that F has a nonsingular Jacobian matrix at the origin and 
hence a local inverse h. Let g be the natural projection of Rn onto Rm, which sends
(x1, . . . ,xn) onto (x1, . . . ,xm). Then f = gF and

This proves the Lemma.

The next theorem can be interpreted as saying that up to change of curvilinear
coordinates maps f :Rn Æ Rm basically look like the natural projection (x1, . . . ,xn) Æ
(x1, . . . ,xk,0, . . . ,0) for appropriate k. Compare this result with Theorem 1.11.7, which
deals with linear maps.

4.4.5. Theorem. Let U be an open subset of Rn that contains the origin. Let f :U Æ
Rm be a Cs map with f(0) = 0 and s ≥ 1. Assume that Df(x) has rank k for all x in U.
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Then there exist Cs diffeomorphisms h and g of neighborhoods of the origins in Rn

and Rm, respectively, such that

in some neighborhood of the origin in Rn.

Proof. The proof divides into two cases.

Case 1. n ≥ m.

Let p :Rm Æ Rk be the natural projection. We may assume without loss of gener-
ality that the matrix

is nonsingular on U. It follows from Lemma 4.4.4 (applied to p of) that there is a Cs

diffeomorphism h such that

Since the rank of D(f h) is k, we must have ∂fi/∂xj = 0 for j > k. It follows that the fi
are independent of xk+1, . . . , xn. Now define a map f1 :Rk Æ Rm by

and apply Lemma 4.4.3.

Case 2. n £ m.

This is proved similarly to Case 1 and is left as an exercise.

One aspect worth noting about the hypotheses of Theorem 4.4.5 is that it is not
enough to simply assume that the map f has rank k at the origin. One needs to know
that this holds in a neighborhood of the origin. In the special case where Df has
maximal rank, then the assumption of rank k at the origin is enough because this by
itself implies that Df will have maximal rank in a neighborhood. This explains the
slight difference in hypotheses between Lemmas 4.4.3 and 4.4.4 and Theorem 4.4.5.
It is worth summarizing an aspect of these observations.

4.4.6. Theorem. Let U be an open subset of Rn. Let f :U Æ Rm, n £ m, be a Ck map,
k ≥ 1. Let p be a point of U and assume that Df(p) has rank n. Then there is a neigh-
borhood of V of p in U so that f |V is one-to-one.

Implicit function theorems are another major application of the inverse function
theorem. They have to do with solving equations of the form
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for x or y in terms of the other variable. We can think of equation (4.9) defining either
x or y in terms of the other implicitly. The obvious question is under what conditions
we can in fact think of x as a function of y or, conversely, y a function of x. A good
example is

(4.10)

in which case equation (4.9) defines the unit circle. A neighborhood of the point 
A = (0,1) on the circle is clearly the graph of the function

(4.11)

The variable x is not a function of y in any such neighborhood because functions are
single-valued. On the other hand, a neighborhood of the point B = (1,0) on the circle
is clearly the graph of the function

(4.12)

Here, the variable y is not a function of x in any neighborhood. The point C =
(1/ ,1/ ) is much nicer because we can solve for either x or y. See Figure 4.11. The
difference between these points is that the tangent line at A and B is horizontal and
vertical, respectively. The tangent line at C is neither. In fact, near C each point cor-
responds to a unique x and y value and the functions y(x) and x(y) given by equa-
tions (4.11) and (4.12), respectively, which are the local solutions to (4.9), are inverses
of each other.

So what is a possible criterion that will guarantee that one can solve for one of
the variables in equation (4.9)? Well, it is at points like C that have nonvertical tan-
gents that we can guarantee both solutions. It is there that we can guarantee a unique
x and y value for nearby points. For the points A and B, which have horizontal or ver-
tical tangents (equivalently, derivatives of functions vanish or do not exist), we can at
most guarantee one solution. Our theorem will only give us sufficient but not neces-
sary conditions and not much can be said in general at points where appropriate deriv-
atives vanish. They would have to be analyzed in special ways. Note that horizontal
tangents are not necessarily bad because the curve

22
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has a horizontal tangent at (0,0) but still can also be solved for both x and y in a neigh-
borhood of that point.

4.4.7. Theorem. (The Implicit Function Theorem) Let

be a continuously differentiable function in an open set about a point (a,b) and
assume that

If the m ¥ m matrix

is nonsingular, then there exists an open neighborhood A about a in Rn, an open neigh-
borhood B about b in Rm, and a differentiable function

with the property that

for all x in A.

Proof. Define a function

by

Our hypotheses imply that F is a continuously differentiable function whose deriva-
tive DF is nonsingular at (a,b) because det DF(a,b) = det M. The inverse function
theorem (Theorem 4.4.2) now implies that F has an inverse G in an open neighbor-
hood of (a,0) = F(a,b), which we may assume to have the form A ¥ B. It is easy 
to check that G has the form G(x,y) = (x,k(x,y)) for some differentiable function k. 
Let

be the natural projection. Then p∞F = f and

p: R R Rn m m¥ Æ

F fx y x x y, , , .( ) = ( )( )

F n m n m: R R R R¥ Æ ¥

f gx x 0, ( )( ) =

g: A BÆ

M D fn i j i j m
= ( )( )+ £ £a b,

,1

f a b 0, .( ) =

f n m m: R R R¥ Æ

y x- =3 0
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Letting g(x) = k(x,0) proves the theorem.

Note that the chain rule for differentiation could easily be used to compute the
derivative of the function g in Theorem 4.4.7.

Let us see how the implicit function theorem applies to our earlier example
dealing with the unit circle and the function f in equation (4.10). We have that

Evaluating ∂f/∂x and ∂f/∂y at the points A, B, and C and checking when the values are
nonzero will show that the implicit function theorem gives us the same answers as
before.

Finally, it is important to realize that the implicit function theorem says nothing
about the existence of solutions to equations

but rather is typically used to assert that the solution set, if it exists, can be parame-
terized locally by

using some function g.

4.4.8. Example. Consider the set of points C in R3 defined by the equations

To show that a neighborhood of the point p = (1,2,-1) on C is a curve that can be
parameterized by a function g(x).

Solution. Define a function

by

f x y z x yz x y z, , , .( ) = + + - + +( )2 2 2 21 2

f : R R R¥ Æ2 2

x yz

x y z

2

2 2 2

1 0

2 0

+ + =
- + + = .

x x xÆ ( )( ),g

f x y 0, ,( ) =

∂
∂

∂
∂

f
x

x and
f
y

y= =2 2 .

f x k f G

F G

F G
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,
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,
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= ( )( )( )
= ( )( )( )
= ( )
=

o

o o

o o

p
p

p

4.4 The Inverse and Implicit Function Theorem 239



Then the matrix of partials

is nonsingular at p. The set C can now be parameterized by the function

where g :A Æ R2 is the function defined on a neighborhood A of 1 in R guaranteed to
exist by the implicit function theorem.

4.5 Critical Points

In this section we review some basic results about maxima and minima of functions,
in particular, for functions of one or two variables.

4.5.1. Theorem. Let X Õ Rn and let f :X Æ R be a continuous function. If X is
compact, then f assumes both a minimum and maximum value on X, that is, there
are p1 and p2 in X so that

for all p in X.

Proof. By Theorem 4.2.11, the set Y = f(X) is compact. By Theorem 4.2.4, Y is closed
and bounded, so that both inf Y and sup Y belong to Y. Choose any p1 and p2 in X
with inf Y = f(p1) and sup Y = f(p2).

Definition. Let X Õ Rn be an open set and let f :X Æ R be a differentiable function.
Let p Œ X. If Df(p) = 0, then p is called a critical point of f and f(p) is called a critical
value.

Note that from a practical point of view, to check whether a point p is a critical
point of f one simply checks if all the partials of f vanish at p.

Definition. Let X Õ Rn and let f :X Æ R. The function f is said to have a local
maximum at a point p in X if f(q) £ f(p) for all q in a neighborhood of p. The func-
tion f is said to have a local minimum at p if f(q) ≥ f(p) for all q in a neighborhood
of p. A point p is a local extremum if it is either a local maximum or local minimum.
A point p in X is a (global) maximum for f if f(q) £ f(p) for all q in X. The point p is
a (global) minimum for f if f(q) ≥ f(p) for all q in X. An extremum for f is either a
maximum or minimum for f.

f f fp p p1 2( ) £ ( ) £ ( )

g x x g x( ) = ( )( ), ,

M

f
y

f
z

f
y

f
z

z y

y z
=

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

=
-

Ê
Ë

ˆ
¯

∂
∂

∂
∂

∂
∂

∂
∂

1 1

2 2 2
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4.5.2. Theorem. Let X Õ Rn and let f :X Æ R be a differentiable function. If a point
p in the interior of X is a relative extremum for f, then p is a critical point of f.

Proof. We give a proof for the case where p is a local maximum. In that case, f(q)
£ p for all points q sufficiently close to p. The definition of the directional derivative
implies that Dvf(p) £ 0 for all directions v. In particular, Dvf(p) £ 0 and D-vf(p) £ 0.
This and Proposition 4.3.18(1) clearly imply that Dvf(p) = 0, so that —f(p) = 0.

4.5.3. Theorem. Let f : [a,b] Æ R be a C2 function and assume that c in (a,b) is a
critical point of f.

(1) If f≤(c) < 0, then c is a local maximum for f.
(2) If f≤(c) > 0, then c is a local minimum for f.
(3) If f≤(c) = 0, then nothing can be concluded from this test.

Proof. The easiest way to prove (1) and (2) is to use the Taylor expansion for f. See
[Buck78]. The canonical examples for (1) and (2) are the functions -x2 and x2, respec-
tively. Their graphs are shown in Figure 4.12(a). To prove (3), simply consider the
functions x4, -x4, and x3 (Figure 4.12(b)). This finishes the proof of Theorem 4.5.3.

The graph of the function x3 shows another property of graphs.

Definition. A point c is called an inflection point of a function f(x) if there is an 
e > 0, so that either

or

¢¢( ) > Œ -( ) ¢¢( ) < Œ +( )f x for x c c and f x for x c c0 0e e, , .

¢¢( ) < Œ -( ) ¢¢( ) > Œ +( )f x for x c c and f x for x c c0 0e e, ,
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f(x) = x2 f(x) = –x2 f(x) = x3
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Figure 4.12. Some canonical cases of Theorem 4.5.3.



An inflection point is a place where the “concavity” of the graph of a function
changes from “concave upward” to “concave downward” or vice versa. The derivative
does not have to vanish at an inflection point. The origin is an inflection point of the
function x3. See Figure 4.12(b).

Theorem 4.5.3 is not the end of the story for finding extrema for functions of one
variable. One must still check a function on its endpoints. For example, the function
f(x) = x defined on [0,1] does not have any critical points on [0,1] but obviously has
a maximum and a minimum, but these come on the endpoints of the interval.

Next, we want to extend the results about functions of one variable to functions
of two variables. The canonical examples are the functions -x2 - y2 and x2 + y2, which
have a local maximum and a local minimum, respectively, at the origin (see Figure
4.13(a) and (b)), but there is one more possibility. Consider the function

(4.13)

See Figure 4.13(c). Although the origin is a critical point for f, it is a minimum along
the x-axis and a maximum along the y-axis, that is, it is not a relative extremum but
a “saddle point.”

Definition. A critical point of a function that is not a relative extremum is called a
saddle point.

4.5.4. Theorem. Let X Õ R2 and let f :X Æ R be a C2 function. Assume that p is a
critical point for f that lies in the interior of X. Let

(1) If D > 0, then p is a relative extremum for f that is a relative maximum if 
fxx(p) < 0 and a relative minimum if fxx(p) > 0.

(2) If D < 0, then p is a saddle point.
(3) If D = 0, then nothing can be concluded from this test.

D f f fxx yy xy= -( )2
p.

f x y x y, .( ) = -2 2
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Proof. The Taylor expansion for functions of two variables can be used to prove (1)
and (2). See [Buck78]. It is easy to check that the functions in Figure 4.13(a) and (b)
fall into case (1) and that the function in Figure 4.13(c) (equation (4.13)) falls into
case (2). To prove (3), consider the functions

(a) f(x,y) = x4 + y4

(b) g(x,y) = -(x4 + y4)
(c) h(x,y) = x2 - 5xy2 + 4y4 = (x - y2)(x - 4y2)

Each of these functions has D = 0. The function f has a minimum at (0,0) and g has
a maximum at (0,0). The function h has a saddle point at (0,0). See Figure 4.14(a).
The “+” and “-” in the figure indicate the regions where the function is strictly posi-
tive or strictly negative, respectively. On the other hand, note that h(x,y) has a local
minimum along any line through the origin. To see this, define

The function s(x) describes h(x,y) along the line y = mx. A direct computation shows
that s¢(0) = 0 and s≤(0) = 2, proving the claim. Along the y-axis we have that h(0,y) = 4y4,
and so we also have a local minimum at 0. This finishes the proof of Theorem 4.5.4,
but before we move on, consider another interesting function that has D = 0, namely,

See Figure 4.14(b). Here we have a function that is constant along every line of the
form x - 2y = c. Every point on the line x - 2y = 0 is a critical point.

As in the case of functions of one variable, there is more to finding relative extrema
of functions of two variables than just Theorem 4.5.4. We must always check the func-
tion on the boundary of its domain separately. This basically reduces to finding the
relative extrema of a function of one variable, a problem we have already handled.

k x y x xy y x y, .( ) = - + - = - -( )1 4 4 1 22 2 2

s x h x mx x m x x m x x m x m x( ) = ( ) = -( ) -( ) = - +, .2 2 2 2 2 2 3 4 44 5 4

4.5 Critical Points 243
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Figure 4.14. Case (3) of Theorem 4.5.4.



4.5.5. Example. To analyze the extrema of the function

on the unit disk.

Solution. Looking for critical points alone will find its minimum at (0,0) but not its
maximum, which lies on the boundary of the unit disk. To find that, make the sub-
stitutions x = cosq and y = sinq and define a function

We only need to find the maxima of the function g(q) for q Œ [0,2p]. Now

Therefore, g¢(q) = 0 implies that q = k(p/4), for k = 0,1, . . . ,7. The second derivative
test shows that g takes on its maximum values when q = k(p/4), for k = 1,3,5, and 7.

Another common type of extremum problem is finding extrema subject to certain
constraints.

4.5.6. Example. Maximize the function f(x,y) = xy subject to the condition that 
x2 + y2 = 1.

The straighforward way to solve this problem would be to solve for y in the 
constraint equation and then substitute this into the formula for f thereby reducing
the problem to a problem about extrema of functions of one variable. Unfortunately,
this is not always feasible since the constraints may be much more complicated. 
We therefore want to briefly mention another popular approach to these types of 
problems. We begin with two facts that motivate the approach. We shall see the
second, Proposition 4.5.8, again in Chapter 8 when we discuss tangent vectors to 
surfaces.

4.5.7. Proposition. Let X Õ Rn be an open set and assume that f :X Æ R and g : [a,b]
Æ X are differentiable functions. If p = g(c) is an extremum of f along g for some c in
(a,b), then —f(p)• g ¢(c) = 0.

Proof. Consider the function g(t) = f(g(t)). Since c is an extremum for g, it follows
that g¢(c) = 0. The result now follows from the chain rule, which says that

4.5.8. Proposition. Let g :Rn Æ R be a differentiable function. If g : [a,b] Æ g-1(0) is
a differentiable function, then —g• g ¢ = 0.

Proof. Consider the function h(t) = g(g(t)). By hypothesis, h(t) = 0 for all t. There-
fore, h¢(t) = 0 and the chain rule gives the result.

¢( ) = — ( )( ) ∑ ¢( )g t f t tg g .

¢( ) = = ( )g q q q qsin cos sin .2 2 1 2 4

g q q q q( ) = = ( )cos sin sin .2 2 21 4 2

f x y x y,( ) = 2 2
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Let us now restate our new extremum problem as follows:

The constrained extremum problem: Find the extrema of a function f(x1, . . . ,xn) subject
to a constraint g(x1, . . . ,xn) = 0.

Note first that the set Z = g-1(0) of zeros of g is intuitively an (n - 1)-dimensional
space with unique normal line. Therefore, Propositions 4.5.7 and 4.5.8 suggest that 
—f and —g must be parallel on Z since they are vectors that are both perpendicular to
all curves in Z. This observation leads to the following:

The method of Lagrange multipliers: Find the extrema of f subject to a con-
straint g by solving the equation

for l.

We shall demonstrate the use of the Lagrange method with two examples.

Solution to Example 4.5.6. If

then

Setting ∂F/∂x to zero, implies l = y/(2x). If we substitute this l into the equation 
∂F/∂y = 0 and solve for x, then we will get that x = ±y. Now substitute ±y for x in the
constraint equation and solve for y. It follows that local extrema occur at

4.5.9. Example. To show that of all the triangles inscribed in a fixed circle, the equi-
lateral triangle has the largest perimeter.

Solution. See Figure 4.15. The length of the side subtended by angle a is 2R sin (a/2).
A similar formula holds for the other sides. Therefore,

is the formula for the perimeter with the constraint

g a b g a b g p, , .( ) = + + - =2 0

f Ra b g
a b g

, , sin sin sin( ) = + +Ê
Ë

ˆ
¯2

2 2 2

x y, , .( ) = ± ±Ê
Ë

ˆ
¯

1

2

1

2

∂
∂

l
∂
∂

l
F
x

y x and
F
y

x y= - = -2 2 .

F x y xy x y, ,( ) = - + -( )l 2 2 1

— -( ) =f gl 0.
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If

then

Setting the partials to zero, it follows that

In other words, a = b = g.

Next, we describe an application of directional derivatives to the extremum
problem and an application of Proposition 4.5.8.

4.5.10. Theorem. The greatest rate of change of a function f :Rn Æ R at a point p
takes place in the direction of and has the magnitude of the vector —f(p).

Proof. We are looking for the direction in which the directional derivative has a
maximum. Let u be a unit vector. From Proposition 4.3.18(1) we know that

where q is the angle between u and —f. Clearly, this value will be a maximum when q
is 0 or p.

4.5.11. Theorem. Given a differentiable function f :Rn Æ R, to move along a
contour f(p) = c, one should move in a direction which is orthogonal to —f.

D f f f fu u u= — ∑ = — = —cos cos ,q q

cos cos cos .
a b g
2 2 2

= =

∂
∂a

a
l

∂
∂b

b
l

∂
∂g

g
l

F
R

F
R

F
R

= -

= -

= -

cos

cos

cos .

2

2

2

F f ga b g a b g l a b g, , , , , , ,( ) = ( ) - ( )
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Proof. Apply Proposition 4.5.8 to the function g(p) = f(p) - c. Note that —g = —f.

We finish this section with two applications about the existence and uniqueness
of closest points between planes.

4.5.12. Theorem. Let X be a k-dimensional plane in Rn. For any point p in Rn there
is a unique point x in X that is closest to p. The point x is defined by the condition
that the vector px is orthogonal to X.

Proof. Let x0 Œ X and assume that u1, u2, . . . , uk are an orthonormal basis for X.
Parameterize the points of X with the function j :Rk Æ X defined by

Define differentiable functions s :Rn Æ R and d :Rk Æ R by

and

Clearly, finding a point x in X that is closest to p is equivalent to finding a minimum
of the function d.

Our first observation is that d does achieve a minimum and that this minimum is
a critical point of d. This follows from Theorems 4.5.1 and 4.5.2. The domain of d,
Rk, is of course not a compact set, but we can apply the theorems to the function d
restricted to some large closed disk in Rk with the property that d is larger at every
point on the boundary of that disk than at some point on its interior. This will guar-
antee that a relative extremum will occur in the interior of the disk. Such a disk clearly
exists because d(t) goes to infinity as |t| goes to infinity.

Next, we show that d has a unique minimum, one defined by the stated orthogo-
nality condition. The chain rule applied to d gives that

Since the critical points t of d are the points where all of these partials vanish, we see
that solving for those points is equivalent to solving for those points x = j(t) in X sat-
isfying ui •xp = 0, for all i, which shows that xp must be orthogonal to X.

Finally, we need to show that a point of X defined by such orthogonality condi-
tions is unique. See Figure 4.16. Let x¢ = j(t¢) and assume that ui •x¢p = 0, for all i.
This would imply that ui •xx¢ = 0, for all i. Since xx¢ is a vector in the plane X and the
ui form a basis for X, we must have that xx¢ = 0, that is, x = x¢. The theorem is proved.

Theorem 4.5.12 is a special case of the next theorem. We sketched the proof in
this special case because, being simpler, it brought out more clearly the essential steps
in the proof of these types of theorems.

∂
∂

j
d
ti

it u p t( ) = - ∑ - ( )( )2 .

d t t p t p t( ) = ( )( ) = - ( )( ) ∑ - ( )( )s j j j .

s x xp xp( ) = ∑

j t t t t t tk k k1 2 0 1 1 2 2, , . . . , . . . .( ) = + + + +x u u u

4.5 Critical Points 247



4.5.13. Theorem. If X and Y are transverse planes in Rn with

then there are unique points x Œ X and y Œ Y, so that

The points x and y are defined by the condition that the vector xy is orthogonal to
both X and Y.

Proof. It is easy to show that proving the theorem reduces to proving the following
two cases:

Case 1: dimX + dimY = n

Case 2: dimX + dimY = n - 1

In Case 1 the planes intersect in a single point. We sketch the proof for Case 2
and leave the rest to the reader (Exercise 4.5.4). Case 2 applies to skew lines in R3,
for example. The fact that there are points x and y at which the distance between X
and Y is minimized and the fact that xy is orthogonal to X and Y is proved just like
in Theorem 4.5.12 by parameterizing points of X and Y via tuples s and t, expressing
the distance between points of X and Y as a function d(s,t) of the variables s and t,
and looking for the critical points of that function by setting the partial derivatives of
d(s,t) to zero. It remains to show that the orthogonality condition defines x and y
uniquely.

Assume that there are other points x¢ Œ X and y¢ Œ Y with the property that the
vector x¢y¢ is orthogonal to both X and Y. See Figure 4.17. Our hypothesis about the
dimensions of X and Y implies that all vectors that are orthogonal to both X and Y
are multiples of each other. Therefore, xy and x¢y¢ are parallel. If (x,y) π (x¢,y¢), then
the points x, y, x¢, and y¢ lie in a two-dimensional plane Z. Assume that x π x¢ and y
π y¢ and consider the line L through x and x¢ and the line L¢ through y and y¢. (The

dist distx y xy X Y, , .( ) = = ( )

dim dim ,X Y+ £ n
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special cases where either x = x¢ or y = y¢ is left as an exercise for the reader.) Now
the lines L and L¢ are parallel in Z because they are both orthogonal to the vector xy.
On the other hand, L and L¢ lie in X and Y, respectively, which would imply that X
and Y would have a common basis vector. This contradicts the fact that X and Y are
transverse planes. This contradiction proves the theorem for Case 2.

4.6 Morse Theory

The object of this section is to analyze functions in a neighborhood of a critical point.
The results will have important applications in Chapter 8.

Let X Õ Rn be an open set and let f :X Æ R be a C• function. Let p Œ X.

Definition. The n ¥ n matrix of second partials

is called the Hessian matrix of f at p. Its determinant is called the Hessian of f at p.

Definition. A critical point p of f is called a nondegenerate critical point if the Hessian
matrix of f at p is nonsingular. Otherwise, it is called degenerate.

4.6.1. Examples.

(1) The origin is a nondegenerate critical point for f(x) = x2, g(x,y) = x2 + y2, and
h(x,y) = x2 - y2.

(2) The origin is a degenerate critical point for f(x) = x3 and g(x,y) = x2 + y3.

4.6.2. Lemma. Let f be a real-valued C• function defined in a convex neighborhood
V of 0 in Rn with f(0) = 0. Then

f x x x x g x x xn i i n
i

n

1 2 1 2
1

, , . . . , , , . . . , ,( ) = ( )
=
Â

∂
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p( )Ê
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ˆ
¯̃
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where the gi are C• functions defined on V with gi(0) = ∂f/∂xi(0).

Proof. Consider the function t Æ f(tx1,tx2, . . . ,txn). By the Fundamental Theorem of
Calculus

We can therefore define the functions gi by

and the lemma is proved. (One needs C• here because if f is only Cr, then the gi will
not be Cr in general.)

The main result of this section is the next theorem.

4.6.3. Theorem. (The Morse Lemma) Let f be a real-valued C• function defined in
a neighborhood of a point p in Rn. If p is a nondegenerate critical point for f, then
there is a local diffeomorphism j from a neighborhood V of p onto a neighborhood
U of 0 in Rn so that

on U. The integer k is well defined and called the index of p.

Proof. Without loss of generality assume that p = 0 and f(p) = 0. By Lemma 4.6.2
we can write f as

Since p is a critical point of f,

This means that we can apply Lemma 4.6.2 to the gi to get
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for some C• functions hij. Hence

By replacing hij by (1/2)(hij + hji), if necessary, we may assume that hij = hji in some
neighborhood of 0. Furthermore, the matrix (hij(0)) is just the Hessian matrix of f.
Since this matrix is assumed to be nonsingular, we can copy the diagonalization proof
for quadratic forms given in Theorem 1.9.11 (see also [Miln63]) to finish the result.

4.6.4. Corollary. Nondegenerate critical points of functions are isolated.

The Morse Lemma and its corollary show that one has a good understanding of
what the graph of functions look like near a nondegenerate critical point. The situa-
tion is much more complicated in the degenerate case.

4.6.5. Example. Consider the functions

(1) f(x) = e-1/x2
sin2(1/x) (Figure 4.18(a))

(2) f(x,y) = x2 (Figure 4.18(b))
(3) f(x,y) = x2y2 (Figure 4.18(c))

All these functions have the origin as a nonisolated degenerate critical point. The func-
tion in (1) has a sequence of nondegenerate critical points converging to the origin.
All the points on the y-axis are degenerate critical points for the function in (2). All
the points on both the x- and y-axis are degenerate critical points of the function in
(3).

We shall see later in Chapter 8 that one can tell a lot about the topology of a space
from the nondegenerate critical points of functions defined on them.

f x x x x x h x x xn i j ij n
i j

n

1 2 1 2
1

, , . . . , , , . . . , .
,

( ) = ( )
=

Â
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f(x) = e–1/x2

 sin2(1/x) f(x,y) = x2 f(x,y) = x2y2

z

y y

x

x

(a) (b) (c)

Figure 4.18. Examples of nonisolated degenerate critical points.



4.7 Zeros of Functions

Many problems can be reduced to the problem of finding the zeros or roots of a func-
tion. This section discusses some basic approaches to solving this problem.

The Problem: Given a function f :Rn Æ Rm, find a solution to

(4.14)

The Newton-Raphson method: We begin with the case where n = m = 1. Pick a
guess x0 for a root. If this is not correct, then from the Taylor expansion formula we
know that

Forgetting the higher-order terms means that, as an approximation, we are looking
for an x so that

In other words,

We use this x as the next guess at a solution to f(x) = 0. If we still do not have a root
we repeat this process, thereby generating a sequence of points x0, x1, x2, . . . , where
in general,

This sequence hopefully converges to a root. Figure 4.19 shows what is going on geo-
metrically. If xk is not a root, then find the intersection of the tangent line to the graph
of f(x) at (xk,f(xk)) with the x-axis. This point becomes our next guess xk+1.

x x
f x
f xk k

k

k
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( )
¢( )1 .

x x
f x
f x

= -
( )
¢( )0

0

0
.

0 0 0 0= ( ) + ¢( ) -( )f x f x x x .
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Figure 4.19. The Newton-Raphson method.



The Newton-Raphson method is pretty good. There are theorems about when and
how fast the sequence of points it generates converges (it basically has quadratic con-
vergence) and upper bounds for errors. (See any text on numerical analysis.) There
are some well-known problems however:

(1) Near critical points, even if we ignore the problem of numerical instability
since we are dividing by a very small quantity, points of the sequence may
move far away from the actual root (see Figure 4.20(a)).

(2) The sequence of points can home in on a more distant and “wrong” root (see
Figure 4.20(b)).

(3) The points of the sequence may oscillate and not converge (see Figure 4.20(c)).
(4) Near multiple roots (where f¢(x) approaches 0 as f(x) does), we may have slow

convergence.

More sophisticated methods that overcome some of these problems are known, nev-
ertheless, the method is widely used because it is so simple to implement. It seems to
converge very rapidly in practice and one often has very high accuracy for the root
after only several iterations. In any case though, it always helps if one knows some-
thing about the function f. If one can make a good initial estimate, then one is usually
in good shape. Of course, choosing a good initial estimate is often a major problem
with using the method. Some bounds for the location of zeros are known. The reader
will find more information in most books on numerical methods. For an interesting
history of how the method got its name see [Alex96]. Finally, note that what we have
just said about real functions also applies to complex functions f :C Æ C.

The Newton-Raphson method generalizes to higher dimensions and functions of
several variables because there is a similar Taylor expansion

In other words, the only difference between what we have now and what we had before
is that now we need to solve a system of linear equations

(4.15)f fk k kx x x x 0( ) + -( ) ¢( ) =

f f Dfk k kx x x x x( ) = ( ) + ( ) -( ) + higher-order terms.
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Figure 4.20. Problems with the Newton-Raphson method.



for x. We shall work out the case where n is 2 as an example.

4.7.1. Example. To find a root to the system of equations

Solution. We define a sequence of points (xk,yk) that converge to the root. Suppose
that we already have defined the kth point (xk,yk). The Taylor expansions for f and g
around (xk,yk) are

Truncating higher order terms means that we want to solve

Cramer’s rule implies that

where J = fxgy - gxfy and all the partials are evaluated at (xk,yk). If (x0,y0) is an approx-
imation to a root (a,b), then one can show that convergence to (a,b), if any, is quad-
ratic. Conditions that are sufficient to guarantee such convergence assuming that
(x0,y0) is “close enough” to (a,b) are of the type:

(1) The derivatives of f and g up to order 2 are continuous and bounded in a
neighborhood U of (a,b).

(2) The Jacobian J does not vanish in U.

See [ConD72].

Now methods for finding zeros of functions have a much wider application than
simply that specific problem. Many other problems can be rephrased in those terms.
Specifically, problems that involve finding the inverse of a function are often rephrased
in terms of finding solutions to an equation of the form (4.14). As an example of that
type of problem, suppose that one is given a function p :R2 Æ R3, a point q Œ R3, and
one wants to find values x and y so that p(x,y) = q. This problem can be expressed in
terms of finding a zero of the function

(4.16)f x y p x y, , .( ) = - ( )q
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The Newton-Raphson approach would start with a guess z0 = (x0,y0) and then, using
equation (4.15), generate a sequence of points zk = (xk,yk) satisfying

(4.17)

where p¢(z) is the Jacobian matrix

If p¢(z) had an inverse, the one could solve equation (4.17) for zk+1 and one would then
have a nice formula for generating the sequence of points zk+1, which would hopefully
converge to a solution to equation (4.16). Unfortunately, the 2 ¥ 3 matrix p¢(z) obvi-
ously does not have an inverse, but one can use the Moore-Penrose inverse instead to
get the equation

(4.18)

For an application of this approach to determine the intersection of two surfaces see
[AbdY96].

Next, how do we detect and deal with problems encountered by the Newton-
Raphson method? In general, one case where we have problems is when the gradient
of a function f is zero. In that case, we would really need to analyze the Hessian of f.
To avoid some of these difficulties, many other iterative methods have been developed.
The basic situation is the following: We are trying to generate a sequence of points
xk, where

In other words, the approach involved

(1) choosing a direction of search dk, and
(2) carrying out a linear search in that direction (specified by lk).

This is a “hill-climbing”–type problem. Looking at it that way leads to a steepest
descent method (Cauchy, 1847) which chooses

(4.19)

This method is recommended when x0 is far from the root or a local critical point
and then to use the Newton-Raphson iteration on

when one gets close.
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Finally, in the above discussion we have assumed that f was defined everywhere.
However, if f has a restricted domain D, then additional problems arise, namely, what
do we do when the new point xk+1 falls outside this domain? One needs to “clip” the
point somehow. A guideline for handling such a situation when the domain is a rec-
tangle is the following:

If our current guess is on the boundary of D and the next forces us to go outside,
then one should suspect a critical point on the boundary and deal with this as a
special case. One uses as initial guess the corners and center of the rectangle.

4.8 Integration

This section will sketch how one can define integrals for functions of several variables
and state several of the most important theorems. Proofs are omitted and can be found
in [Spiv65] or [Buck78].

Let A Õ Rn and f :A Æ R. To define the integral of f we shall follow the sequence
of steps below:

(1) We define the integral for the case where A is a rectangular set by using upper
and lower sums for partitions of that set.

(2) We prove that the integral exists if the points of discontinuity of f are a set of
measure zero.

(3) We extend the definition of the integral to arbitrary bounded sets A whose
boundaries are sets of measure zero.

Definition. A subset A of Rn of the form [a1,b1] ¥ [a2,b2] ¥ . . . ¥ [an,bn] with bi > ai,
i = 1, 2, . . . , n, is called an n-rectangle or simply a rectangle if n is clear from the
context. The boundary of an n-rectangle consists of 2n planar pieces called the faces
of the n-rectangle. The volume of A, denoted by vol(A), is defined by

If b1 - a1 = b2 - a2 = . . . = bn - an, then A is called an n-dimensional cube or n-cube or
simply cube.

Definition. A partition of a rectangle A = [a1,b1] ¥ [a2,b2] ¥ . . . ¥ [an,bn] in Rn is a
sequence P = (P1,P2, . . . ,Pn) where Pi is a partition of the interval [ai,bi]. A subrectan-
gle of the partition P is a rectangle [c1,d1] ¥ [c2,d2] ¥ . . . ¥ [cn,dn] where [ci,di] is a
subinterval of the partition Pi. The norm of the partition P, denoted by |P|, is defined
by

P P i ni= ={ }max , , . . . , .1 2

vol b ai i
i

n

A( ) = -( )
=

’
1

.
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A refinement of the partition P is a partition P¢ = (P1¢,P2¢, . . . ,Pn¢) of A where Pi¢ is a
refinement of Pi. See Fig 4.21.

Definition. Given a bounded function f :X Æ R, define minX (f) and maxX (f) by

Let A be a rectangle in Rn and consider a function f :A Æ R.

Definition. If P is a partition of A, then

and

are called the lower and upper sum for f over A with respect to P, respectively.

One can show that refining partitions increases the lower sums and decreases the
upper sums and that upper sums are always larger than or equal to lower sums. This
enables one to make the following definition.

Definition. The function f is said to be integrable on A if f is bounded on A and

The common value is called the integral of f over A and is denoted by ÚAf.
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P1 = {s0, s1, s2, s3}

a1 = s0

a2 = t0

b2 = t4

subrectangle [s1, s2,]x[t2, t3]

b1 = s3s1 s2

P2 = {t0, t1, t2, t3, t4}

t1

t2

t3

Figure 4.21. Subrectangles of a rectangle
partition.



Having defined the integral, the next obvious task is to determine when it exists.
One can show that continuous functions are integrable, but there is a more general
condition. We shall not take the time to define the general concept of the measure
(“volume”) of a set. All we will need here is the following:

Definition. A subset X of Rn has measure zero if, for every e > 0, it can be covered
by a sequence of n-rectangles Ai so that

It is easy to see that every finite set has measure zero. But countable sets {pi}•
i=1

(like the rational numbers) also have measure zero because the ith one can be con-
tained in a small rectangle of volume e/2i and these volumes sum to e. The boundary
of “nice” sets, such as rectangles or closed disks, have measure zero. More generally,
“k-dimensional” subsets of Rn have measure zero when k < n. For example, Figure
4.22 shows why a segment is a set of measure zero in R2. We can cover the segment
[(a,c),(b,d)] with n rectangles that have width (b - a)/n and height (d - c)/n. The total
area of these rectangles is

and we can clearly make this area as small as desired by increasing n.

4.8.1. Theorem. Let A be rectangle in Rn. A bounded function f :A Æ R is integrable
if and only if the set 

{ a ŒA | f is discontinuous at a }

has measure zero.

Proof. See [Spiv65] or [Buck78].

Theorem 4.8.1 is a good result for functions defined on rectangles, but what if the
domain of a function is not a rectangle. Let X be a bounded subset of Rn and f :X Æ
R. Define F :Rn Æ R by

n
b a

n
d c

n
b a d c

n
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Figure 4.22. A segment is a set of measure zero
in the plane.



and choose a rectangle A that contains X.

Definition. The integral of f over X, denoted by ÚXf, is defined to be the integral ÚAF,
provided that integral is defined. If the integral of f exists, we say that f is integrable
over X.

One can show that whether or not f is integrable on X is independent of the rec-
tangle A that is chosen.

There is another way to phrase the problem of integrating over an arbitrary set.

Definition. Let X Õ Rn. The function

defined by

(4.20)

is called the characteristic function of X.

If the function f above was actually defined over a rectangle A, but one simply
wanted to integrate over a smaller set X in A, then an equivalent definition for the
integral of f over X would be to define it to be ÚAfcX (if that integral exists).

Definition. A bounded set in Rn is said to be Jordan-measurable if its boundary is a
set of measure 0.

4.8.2. Theorem. Let X be a Jordan-measurable subset of Rn and f :X Æ R. If f is
bounded on X and continuous on X except at possibly a set of measure zero, then f
is integrable on X.

Proof. See [Spiv65] or [Buck78].

4.8.3. Corollary. If X is a bounded set in Rn, then the characteristic function cX of
X is integrable over X if and only if X is a Jordan-measurable set.

We can use Theorem 4.8.2 (or its corollary) to define the volume of a set in Rn.

Definition. Let X be a Jordan-measurable set in Rn. Define the volume of X, denoted
by vol(X), by

vol X X
X
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Although we now know what it means for a function to be integrable, we still need
a convenient way to compute the integral.

4.8.4. Theorem. (Fubini’s Theorem) Let A Ã Rs and B Ã Rt be rectangles and
assume that f :A ¥ B Æ R is integrable. Define functions gy :A Æ R and hx :B Æ R by
gy(x) = f(x,y) and hx(y) = f(x,y). If gy(x) is integrable except possibly at a finite number
of y, then

(4.21a)

Similarly, if hx(y) is integrable except possibly at a finite number of x, then

(4.21b)

Proof. See [Spiv65] or [Buck78].

The integrals in equations (4.21a) and (4.21b) are called iterated integrals. One
common situation where Fubini’s theorem applies is when f is continuous.

It is worth restating Fubini’s theorem in the special case where f : [a,b] ¥ [c,d] Æ
R. Equations (4.21a) and (4.21b) then become

(4.22)

We can also apply Fubini’s theorem to integrate over nonrectangular regions. We
state one variant of those types of integrals. Suppose that X Õ [a,b] ¥ [c,d] and that
X is bounded by the lines x = a, y = b, and the graphs of functions a(x) and b(x) defined
over [a,b] with a(x) £ b(x). Then

(4.23)

Figure 4.23 shows the geometry. We are thinking of the right-hand side of equation
(4.23) as an integral of the areas of the vertical slices.

4.8.5. Example. Let X be the region in the plane bounded by curves

See Figure 4.24. If f(x,y) = y, then
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Finally, there is change of variable theorem for higher-dimensional integrals just
like for real-valued functions of one variable.

4.8.6. Theorem. (The Generalized Change of Variables Theorem) Let A Ã Rn be an
open bounded subset and g :A Æ Rn a one-to-one and continuously differentiable 
function. Assume that the Jacobian matrix g¢ has a nonzero determinant at all points
of A. If f :g (A) Æ R is an integrable function, then

(4.24)

Proof. See [Spiv65] or [Buck78].

4.8.7. Example. Consider the map g :R2 Æ R2 defined by

x r

y r

=

=

cos

sin

q

q

f f g g
g A A( )Ú Ú= ( ) ¢o det .
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Figure 4.23. The iterated integral in
equation (4.23).
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Figure 4.24. Example 4.8.5.



which transforms from polar coordinates to Cartesian coordinates. The Jacobian
matrix

has determinant r. Therefore, if Y Ã R2 is a region in polar coordinate space and X =
g(Y) is the corresponding region in Cartesian space, then equation (4.24) turns into

As a special case, consider the region Y shown in Figure 4.25(b), which is bounded
by the lines r = p, r = q, and q = 0. This region is mapped by g into the region X shown
in Figure 4.25(a). If we were asked to compute an integral of a function f defined on
the complicated region X, then, using our change of coordinate map g, we can trans-
late the problem into computing a simple iterated integral over the region Y, that is,

Theorem 4.8.6 proves two well-known facts. It demonstrates the geometric
meaning of the determinant of a linear transformation as the factor by which volumes
are changed. It also proves a formula for computing the volume of a parallelotope in
Rn (Corollary 4.8.9 below).

4.8.8. Corollary. Let T :Rn Æ Rn be a linear transformation. If A Ã Rn is an open
bounded subset, then

Proof. The definition of volume, Theorem 4.8.6, and the fact that the derivative of
T is constant imply that

vol T T volA A( )( ) = ( ) ( )det .
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Figure 4.25. Change of variable Example 4.8.7.



Note. Some, but not all, proofs of Theorem 4.8.6, like the one given by Spivak
([Spiv65]), rely on having proved Corollary 4.8.8 as a special case when A is an open
rectangle, so that the corollary would have to be proved separately. This is not hard
to do. One can prove Corollary 4.8.8 by choosing some very simple linear transfor-
mations for which the result is trivial to prove and which have the property that any
linear transformation is a composite of them. See [Spiv65].

Definition. Let p, v1, v2, . . . , vk Œ Rn. Assume that the vectors vi are linearly inde-
pendent. The set X in Rn defined by

is called a parallelotope or parallelopiped based at p and spanned by the vi. If the ref-
erence to p is omitted, then it is assumed that p is 0. If k = 2, then X is also called a
parallelogram. See Figure 4.26.

4.8.9. Corollary. Let X be a parallelotope in Rn based at p and spanned by some
vectors v1, v2, . . . , vn. Then

Proof. Because translation does not change volume, we may assume that p = 0.
Define a linear transformation T :Rn Æ Rn by T(ei) = vi. Clearly, T maps the unit cube,
that is, the parallelotope based at 0 and spanned by e1, e2, . . . , en, to X. Since the
volume of the interior of the parallelotope is the same as the volume of the paral-
lelotope, the result now follows from Corollary 4.8.8.
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Figure 4.26. Parallelotopes X at the origin.



4.9 Differential Forms

The object of this section, the next section, and Section 8.12 is to try and make some
sense out of differential symbols, such as “dx” and “dxdy”, and to formalize the rules
that the algebra of these differentials satisfies.

Most likely, the reader encountered such symbols very early in his or her calcu-
lus course. A common place is in integrals like

What really is the meaning of “dx”? Of course, in the integral above it probably was
just pure notation. One could equally well just have written

The typical reason for including the “dx” is to enable one to apply the chain rule more
easily by reducing it to a formal symbol manipulating process: Given x = g(u) one sub-
stitutes g(u) for x and g¢(u)du for dx.

In two dimensions, things get more complicated. One often writes double inte-
grals as

But just like the one-dimensional integrals, orientation plays a role and

In terms of manipulating differentials, one can express this algebraically by saying
that dydx = -dxdy.

Another place where one encounters the “dx” notation is in expressions such as

for functions f(x,y). This again has its uses, like the classical notation dy/dx for the
derivative that is handy for changes of variables, but there come times, as the author
himself found out on occasions as a student, when things get more complicated and
such simple-minded notation involving differentials can get confusing. One ends up
making some transformations that one has seen someone else make and that may be
correct if one is lucky, but which one does not really understand. It therefore is useful
to make sense of symbols such as “dx” in a rigorous way. Doing this will also help
prevent mistakes in imprecise manipulations of these symbols. The “casual user” of
differentials will gain nothing from this section and the next and probably should skip
them. At the end we shall simply have justified the classic notation and manipulation
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of differentials. However, by having expressed everything carefully, the reader who
wants to use the notation in a serious way is less likely to make mistakes with it.

A limited and specialized development of differential forms for dimensions 1, 2,
and 3 can be found in various advanced calculus books like [Buck78]. Such develop-
ments do not show the complete picture, however, and are more along the lines of
applications or examples. A thorough discussion of differential forms is based on the
“exterior algebra” of differential forms. Unfortunately, this involves a fair amount of
abstract algebra, especially if one starts with an axiomatic approach to tensor and
exterior algebras. We outline this approach in Appendix C. No matter how one devel-
ops the subject, the reader is forced to “suffer” through a large number of definitions
and theorems. Although most of the theorems follow trivially from the definitions, it
takes a while before one gets to the applications. The subject is actually a good
example where the right mathematical definitions lead in the end to significant con-
sequences, consequences that, because of the definitions, are trivial to prove. Many
books on differentiable manifolds have a section on differential forms but most
readers would probably find their presentations hard reading. In the opinion of the
author, good references for differential forms are [Flan63], [Spiv65], and [Spiv70a].
Flanders does not prove everything but covers the subject and a great many applica-
tions well. He starts with an axiomatic formulation of the properties that one wants
the exterior algebra to posses. The advantage to his approach is that one quickly starts
using the usual notation associated with differential forms. Spivak has more limited
goals but does prove all his results and does a good job in presenting the subject in
a completely self-contained manner. He starts by defining the “tensor algebra” of mul-
tilinear maps and derives the exterior algebra from this. This more computational
approach avoids the existence proofs and requires less familiarity with advanced alge-
braic concepts, but still forces a reader to wade through quite a few definitions and
proofs of simple consequences before one gets to the actual differential forms them-
selves. By and large, our approach here will follow Spivak’s, except that some of the
algebraic preliminaries have been off-loaded to Appendix C. Another book worth
looking at is [GuiP74]. This book also follows Spivak’s approach. The reader who is
overwhelmed by the many definitions and abstract concepts should look ahead to the
end of this section and Section 8.12 to see that it will all be worth it.

Differential forms are derived from the exterior or Grassmann algebra E(Rn*) of
the dual space Rn*. This algebra can be identified with the algebra L(Rn) of exterior
forms on Rn. The theoretical basis of these algebras is developed in Section C.6 
and will not be reproduced here, but we summarize the essential aspects of the latter.
The reader who is not interested in the mathematical details that justify our asser-
tions can simply take them as axioms that specify a language of forms and how the
symbols in that language are manipulated. All future properties will be deduced from
these.

Let V be an n-dimensional vector space over the reals and V* its dual.

Notation. Let k ≥ 0. The vector space of alternating multilinear maps (also called
exterior k-forms of V)

w: . . . .V V V V Rk

k

= ¥ ¥ ¥ Æ1 244 344
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is denoted by Lk(V). By convention, V0 = 0 and L0(V) = R. There is an exterior or wedge
product

that is distributive and associative. (The classical notation such as dxdy is really an
abbreviation of dxŸdy.) Define

(4.25a)

Vector addition and the product Ÿ make L(V) into an algebra called the algebra of 
exterior forms on V,

The defining properties of the algebra of exterior forms on V:

(1) If w Œ Lr(V) and h Œ Ls(V), then

(4.25b)

In fact, for any permutation s of {1,2, . . . ,k} and ai Œ L1(V), we have that

(4.25c)

(2) Let a1, a2, . . . , and an form a basis for V*. If 1 £ k £ n, then the set of all

is a basis for Lk(V). It follows that Lk(V) has dimension .

(3) If ai Œ V*, then the element a1Ÿa2Ÿ . . . Ÿak Œ Lk(V) satisfies

(4.25d)

for all vj Œ V.
(4) If T :V Æ W is a linear transformation, then the induced map T* :W* Æ V*

on dual spaces defines an induced map

(4.25e)

satisfying

(4.25f)

(4.25g)

We summarize a few basic consequences of the above for emphasis.

T T T r s* * * , , .a b a b a bŸ( ) = ( ) Ÿ ( ) Œ ( ) Œ ( )L LW W

T T T Tk k
k

i* , , . . . , , , . . . , , ,a a a( )( ) = ( ) ( ) ( )( ) Œ ( ) Œv v v v v v W v V1 2 1 2 L

T k k*: ,L LW V( ) Æ ( )

a a a a1 2 1 2Ÿ Ÿ Ÿ( )( ) = ( )( ). . . , , . . . , detk k i jv v v v

n

k
Ê
Ë

ˆ
¯

a a ai i i kk i i i n1 2 1 1 2Ÿ Ÿ Ÿ £ < < < £. . . , . . . ,

a a a s a a as s s1 2 1 2( ) ( ) ( )Ÿ Ÿ Ÿ = ( ) Ÿ Ÿ Ÿ. . . . . . .k ksign

w h h wŸ = -( ) Ÿ1
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L LV V( ) = ( )
=

Â k

k

n

0

.

Ÿ ( ) ¥ ( ) Æ ( )+: L L Lr s r sV V V
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4.9.1. Proposition.

(1) L0(V) = R and L1(V) = V*.
(2) If a1, a2, . . . , and an are a basis for V*, then the element a1Ÿa2Ÿ . . . Ÿan is a

basis for Ln(V). In particular,

(3) The determinant map

is a basis for Ln(Rn). More generally, the maps

are a basis for Lk(Rn).
(4) Lk (V) = 0, for k > n.
(5) aŸa = 0 for all a Œ Lk(V). If a, b Œ L1(V), then aŸb = -bŸa. In particular, the

product Ÿ is not commutative.

Proof. The listed facts are easy consequences of the definitions and Properties
(1)–(3) of Ÿ. We shall only prove fact (3). Specializing fact (2) to Rn implies that if we
pick any basis a1, a2, . . . , and an for Rn*, then

for some c Œ R. Now if we choose a1, a2, . . . , and an to be the dual basis for a basis
v1, v2, . . . , and vn for Rn, then Property (3) of Ÿ implies that

Choosing vi = ei, shows that

In other words, c = 1 and the first part of fact (3) is proved. The second part is proved
in a similar fashion.

Proposition 4.9.1(4) explains why the summation in (4.25a) stops at n, since all
the other spaces are 0.

Returning to Rn, it is convenient to think of L(Rn) as the exterior form algebra
associated to the origin of Rn, because the coefficients of the elements are just reals.
We would like to extend the exterior algebra notion by allowing functions f :Rn Æ R

det , , . . . , . . . , , . . . , .e e e e e e1 2 1 2 1 2 1n n nc c( ) = Ÿ Ÿ Ÿ( )( ) = ◊a a a

a a a1 2 1 2 1Ÿ Ÿ Ÿ( )( ) =. . . , , . . . , .n nv v v

det . . . ,= Ÿ Ÿ Ÿc na a a1 2

v v v

v

v

v

v R1 2, , . . . , ,k i
n( ) Æ ¥

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

Œdeterminant of some fixed k k minor of 

1

2

k

M

det: R Rn Æ

Ln V R( ) ª .
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to be the coefficients in the sense that we would be specifying a collection of elements
of L(Rn), one for each point of Rn. The element that we get at any point in Rn is the
one where we replace the function coefficient with the real number that is the value
of the function at that point. This would be an adequate approach if one was only
interested in defining differential forms for Rn, but because we have the generaliza-
tion to manifolds in mind (Section 8.12) we shall take a different approach. Rather
than having global functions induce “local” elements of L(Rn), we shall build up a
global structure from local ones.

For p Œ Rn define

(4.26)

We endow the set Tp(Rn) with the natural vector space structure defined by

and

Definition. The vector space Tp(Rn) is called the tangent space to Rn at the point p.
The vector (p,v) in Tp(Rn), often denoted by vp, is called a tangent vector to Rn at p.

The space Tp(Rn) is simply a way of formalizing the notion of each point of Rn

having its own copy of Rn thought of as the tangent vectors at that point. One can
think of the vector vp as a vector “starting” at p. See Figure 4.27. In that sense, the
tangent spaces also formalize the way one usually deals with vectors as arrows that
seem to float around in space. We shall have lots more to say about tangent vectors
and tangent spaces in the more general setting of curves, surfaces, and manifolds in
Chapter 8.

Differentiable maps induce maps on tangent spaces.

Definition. Let f :Rn Æ Rm be a differentiable function. For each p Œ Rn, the deriv-
ative of f defines a linear transformation Df(p) :Rn Æ Rm. The linear transformation

defined by

f T Tn
f

m
*: p pR R( ) Æ ( )( )

c c c np v p v R v R, , , , .( ) = ( ) Œ Œ

p v p v p v v v v R, , , , , ,( ) + ¢( ) = + ¢( ) ¢ Œ n

T n n
p R p v v R( ) = ( ) Œ{ }, .
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is called the induced map on tangent spaces.

Definition. A vector field on Rn is a map F defined on Rn that sends p Œ Rn to an
element of Tp(Rn). If we express F in the form

(4.27)

then the real-valued functions Fi(p) are called the component functions of F.

Definition. A differential k-form on Rn, or simply k-form or differential form, is a map
w defined on Rn that sends p Œ Rn to an element w(p) Œ Lk(Tp(Rn)).

The set of k-forms on Rn actually forms a vector space if we define the addition
and scalar multiplication in a pointwise fashion. Note that differential 0-forms are
just functions Rn Æ R. Also, given a differentiable function f :Rn Æ R, Df(p) is linear
transformation from Rn to R. As such it can be considered an element of L1(Rn), in
fact, an element of L1(Tp(Rn)).

Definition. The differential of a function f :Rn Æ R, denoted by df, is the differential
1-form in L1(Rn) defined by

(4.28)

As a special case, consider the projection functions pi :Rn Æ R defined by pi(x1,x2,
. . . ,xn) = xi.

Notation. In order to arrive at the classical notation for differential forms we shall
abuse the notation and write dxi instead of dpi.

Now, if v = (v1,v2, . . . ,vn), then

Therefore, the linear maps dxi(p) are just the dual basis of the standard basis (e1)p,
(e2)p, . . . , (en)p of Tp(Rn), so that every differential k-form w can be expressed in the
form

(4.29)

for functions wii...ik :Rn Æ R. In particular, every n-form w has the form

(4.30)

for some function f :Rn Æ R.

w = Ÿ Ÿ Ÿf dx dx dxn1 2 . . . ,
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Definition. The differential form w is called continuous, differentiable, C•, etc., if the
functions wii...ik are continuous, differentiable, C•, etc., respectively.

We shall always assume that differentiable forms are C• in order to avoid 
problems with functions not being differentiable enough.

Notation. The vector space of C• differential k-forms on Rn will be denoted by
Wk(Rn). (We do not use the notation Lk(Rn) because that already refers to the alter-
nating multilinear maps of the vector space Rn, which is something quite different.)

The next theorem expands on the result expressed by equation (4.29) by describ-
ing the expansion in more detail for the case of differentials of functions.

4.9.2. Theorem. If f :Rn Æ R is a differentiable function, then

that is, using the classical notation,

(4.31a)

In particular, the differential df can be expressed in terms of the directional deriva-
tive by the formula

(4.31b)

Proof. Simply note that

and

Next, consider a differentiable map f :Rn Æ Rm. The map f induces a map f* on
tangent spaces and its dual map

leads to the induced map

(4.32)f T Tk
f

m k n*: .L Lp pR R( ) ( )( ) Æ ( )( )

f T Tf
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Definition. The map

defined by

(4.33)

is called the induced map on differential forms. (The map f* on the right-hand side of
equation (4.33) is the induced map referred to by expression (4.32).) The form f*w is
often called the pullback to Rn of the form w on Rm.

Using equation (4.25f), the action of the induced map f* on differential k-forms
can be described in more detail as follows: Let vi Œ Rn. Then

(4.34)

The next theorem lists the main properties of the induced map f* that enables us
to compute the map easily.

4.9.3. Theorem. If f :Rn Æ Rm is a differentiable function, then the induced map

on differentiable forms satisfies

(1) f*(w1 + w2) = f*(w1) + f*(w2)
(2) f*(gw) = (g ∞ f)f*w
(3) f*(w Ÿ h) = f*w Ÿ f*h

(4)

(5) f*(g dx1 Ÿ dx2 Ÿ . . . Ÿ dxn) = (g ∞ f)(det f¢) dx1 Ÿ dx2 Ÿ . . . Ÿ dxn

Proof. The proofs of (1)–(4) are simply a case of expanding all the expressions using
their definitions. As an example, (4) is proved by the following equalities:

For a proof of (5), see [Spiv65].
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Next, we generalize the differential of a function as defined by equation (4.31a)
to a differential of an arbitrary differential form.

Definition. Given a k-form

define a (k + 1)-form dw, called the differential of w, by

The map w Æ dw is called the differential operator d for differential forms.

Note that if we consider a function f :Rn Æ R as a 0-form, then the new defini-
tion of the differential of f agrees with our earlier one.

4.9.4. Theorem.

(1) If w and h are two k-forms, then d(w + h) = dw + dh.
(2) If w is an r-form and h is an s-form, then

(3) d(dw) = 0
(4) If f :Rn Æ Rm is differentiable and w is a k-form, then f*(dw) = d(f*w).

Proof. For fact (2), check the formula first on the 1-forms dxi and their wedge 
products. Fact (3) is proved by direct computation using formula (4.25b) that will
cause terms to cancel. Fact (4) is proved by induction on k. See [Spiv65].

One can show that Theorem 4.9.4(1)–(3) and equation (4.31a) can be considered
axioms for the differential operator d that define it uniquely.

We now know all the basic facts we need to know about differential forms and
are ready to move on to the important integration applications. Before we do though,
we finish this section with definitions of several well-known concepts.

Definition. Let F be a vector field on Rn with component functions Fi. The diver-
gence of F, denoted by div F, is defined by

If n = 3, then the curl of F, denoted by curl F, is the vector field on R3 defined by
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In classical notation,

The comment earlier and Exercises 4.9.4 and 4.9.5 basically show that the 
gradient, curl, and divergence operators are just the differential operator d.

4.9.1 Differential Forms and Integration

The last section developed the basic framework of differential forms. In this section,
and then later in Section 8.12, we show how differential forms are related to inte-
gration. Here we shall deal with integration on open subsets of Rn. Section 8.12 will
deal with integration on manifolds. We will have to plow through a lot of definitions
and technical facts, but at the end it will all be worth it because some important the-
orems like Stokes’ theorem will become trivialities! We shall follow the presentation
given in [Spiv65] and [Spiv70a].

Although all definitions and results were stated with respect to Rn in the last
section, this was done only to simplify the discussion. It is easy to check that every-
thing applies to open subsets. We shall need this more general context now. In fact,
we shall also feel free to talk about differential forms on cubes [0,1]n. Although the
latter are closed sets, they are very nice sets and when it comes to differentiability
issues one can either take one-sided derivatives or assume without any problem that
functions are defined on an open neighborhood of the cube.

Let A be an open subset of Rn.

Definition. A singular k-cube in A is a C• function c : [0,1]k Æ A.

As usual, we chose singular k-cubes to be C• so that we do not have to mess with
differentiability questions. A singular 0-cube can be thought of as a point and a sin-
gular 1-cube is just a parametric curve. We shall need to talk about boundaries of
cubes and so we need some more notation.

Definition. The inclusion map In : [0,1]n Æ Rn, In(p) = p, is called the standard
singular n-cube. The (i,j)-faces of In are the singular (n - 1)-cubes

defined by

(4.35)

Given a singular k-cube c : [0,1]k Æ A, define the singular (n - 1)-cube ci,j, called the
(i,j)-face of c, by

I x x x x x x j x xi j
n
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See Figure 4.28 for the (i,0)- and (i,1)-faces of I2. The arrows on the edges show
the orientations that the functions I2

(i,j) induce on the edges.

Definition. A formal linear combinations of singular k-cubes for an open set A is
called a singular k-chain and the set of these is denoted by Gk(A).

We do not give a precise definition of “formal linear combinations” here. We basi-
cally want to write formal expressions such as 2c1 - 3c2 + c3, where c1, c2, and c3 are
singular k-cubes. The interested reader can look ahead to Section 7.2.1 where we give
a precise definition for a similar concept in the context of chain groups Ck(K) for a
simplicial complex K.

Definition. Given a singular k-cube c : [0,1]k Æ A, define the singular (k - 1)-chain
∂c, called the boundary of c, by

(4.36)

More generally, define the boundary operator

by

(4.37)

The signs associated to the faces in the boundary expression (4.36) of a cube
should be interpreted as indicating the orientation that the cube induces on the face.
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Consider Figure 4.28 again. The standard orientation of I2 induces a counter-
clockwise orientation on the edges. Formula (4.36) implies that

which specifies that same orientation.

4.9.1.1. Lemma. ∂ ∂ = 0.

Proof. This is a straightforward computation.

Lemma 4.9.1.1 is only an aside remark for us here, but it actually is the founda-
tion of an important theory. To do this theory justice would take us far afield and take
too much time. Our objectives in this section are much more limited. Nevertheless,
the reader should return here after reading Chapter 7. We are basically describing a
homology theory for open sets A similar to the homology theory for simplicial com-
plexes that will be developed in Chapter 7. The main difference is that we are using
singular k-cubes rather than k-simplices.

With these preliminaries out of the way, we return to the question of integration.
Suppose that w is a k-form on [0,1]k. In this case we know that

for some unique function f : [0,1]k Æ R.

Definition. Define the integral of w over [0,1]k by

(4.38)

Of course, the integral on the right-hand side of equation (4.38) is the standard
advanced calculus integral that was defined in Section 4.8. Note how similar all of the
notation is, that is, we are saying that

Finally,

Definition. Let k > 0. If w is a k-form on A and if c : [0,1]k Æ A is a singular k-cube,
then define the integral of w over c by

(4.39a)

If w is a 0-form on A, then w is just a function f :A Æ R. Therefore, if c :0 Æ A is a
singular 0-cube, then define
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(4.39b)

The integral of w over singular k-chain

is defined by

(4.39c)

Again, if one writes out the expressions in detail they will not seem much dis-
similar from those of advanced calculus.

4.9.1.2. Example. Integrals of singular 1-cubes are nothing but what are called line
integrals. To see this, assume that A Õ R2 and consider a 1-form w on A. We can write
w in the form

for some functions a, b :A Æ R. In classical language, the integral of w along (over) 
a singular 1-cube (curve) c : [0,1] Æ A is called a line integral along the curve c. 
Furthermore, if c(t) = (c1(t),c2(t)), then

Line integrals are often used in physics. For example, one might want to integrate a
force field along curve.

4.9.1.3. Example. Consider integrals of 2-cubes, which correspond to classical
surface integrals. Assume that A Õ R3 and consider a 2-form w on A. Let c : [0,1]2 Æ
A be a singular 2-cube in A.

where

We can write w in the form
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but repeating what we did in Example 4.9.1.2 would now get very messy and so we
shall not attempt to do so.

4.9.1.4. Theorem. (Stokes’ Theorem) Let A Õ Rn. If w is a (k - 1)-form on A and if
c is a k-chain on A, then

Proof. See [Spiv65]. The proof is really not very hard and boils down mainly to using
the definitions of the various quantities that are involved and showing that both sides
of the equation are the same, starting first with the special case c = Ik.

If one writes out what Theorem 4.9.1.4 says in the case of the 1-chain I1 in R, one
will see that what one has is just the classical Fundamental Theorem of Calculus
(Theorem D.1.3). (Actually, the proof of Theorem 4.9.1.4 uses that special case and
assumes that it has been proved separately.) One should therefore not be surprised
when Theorem 4.9.1.4 is often called the Generalized Fundamental Theorem of Calcu-
lus. To quote from [Spiv65]:

(1) It is trivial.
(2) It is trivial because the terms in it have been properly defined.
(3) It has significant consequences.

One sees the truth of point (2) over and over in mathematics. Making the right defi-
nitions can isolate the essential aspects needed to arrive at a solution to a problem.
The validity of point (3) in our current context of integration will become more appar-
ent in Section 8.12. For now we have finished with our outline of differential forms
and their relation to integration.

4.10 EXERCISES

Section 4.2

4.2.1. Prove that the sets Rn and f are both open and closed.

4.2.2. Prove that a single point is always a closed set.

4.2.3. Is {1/n | n = 1, 2, . . . } a closed set? Prove or disprove your answer.

4.2.4. Prove that if X is a closed set in Rn, then cl(X) = X.

4.2.5. Prove that the interior of a set is an open set.

4.2.6. Give examples of sets that show the following statements are false:

(a) If X Õ Y, then bdry(X) Õ bdry(Y).
(b) bdry(X) = bdry(cl(X)).
(c) bdry(X) = bdry(int(X)).
(d) int(X) = int(cl(X)).

d
c c

w w
∂Ú Ú= .
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4.2.7. Prove that (0,1] is open in [-1,1].

4.2.8. Prove that any set is open or closed in itself.

4.2.9. Prove that the function f : (0,1] Æ R, f(x) = 1/x, is continuous but not uniformly 
continuous.

4.2.10. Let v0, v1, v2 Œ R2. Define a homeomorphism between the simplex v0v1v2 and the unit
disk D2.

4.2.11. Show that the support of a function is the intersection of all closed sets A, where f
vanishes outside of A.

Section 4.3

4.3.1. Prove Proposition 4.3.4.

4.3.2. Prove Corollary 4.3.7(2).

4.3.3. Let f(t) = (t2,t), g(x,y) = y2 - 4x, and G(t) = g(f(t)). Compute Df, Dg, and DG. Determine
DG in two ways: from its formula and by using the chain rule.

4.3.4. Let f(x,y) = (x3 - 2x + 1, xy + y2, x - 3y + 7). Compute the Jacobian matrix f¢(-1,5).
What is its rank?

4.3.5. Let A, B : [a,b] Æ R3 be differentiable functions and define f : [a,b] Æ R3 by f(t) = A(t)
¥ B(t). Prove that

(We are treating the 1 ¥ 3 Jacobian matrices as vectors here.) In short hand, the 
differentiation rule for the cross-product is (A ¥ B)¢ = A¢ ¥ B + A ¥ B¢.

4.3.6. Show that the function z = f(xy) satisfies the equation

4.3.7. Show that the substitution x = es and y = et converts the equation

into

4.3.8. If f(x,y,z) = x sinz and v = (2,-1,3), find Dvf(0,1,-1).

4.3.9. Show that the directional derivative of f(x,y) = y2/x at any point of the ellipse 2x2 + y2

= 1 in the direction of the normal to the ellipse at that point is zero.
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Section 4.4

4.4.1. Consider the curve C defined by the equation x + y2 + cosxy = 0.

(a) Can C be parameterized by a function of the form y = f(x) in a neighborhood of
(0,0)?

(b) Can C be parameterized by a function of the form x = g(y) in a neighborhood of
(0,0)?

4.4.2. The point p = (1,2,1) lies on the set X defined by

Determine which of the variables can be solved for in terms of the other two at p.

Section 4.5

4.5.1. Discuss the nature of the critical points of the function f(x,y) = 2x4 + y4 - x2 - 2y2.

4.5.2. Consider the function f(x,y) = x2 + 2xy - 4x + 8y. Find the maxima, minima, and saddle
points of f in the rectangle bounded by the lines x = -5, x = 1, y = 0, and y = 7.

4.5.3. Find the extreme value of the function f(x,y,z) = xyz subject to the constraints

and x, y, z > 0.

4.5.4. (a) Prove Case 1 for Theorem 4.5.13.
(b) Fill in the details left out of the proof of Case 2 for Theorem 4.5.13.

Section 4.8

4.8.1. Let X be the region of the plane defined by

If f(x,y) = x, compute the integral ÚXf by a change of variables to polar coordinates.

Section 4.9

4.9.1. If f(x,y) = xy + sinxy, v = (-2,1), and p = (2,3), find df(p)(vp).

4.9.2. Define f :R2 Æ R by f(x,y) = xy + 3y. Find f*(vp), where f* :Tp(R2) Æ Tf(p) (R), v = (-2,1),
and p = (3,5).

4.9.3. (a) If w = xy dx + y2 dy, compute dw.
(b) If w = xy dxdy, compute dw.

X = ( ) £ + £ - ≥ - ≥{ }x y x y y x x y, , , .4 16 3 0 3 02 2

1 1 1
0

x y z
c+ + = >

xy xz yz

xyz x z

- + =
+ + - =

4 0

4 0.
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4.9.4. If

is a 1-form on R3, show that

4.9.5. If

is a 2-form on R3, show that

where F = (F1,F2,F3).

Section 4.9.1

4.9.1.1. Compute the line integral

along the curve c when

(a) c is the part of the parabola y = x2 from (0,0) to (1,1).
(b) c is the polygonal path with vertices (0,0), (1,0), (1,1), (0,1), and (0,0).
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C H A P T E R  5

Point Set Topology

5.1 Introduction

In this chapter we introduce the basic concepts dealing with metric and topological
spaces and their associated maps. We shall build on the special case of Rn as described
in Section 4.2. The reader new to topology can always think in terms of Euclidean
space and its subspaces. That is certainly where currently most of the applications
are. On the other hand, abstract topological spaces are not just abstract nonsense and
it is worthwhile to introduce them even though metric spaces would be adequate for
geometric modeling. The fact is that the metric usually has little to do with anything.
The key concept is that of open sets. It is the open sets that really define a topology
and by studying topological spaces one strips away the unimportant elements and gets
to what is essential for understanding intrinsic topological properties of spaces. It is
inadequate to think of spaces purely in terms of specific imbeddings in Rn, even
though, for example, the average person probably only thinks of a circle as an object
sitting in some background like a piece of paper. If we want to study our universe, we
would not think of it as imbedded in another space. The circle and universe have
intrinsic properties that do not depend on any particular imbedding. One needs to see
beyond the imbeddings.

Our intent is to survey only the most important results from what is called general
or point set topology – those that get used a lot in other contexts. There are actually
no really difficult theorems in this chapter. Most follow from the definitions in a rel-
atively straightforward way. Of course, the author realizes that the material here may
well be new to many readers and quite different from what they may have seen before,
so that even easy results may seem hard initially. There are quite a few books on point
set topology, but the one that this author recommends most highly is Eisenberg’s book
[Eise74]. Most of the explicit references in this chapter will be to this book, however,
in the case of references for omitted proofs one can find these in many other books,
such as [Lips65].

Metric spaces are certainly the most important topological spaces and we start
with those in Section 5.2. Section 5.3 defines and discusses general topological spaces.
Section 5.4 describes some important standard operations that create new spaces



from old ones. If one had to list the two most used properties of topological spaces it
would certainly be compactness and connectedness and we devote Sections 5.5 and
5.6 to those, respectively. The basic problem of topology is to classify spaces up to
homeomorphism and to find invariants that can be used to distinguish homeomor-
phism classes. However, along with deformations of spaces, it is also useful to study
deformations of mappings and we do this in Section 5.7 where we discuss homotopy.
Section 5.8 describes conditions for the existence of certain continuous functions. In
Section 5.9 we take another look at a very important space, Pn, and discuss some of
its topological properties.

Finally, point set topology is one of those fields where one encounters a great many
definitions. The reader may start to feel overwhelmed by all these definitions at the
first reading of this chapter. In some sense, the reader can “ignore” them until they
become relevant in the context of specific results. The reader may also run into many
of the terms elsewhere, and so this chapter will serve as a general reference for what
they mean. Certainly, we had to present them here because they represent certain
technical conditions without which theorems would be false. The reader who is learn-
ing about topology for the first time may wonder “what the fuss is all about” because
the conditions might seem like conditions that should obviously hold. They may in
fact hold for all the “nice” spaces we will ever consider. However, definitions by their
nature are abstract and they may have consequences that were unintended. For
example, the definition of a continuous function is one with which “everyone” is happy
and which can be used very effectively, but there are continuous functions that are
nowhere differentiable. Is that what one had in mind when defining a continuous
function? (As an aside, although such functions are undesirable, their existence actu-
ally gives us insight into what continuity really means.) The same thing is true here.
Point set topology is a very large field. The definitions that we shall deal with in this
book only scratch the surface. The fact is that, like the continuity of functions, the
definition of a topology on a space is abstract and although it captures a basic idea
that was extrapolated from nice subspaces of Rn, it allows for a much larger universe
of spaces. This is why we shall have to introduce some additional conditions from
time to time (like requiring the differentiability of a function in addition to its conti-
nuity) to guarantee that we get what we want. Isolating needed conditions for a result
and giving them a name is helpful in understanding what makes a theorem true.
Unfortunately, this book will often not have time to explain fully the nuances and
reasons for naming special conditions leaving some readers with a feeling of mystery.
The only cure for such feelings is to read one of the more comprehensive books on
topology listed in the references.

5.2 Metric Spaces

Definition. A metric on a set X is a function

such that the following holds for all p, q, r � X:

d : X X R¥ Æ
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(1) d(p,q) ≥ 0.
(2) d(p,q) = 0 if and only if p = q.
(3) (symmetry) d(p,q) = d(q,p).
(4) (triangle inequality) d(p,r) £ d(p,q) + d(q,r).

The value d(p,q) is called the d-distance from p to q. A metric space is a pair (X,d),
where d is a metric on X.

Rn admits a number of different metrics. Let p, q � Rn.

The standard Euclidean metric d:  d(p,q) = |pq|

The taxicab metric d1:

The max metric d�:

Note. Throughout this book, whenever we talk about Rn, we shall always assume
that its metric is the Euclidean metric unless it is explicitly stated otherwise. The def-
initions and concepts generalize those in Section 4.2.

Many other spaces have metrics. A large source of metric spaces are vector spaces
with an inner product because the distance function between vectors defined by the
inner product is one (Exercise 5.2.2). This applies in particular to many function
spaces.

5.2.1. Example. The space C0([0,1]) of continuous functions on [0,1] can be made
into a vector space by defining the addition of functions and scalar multiplication in
a pointwise fashion. It is easy to check (Exercise 5.2.3) that one possible inner product
on this space is defined by the formula

(5.1)

This inner product leads to the metric

(5.2)

Two other metrics on C0([0,1]) unrelated to the inner product are

(5.3)
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See Exercises 5.2.4 and 5.2.5.

5.2.2. Example. Let X be any set and define a map

by

It is easy to show that d is a metric on X.

Definition. The map d is called the discrete metric on X.

The discrete metric is rather a trivial metric for a space but it often serves as a
useful example.

Definition. Let (X,d) be a metric space and suppose that A is a subset of X. Let d¢
be the map d restricted to A ¥ A. Then d¢ is called the induced metric and (A,d¢) is
called the induced metric space.

Definition. Let (X,d) be a metric space and let p � X. The d-ball of radius r about
p, denoted by Br(p,d), is defined by

The d-disk of radius r about p, denoted by Dr(p,d), is defined by

The d-sphere of radius r about p, denoted by Sr(p,d), is defined by

Figure 5.1 shows what the disks of radius 1 around the origin look like in the case
of the three metrics defined earlier.

S d d rr p q X p q, , .( ) = Œ ( ) ={ }

D d d rr p q X p q, , .( ) = Œ ( ) £{ }

B d d rr p q X p q, , .( ) = Œ ( ) <{ }

d p q p q, ,

, .

( ) = =
=

0

1

if

otherwise

d : X X R¥ Æ
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Definition. Let (X,d) be a metric space. A subset U of X is said to be d-open if for
every point p in U there is an r > 0 so that Br(p,d) � U.

Note that a d-ball is a d-open set. In the case of the discrete metric d on a set,
every subset is d-open.

5.2.3. Theorem. Let (X,d) be a metric space. Then

(1) Both the empty set f and the whole space X are d-open sets.
(2) An arbitrary union of d-open subsets of X is d-open.
(3) Any finite intersection of d-open subsets of X is d-open.

Proof. The proof is similar to the proof of Proposition 4.2.1.

An arbitrary intersection of d-open sets need not be d-open. We already saw an
example that shows this for the Euclidean metric d on R in Section 4.2.

Definition. Let (X,d) be a metric space. A subset C of X is said to be d-closed if X -
C is d-open.

A (closed) interval [a,b] in R is a closed set with respect to the Euclidean metric.
More generally, any d-disk is d-closed, as is the d-sphere.

5.2.4. Theorem. Let (X,d) be a metric space. Then

(1) Both the empty set f and the whole space X are d-closed sets.
(2) An arbitrary intersection of d-closed subsets of X is d-closed.
(3) Any finite union of d-closed subsets of X is d-closed.

Proof. See the proof of Proposition 4.2.1.

Again, we already saw in Section 4.2 that an arbitrary union of d-closed sets need
not be d-closed. Another fact to note is that subsets do not have to be either d-open
or d-closed. As was pointed out before, the half-open interval [0,1) in R is neither d-
open nor d-closed with respect to the Euclidean metric d.

Definition. Let (X,d) be a metric space and let p � X. A subset V of X that contains
p is called a d-neighborhood of p if there is a d-open set U so that p � U � V.

Note that d-neighborhoods need not be d-open. For example, [-1,1] is a d-
neighborhood of 0.

We shall see later in Section 5.3 that the important topological aspect of a space
is its collection of open sets. In that sense therefore, although a space can have 
many different metrics, just because two metrics are different does not mean that the
“topology” that they induce on the space is different.

Definition. Let d and d¢ be two metrics on a space X. We shall say that d and d¢ are
(topologically) equivalent metrics if every d-open set of X is d¢-open and every d¢-open
set of X is d-open.
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The Euclidean metric, the taxicab metric, and the max metric on Euclidean space
are all equivalent.

Definition. Let (X,d) be a metric space. Let p � X and A � X. Define the d-distance
from p to A, dist(p,A), by

See Figure 5.2(a). One should think of the distance between a point and a set as
being the “smallest distance” between the point and points of the set. For example,
dist(3,[0,1)) = 2.

Definition. Let (X,d) be a metric space and let A,B � X. Define the d-distance from
A to B, dist(A,B), by

See Figure 5.2(b). One should think of the distance between two sets as being the
“smallest distance” between the points of the sets. For example, dist ([0,1),(3,20]) = 2
and dist ([0,2),(2,3]) = 0.

Definition. Let (X,d) be a metric space. A subset A of X is said to be d-bounded if
there is a constant c > 0 so that d(p,q) < c for all p, q � A. If the whole space X is d-
bounded, then the metric space (X,d) and the metric d are said to be bounded. If A is
a d-bounded subset of X, then the d-diameter of A, denoted by diam(A), is defined by

For example, the set X = (0,1) is a bounded set in R, but the set of integers Z is
not. The diameter of X is 1. The next theorem shows that both a bounded and
unbounded metric on a space can induce the same open sets.

5.2.5. Theorem. Let (X,d) be a metric space. Then X admits a bounded metric that
is equivalent to d and for which diam(X) £ 1.

Proof. Define

(5.5)d d* , , , .p q p q( ) = ( ){ }min 1

diam distA p q p q A( ) = ( ) Œ{ }sup , , .

dist dA B a b a A b B, , , .( ) = ( ) Œ Œ{ }inf

dist dp A p a a A, , .( ) = ( ) Œ{ }inf
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It is easy to show that d* is a metric on X with the desired properties (Exercise 5.2.7).
See [Eise74].

Definition. Let (X,d) and (Y,d¢) be metric spaces. A one-to-one and onto map 
f :X Æ Y is called an isometry between these metric spaces if d¢(f(p),f(q)) = d(p,q)
for all p, q � X. An arbitrary map f :X Æ Y is called a local isometry if for every p in
X there exist d- and d¢-neighborhoods U and V of p and f(p), respectively, so that 
f|U is an isometry between U and V.

Motions in Rn are all isometries.

Definition. Let (X,d) and (Y,d¢) be metric spaces and let p � X. A map f :X Æ Y is
said to be (d,d¢)-continuous at p if for every e > 0 there is a d > 0 so that d¢(f(p),f(q))
< e for all q � X with d(p,q) < d. The map f is said to (d,d¢)-continuous if it is (d,d¢)-
continuous at every point of X.

It is easy to see that in the case of the Euclidean metric this is just the usual def-
inition of continuity of functions f :Rn Æ Rm. See statement (4.1) in Chapter 4.

Definition. Let (X,d) and (Y,d¢) be metric spaces. A map f :X Æ Y is said to be (d,d¢)-
uniformly continuous if for every e > 0 there is a d > 0 so that for all p, q � X, d(p,q)
< d implies that d¢(f(p),f(q)) < e.

We already pointed out the big difference between uniform and ordinary continuity
in Section 4.2. The d in the uniform continuity case does not depend on where we are
and only on the e. Having this independence is often important, and so it is always better
to have a uniformly continuous map rather than just a plain continuous one.

Next, the usual notion of convergence of sequences in Rn extends to metric spaces
in a natural way.

Definition. Let (X,d) be a metric space. A sequence of points pn, n = 1,2, . . . in X is
said to converge to a point p in (X,d) if for every e > 0 there is an m ≥ 1 so that if n ≥
m then d(pn,p) < e. The sequence pn is said to converge in (X,d) if it converges to some
point p in (X,d).

5.2.6. Theorem. Let (X,d) be a metric space. If a sequence of points pn, n = 1,2,
. . . in X converges to two points p and q in (X,d), then p = q.

Proof. Let e > 0. By definition, there exists an m so that n > m implies that d(pn,p)
< e and d(pn,q) < e. But then

which clearly implies that p = q since e was arbitrary.

Theorem 5.2.6 says that if a sequence converges to a point, then it converges to a
unique point.

d d d np q p p p q, , , ,( ) £ ( ) + ( ) < + =n e e e2
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Definition. If a sequence pn, n = 1,2, . . . converges to a point p in a metric space,
then this unique point p is called the limit point of the sequence and is denoted 
by .

5.2.7. Theorem. Let (X,d) be a metric space. A subset A of X is d-closed if 
and only if every limit point in X of sequences of points from A also belongs to 
A.

Proof. If A is d-closed, then X - A is d-open and cannot contain any limit point of
A since every one of its points has a neighborhood entirely contained in X - A. The
converse is just as easy.

Definition. Let (X,d) and (Y,d¢) be metric spaces and consider maps fi, F :X Æ Y.
We say that the sequence of maps f1, f2, . . . converges pointwise to the map F if, for
every e > 0 and each p � X, there is an m so that d¢(fn(p),F(p)) < e for all n > m. We
say that the sequence f1, f2, . . . converges uniformly to F if, for every e > 0 there is an
m so that d¢(fn(p),F(p)) < e for all n > m and all p � X. In either case, we call F the
limit function of the sequence f1, f2, . . . .

Notice the important difference between pointwise and uniform convergence. In
the former case, the m depends on the e and the point p, and in the latter, it depends
only on the e. This is similar to the difference between continuity and uniform con-
tinuity. A sequence of functions can converge pointwise but not uniformly (Exercise
5.2.8). The limit function of a sequence of functions, if it exists, is unique because
limits of point sequences are unique. One question that arises in the context of
sequences of functions is whether the limit function will have a property if all the
functions converging to it have this property. The answer to this question is no in
general but getting a positive answer in certain cases is precisely why the notion of
uniformly convergent is introduced. The next theorem is one example.

5.2.8. Theorem. Let (X,d) and (Y,d¢) be metric spaces and consider maps fi, F :X
Æ Y. If the maps fi are continuous and if the sequence of maps f1, f2, . . . converges
uniformly to F, then F is continuous.

Proof. This is an easy exercise. See [Lips65].

Theorem 5.2.8 is false without the hypothesis of uniform convergence.

Definition. Let (X,d) be a metric space. A sequence of points pn, n = 1,2, . . . in X is
said to be a Cauchy sequence in (X,d) if for every e > 0 there is an m ≥ 1 so that d(pi,pj)
< e for all i,j ≥ m.

5.2.9. Theorem. Every convergent sequence in a metric space is a Cauchy 
sequence.

Proof. Let pn be a sequence that converges to a point p in a metric space (X,d). Let
e > 0. Choose m so that n > m implies that d(pn,p) < e/2. It follows that

n
lim

Æ•
pn
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and the theorem is proved.

Definition. A metric space (X,d) is said to be complete if every Cauchy sequence in
(X,d) converges.

For example, Rn is complete. The set of rational numbers is not complete. The
rational numbers have “holes,” which is why one defined the real numbers. They fill
in those holes.

Finally, taking the product of sets is a common operation. Given a finite collec-
tion (Xi,di), 1 £ i £ k, of metric spaces, we can endow the product space X1 ¥ X2 ¥
. . . ¥ Xk with many metrics. One natural one that is a generalization of the max me-
tric we defined earlier on Rn is the following: Let p = (p1,p2,. . .,pk), q = (q1,q2,. . .,qk)
� X1 ¥ X2 ¥ . . . ¥ Xk and define

Definition. The function d� is called the max metric on X1 ¥ X2 ¥ . . . ¥ Xk.

5.2.10. Theorem. Let (Xi,di), 1 £ i £ k, be metric spaces.

(1) The max metric d� is a metric on the product X1 ¥ X2 ¥ . . . ¥ Xk.
(2) The open sets defined by d� consist of unions of sets of the form U1 ¥ U2 ¥

. . . ¥ Uk, where Ui is di-open in Xi.

Proof. See [Eise74].

In the future, when there is no confusion as to which metric we are talking about
we shall drop the “d-” in front of adjectives such as “d-open,” “d-closed,” etc., and
simply say “open,” “closed,” etc., respectively.

5.3 Topological Spaces

As one looks over the topics covered in the last section, one may have noticed the
importance of open sets. By in large, the only role the metric played was in defining
these sets, but once they were defined the metric was not needed. This leads us to the
next level of abstraction where one concentrates on the open sets right from the start.
The properties that open sets satisfy in the case of metric spaces (see Theorem 5.2.3)
suggest the following:

Definition. Let X be a set. A topology on X is a set T of subsets of X satisfying

(1) Both f and X belong to T.
(2) The union of any collection of sets from T also belongs to T.
(3) The intersection of any finite collection of sets from T belongs to T.

d d
i n

i i i•
£ £

( ) = ( ){ }p q p q, , .
1
max

d d di j i jp p p p p p, , , ,( ) £ ( ) + ( ) < + =e e e2 2
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The sets in T will be called the T-open sets of X with respect to the topology T. If T is
clear from the context, then we shall simply refer to them as the open sets of X.

Using induction it is easy to show that condition (3) in the definition of a topol-
ogy can be replaced by

(3¢) The intersection of any two sets from T belongs to T.

Definition. Let X be a set. The discrete topology on X is the set T of all subsets of
X.

Clearly, the discrete topology on a set X is defined by the fact that {p} is an open
set for each point p � X.

Definition. A topological space is a pair (X,T) where X is a set and T is a topology
on X. Again, if T is clear from the context, then one drops the reference to T and
simply says the “topological space” X.

Intuitively, when one talks about a topological space, what one is saying is that
one has specified the collection of subsets that will be called “open.” It must be the
case though that the empty set and the whole space are open sets, that any union of
open sets is open, and that the finite intersection of open sets is open.

5.3.1. Example. If (X,d) is a metric space, then (X,T) is a topological space, where
T is set of d-open sets. The topology T is called the topology on X induced by d. In 
particular, any subset of Rn has a topology induced by the standard Euclidean 
metric.

5.3.2. Example. The Euclidean, taxicab, and max metric on Rn induce the same
topology on Rn or any of its subsets (Exercise 5.3.1). This topology will be called the
standard topology on Rn.

5.3.3. Example. The topology on Rn induced by the discrete metric is the discrete
topology and differs from the standard topology. A less trivial example of distinct
topologies on a space are the topologies on the space of functions C0([0,1]) induced
by the metrics d1 and d� defined by equations (5.2) and (5.3), respectively. For a proof
of this fact see [Eise74].

The following is a useful concept.

Definition. Let (X,T) be a topological space. A base for the topology T is a collec-
tion of subsets of X, so that each subset belongs to T and every set in T is a union of
elements of the collection.

For example, the open disks Bn(p,r) in Rn are a base for the standard topology on
Rn. When dealing with open sets of a topology it often suffices to look at elements of
a base. One can also define topologies by means of bases.
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5.3.4. Theorem. Let X be a set and W a collection of subsets of X satisfying:

(1) Each element of X belongs to some subset of W.
(2) If O1, O2 � W and x � O1 « O2, then there exists an O � W with x � O � O1

« O2.

Then there is a unique topology T on X for which W is a base.

Proof. See [Eise74].

Definition. Let (X,T) be a topological space. A subset A of X is called T-closed (or
simply closed if T is clear from the context), if X - A is T-open.

5.3.5. Theorem. Let (X,T) be a topological space. Then

(1) Both the empty set f and the whole space X are closed sets.
(2) An arbitrary intersection of closed subsets of X is closed.
(3) Any finite union of closed subsets of X is closed.

Proof. This is easy. See the proof of Theorem 5.2.4.

Definition. Let X be a topological space and let p � X. A subset V of X that con-
tains p is called a neighborhood of p if there is a open set U so that p � U � V. A col-
lection of neighborhoods of p is called a local base at p or a neighborhood base at p if
every neighborhood of p contains a member of this collection.

Definition. A topological space (X,T) is said to be metrizable if X admits a metric d
so that T is the topology on X induced by d.

Not all topological space are metrizable.

5.3.6. Example. Let X = {p,q} and T = {f, X, {p}, {p,q}}. Then (X,T) is a non-
metrizable topological space. If it were metrizable, then p and q would have disjoint
neighborhoods, which is not the case here.

For less trivial examples of nonmetrizable spaces see [Eise74]. Any space that can
be “drawn” (and whose topology is reflected by the picture) will be metrizable because
it lives in Rn.

Definition. A topological space is said to be a Hausdorff space if any two distinct
points of X have disjoint neighborhoods.

The Hausdorff separability condition may seem like an obvious condition that
should always hold but it does not follow from our definition of a topology. It is 
certainly satisfied for metrizable spaces and it is satisfied by all the topological 
spaces we shall look at, but, as we just saw in Example 5.3.6, not every topological
space is a Hausdorff space. Most of the time, however, it is an important technical
condition that is assumed for some results to hold. We shall run into it later in quite
a few places.
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Definition. Let A be a subset of a topological space X. A boundary point of A is a
point p in X such that every neighborhood of p meets both A and the complement of
A, X - A. The boundary of A (in X), denoted by bdry(A), is defined to be the set of
boundary points of A. A point a in A is called an interior point of A (in X) if a has a
neighborhood U in X that is contained in A. The set of interior points of A is called
the interior of A and is denoted by int(A). The closure of A (in X), denoted by cls(A),
is defined to be the set of all points p in X with the property that every neighborhood
of p meets A.

These definitions are analogous to those in Section 4.2. It is important to note
that the above definitions of boundary, interior, and closure are all relative to the con-
taining space X. One can show (Exercise 5.3.2) that

(5.6)

(5.7)

Definition. A subset A of a topological space X is said to be dense in X if it inter-
sects every nonempty open set of X. It is said to be nowhere dense in X if its closure
contains no nonempty open subset of X.

For example, the rational numbers are dense in R, as are the irrational numbers.
Any finite subset of Rn is nowhere dense in Rn.

5.3.7. Lemma. Let (X,T) be a topological space and let Y be a subset of X. Define
a set S of subsets of Y by

(5.8)

Then S is a topology on Y.

Proof. The proof is straightforward.

Definition. Let (X,T) be a topological space and let Y be a subset of X. The topol-
ogy S on Y defined by equation (5.8) is called the relative topology on Y induced by T.
The topological space (Y,S) is called a subspace of (X,T). If T is clear from the context,
one simply talks about the subspace Y of X.

“Induced metrics” and “relative topologies” may sound abstract, but these 
notions tend to get used automatically in the context of subspaces of Rn, although
without explicitly using those terms. For example, one probably had no hesitation to
talk about the distance between points of a circle or open arcs in a circle.

5.3.8. Lemma. Let X be a topological space and let Y be a subspace of X. The closed
sets of Y are just the sets A « Y, where A is closed in X.

Proof. This is an easy consequence of the definitions.

S = « Œ{ }A Y A T .

cls bdryA A A( ) = ( )» ( )int .

int A A A( ) = - ( )bdry ,
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Definition. Let f :X Æ Y be a map from a topological space X to a topological space
Y. Let p � X. The map f is said to be continuous at p if for every neighborhood 
N of f(p) in Y the set f-1(N) is a neighborhood of p in X. The map f is said to be 
continuous if it is continuous at every point of X.

5.3.9. Theorem. Let f :X Æ Y be a map from a topological space X to a topologi-
cal space Y. The map f is continuous if and only if f-1(V) is open in X for all open sets
V in Y.

Proof. Easy.

We already pointed out in Section 4.2 that in the case of Euclidean spaces the def-
inition of continuity agrees with the standard epsilon-delta definition from calculus.
The messy epsilons and deltas obscure the issues that are really at stake. Of course,
that definition would actually not be possible here anyway since we do not have a
metric. Continuous maps are the natural maps for topological spaces because they
involve the only thing that we have in the context of a topology on a set, namely, open
sets. Note, however, that we are not saying that a continuous map sends open sets to
open sets. Such a definition might seem like the obvious one at first glance, but it
would not capture what we have in mind.

Definition. A map f :X Æ Y from a topological space X to a topological space Y is
said to be an open map if it maps every open set of X to an open set of Y. It is said
to be a closed map if it maps every closed set of X to an closed set of Y.

The following example shows the difference between a map being continuous,
open, and/or closed:

5.3.10. Example. Let X be the reals R with the standard topology and let Y be the
reals with the discrete topology. Then the identity map from X to Y is not continuous
but both open and closed. On the other hand, the identity map from Y to X is con-
tinuous but neither open nor closed.

5.3.11. Theorem. If f :X Æ Y and g :Y Æ Z are continuous maps between topolog-
ical spaces, then the composite map h = f g :X Æ Z is a continuous map.

Proof. This follows easily from the definitions.

The next theorem shows that we can piece together continuous maps to get a
global continuous map.

5.3.12. Theorem. Let {Ai}i�I be a covering of a topological space X by subspaces
with the property that either all the Ai are open or all the Ai are closed and I is finite.
If f :X Æ Y is a map to another topological space, then f is continuous if the restric-
tion maps f |Ai are continuous for each i � I.

Proof. Suppose that the Ai are open. Let V be an open set in Y. If f |Ai is continu-
ous, then

o
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is open in Ai and X. Therefore,

is open in X, which proves the continuity of f. The proof of the theorem in the case
where the Ai are closed is also an easy consequence of the definitions. See [Eise74].

5.3.13. Example. By Theorem 5.3.12 the map f : [-1,2] Æ R defined by

is a continuous map. See Figure 5.3.

Definition. Let X and Y be topological spaces. A bijection f :X Æ Y is called a home-
omorphism if and only if both f and f-1 are continuous maps. Two spaces X and Y are
said to be homeomorphic, and we write X ª Y if there exists a homeomorphism 
f :X Æ Y. Any property of a space that is preserved by a homeomorphism is called a
topological invariant.

Homeomorphisms capture the natural notion of equivalence between topological
spaces. The identity map of a topological space is a homeomorphism. Homeomor-
phisms are both open and closed maps. To find a homeomorphism between spaces
one first has to find a bijection between them and then needs to show that it preserves
open (or closed) sets.

5.3.14. Example. Let f :R Æ R be a continuous map and let

be the graph of f with the induced topology from R2. Then the map

X x R= ( )( ) Œ{ }x f x,

f x x if x

x if x

x x if x

( ) = - + Œ -[ ]
= - Œ[ ]
= - + - Œ[ ]

2

2

1 1 0

1 0 1

3 2 1 2
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,  , ,

f f f fi
i I

i
i I
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Œ

-

Œ
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f fi i
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defined by

is a homeomorphism. To see this, let p0 = (x0,f(x0)) and consider an open ball B2(p0,r)
about p0. See Figure 5.4. Now, B2(p0,r) « X is an open set of X and it is easy to see
that h-1(B2(p0,r) « X) is an open interval in R containing x0. This and the fact that h
is obviously a bijection clearly imply that h is a homeomorphism.

5.3.15. Example. The unit circle S1 is homeomorphic to the boundary X of the
square [-1,1] ¥ [-1,1]. Define a map

by

It is easy to see from Figure 5.5 that h and h-1 maps open sets to open sets. Open arcs
in S1 correspond to open “intervals” in X.

h p
p
p

( ) = .

h : X SÆ 1

h x x f x( ) = ( )( ),

h: R X RÆ Ã 2
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Topological properties of spaces are those properties that are “preserved” by home-
omorphisms. We shall see a number of examples of topological properties in later sec-
tions. A topologist is someone who tries to find and analyze topological properties of
spaces. A topologist does not distinguish between homeomorphic spaces. An ellipse
looks the same as a circle. Roughly speaking, two spaces are the same to a topologist
if one can be deformed into the other without any ripping or tearing. The deforma-
tions correspond to a one-parameter family of homeomorphism. In laymen’s terms,
topology is “rubber sheet geometry.” At the beginning of the next chapter, Chapter 6,
we shall have a lot more to say about the kinds of questions that topology tries to
answer.

Definition. Let X and Y be topological spaces. A map f :X Æ Y is called an im-
bedding if the map f :X Æ f(X) is a homeomorphism between X and the subspace 
f(X) of Y.

Imbeddings are one-to-one maps by definition.

5.3.16. Example. If A is a subspace of X, then the inclusion map of A into X is an
imbedding. If one gives the set of rational numbers the discrete topology, then 
the inclusion map of this set into the reals R with the Euclidean topology is not an
imbedding.

Next, we give some limit-related definitions.

Definition. Let A be a subset of a topological space X. A point a � A is called an
isolated point of A if it has a neighborhood that contains no other point of A except
for a. A point p � X is called a limit or accumulation point of A if every neighbor-
hood of p contains a point of A different from p.

Clearly, every point of a subset A in a space X is either an isolated or a limit 
point. A limit point of A that does not belong to A is a point in the boundary of 
A.

5.3.17. Theorem. Let A be a subset of a metric space X. Every neighborhood of a
limit point of A contains infinitely many points of A.

Proof. Easy.

Definition. A sequence of points pn of a topological space X is said to converge to
the point p in X if for each neighborhood U of p in X there is some integer m so that
n ≥ m implies that pn � U.

Many of the properties of convergence of sequences in metric spaces generalize
to the context of convergence in topological spaces, but one typically has to add some
additional hypotheses (such as the space being Hausdorff) on the type of topology one
has. For example, the continuity of a function f defined on a space X is not in general
equivalent to f(pn) converging to f(p) for all sequences pn that converge to p (sequen-
tial continuity). One has to allow something more general than sequences. See [Eise74]
and the discussion of nets.
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Definition. (The Countability Axioms) A topological space X is said to be first count-
able if every point of X has a countable local base. It is said to be second countable
if it has a countable base.

Second countability is clearly stronger than first countability. For continuity to be
equivalent to sequential continuity one needs first countability. Second countability
is a desirable property that basically means that one can use induction for construc-
tions. It is also related to another concept.

Definition. A topological space is said to be separable if it has a countable dense
subset.

For example, R is separable because the rationals that are a countable set are
dense.

5.3.18. Theorem. A metrizable space is separable if and only if it is second 
countable.

Proof. See [Eise74].

We finish this section with a definition of one of the most important types of nice
topological spaces, namely, manifolds. Manifolds are really the center of attention 
of this book. They are basically spaces that look like Euclidean space locally, but
because we want to allow for manifolds with boundary the definition is slightly 
more complicated.

Definition. A second countable Hausdorff space M is called an n-dimensional topo-
logical manifold if every point p � M has an open neighborhood Vp that is homeo-
morphic to an open subset Up of the standard halfplane Rn

+. Let hp :Up Æ Vp be the
homeomorphism. The boundary of M, ∂M, is defined by

The points of ∂M are called boundary points. The set M–∂M is called the interior of M and
its points are called interior points. If n is unimportant one calls M simply a topological
manifold. The dimension of M is usually indicated as a superscript and one talks about
the “manifold Mn.” A manifold that has no boundary is said to be closed.

See Figure 5.6. Euclidean space Rn is the archetypical example of an n-dimen-
sional manifold without boundary. Other well-known examples are the open balls Bn

and the spheres Sn. The spheres are closed manifolds. The halfplane Rn
+ and the disk

Dn are the archetypical examples of n-dimensional manifolds with boundary. Their
boundaries are Rn-1 and the (n - 1)-sphere Sn-1, respectively. We shall see many more
examples of manifolds in coming chapters. A simple-minded way of thinking about a
closed two-dimensional manifold is as a space with the property that we can lay a
blanket around every point p of the space so that the points of the blanket match is
a one-to-one and onto manner the points of a neighborhood of p.

∂ = Œ ( ) Œ{ }- -M p M p Rph n1 1 .

5.3 Topological Spaces 297



We shall show later (Corollary 7.2.3.9) that both the dimension and boundary of
a manifold are well defined and do not depend on the neighborhoods Vp or the home-
omorphisms hp. Boundary points are clearly different from interior points. This is
easy to see in the one-dimensional case. Consider the interval I = [0,1], which is a one-
dimensional manifold with boundary. Removing a boundary point such as 0 does not
disconnect the space, but removing any interior point would. The following facts are
easily proved:

(1) Every point of a manifold without boundary has a neighborhood homeomor-
phic to Rn.

(2) The boundary of an n-dimensional manifold is an (n - 1)-dimensional mani-
fold without boundary.

Because there are other types of manifolds (Chapter 8 will introduce diffentiable
manifolds and there are also piecewise linear or PL manifolds) we shall often drop the
adjective “topological” and simply refer to a “manifold.” The context will always deter-
mine the type if it is important.

Some definitions of topological manifolds do not require second countability. 
The reason for requiring a manifold to be second countable in this book is a 
practical one. Without it we would lose some properties of manifolds, such as 
metrizability, and many important results in differential topology described in Chapter
8, such as the Whitney imbedding theorem and the Sard theorem, would no longer
hold.

Definition. A (topological) surface is a two-dimensional topological manifold. A
(topological) curve is a one-dimensional topological manifold.

5.4 Constructing New Topological Spaces

This section describes some standard construction with which one can define new
topological spaces from old ones. The first of these is the important concept of quo-
tient spaces.
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Definition. Let X be a topological space and let ~ be an equivalence relation on X.
The map

which sends an element p into its equivalence class [p] with respect to ~ is called the
quotient map.

5.4.1. Lemma. Let ~ be an equivalence relation on a topological space X and let 
p: X Æ X/~ be the quotient map. Define a collection S of subsets of X/~ by

(5.9)

Then S is a topology on X/~.

Proof. The proof is straightforward. See [Eise74].

Definition. Let X be a topological space and let ~ be an equivalence relation on X.
The topology S on X/~ defined by equation (5.9), is called the quotient topology on X/~
and the topological space (X/~,S) is called a quotient space of X.

5.4.2. Lemma. Let X be a topological space and let ~ be an equivalence relation on
X. The quotient map p :X Æ X/~ is a continuous map with respect to the quotient
topology on X/~.

Proof. This follows easily from the definition.

5.4.3. Example. The Moebius strip can be thought of as the quotient space [0,1] ¥
[0,1]/~, where we use the equivalence relation generated by the relation (0,t) ~ (1,1-t), t
� [0,1], between the points of the left and right side of the rectangle. See Figure 5.7.

The next theorem lists some basic properties of quotient spaces.

5.4.4. Theorem. Let ~ be an equivalence relation on a topological space X and let
p :X Æ X/~ be the quotient map. Let Y be a topological space.

(1) A map g :X/~ Æ Y is continuous if and only if the composite f = g p :X Æ Y
is continuous.

(2) If f :X Æ Y is a continuous map that is constant on the equivalence classes of
~, then there is a unique continuous map f* :X/~ Æ Y so that f = f p. The map
f* is called the induced (by f ) map on the quotient space.

o

o

S p is open in= Õ ( ){ }-B X B X/~  .1

p: X X ~

p p

Æ
Æ [ ]
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Proof. The proofs are straightforward. See [Eise74]. A good way to remember this
theorem is in terms of commutative diagrams. Part (1) says that the map g in the
diagram
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that is constant on equivalence classes induces a unique f*.

It is convenient to introduce some notation for a common special case of a quo-
tient space.

Definition. Let A be a nonempty subspace of a topological space X. Let ~A be the
equivalence relation

The quotient space X/~A will be denoted by X/A and is usually referred to as the space
obtained from X by collapsing A to a point.

The space X/A is the space we get by identifying all the points of A to a single
point A, the equivalence class of some a � A.

5.4.5. Theorem. Let A be a nonempty subspace of a topological space X. If A is open
or closed, then the quotient map sends X - A homeomorphically onto (X/A) - A.

Proof. Easy.

Let X and Y be topological spaces. Let B be a subspace of Y and let f :B Æ X
be a continuous map. We would like to define the space that, intuitively, is obtained
from the disjoint union Z of X and Y where we have “attached” or “glued” each point
b in B to f(b) in X. See Figure 5.8. The identification of b with f(b) defines an equiv-

~ , .A A A p p p X= ¥ » ( ) Œ{ }

is a continuous map if and only it lifts to a continuous map f. Part (2) says that any
continuous map f in the diagram



alence relation on Z and the space we have in mind is just the associated quotient
space. To make this precise we need to deal with some technical details. We have to
define a disjoint union operation that will handle the case where X and Y are not 
disjoint.

Definition. The disjoint union of two topological spaces X and Y, denoted by X + Y,
is defined to be the topological space consisting of the set

and the topology whose open sets are

The spaces X and Y will always be considered as subspaces of X + Y under the natural
identifications of x � X with (x,0) and y � Y with (y,1).

It is easy to check that the open sets of X + Y do form a topology, so that we do
have a topological space and subspaces X and Y.

Returning to our map f :B Æ X, we can use it to define an equivalence relation ~f
on X + Y.

Definition. Let B � Y and let f :B Æ X be a continuous map. Let ~f be the equiva-
lence relation on X + Y induced by the pairs (b,f(b)), b � B. Define

We say that X »f Y is obtained from X by attaching Y by f and call the map f the
attaching map.

5.4.6. Theorem. Let p :X + Y Æ X »f Y be the quotient map.

(1) p(Y - B) is open in X »f Y and p maps Y - B homeomorphically onto p(Y - B).
(2) p(X) is closed in X »f Y and p maps X homeomorphically onto p(X).

Proof. See [Eise74].

5.4.7. Example. Let D be the unit disk D2, H the rectangle [-1,1] ¥ [-1,1], and B
the left and right ends -1 ¥ [-1,1] » 1 ¥ [-1,1] of H. Define f :B Æ D by

Then D »f H is topologically (homeomorphic to) a disk with a handle. See Figure 5.9.

Sometimes one has a collection of subsets of a set that already have a topology
and one wants to extend these topologies to a topology of the whole set. We shall see
examples of this in the next chapter.

f t t t and f t t t-( ) = -Ê
Ë

ˆ
¯ ( ) = Ê

Ë
ˆ
¯1 1, .cos

6
, sin

6
, cos

6
, sin

6
p p p p

X Y X Y» = +( )f f~ .

U V U X V Y¥ » ¥{ }0 1 is open in and is open in .

X Y X 0 Y 1+ = ¥ » ¥
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Definition. Let X be a set and let Ai be subsets of X that already possess a topology
(we allow either a finite or infinite set of indices i). Assume

(1) the topologies of Ai and Aj agree on Ai « Aj, and either
(2) Ai « Aj is always open in both Ai and Aj,

or

(2¢) Ai « Aj is always closed in Ai and Aj.

The weak topology T on X determined by the topologies of the spaces Ai is defined by

5.4.8. Theorem. Using the notation in the definition of the weak topology, the fol-
lowing holds:

(1) The weak topology is a topology for X.
(2) A subset A of X is closed in the weak topology if and only if A « Ai is closed

for all i.
(3) The subsets Ai will themselves be open subsets of X in the weak topology if

condition (2) in the definition held and closed subsets if (2¢) held.

Proof. Easy.

Next, one often wants to take the product of topological spaces. Since we want to
end up with a topological space, we need to define a product topology. We shall build
on what we know for metric spaces.

5.4.9. Theorem. If Xi, 1 £ i £ k, are topological spaces, then the collection of subsets

form the base of a unique topology on X1 ¥ X2 ¥ . . . ¥ Xk.

Proof. One simply has to show that these subsets satisfy conditions (1) and (2) in
Theorem 5.3.4. See [Eise74].

Definition. If Xi, 1 £ i £ k are topological spaces, then the topology on the product
set X = X1 ¥ X2 ¥ . . . ¥ Xk described in Theorem 5.4.9 is called the product topology
on X.

U U U U Xi k i iis open in¥ ¥ ¥{ }2 . . .

T is open in for all ii i= Õ «{ }U X U A A .
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Unless stated otherwise, whenever one takes a product of topological spaces it will
always be assumed that the product is given the product topology.

Several other constructions that create new spaces from old are handy.

Definition. A pointed space is a pair (X,x0), where X is a nonempty topological space
and x0 � X. The point x0 is called the base point of the pointed space. The expression
“the pointed space X with base point x0” will mean the pointed space (X,x0).

Definition. Let X and Y be pointed spaces with base points x0 and y0, respectively.
Let ~ be the equivalence relation on X + Y induced by the pair (x0,y0). The one-point
union or wedge of X and Y, denoted by X ⁄ Y, is defined to be the pointed space that
consists of the quotient space

and the point to which x0 and y0 get identified.

The space X ⁄ Y is just the disjoint union of X and Y where we identify x0 and
y0. See Figure 5.10.

Definition. Let X be a topological space. Define the cone on X, denoted by CX, by

By identifying X with X ¥ 0 in CX, one always considers X as contained in CX.

See Figure 5.11. Exercise 5.4.2 gives a more concrete description of CX.

Definition. Let X be a topological space. Define the suspension of X, denoted by SX,
to be the quotient space

where ~ is the equivalence relation induced by the relations (x,-1) ~ (x¢,-1) and (x,1)
~ (x¢,1) for all x, x¢ � X. By identifying X with X ¥ 0 in SX, one always considers X
as contained in SX.

Again see Figure 5.11. Exercise 5.4.4 gives a more concrete description of SX.

SX X= ¥ -[ ]11, /~,

CX X X= ¥ [ ] ¥0 1 1, .

X Y X Y⁄ = +( ) ~
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5.5 Compactness

We already pointed out the importance of the compactness property for subsets of Rn

in Chapter 4. The generalization to topological spaces is immediate since its defini-
tion was in terms of open sets.

Definition. Let X be a set and let A � X. A collection W of subsets of X is said to be
a cover of A if every element of A belongs to some subset in W, that is,

If X is a topological space, then we shall call W an open, closed, . . . cover of A if every
set in W is open, closed, . . . , in X, respectively. We call W a finite cover if it is a finite
set. A subset of W that covers A is called a subcover of W.

5.5.1. Example. The collection

is a closed cover of R and

is an open cover of (0,1).

Definition. A topological space X is said to be compact if every open cover of X con-
tains a finite subcover of X.

Let A be a subspace of a topological space X. It is easy to show that A, thought
of as a topological space on its own without reference to X, is compact if and only if

1
1

1
2 3

n n
n, , , . . .-Ê

Ë
ˆ
¯ =ÏÌÓ

¸̋
˛

n n n, +[ ] Œ{ }1 Z
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every open cover of A in X contains a finite subcover of A (Exercise 5.5.1). Therefore,
when it comes to the compactness of a space, we do not have to distinguish between
whether we think of a space by itself or as a subspace of another space.

5.5.2. Theorem. A closed subset A of a compact space X is compact.

Proof. Let {Ui} be an open cover of A. Since A is closed, X - A is open and so 
{Ui} » {X - A} is an open cover of X. Since X is compact, there is a finite subcover
and removing the set X - A, if it is in this subcover, will give us a finite subset of {Ui}
that covers A.

5.5.3. Theorem. A compact subset A of a Hausdorff space X is closed.

Proof. To show that A is closed, we need to show that X - A is open. The proof pro-
ceeds just like the proof for the case X = Rn in Theorem 4.2.4. Let x � X - A. Now X
is a Hausdorff space. Therefore, for every a � A there is an open neighborhood Ua
and Va of a and x, respectively, such that Ua « Va = f. The collection {Va} is an open
cover of A. Since A is compact, there is a finite subcover {Vai}1£i£k. It follows that

is an open neighborhood of x contained in X - A.

An extremely important theorem with many consequences is the following.

5.5.4. Theorem. (The Tychonoff Product Theorem) The product X1 ¥ X2 ¥ . . . ¥ Xk
of nonempty topological spaces Xi is compact if and only if each Xi is compact.

Proof. See [Eise74].

The Tychonoff product theorem is also true for infinite products.
The next theorem characterizes compact sets in Euclidean space and was already

stated and partially proved in Chapter 4 (Theorem 4.2.4). The proof relies on the 
following:

5.5.5. Lemma. (The Heine-Borel Theorem) A closed interval [a,b] in R is compact.

Proof. Exercise 5.5.2. See [Eise74].

5.5.6. Theorem. A subset A of Rn is compact if and only if it is closed and bounded.

Proof. We already proved that compact implies closed and bounded in Theorem
4.2.4. We sketch a proof of the converse here.

Let A be a closed and bounded subset of Rn. First, consider the case n = 1. Now a
closed and bounded subset A in R is a closed subset of some interval [a,b]. But [a,b] is
compact by the Heine-Borel theorem, therefore, Theorem 5.5.2 implies that A is

U Ua=
=

i

i

k

1
I
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compact. Next, assume that n > 1. Again, since A is closed and bounded, A is a closed
subset of a product of intervals X = [a1,b1] ¥ [a2,b2] ¥ . . . ¥ [an,bn]. Each interval [ai,bi]
is compact by the Heine-Borel theorem and so X is compact by the Tychonoff product
theorem. Theorem 5.5.2 in turn implies that A is compact and Theorem 5.5.6 is proved.

The special case of Theorem 5.5.6 where n is 1 is usually referred to as the Heine-
Borel-Lebesgue theorem.

Note that a closed and bounded subset of an arbitrary metric space need not be
compact. For example, by Theorem 5.2.5 we can give Rn a bounded metric that
induces the standard topology, but Rn is obviously not compact. It follows that Euclid-
ean space Rn is special when it comes to Theorem 5.5.6. Although being closed and
bounded is equivalent to being compact for subspaces of Rn, the importance of the
latter concept is that it clearly shows that we are dealing with an intrinsic property
of a space that has nothing to do with any particular imbedding in Rn.

There is a generalization of Theorem 5.5.6 to metric spaces. It asserts that a subset
of a complete metric space (X,d) is compact if and only if it is d-closed and “d-totally
bounded.” See [Eise74]. We also have the following:

5.5.7. Theorem. A metrizable space X is compact if and only if each infinite subset
of X has a limit point in X. A compact metrizable space is complete.

Proof. See [Eise74].

From Theorems 5.5.2 and 5.5.3 we get the classical Bolzano-Weierstrass theorem:
Every bounded infinite set of real numbers has a limit point in R.

5.5.8. Theorem. Let f :X Æ Y be a continuous map between topological spaces. If
X is compact, then so is f(X).

Proof. Every open cover of f(X) pulls back to an open cover of X, which has a finite
subcover so that the corresponding open sets in the cover for f(X) provide a finite sub-
cover of f(X). See the proof of Theorem 4.2.11.

We shall see that Theorem 5.5.8 has many applications because, for example, lots
of well-known spaces are quotient spaces of compact spaces. Here are three corol-
laries.

5.5.9. Corollary. Compactness is a topological property, that is, if X is homeomor-
phic to Y and if X is compact, then so is Y.

Proof. Clear.

5.5.10. Corollary. Let f :X Æ Y be a continuous map between topological spaces.
Assume that X is compact and Y is Hausdorff. If f is one-to-one and onto, then f is a
homeomorphism.

Proof. It clearly suffices to show that f is a closed map. Let A be a closed subset of
X. Theorem 5.5.2 implies that A is compact and therefore f(A) is compact by Theorem
5.5.8. Finally, Theorem 5.5.3 implies that f(A) is closed.
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Corollary 5.5.10 is useful because it says that when spaces are compact then it is
easier to show that maps are homeomorphisms. Normally, one would have to show
that their inverse is continuous, but we do not need to prove that here.

5.5.11. Corollary. Let X be a nonempty compact space and assume that f :X Æ R
is a continuous map. Then f attains both its maximum and minimum value on X, that
is, there are x1 and x2 in X so that

for all x � X.

Proof. By Theorem 5.5.8, f(X) is a compact subset of R and hence is closed and
bounded by Theorem 5.5.6. Therefore, sup f(X) and inf f(X) belong to f(X), proving
the existence of x1 and x2.

As another example of why compactness is nice, recall Example 4.2.7, which
showed that a continuous function need not be uniformly continuous. The next
theorem states that if the domain of the function is compact then this does not
happen. The proof of the theorem uses the lemma below that we state separately
because it has other applications.

5.5.12. Lemma. (Lebesgue Covering Lemma) Let (X,d) be a compact metric space.
Given any open cover W of X, there is a d > 0, so that if p, q � X and d(p,q) < d, then
there is a set U in W that contains both p and q. (The number d is called a Lebesgue
number for W.)

Proof. See [Eise74].

5.5.13. Theorem. Let f :X Æ Y be a continuous map between metric spaces. If X is
compact, then f is uniformly continuous.

Proof. See [Eise74].

We finish this section with the definition for one well-known construction for
“compactifying” certain noncompact spaces.

Definition. A Hausdorff space X is said to be locally compact if every point has a
compact neighborhood.

Clearly, every compact space is locally compact. Rn is locally compact but not
compact.

5.5.14. Theorem. Let X be a noncompact, locally compact topological space with
topology T. Let

X X• = » •{ } ,

f f fx x x1 2( ) £ ( ) £ ( )
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where we assume that the point � does not belong X. Then the set

is a topology for X� that makes X� into a compact topological space containing X as
a dense subspace. The space X� is unique in the sense that if Y is any compact Haus-
dorff space that has a point p, so that Y - {p} is homeomorphic to X, then this home-
omorphism extends to a homeomorphism from Y onto X�, which sends p to �.

Proof. See [Eise74].

Definition. The topological space (X�, T�) is called the one-point compactification of
X and the point � is called the point at infinity in X�.

The obvious example of a one-point compactification is Sn, which is the one-point
compactification of Rn.

5.6 Connectedness

Connectedness can be defined in a number of ways. Except for the fact that we are
dealing with topological spaces, some of the definitions here will be the same as those
in Section 4.2, but we shall begin with the pure topological notion.

Definition. A topological space X is said to be connected if X cannot be written in
the form A » B, where A and B are two nonempty disjoint open subsets of X.

5.6.1. Theorem. Let f :X Æ Y be a continuous map between topological spaces X
and Y. If X is connected, then so is f(X).

Proof. See [Eise74].

5.6.2. Corollary. Connectedness is a topological property.

5.6.3. Theorem. Consider a collection of nonempty spaces Xi, 1 £ i £ k. All the Xi
are connected if and only if the product X1 ¥ X2 ¥ . . . ¥ Xk is connected.

Proof. See [Eise74].

5.6.4. Theorem. Rn is connected.

Proof. One first proves that R is connected and then uses Theorem 5.6.3. See
[Eise74].

The next theorem uses the connectedness of R and generalizes the usual inter-
mediate value theorem learned in calculus.

T T is a compact subset of• •= » -{ }X K K X
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5.6.5. Theorem. (The Intermediate Value Theorem) Let X be a topological space
and f :X Æ R a continuous map. Assume that f(x1) < f(x2) for some x1, x2 � X. If c is
a real number so that f(x1) < c < f(x2), then there is an x � X with f(x) = c.

Proof. See [Eise74].

Definition. A connected subset of a topological space X that is not properly con-
tained in any connected subset of X is called a component of X.

A more intuitive way to express the notion of component is to say that a compo-
nent is a maximal connected subset.

A simpler notion of connected is:

Definition. Let X be a topological space. We say that X is path-connected if for any
two points p, q � X, there is a continuous map f : [0,1] Æ X with f(0) = p and f(1) =
q. The map f is called a path from p to q. A maximal path-connected subset of a top-
ological space X is called a path-component of X.

5.6.6. Theorem. Let f :X Æ Y be a continuous map from a path-connected space
onto a space Y. Then Y is path-connected.

Proof. See [Eise74].

5.6.7. Theorem. A path-connected space is connected.

Proof. See [Eise74].

Connected does not imply path-connected in general, so that the notion of path-
connected is stronger. For “nice” spaces however these concepts are identical.

5.6.8. Theorem. A topological manifold is connected if and only if it is path-
connected.

Proof. See [Eise74].

5.7 Homotopy

We have talked about how topology studies properties of spaces invariant under 
deformations (rubber sheet geometry). This section studies deformations of 
mappings.

Definition. Let f, g :X Æ Y be continuous maps. A homotopy between f and g is a
continuous map

h: X Y¥ [ ] Æ0 1,
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such that h(x,0) = f(x) and h(x,1) = g(x) for all x � X. In that case, we shall also say
that f is homotopic to g and write f � g.

If we define ft :X Æ Y by ft(x) = h(x,t), then we can see that the existence of h is
equivalent with a one-parameter family of maps connecting f and g and we can think
of h as deforming f into g. See Figure 5.12(a).

5.7.1. Example. Consider the maps f, g :D2 Æ D2 given by f(p) = 0 and g(p) = p.
The map h :D2 ¥ [0,1] Æ D2 defined by h(p,t) = tp is a homotopy between them. In
other words, the identity map of D2 is homotopic to a constant map.

5.7.2. Theorem. The homotopy relation � is an equivalence relation on the con-
tinuous maps from one topological space to another.

Proof. We must show that the relation is reflexive, symmetric, and transitive.

Reflexivity: If f :X Æ Y is a continuous map, then h :X ¥ [0,1] Æ Y defined by h(x,t)
= f(x) is a homotopy between f and f.

Symmetry: Let f, g :X Æ Y be continuous maps and assume that h :X ¥ [0,1] Æ Y is
a homotopy between f and g. Define k :X ¥ [0,1] Æ Y by k(x,t) = h(x,1-t).
Then k is a homotopy between g and f.

Transitivity: Let f, g, h :X Æ Y be continuous maps and assume that a, b :X ¥ [0,1]
Æ Y are homotopies between f and g and g and h, respectively. Define
g :X ¥ [0,1] Æ Y by

Then g is a homotopy between f and h.

The theorem is proved.

g a
b

x t x t t

x t t

, , , ,

, , , .

( ) = ( ) Œ[ ]
= -( ) Œ[ ]

2 0 1 2

2 1 1 2 1
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Definition. If f :X Æ Y is a continuous map, then the homotopy class of f, denoted
by [f], is the equivalence class of f with respect to �. The set of homotopy classes of
maps from X to Y will be denoted by [X,Y].

If X consists of a single point p, then a homotopy between two maps f, g : {p} Æ
Y is just a path in Y from the point y0 = f(p) to the point y1 = g(p). See Figure 5.12(b).
In particular, it is easy to see that the set of homotopy classes [{p},Y] is in one-to-one
correspondence with the path-components of Y.

Definition. A continuous map f :X Æ Y is called a homotopy equivalence if there is
a continuous map g :Y Æ X with g f � 1X and f g � 1Y. In this case we shall write 
X � Y and say that X and Y have the same homotopy type.

5.7.3. Theorem. Homotopy equivalence is an equivalence relation on topological
spaces.

Proof. This is straightforward.

Since the general homeomorphism problem is much too difficult except in certain
very special cases, a weaker classification is based on homotopy equivalence.

Definition. A space is said to be contractible if it has the homotopy type of a single
point.

5.7.4. Example. The unit disk Dn is contractible. To see this we show that it has the
same homotopy type as the point 0. Define maps f :Dn Æ 0 and g :0 Æ Dn by f(p) = 0
and g(0) = 0. Clearly, f g = 10. Define h :Dn ¥ [0,1] Æ Dn by h(p,t) = tp. Then h is a
homotopy between g f and the identity map on Dn, and we are done. Another way to
state the result is to say that both f and g are homotopy equivalences.

Definition. A subspace A of a space X is called a retract of X if there exists a con-
tinuous map r :X Æ A with r(a) = a for all a in A. The map r is called a retraction of
X onto A.

If x0 is any point in a space X, the constant map r(x) = x0 shows that any point
of a space is a retract of the space. A less trivial example is

5.7.5. Example. The unit circle in the plane is a retract of the cylinder

(5.10)

because we have the retraction r(x,y,z) = (x,y,0).

Definition. Let A be a subspace of a space X. A deformation retraction of X onto A
is a continuous map h :X ¥ I Æ X satisfying

and

h h allx x x A x X, , , , ,0 1( ) = ( ) Œ Œ

X = ( ) + = Œ[ ]{ }x y z X Y and z, , ,2 2 1 0 1

o
o

oo

5.7 Homotopy 311



In this case A is called a deformation retract of X.

The argument in Example 5.7.4 also shows that the map f :Dn Æ 0 defined by 
f(p) = 0 is a deformation retraction of Dn onto 0.

5.7.6. Example. The unit circle is a deformation retract of the cylinder X defined
by equation (5.10). To see this simply define h :X ¥ I Æ X by h((x,y,z),t) = (x,y,(1-t)z).

5.7.7. Theorem. Let A be a subspace of a space X. If A is a deformation retract of
X, then the inclusion map i :A Æ X is a homotopy equivalence. In particular, A and
X have the same homotopy type.

Proof. Let h :X ¥ I Æ X be a deformation retraction of X onto A. Define f :X Æ A by f(x)
= h(x,1). Since f i = 1A and h is homotopy between i f and 1X, we are done.

Intuitively speaking, a subset A is a deformation retract of a space X if we can
shrink X down to A without “cutting” anything. We shall see later (Corollary 7.2.3.3
and Theorem 7.2.3.4) that a circle does not have the same homotopy type as a point.
Therefore, no point of the circle is a deformation retract of the circle. The only way
to “shrink” the circle to a point would be to cut it first.

Often it is convenient to talk about “pointed” homotopies, or more generally 
“relative homotopies.”

Definition. The notation f : (X,A) Æ (Y,B) will mean that f is a map from X to Y and
f(A) � B.

Definition. Let f, g : (X,A) Æ (Y,B) be continuous maps. A homotopy between f and
g relative A is a continuous map

such that h(x,0) = f(x), h(x,1) = g(x), and h(a,t) � B for all x � X, a � A, and 
t � [0,1]. In that case, we shall also say that f is homotopic to g relative A and write 
f �A g.

5.7.8. Theorem. The homotopy relation �A is an equivalence relation on the set of
continuous maps f : (X,A) Æ (Y,B).

Proof. The proof is similar to the proof of Theorem 5.7.2. We just have to be careful
that the homotopies keep sending A to B.

Definition. The set of homotopy classes of maps f : (X,A) Æ (Y,B) with respect to
the equivalence relation �A will be denoted by [(X,A),(Y,B)].

A natural question to ask at this point is how many homotopy classes of maps
there are between spaces in general and what this number measures. We are not ready

h:X Y¥ [ ] Æ0 1,

oo

h alla a a A, , .1( ) = Œ
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to answer such a question yet and will have to wait until Chapter 7, but the reader
may appreciate one glimpse into the future. Given a map

the degree of f is, intuitively, the number of times that f winds the circle around itself.
(In Section 7.5.1 we shall give another definition of the degree of f.) Define

by fn(cosq,sinq) = (cosnq,sinnq). Then fn has degree n. It turns out that all maps of
the circle to itself are homotopic to one of these maps and two maps are homotopic
only if they have the same degree, so that there is a bijection between the homotopy
classes of maps of the circle to itself and the integers.

5.8 Constructing Continuous Functions

There are many situations where one wants to define continuous functions on a 
topological space satisfying certain properties. This brief section describes two very
fundamental theorems that deal with the existence of certain functions, which in turn
can be used to construct many other functions. We shall give one application having
to do with the existence of partitions of unity at the end of the section.

For a topological space to have the continuous functions we want it needs 
to satisfy a special property. It is worth isolating this property and giving it a 
name.

Definition. A topological space X is said to be normal if, given two disjoint 
closed sets A and B in X, there exist disjoint open sets containing A and B,
respectively.

The condition that a space be normal is somewhat technical, like being Hausdorff,
but fortunately the spaces of interest to us satisfy this property.

5.8.1. Theorem.

(1) Any metrizable space is normal.
(2) Any compact Hausdorff space is normal.

Proof. See [Eise74].

5.8.2. Theorem. (The Urysohn Lemma) Let X be a normal space and assume that
A and B are two closed subsets of X. Then there exists a continuous function f :X Æ
[0,1] such that f takes the value 0 on A and 1 on B.

Proof. See [Jäni84].

fn :S S1 1Æ

f :S S1 1Æ ,

5.8 Constructing Continuous Functions 313



5.8.3. Theorem. (Tietze Extension Lemma) Let X be a normal space. Then any 
continuous function f :A Æ [a,b] or f :A Æ R defined on a closed subset A of X can
be extended to a continuous function F :X Æ [a,b] or F :X Æ R, respectively.

Proof. See [Jäni84].

The next concept enables one to localize problems and will be used in later 
chapters.

Definition. A partition of unity on a topological space X is a collection F of contin-
uous real-valued functions satisfying the following:

(1) For all j � F and x � X, 0 £ j(x) £ 1.
(2) Every point in X has a neighborhood on which all but a finite number of func-

tions in F vanish.
(3) For every x in X

(Note that by condition (2) this is a finite sum for each x.)

If x is a cover of X, we say that the partition of unity F is subordinate to x if each
function in F vanishes outside some set in x.

5.8.4. Example. Define functions

by

and
bn(x) = b(x - n).

It is easy to check that the collection of functions bn(x) is a partition of unity on R.
See Figure 5.13. This partition of unity is subordinate to the open cover

b x x for x

x for x

elsewhere

( ) = + Œ -[ ]
= - + Œ[ ]
=
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of R.

It would be good to know what condition on a topological space guarantees the
existence of partitions of unity.

Definition. A cover of a space is locally finite if every point in the space has a neigh-
borhood that meets only finitely many elements of the cover. A Hausdorff space is said
to be paracompact if every open cover admits a locally finite subcover.

5.8.5. Lemma. Every paracompact space is normal.

Proof. See [Jäni84].

5.8.6. Theorem. A Hausdorff space is paracompact if and only if every open cover
admits a partition of unity subordinate to it.

Proof. The only hard part is showing that paracompact implies the existence of the
stated partitions of unity. Because of Lemma 5.8.5 one can use Urysohn’s lemma to
construct the desired partition of unity. See [Jäni84].

The next obvious question is: which spaces are paracompact?

5.8.7. Theorem. The following types of topological spaces are paracompact:

(1) Compact Hausdorff spaces
(2) Topological manifolds
(3) Metrizable spaces

Proof. Part (1) is trivial. Part (2) is also not hard. For (3) see [Schu68].

5.9 The Topology of Pn

Projective space Pn is not only one of the really important spaces in mathematics but
it also serves as an excellent example of a nontrivial topological space. This section
looks at its purely topological properties. We shall return to it later in Chapter 8 to
look at its manifold properties and again in Chapter 10 where its algebraic properties
come to the fore.

Recall the (set theoretic) definition of Pn given in Section 3.4, namely,

(5.11)

where ~ is the equivalence relation on Rn+1 - 0 defined by p ~ cp, for c π 0. In Chapter
3 we did not say anything about its topology, but actually, when we talk about Pn as
a topological space, we always assume that it has been given the quotient space top-
ology that is defined by equation (5.11). What does this space really “look” like top-

P R 0n n= -( )+1 ~ ,

n n n- +( ) Œ{ }1 1, Z

5.9 The Topology of Pn 315



ologically? There are quite a few different definitions that all lead to the same space
(up to homeomorphism). Each gives a little different insight into its structure.

A second definition of Pn: Pn is the set of lines through the origin in Rn+1.

Justification: Except for the fact that the origin is missing, the equivalence class
[x1,x2, . . . ,xn+1] is just such a line through the origin, so that there is a natural one-
to-one correspondence of points. (The topologies are assumed to match under this
correspondence.)

A third definition of Pn: Pn is the unit sphere Sn with antipodal points identified,
that is,

where p ~ -p.

Justification: The relation ~ which relates points of Sn to their antipodal points is
an equivalence relation, and the map

where D = |(x1,x2, . . . ,xn+1)|, is clearly a homeomorphism.

A fourth definition of Pn: Pn is the unit disk Dn in the plane with antipodal points
on its boundary identified, that is,

where ~ is induced from the relations p ~ -p for p � Sn-1.

Justification: See Figure 5.14 where the labels and arrows are trying to indicate the
identifications. The boundary of the upper hemisphere Sn

+ is just Sn-1. It is easy to see

P Dn n= ~ ,

x x x
x
D

x
D

x
Dn
n

1 2 1
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+[ ] Æ È
ÎÍ

˘
˚̇
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that Pn can be thought of as Sn
+/~, where ~ is a restricted version of the equivalence

relation in the third definition above, namely, p ~ -p for p � Sn-1. Our characteriza-
tion now follows from the observation that the only identifications that are taking
place are on the boundary of Sn

+ and that the interior of Sn
+ projects in a one-to-one

fashion onto the interior of the disk Dn.

In the case of the projective plane, there is another well-known identification.

A fifth definition of P2: The projective plane is the union of the Moebius strip and
a disk where we identify their boundaries, which are just circles.

Justification: Consider the shaded region in Figure 5.15, which is a “collar” of the
boundary of the unit disk. A little thought should convince the reader that under 
the identification described in the fourth definition, this shaded region is just the
Moebius strip.

We now have four different ways of looking at the topological space Pn (five,
in the case of the projective plane). In each case we used a quotient topology of 
Euclidean space. Alternatively, one can define this topology by defining a metric on
Pn.

Definition. Let p = [x] and q = [y] be points of Pn, where x, y � Rn+1. Define the 
distance between p and q, denoted dist (p,q), by

It is easy to see that dist(p,q) is well defined and does not depend on the repre-
sentatives x and y that are chosen for p and q, respectively. It is just the angle between
the two “lines” p and q. The function dist(p,q) is in fact a metric on Pn and makes Pn

into a metric space.

5.9.1. Example. Let L be the line in R2 defined by -x + 2y + 1 = 0. To find the 
points of P2 that are “near” the ideal point L� associated to the family of lines 
parallel to L.

Solution. Let p = [X,Y,Z] be any point of P2. Since L� = [-2,-1,0], a simple com-
putation using the definition of distance shows that the distance d between the two
points satisfies

dist d where d and dp q
x y
x y

, , .( ) = =
∑

£ £cos 0 2p
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If p corresponds to a real point (x,y), that is, p = [x,y,1], the only way that d will go
to zero is if x and y both get arbitrarily large and (x,y) is near the line y - 2x = 0. This
follows from the Cauchy-Schwarz inequality. Similarly, the only ideal points close to
L� are points p = [X,Y,0] with X close to -2 and Y close to -1.

5.9.2. Theorem. N-dimensional projective space Pn is a compact, connected,
metrizable topological manifold.

Proof. The compactness and connectedness follows from Lemma 5.3.18 and Theo-
rems 5.4.6 and 5.5.2 using the third and fourth definition of Pn. We postpone showing
that Pn is a manifold to Section 8.13, where we will in fact show that it is a differen-
tiable manifold.

Finally, we note that any hyperplane in Pn is homeomorphic to Pn-1. In particu-
lar, the subspace of ideal points is homeomorphic to Pn-1.

5.10 EXERCISES

Section 5.2

5.2.1. Prove that every metric on a finite set is the discrete metric.

5.2.2. Prove that if a vector space V has an inner product <,>, then the function

defines a metric on V.

5.2.3. Prove that equation (5.1) defines an inner product on C0([0,1]).

5.2.4. Prove that the function d1 defined by equation (5.3) defines a metric on C0([0,1]).

5.2.5. Prove that the function d� defined by equation (5.4) defines a metric on C0([0,1]).

5.2.6. Show that the metrics d1 and d� on C0([0,1]) defined by equations (5.3) and (5.4), respec-
tively, are not equivalent metrics.

5.2.7. Let (X,d) be a metric space. Prove that the function d* defined by equation (5.5) is a
bounded metric on X.

5.2.8. Consider the sequence of functions fn(x) = xn on [0,1]. Show that this sequence of func-
tions converges in a pointwise fashion but not uniformly. Note also that although each
function is continuous, the limit function g(x) is not. Describe g(x).

5.2.9. Show that the rational numbers are not complete by giving an example of a Cauchy
sequence of rational numbers that does not converge to a rational number.

5.2.10. Sometimes one does not quite have a metric on a space.

d u v uv v u v u, ,( ) = = < - - >

cos d
X Y

X Y Z
=

- -
( )
2

5 , ,
.
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Definition. A pseudometric on a set X is a function

satisfying conditions (1), (3), and (4) in the definition of a metric and the following
weakened form of condition (2):

(2¢) d(p,p) = 0 for all p � X.

(a) Show that the relation ~ on X defined by

is an equivalence relation on X.
(b) Let X* denote the set of equivalence classes of X with respect to the relation ~ in

(a). Define

by

Show that d* is a well-defined metric on X*.

Section 5.3

5.3.1. Prove that the Euclidean, taxicab, and max metric on Rn induce the same topology.

5.3.2. Prove equations (5.6) and (5.7).

5.3.3. Define a homeomorphism between the open interval (0,1) and R.

Section 5.4

5.4.1. Prove that if the maps fi :Xi Æ Yi are continuous, then so is the map

5.4.2. We can give a more concrete description of the cone on a subspace of Rn. Let X � Rn.
Choose v � Rn+1 - Rn. Prove that the cone CX on X is homeomorphic to the space

5.4.3. Prove that Dn ª CSn-1.

5.4.4. We can give a more concrete description of the suspension of a subspace of Rn. Let 
X � Rn. Choose v � Rn+1 - Rn and w � Rn+2 - Rn+1. Prove that the suspension
SX of X is homeomorphic to the space

5.4.5. Prove that Sn ª SSn-1.

t t t and orx u x X u v w+ -( ) Œ Œ[ ] ={ }1 0 1, , , .

t t and tx v x X+ -( ) Œ Œ[ ]{ }1 0 1, .

f f f X X X Y Y Yn n n1 2 1 2 1 2¥ ¥ ¥ ¥ ¥ ¥ Æ ¥ ¥ ¥. . . . . . . . . .:

d d* , , .p q p q[ ] [ ]( ) = ( )

d* * *: X X R¥ Æ

p q p q~ ,if and only if d( ) = 0

d: X X R¥ Æ
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Section 5.5

5.5.1. Let A be a subspace of a topological space X. Prove that A is compact if and only if
every cover of A by open subsets of X has a finite subcover.

5.5.2. Prove that a closed interval [a,b] in R is compact.

Hint: Consider

A = {x | [0,x] can be covered by a finite number of sets from the open cover}.

Prove

(1) 0 � A
(2) c = sup A � A (Find a contradiction to the assumption that 0 < c � A by finding

a d > 0 so that [0,c-d] is compact and [d,c] is contained in an open set from the
cover.)

(3) c = 1

Section 5.6

5.6.1. Prove that a space consisting of two points is not connected.

5.6.2. Prove that every convex subset of Rn is connected.

5.6.3. Use a connectivity argument to justify the fact that a “figure eight” (the wedge S1 ⁄ S1)
is not homeomorphic to a circle.

Section 5.7

5.7.1. Show that a space X is contractible if and only if the identity map for X is homotopic
to a constant map g :X Æ X.

5.7.2. Let X � Rn. Define X to be star-shaped if there is some point x0 � X, such that for every
x � X, the segment [x0,x] is contained in X. See Figure 5.16. Prove that every star-shaped
region is contractible.

5.7.3. Prove that every cone is contractible. This extends the result from Exercise 5.7.1.

5.7.4. Prove that a retract of a contractible space is contractible.
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C H A P T E R  6

Combinatorial Topology

6.1 Introduction

Topology is a relatively new field in mathematics. In the last chapter we considered
some basic concepts from what is called point set topology. This chapter is the first
of three that will introduce us to a broader view of the subject and we begin with a
brief history. Before the mid-19th century the field as a whole consisted mainly of a
collection of isolated facts. The word “topology” itself appeared first in 1847 in the
book Vorstudien zur Topologie, by J.B. Listing, a student of Gauss. Before that, one
used the term “geometria situs” for the study of certain qualitative properties of geo-
metric figures that would be considered topological today. The term was introduced
by Leibniz, although he did not contribute much to the subject himself. In the 1800s
and early 1900s topology was usually referred to as “analysis situs.”

Probably the earliest significant topological observation concerned a relationship
between the number of faces, edges, and vertices of a simple polyhedron, which was
already known to Descartes around 1620. By a simple polyhedron we mean a convex
three-dimensional linear polyhedron, that is, a convex solid figure without holes that
is bounded by planar faces. The five standard well-known regular simple polyhedra
are shown in Figure 6.1. A regular polyhedron is a polyhedron with the property that
every face has the same number of edges and every vertex has the same number of
edges emanating from it. For now we are only interested in the boundary of a simple
polyhedron. It is easy to show that a simple polyhedron is homeomorphic to D3, so
that its boundary is homeomorphic to the 2-sphere S2.

Given a simple polyhedron, let nv, ne, and nf denote the number of its vertices,
edges, and faces, respectively. Obviously, as Figure 6.1 shows, the numbers nv, ne, and
nf themselves vary wildly from polyhedron to polyhedron, but consider the alternat-
ing sum nv - ne + nf. One can check that this sum is 2 for all the polyhedra in Figure
6.1. Is this accidental? No, we have just discovered the first combinatorial invariant.

6.1.1. Theorem (Euler’s Formula). nv - ne + nf = 2 for every simple polyhedron.



Sketch of proof. Since this theorem deals with our first example of an invariant in
topology, it is worthwhile showing how this result can be proved. The argument is
actually very simple. First, we reduce the problem to a problem in the plane. The
boundary of our simple polyhedron is a sphere and so if we remove one face, then
the rest of it can be flattened out. Figure 6.2(a) and (b) shows what we would get if
we applied this procedure to the cube or octahedron, respectively. We end up with a
bounded region X in the plane that consists of a collection of nv¢ vertices, ne¢ edges,
and nf¢ faces. Clearly,

The region X is homeomorphic to a disk D2. Our original problem is now equivalent
to showing that if a disk has been subdivided into nv¢ vertices, ne¢ edges (it actually
does not matter if the edges are curved or not), and nf¢ faces, then

(6.1)

To simplify our problem, assume that all the faces are triangular. If this is not true
already, then we can achieve this by successively adding edges between non-adjacent

n n nv e f¢ - ¢ - ¢ =1.

n n n n and n nv v e e f f¢ = ¢ = ¢ = -,  ,   .1
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tetrahedron
(a)

dodecahedron
(d)

icosahedron
(e)

cube
(b)

octahedron
(c)

Figure 6.1. The five regular 
polyhedra.

(a) (b)

Figure 6.2. Flattening the boundary
of a cube and octahedron
into the plane.



vertices of a face. See Figure 6.3. Dividing a face into two does not change the alter-
nating sum nv¢ - ne¢ + nf¢ because we gain both an edge and a face in the process.
Next, list the triangular faces in a sequence T1, T2, . . . , Tk, such that Ti meets

in either one or two edges. See Figure 6.4. Our argument now proceeds to show equa-
tion (6.1) holds for Xi by induction on i. If i = 1, then X1 is a triangle and clearly

Assume now that equation (6.1) holds for Xi-1, i ≥ 2. As Figure 6.4 shows, when we
add Ti we either increase nv¢ and nf¢ by 1 and ne¢ by 2 (Figure 6.4(a)), or we increase
ne¢ and nf¢ by 1 and leave nv¢ unchanged (Figure 6.4(b)). In any case, the sum nv¢ - ne¢
- nf¢ is still equal to 1. This finishes our sketch of the proof of Euler’s formula.

The alternating sum nv - ne + nf in Euler’s formula is called the Euler character-
istic of the boundary of the polyhedron and we have just proved that it is a topolog-
ical invariant. It is the first known result in combinatorial topology. The term
“combinatorial” is derived from the fact that one is studying invariants based on 
combinations of numbers, such as nv, ne, and nf, that are easily computed by simple
counting.

Euler’s formula is a special case of far-reaching generalizations that have many
beautiful consequences, some of which we shall see later in this chapter and in the
next two chapters. Even this simple version is enough to prove some interesting facts.

n n nv e f¢ - ¢ + ¢ = - + =3 3 1 1.

Xi j
j i

-
£ <

=1
1

TU
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Figure 6.3. Subdividing faces into
triangles.

(a) (b)

1≤j≤i 1≤j≤i

Ti

Tj Tj

Ti

Figure 6.4. Listing the triangles in a triangular decomposition of a disk.



For excellent papers on the significance and history of Euler’s theorem see [Gott96],
[GrüS94], [HilP94], and [HilP96]. As an example, we shall now give a simple proof of
the following fact that was already known to Euclid.

6.1.2. Theorem. There are no regular polyhedra other than the ones shown in
Figure 6.1.

Proof. Assume that we have a regular polyhedron for which every face has h edges
and every vertex belongs to k edges. Since every edge has two vertices and belongs to
exactly two faces, it follows that

Substituting these identities into Euler’s formula, we get

or equivalently,

(6.2)

Now h and k are always assumed to be larger than 2 for a polyhedron. On the other
hand, if both h and k were larger than 3, then equation (6.2) would imply that

which is impossible. Therefore, either h or k must equal 3. If h = 3, then

implies that 3 £ k £ 5. By symmetry, if k = 3, then 3 £ h £ 5. It follows that

These values are in fact realized by the tetrahedron, the cube, the octahedron, the
dodecahedron, and the icosahedron, respectively. See Figure 6.1 again.

Other early results in topology dealt with the following:

Map-coloring problems: The problem is to find the smallest number of colors
required to color an arbitrary map in such a way that no two adjacent countries have
the same color. For example, the countries A, B, C, and D in Figure 6.5 show that it
takes at least four colors. Countries such as E and G that meet in a single point are
not considered adjacent. The conjecture that four colors suffice to color any map was
finally proved in 1976 with the help of a computer ([AppH77]). The map-coloring
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problem has been generalized to coloring maps on other surfaces such as on a torus.
Interestingly enough, the Euler characteristic, generalized to arbitrary surfaces, shows
up in the formula for the smallest number of colors for such maps.

Graph problems: A famous example of this type of problem is the Königsberg
bridges problem. The problem was to prove that the seven bridges across the Pregel
river in the Prussian city of Königsberg could not be crossed by walking without
walking across one of the bridges more than once. See Figure 6.6(a). The correspon-
ding graph theory problem, to traverse a graph using each edge exactly one, is shown
in Figure 6.6(b).

Knot theory problems: Here one wants to classify knots that are thought of as
imbeddings of circles in R3. The unit circle in R2 is a trivial knot. An example of a
nontrivial knot is the trefoil knot shown in Figure 6.7. One seeks invariants with which
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Figure 6.5. Coloring maps.
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Figure 6.6. The Königsberg bridges

problem.

trefoil knot

Figure 6.7. A nontrivial knot.



knots, that is, imbeddings, can be distinguished. On an intuitive level, the question
is, given a pile of string, what test will determine if it is knotted and when are two
knots the same?

The classification of surfaces: The problem is to determine computable invariants
that will differentiate between different surfaces such as the sphere and the torus.

The Jordan curve theorem: A circle in the plane clearly divides the plane into two
parts – a bounded part that is the inside of the circle and an unbounded part, the
outside. A natural question to ask is whether every simple closed curve in the plane has
the same property. Is there again a well-defined inside and outside? See Figure 6.8.
Does every curve that starts at an inside point p and ends at an outside point q have to
cross the curve at some point? Surprisingly, this seemingly obvious fact is difficult to
prove for general curves. The first partial proof of this fact is due to C. Jordan in 1893.

We shall look at some aspects of combinatorial topology in this chapter. A lot of
the material is derived from [AgoM76]. The study of topological invariants is impor-
tant not just to mathematicians but also to anyone interested in geometric modeling
and computer graphics and this chapter will be a warm up for the theory that will be
developed in the next chapter. The next section will try to explain in broad terms what
topology is all about. Section 6.3 defines simplicial complexes and polyhedra. The
latter form the core of the spaces studied by topology. Section 6.4 introduces cutting
and pasting. These basic operations in topology are then applied in Section 6.5 to
solve the surface classification problem.

6.2 What Is Topology?

The topics introduced in the introduction of this chapter may seem like they are all
quite separate, but in fact they all have something in common. For example, the shape
or size of faces and sides of a simple polyhedron is unimportant in Euler’s formula,
the shape of a country is unimportant to the coloring of a map, and whether or not
a graph is planar does not depend on the length or straightness of its edges. In other
words, we were dealing with properties of objects that were invariant under certain
deformations. What are the allowable deformations under which the properties stay
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Figure 6.8. Does a simple closed curve have an
inside and outside?



invariant? They are more general than motions or isometries. Preserving distance or
curvature of curves or surfaces is not important.

As mentioned in Chapter 5, topology is sometimes called “rubber-sheet geometry”
because a topologist does not distinguish between two subsets in Rn if, upon pretend-
ing that they are made of rubber, he/she can stretch one into the other without tearing
or puncturing anything in the process. Compare the difference between the sphere and
an ellipsoid and the sphere and the torus. The difference between the former is clearly
minor. The ellipsoid is just a slightly elongated or deformed sphere. On the other hand,
note that if one cuts along any circle on a sphere, then one will divide the sphere into
two parts. The allowable deformations of spaces that we have in mind should preserve
this property. Since cutting the torus along a meridian does not separate it, a torus
cannot be a deformed sphere, and we shall consider the sphere and torus to be topo-
logically distinct. As another example, consider the sphere and the disk. An obvious dif-
ference between the two is that the latter has a boundary whereas the former does not,
but there is also a more subtle difference. Our intuition should tell us that there is no
way to flatten out a sphere without first puncturing it. To put it another way, a sphere
has a “hole” but a disk does not. A torus can also be thought of as having two “holes,”
but its “holes” are quite different from the one in a sphere.

There is one important observation that needs to be made in the context of rubber-
sheet geometry. When we talk about stretching an object, the stretching is not con-
fined to take place in a fixed Rn but could take place in any higher-dimensional Rn+k

for some k. For example, a nontrivial knot in R3 like the trefoil knot cannot be
deformed into the standard circle within R3 (otherwise it would not be knotted), but
it can be deformed into the circle by a deformation that takes place in R4. The point
is that the space in which an object happens to be imbedded is unimportant. In fact,
it would be better to forget that it is there at all, because one is only interested in the
intrinsic properties of the object itself. In analogy with the concept of Platonic forms
one should think of equivalent spaces as being merely two different representations
of some single ideal object. (Of course, what we are talking about now concerns
invariant properties of objects. We could also ask about invariants for maps. The
classification of knots has to do with invariants of imbeddings of circles in R3. This
is a whole other story that is postponed to later.)

The transformations that capture the spirit of rubber-sheet geometry are homeo-
morphisms and the basic problem that the topologist is trying to solve is determin-
ing when two spaces are homeomorphic. It would be nice if there were a simple
algorithm that would accomplish this. The search for such an algorithm takes us out
of general or point set topology and into the domain of algebraic topology and the
special case of combinatorial topology. In algebraic topology the goal is to associate to
each space certain algebraic invariants such that two spaces will be homeomorphic
if and only if they have the same invariants. A good simple example of such an invari-
ant is the Euler characteristic that was discussed earlier. However, note that our point
of view has changed. Instead of starting with a polyhedron with a given Euler char-
acteristic and discovering other polyhedra with the same Euler characteristic, we are
thinking of the Euler characteristic as a number that is the same for all homeomor-
phic spaces. Returning to the general case, if we had methods for computing our alge-
braic invariants, then studying a space would reduce to studying its invariants. In this
way topological or geometric questions would reduce to problems in algebra (hence
the term “algebraic” topology) for which a great deal of theory has already been devel-
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oped. The precise nature of the invariants we are talking about cannot be defined in
a few words. We will only be scratching the surface of this topic in this chapter and
the next. In Chapter 8 we shall describe aspects of differential topology. Differential
topology builds on algebraic topology but specializes to classification problems for
the important class of differentiable manifolds. The differential structure that these
manifolds possess enables one to use constructions that are not available for general
spaces.

6.3 Simplicial Complexes

This section defines the spaces that constitute the core domain to which combinato-
rial and algebraic topology applies.

Definition. A (finite) simplicial complex K in Rn is a finite collection of simplices in
Rn satisfying:

(1) If s Œ K, then all faces of s belong to K.
(2) If s, t Œ K, then either s « t = f or s « t is a common face of s and t.

Definition. Let K be a simplicial complex. The underlying space of K, denoted by
ÔKÔ, is defined by

The dimension of K, denoted by dim K , is defined to be -1 if K is empty and the
maximum of the dimensions of the simplices of K, otherwise.

Figure 6.9 shows some examples of simplicial complexes. Note that a simplicial
complex is a set of simplices and hence not a subset of Euclidean space. Its under-
lying space is, however. In practice one is often sloppy with the terminology. In refer-
ring to the space in Figure 6.9(c), a person might very well speak of “that simplicial
complex K,” but as long as the simplices are clearly indicated, there should be no con-
fusion. In the future we may sometimes abbreviate the term “simplicial complex” to
“complex.”

Condition (1) in the definition of a simplicial complex is a technical one. Its use-
fulness will become clear later. Condition (2) is the main defining condition and basi-
cally states that one should consider a simplicial complex simply as specifying an
acceptable decomposition of a space into simplices. This can be done in many ways
however, as one can see from Figure 6.10. The two simplicial complexes K and L have
the same underlying space.

Definition. A simplicial complex L is said to be a subdivision of a simplicial complex
K if ÔKÔ = ÔLÔ and every simplex of K is a union of simplices of L.

In Figure 6.10 the simplicial complex L is a subdivision of the simplicial complex K.
A wrong way to subdivide a space into simplices is shown in Figure 6.11(a). The

set A is a set of simplices but not a simplicial complex because its two 1-simplices do

K =
Œ

s
s K
U .
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Figure 6.9. Examples of simplicial complexes.
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not intersect in a simplex in A. On the other hand, ÔAÔ is the underlying space of the
simplicial complex K in Figure 6.11(b). A useful fact is the following:

6.3.1. Proposition. Let K be a simplicial complex. Every point of the underlying
space ÔKÔ belongs to the interior of a unique simplex of K.

Proof. Exercise 6.3.1.

Definition. Let K be a simplicial complex. A subcomplex of K is a simplicial complex
L with L Õ K.

For example, in Figure 6.10 the set M = {v0,v2,v0v2} is a subcomplex of L. M is not
a subcomplex of K even though ÔMÔ Õ ÔKÔ.

Definition. The boundary of a simplicial complex K, denoted by ∂K, is defined by

It is easy to see that ∂K is a subcomplex of K. For example, if K is the simplicial
complex in Figure 6.9(b), then

This example also shows that the underlying space of ∂K, Ô∂KÔ, is not necessarily the
boundary of ÔKÔ because, thinking of ÔKÔ as a subset of R2,

We always have Ô∂KÔ Õ bdry ÔKÔ and the two sets are the same if ÔKÔ is an n-
dimensional manifold in Rn.

Definition. Let K be a simplicial complex and let v and w be vertices of K. An edge
path in K from v to w is a sequence of vertices v = v0, v1, . . . , vn = w of K with the
property that vivi+1 is a 1-simplex in K for 0 £ i < n. An edge path from v to v is called
an edge loop at v.

Definition. A simplicial complex K is connected if, given any two vertices v and w
in K, there is an edge path from v to w.

The simplicial complex in Figure 6.9(a) is not connected, whereas those in Figures
6.9(b) and 6.9(c) are. It is easy to show that a simplicial complex K is connected if
and only if ÔKÔ is path-connected.

Definition. Let X be a subspace of Rn. A triangulation of X is a pair (K,j), where K
is a simplicial complex and j : ÔKÔ Æ X is a homeomorphism. The complex K is said
to triangulate X. A (finite) polyhedron is any space that admits a triangulation.

bdry K K= ∂ » v v0 1.

∂ = { }K v v v v v v v v v v0 1 2 3 1 2 2 3 1 3, , , , , , .

∂ = Œ{
+( ) }

K is a face of a simplex K that belongs

to a k simplex of K

kt t s
-          .unique 1
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Note that even simple spaces like the unit circle are not the underlying space of
a simplicial complex because a “curved” space cannot be built out of “flat” spaces like
simplices. It is easy to show, however, that the circle is a polyhedron. In fact, all the
spaces that one usually can think of are polyhedra. The only obvious exceptions have
simple explanations. For example, the plane is not a polyhedron even though it has a
nice triangulation using an “infinite” simplicial complex as shown in Figure 6.12(a).
One can easily allow a simplicial complex to have an infinite number of simplices, but
when one deals with infinity one does have to be careful. One would not want to think
of the reals as a 0-dimensional complex whose simplices are the individual points.
That would imply the wrong topology for the space. Here is the correct definition:

Definition. An infinite simplicial complex K is a countably infinite collection of sim-
plices in Rn satisfying conditions (1) and (2) in the definition of a finite simplicial
complex and the following:

(3) Every point of Rn has a neighborhood that meets only finitely many simplices
of K.

An infinite polyhedron is a space that is triangulated by an infinite simplicial complex.

All spaces studied in this book are finite or infinite polyhedra. Since we deal mostly
with finite ones we shall omit the adjective “finite” and explicitly use the adjective
“infinite” on those occasions where we need infinite simplicial complexes or polyhe-
dra. By and large, spaces that “really” are not finite polyhedra are topologically “weird”
spaces such as the one shown in Figure 6.12(b) but could nevertheless be useful like
fractals in computer graphics (described in Chapter 22 in [AgoM05]).

Sometimes we want to distinguish between “curved” and “flat” or “linear” spaces.

Definition. The underlying space of an n-dimensional simplicial complex K is called
a linear polyhedron of dimension n.

It is easy to show that the term “convex linear polyhedron” using the new defini-
tion of linear polyhedron is compatible with the term as defined in Section 1.7.

Definition. Let p1, p2, . . . , and pk be a sequence of points in a two-dimensional
plane X. The set
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is called a polygonal curve in X defined by the vertex sequence. Each pi is called a
vertex of the curve. If p1 = pk, then C is called a closed polygonal curve.

Let C be a closed polygonal curve in a plane X in Rn that is homeomorphic to a
circle. By the Jordan curve theorem the curve C divides the plane into two connected
closed sets A and B, so that

and one of the parts, say A, is bounded and the other is not.

Definition. The bounded part A is called the polygon with vertices pi defined by the
polygonal curve.

A polygon is actually a polyhedron that is homeomorphic to a disk. This fact, that
an imbedding of a circle in the plane extends to an imbedding of the disk, is the so-
called Schoenflies theorem that was partially proved by A. Schoenflies in 1906.

Definition. If P is a polygon and if P1, P2, . . . , and Pk, k > 0, are disjoint polygons 
contained in the interior of P, then removing the interior of a Pi creates a hole in P and

is called a polygon with k holes.

From the comments above, polygons and polygons with holes are two-
dimensional polyhedra.

Definition. If s is a simplex, then the simplical complex ·sÒ = {t Ô t ≺ s} is called
the simplicial complex determined by s.

For example, ·v0v1v2Ò = {v0,v1,v2,v0v1,v1v2,v0v2,v0v1v2}.
Next, let us isolate the maps that are naturally associated to complexes.

Definition. Let K and L be simplicial complexes. A simplicial map f : K Æ L is a
map f from the vertices of K to the vertices of L with the property that if v0, v1, . . . ,
and vk are the vertices of a simplex of K, then f(v0), f(v1), . . . , and f(vk) are the ver-
tices of a simplex in L. If f is a bijection between the vertices of K and those of L, then
f is called an isomorphism between K and L and the complexes are said to be iso-
morphic. We shall use the notation K � L to denote that complexes K and L are 
isomorphic.

6.3.2. Proposition. Composites of simplicial maps are again simplicial maps.

Proof. Easy.

We show how simplicial maps induce continuous maps of underlying spaces. Let

cls kP P P P- - - -( )1 2 K

X A B A B C= » « =,   ,

C p p= +[ ]
=

-

i i
i

k

, 1
1

1

U
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be a simplicial map between simplicial complexes K and L. Define a map

as follows: Let x Œ ÔKÔ. By Proposition 6.3.1, the point x belongs to the interior of
some unique simplex s = v0v1 · · · vk of K. If the ti are the barycentric coordinates of
x with respect to s, then

and we define

Definition. The map ÔfÔ is called the map of underlying spaces induced by the sim-
plicial map f.

6.3.3. Proposition.

(1) ÔfÔ is a well-defined continuous map.
(2) ÔfÔ is a homeomorphism if and only if f is an isomorphism.
(3) If f : K Æ L and g : L Æ M are simplicial maps, then Ôg°fÔ = ÔgÔ°ÔfÔ.

Proof. Exercise 6.3.6.

6.4 Cutting and Pasting

We begin by discussing a slight generalization of simplicial complexes. There are two
reasons for introducing the abstract simplicial complexes defined below. One is that
simplicial complexes, sometimes called geometric complexes, play only an interme-
diate role in the study of polyhedra. It is the abstract part of their definition that one
typically exploits and not the fact that they happen to correspond to a particular sub-
division into simplices of an actual space in Rn. This point will be brought home by
various constructions we carry out in this section and the next. A second reason is
that in topology one often talks about “cutting” a space or “pasting together” (or “iden-
tifying”) parts of spaces. It often helps tremendously in understanding complicated
spaces and constructions by defining them in terms of such cutting and pasting oper-
ations. The mathematical basis of these operations is the concept of a quotient space
as defined in the last chapter, but because of the special nature of what we are doing
in this chapter, we can define that concept more simply using abstract simplicial com-
plexes. Hopefully, this will also strengthen the reader’s intuition about quotient spaces
in general.

f t fi i
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Definition. An abstract simplicial complex is a set A of nonempty subsets of a given
set V such that

(1) {v} Œ A for every v Œ V, and
(2) if S Œ A, then every nonempty subset of S belongs to A.

The elements of A are called (abstract) simplices. If S Œ A and if S has k + 1 elements,
then S is called an (abstract) k-simplex. The elements of V are called the vertices of A
and one identifies the vertex v in V with the 0-simplex {v} in A.

Every simplicial complex K defines an abstract simplicial complex AK in a natural
way, namely,

It is easy to check that AK is in fact an abstract simplicial complex. For example, if L
is as in Figure 6.10, then

Conversely, it is possible to associate a geometric complex to an abstract simplicial
complex.

Definition. Let A be an abstract simplicial complex. A geometric realization of A is
a pair (j,K), where K is a simplicial complex and j is a bijective map from the ver-
tices of A to the vertices of K such that {v0,v1, . . . ,vk} is a k-simplex of A if and only
if j(v0)j(v1). . .j(vk) is a k-simplex of K.

To show that geometric realizations exist, we simply need to “fill in” the missing
points in the abstract simplices.

6.4.1. Theorem. Every abstract simplicial complex A has a unique (up to isomor-
phism) geometric realization.

Proof. Let V be the set of vertices of A and assume that V has n + 1 points. Let j
be a bijection between V and the set of vertices of any n-simplex s in Rn. Define a
subcomplex K of s by

It is easy to see that (j,K) is a geometric realization of A. If (j¢,K¢) is another geo-
metric realization of A, then j°j-1 : K Æ K¢ is an isomorphism.

Theorem 6.4.1 is much more significant than one might conclude from its trivial
proof. It is this theorem that allows us to define certain quotient spaces without any
fancy point set topology.

Before we show how abstract complexes can be used to make sense of the cutting
and pasting operations that we referred to at the beginning of this section, it will help
the reader understand what we are talking about here by giving some examples. Prob-

K is a k simplex ofk k= ( ) ( ) ( ) { }{ }j j jv v v v v v0 1 0 1L K, , , .- A

AL v v v v v v v= { } { }{ }0 1 2 0 2 1 2, , , , , , .

AK k k is a k simplex of K= { }{ }v v v v v v0 1 0 1, , , .K L -
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ably the simplest way to describe a space to someone is to do it visually. In practice,
this would mean drawing a picture of it on a flat surface. Consider two-dimensional
spaces such as surfaces. Unfortunately, few of even these special spaces can be flat-
tened out into a plane. Most are also too complicated for an easily understood rep-
resentation by means of projections, but there is another approach. Suppose that we
were able to “cut” the space in a few places and that the result could then be flattened
out. It turns out that as long as we label the resulting flattened figure appropriately
to indicate where the cuts were made, then it will be possible for a person to recon-
struct the space mentally from this labeled figure. As an example of how labeled figures
can describe spaces, consider Figure 6.13. Does the reader see how Figures 6.13 (a)–(c)
are defining a circle, cylinder, and 2-sphere, respectively? Our next task is to make the
passage from a labeled figure to the space it represents rigorous. This is where abstract
complexes come in.

Definition. A labeled (simplicial) complex is a triple (L,m,S), where L is a simplicial
complex, S is a set, and m is a map from the vertices of L to S. The elements of S will
be called labels. To simplify the notation, we shall usually drop the explicit reference
to S and talk about the “labeled complex” (L,m) whenever S is clear from the context.

Suppose that (L,m) is a labeled complex. Define an abstract simplicial complex
A(L,m) by
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Figure 6.13. Spaces as labeled figures.
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Let (j(L,m),K(L,m)) denote any geometric realization of A(L,m) and let X(L,m) = ÔK(L,m)Ô. Let

be the simplicial map defined on a vertex v of L by

and let

Definition. A(L,m) is called the abstract simplicial complex induced by the labeled
complex (L,m). K(L,m) is called a simplicial complex defined by (L,m). The space X(L,m)
is called a geometric realization of (L,m) and the map p(L,m) is called the natural pro-
jection of ÔLÔ onto X(L,m).

The labeled complex (L,m) defines the simplicial complex K(L,m) and the space X(L,m)
uniquely up to isomorphism and homeomorphism, respectively, with X(L,m) just being
a quotient space of ÔLÔ. It is easy to show that c(L,m) and p(L,m) are an isomorphism
and homeomorphism, respectively, if and only if m is a bijection. A good exercise for
the reader is to return to Figures 6.13(a)–(c) and show that the spaces X(L,m) are in
fact the ones indicated by working through the definitions we have just given.
Although converting labeled figures to the spaces they represent is very easy once one
understands what is going on, one does have to exercise a little caution. For example,
a quick glance at the labeled figure in Figure 6.14(a) might lead one to believe that
one is representing a cylinder. This is incorrect. The space X(L,m) is actually homeo-
morphic to the sphere S2, just like Figure 6.13(c). There is also a danger in using too

p cL L L, , , .m m m( ) ( ) ( )= Æ: L X

c L L, ,m mj m( ) ( )( ) = ( )( )v v

c L KL L, ,:m m( ) ( )Æ

A L LS S A, .m m( ) = ( ) Œ{ }
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few vertices. The labeled complex in Figure 6.14(b) represents a point and not a two-
dimensional space.

Note: The notation that we have just introduced will be used in other parts of this
book. Furthermore, statements such as “the simplicial complex K in Figure A . . . ,”
where Figure A consists of a labeled complex (L,m), will always mean “the” complex
K = K(L,m) (K is well defined up to isomorphism).

Finally, we come to “cutting” and “pasting” and how these operations might be
defined. We shall not give a precise definition in general, but now that we know about
labeled figures and their geometric realizations, we can at least describe how such a
definition might look. Consider Figure 6.15. Intuitively, we can think of the space Z
in Figure 6.15(b) as the space Y in Figure 6.15(a) “cut” along the edge v1v4. Conversely,
Y is obtained from Z by “pasting together” the two arcs from v1 to v4 in Z. Clearly,
from the point of view of point set topology, the space Y is nothing but the quotient
space of the space Z with respect to the equivalence relation on the points of Z, which
says that points on the two arcs from v1 to v4 are related if they are to be glued together.
However, by using labeled complexes and their geometric realizations, we can
describe the relationship without the formalism of quotient spaces in point set 
topology.
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Figure 6.15. Using labeled complexes to define cutting and pasting.



In the context of the example in Figure 6.15, to define a space Z that corresponds
to having “cut” Y along the edge v1v2, choose a labeled complex (L,m) with ÔLÔ = Y as
in Figure 6.15(c). If (L¢,m¢) is the labeled complex shown in Figure 6.15(d), then we
can let Z = ÔL¢Ô = X(L¢,m¢). To define “pasting” we reverse these steps. Assume that we
are given Z = ÔL¢Ô and (L¢,m¢) as shown in Figure 6.15(d) and that we want a space Y
that corresponds to “pasting together” the two arcs from v1 to v4 in Z. Form the labeled
complex (L≤,m≤) as in Figure 6.15(e) by relabeling the vertex vi¢, which is to be iden-
tified with the vertex vi as vi and define Y = X(L≤,m≤). Note that X(L≤,m≤) � X(L,m). In prac-
tice, one often omits all but the relevant labels in figures. In fact, one may not even
specify the triangulation since the homeomorphism type of the resulting space is inde-
pendent of the choice. For example, one could easily use Figure 6.15(f) to indicate the
same type of pasting as Figure 6.15(e).

It should be obvious how to extend the definitions above to the situation where
one wants to cut or paste along arbitrary polygonal curves or, more generally, along
curves in a polyhedron (use an appropriate triangulation) and therefore feel free to
use this terminology in what follows.

6.5 The Classification of Surfaces

The classification of surfaces is not only a fascinating chapter in the history of topol-
ogy but it is also a great place to practice what we learned in the last section. His-
torically, the earliest topological invariants were discovered in the study of surfaces.

We have already given one definition of surfaces in Chapter 5. They are two-
dimensional topological manifolds. For the purposes of this section, we restrict our-
selves to compact and connected surfaces without boundary and we now give a
combinatorial definition for these

Definition. A combinatorial surface (without boundary) is a polyhedron S together
with a triangulation (K,j) satisfying:

(1) K is a two-dimensional connected simplicial complex.
(2) Each 1-simplex of K is a face of precisely two 2-simplices of K.
(3) For every vertex v in K, the distinct 2-simplices s1, s2, . . . , ss of K to which v

belongs can be ordered in such a way that si, 1 £ i £ s, meets si+1 in precisely
one 1-simplex, where ss+1 = s1.

A triangulation (K,j) satisfying properties (1)–(3) is called a proper triangulation.

Note 1. It is easy to show that every combinatorial surface is in fact a compact con-
nected two-dimensional topological manifold without boundary. The only points
where the property of having a neighborhood that is homeomorphic to a disk is not
obviously true and needs to be checked are the vertices, but this is where condition
(3) is used. The converse is also true:

6.5.1. Theorem. (Radó) Every two-dimensional topological manifold (without
boundary) in Rn admits a (possibly infinite) triangulation. If the manifold is compact
and connected, then every triangulation is proper.
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Proof. See [Radó25]. Incidentally, with regard to the first statement in the theorem,
if the manifold is compact, then the triangulation will be finite. The infinite triangu-
lations occur with noncompact surfaces such as R2, which is not a surface using the
definition above.

In light of Theorem 6.5.1, we shall drop the adjective “combinatorial” in this
chapter and simply refer to a “surface.”

The reader may wonder why we have bothered with a rather technical definition
of a surface, when we have the more natural manifold definition that corresponds to
one’s usual intuitive notion about the kind of space that a surface really is. The reason
is that our goal is to give a complete classification of surfaces and for this it is con-
venient to work with proper triangulations. Thus, the technical aspects would not have
been avoided. At least with our choice of definition we do not have to appeal to a
theorem whose proof would involve a lengthy digression if we were to give it.

Note 2. The second part of Theorem 6.5.1 is important because a space can be tri-
angulated in many ways. It would be a very unsatisfactory state of affairs if some tri-
angulations were proper and others not.

Note 3. Radó’s proof that every two-dimensional topological manifold can be trian-
gulated used methods from complex analysis. The obvious generalization that every
topological n-dimensional manifold can be triangulated remained a famous unsolved
problem called the triangulation problem. We need to point out though that histori-
cally when searching for a triangulation for a manifold one was not satisfied with just
any triangulation. One assumed a weak regularity condition on the “star” of each
vertex.

Definition. Let K be a simplicial complex and s a simplex in K. The star of s,
denoted by star(s), is the union of all the simplices of K that have s as a face, that is,

Definition. Two simplicial complexes are said to be combinatorially equivalent if they
have isomorphic subdivisions.

Definition. Call a triangulation (K,j) for a topological manifold a proper triangula-
tion if the subcomplexes that triangulate the boundary of the stars of vertices are 
combinatorially equivalent to the boundary simplicial complex of an n-simplex. A
topological manifold that admits a proper triangulation is called a combinatorial
manifold.

The condition for a proper triangulation is stronger than just saying that the stars
are homeomorphic to Dn and is basically a generalization of the proper triangulations
defined above for surfaces. In 1952 Moise [Mois52] proved that all topological three-
dimensional manifolds could be triangulated. One of the major achievements of the
1960s was the solution to the triangulation problem by Kirby and Siebenmann
([KirS69]). They proved that in each dimension n, n ≥ 5, there are topological mani-

star K ands t t s t( ) = » Œ{ }p .
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folds that are not combinatorial manifolds. Subsequently, Andrew Casson proved in
1985 that there exist four-dimensional topological manifolds that could not be trian-
gulated by any simplicial complex. There is another famous related problem, origi-
nally a conjecture, called the Hauptvermutung. This problem, which was basically a
question about the uniqueness of triangulations, asked if any two proper triangula-
tions of a manifold had isomorphic subdivisions. Here also the answer is no. In dimen-
sions larger than four, there are well-defined invariants that determine whether the
answers to the above questions are yes or no.

Note 4. A space that is a surface using the definition above is also called a closed
surface. The adjective “closed” in the context of surfaces or manifolds means that
there is no boundary. Section 6.6 will briefly discuss the definition and classification
of more general types of surfaces, such as surfaces with boundary like the unit disk
and the torus with two open disks removed (see Figure 6.16), and noncompact sur-
faces with or without boundary, such as the open unit disk or that disk with an open
disk removed from its interior. We also repeat for emphasis that in this section, unless
stated otherwise, a space that is called a “surface” is a compact and connected space.

After these preliminary remarks about surfaces we start the main task of this
section, which is their classification. We would like a list of all possible surfaces (up
to homeomorphism) and, if possible, a simple characterization of each. The basic step
will involve taking a given arbitrary surface, cutting it into pieces, and then reassem-
bling the pieces into some recognizable form. As we cut we will use labels to remem-
ber that the two edges that are created are actually identified in the surface. Our proof
of the classification theorems will therefore involve the manipulation of lots of labeled
complexes. This is why we discussed such complexes in the previous section. In our
case here the complexes will actually be planar and the labeling will be modified some-
what to simplify things.

As an example, consider the torus in Figure 6.17(a). Cutting along the circle A1
produces Figure 6.17(b). Next, cutting along the edge A2 in Figure 6.17(b), or along
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Figure 6.17. Cutting and pasting for the torus.



the circles A1 and A2 in Figure 6.17(a) simultaneously, produces Figure 6.17(c). Clearly,
Figures 6.17(b) and (c) can be considered representations of a torus if we understand
the labeling and arrows properly. Notice that we are now labeling the edges and not
the vertices. This will be more intuitive for the cutting and pasting we want to do. It
is easy to pass between the two types of labeling however. The main advantage to
labeling vertices is that the results about geometric realizations of labeled complexes
are easier to state and prove since it is more straightforward to relate this labeling to
abstract complexes. At any rate, our first step in classifying surfaces will be to show
that an arbitrary surface S can be represented by a labeled polygon similar to the one
we got for the torus. We will also show that this geometric presentation is equivalent
to an “algebraic” presentation that consists of a formal symbol.

Let k ≥ 3 and let Qk denote the “standard” regular k-gon (k-sided polygon), namely,
the convex hull of the points

Let

denote the jth edge of Qk. Figure 6.18(a) shows Q8. Since it will also be convenient to
have a two-sided “polygon,” let Q2 = D2 be the “polygon” with vertices

and “edges”

See Figure 6.18(b).
The next lemma basically proves that any surface can be flattened out into the

plane by cutting it appropriately. More precisely, it shows that a surface can be rep-

e S e S1
1

2
12 2( ) = ( ) =+ -    .and

w w0 12 1 0 2 1 0( ) = ( ) ( ) = -( ),     ,and
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resented as a labeled planar polygon and that we can normalize that polygon to be a
regular k-gon.

6.5.2. Lemma. Given a surface S we can always find a labeled complex (L,m) =
(LS,mS) satisfying:

(1) ÔLÔ = Qk for some k.
(2) The vertices of L are precisely the points w0(k), w1(k), . . . , and wk-1(k).
(3) There is a homeomorphism h : X(L,m) Æ S.
(4) If yS : Qk Æ S is given by yS = h°p(L,m), then ySÔint(Qk) and ySÔei(k) are 

one-to-one.

Proof. See [AgoM76].

Think of the labeled complex (LS,mS) in Lemma 6.5.2 as being derived from S by
cutting along yS(∂Qk). Conversely, S can be reconstructed from Qk by pasting together
those edges of Qk that are mapped onto the same set in S by yS.

The main consequence of Lemma 6.5.2 is that the study of surfaces has been
reduced to the study of certain labeled complexes because each surface S has
an associated labeled complex (LS,mS), which in turn determines the surface since 
S � X(LS,mS).

Before describing an even simpler and more compact representation for S we need
some notation. Let

be the infinite set of distinct symbols Ai. Define

where each expression Ai
-1 is considered as a purely formal symbol and no algebraic

significance is attached to the superscript “-1.” We shall identify the symbol (Ai
-1)-1

with Ai. With this identification a-1 will belong to S whenever the symbol a does. Let

For example, the strings

belong to W.
Returning to our surface S, choose a labeled complex (LS,mS) and map yS : Qk Æ

S as described in Lemma 6.5.2. Given an “admissible” labeling of the edges of Qk,
define a string

for S by letting the element ai be the label of the ith edge e1(k) of Qk. Here is an infor-
mal description of how such admissible labelings are obtained. Label the first edge

w a a akS = Œ1 2 K W

A A A A A A A A and A A A A A A1 1 1 1
1 1

1 2 1
1

2
1

1 1 1 1
1

1 3= ( )- - - - -, ,

W S= Œthe set of all nonempty finite strings a a a where aq i1 2 K , .

S = { } » { }- -A A A A1 2 1
1

2
1, , , , ,K K

S+ = { }A A1 2, ,K
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e1(k) of Qk with an arbitrary element from S. Continue around to the other edges of Qk
in a counterclockwise fashion and associate a different label from S to each of them (if
“a” has been used, “a-1” does not count as different) unless the new edge, say ei = ei(k),
is identified with a previously labeled edge, say ej = ej(k). In that case, the labels for ei
and ej should reflect this identification while at the same time distinguishing between
the two possible ways that the edges could be identified. Assume that ej has been
labeled “a.” If the edges are identified in an orientation-preserving way, then use the
label “a” for ei, otherwise use “a-1.”

A more rigorous recursive definition of the string wS is the following. Define a1 to
be an arbitrary element of S. Let 2 £ i £ k and assume that the elements a1, a2, . . . ,
and ai-1 have already been defined. The definition of ai divides into two cases:

Case 1. yS(ei(k)) π yS(ej(k)) for all j, 1 £ j < i : In this case, let ai be an arbitrary
element of

Case 2. yS(ei(k)) = yS(ej(k)) for some j, 1 £ j < i : In this case, let

Definition. The string wS Œ W is called a symbol associated to (LS,mS), or simply a
symbol for the surface S.

Note that the symbol for a surface is not unique since there is no unique choice
of ai in Case 1 above.

6.5.3. Example. To find a symbol for the sphere S2.

Solution. Suppose that we have triangulated S2 with the complex

where v0v1v2v3 is some 3-simplex. The first task is to find a labeled complex for some
regular k-gon of the type guaranteed by Lemma 6.5.2. Although this would not be
hard to do directly in our special case, in general it would be easiest to use two steps:
One would first flatten the surface out into the plane by cutting and then move the
result to a regular k-gon. We shall follow this general approach, which is actually how
Lemma 6.5.2 would be proved. See Figure 6.19(a). The first step would produce the
simplicial complex L with the simplicial map

defined by the condition that

a s s si i i¢ ¢ Æ:

a : L KÆ

K = ∂ v v v v0 1 2 3 ,

a a if k k

a otherwise

i j i j

j

= ( )( ) = ( )( )

=
- -

-

y yS Sw w1 1

1   .

S - { }- -
-

-a a a a ai1 1
1

2 2
1

1
1, , , , ,K
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is an isomorphism for all i. Think of ÔLÔ as having been obtained from ÔKÔ by cutting
along the edges v0v3 and v0v1. Mapping ÔLÔ to a regular k-gon is easy. For example,
the triangulation L0 of Q6 and the simplicial map

shown in Figure 6.19(a) does the job. It is easy to see that the labeled complex (L0,m0)
shown in Figure 6.19(b) defines our sphere in the sense that a geometric realization
of it would be homeomorphic to S2. (L0,m0) is a labeled complex of the type we were
looking for and we can use the algorithm described above on it to get a symbol such
as

b

b

: L L

i i

Æ

¢( ) = ( )
0

6v w
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Figure 6.19. From labeled complex to symbol for sphere.



for S2. Figure 6.19(c) shows the corresponding labeled polygon.

Example 6.5.3 listed one symbol for a sphere, but it is clear that a different choice
of edge labels could have produced the symbol

As we stated earlier, symbols for surfaces are not unique. On the other hand, although
the labeled complex (L0,m0) does not determine a unique symbol for the sphere, we
leave it to the reader to convince him/herself that all symbols derived from (L0,m0) will
have the form

for ai Œ S. In general, one can show that every symbol associated to a labeled complex
(LS,mS) from Lemma 6.5.2 for a surface S has the same basic structure, that is, if a1a2
. . . ak and b1b2 . . . bk are two symbols associated to (LS,mS), then there is a permuta-
tion s of S such that bi = s(ai) and s(a-1) = s(a)-1 for all a Œ S. This justifies our talking
about “the” symbol wS associated to (LS,mS) after all.

Continuing our sphere example, even though Figure 6.20(a) is a good pictorial
representation for one of its symbols, it is not the one that is usually adopted. By
drawing little arrows in the edges of Q6 as indicated in Figure 6.20(b), one can incor-
porate, without superscripts on the symbols, the same information that was contained
in Figure 6.20(a). The two possible ways of identifying edges (via linear maps) are
specified by the direction of the arrows. For example, the arrows tell us that the points
x and y in Figure 6.20(c) are to be identified with the points x¢ and y¢, respectively.
Observe that the direction of the arrows is not uniquely specified by a symbol. Simul-
taneously reversing their direction on two edges that are to be identified changes
nothing. The only important property that is an invariant is whether these arrows 
are both in the same or opposite direction. Most of the labeled polygons we shall 
refer to from now on will have the arrows in their sides rather than superscripts on
the labels, but we should remember that either or both methods simultaneously is

a a a a a a1 1
1

2 3 3
1

2
1- - -

A A A A A A4
1

4 1 6 6
1

1
1- - - .

A A A A A A1 1
1

2 3 3
1

2
1- - -
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Figure 6.20. Alternate labeled complexes for sphere.



permissible. Furthermore, because it is clearly easy to pass back and forth between
symbols and labeled polygons Qk, we can use either of these two representations 
interchangeably.

We have defined symbols for surfaces, but that is only half the story. We basically
have a “map” from the set of surfaces to the set of strings W. To really take advantage
of this correspondence we need a map that goes the other way, that is, we need a map
that associates a surface to a string in W. It is clear how to define this map on an intu-
itive level. Rather than cutting we shall paste. Basically, if w = a1a2 . . . ak Œ W, then
we start with Qk and construct a space Sw by pasting together any edges ei(k) and
ej(k) of Qk whenever ai = aj or aj

-1. It is easy to see that if w is an arbitrary string, then
the space Sw need not be a surface. Therefore, in addition to explaining the con-
struction of Sw more carefully, one would also like to know under what conditions Sw
will be a surface.

Definition. If a Œ S, then define nw(a) to be the number of times that the symbol a
or a-1 appears in the string w. The length of w, l(w), is defined by

For example, if w = A1A2A1
-1A1A2A3

-1, then nw(A1) = 3, nw(A2) = 2, nw(A3) = 1, and
nw(Ai) = 0 for i > 3. Also, l(w) = 6.

Definition. Define a subset W* of W by

It is easy to see that if wS is a symbol for a surface S, then wS Œ W*. In fact, the
next lemma shows among other things that Sw is a surface if and only if w Œ W*.

6.5.4. Lemma. There is a construction that associates to each w Œ W* a well-defined
labeled complex (Lw,mw) with the following properties:

(1) ÔLwÔ = Ql(w) if l(w) > 2 and ÔLwÔ = Q6 if l(w) = 2.
(2) The space Sw = X(Lw,mw) is a surface.
(3) If S is a surface and if u is any symbol for S, then S � Su.
(4) Let a, b Œ S. If w = aa-1, then Sw � S2. If w = aa, then Sw � P2. If w = aba-1b-1,

then Sw � S1 ¥ S1.

Proof. See [AgoM76]. It is easy to justify part (4). Cutting a sphere along an arc
allows us to flatten the remainder into a disk with two edges that are appropriately
identified. For P2, recall the discussion in Section 3.4 and Figure 3.9. For S1 ¥ S1, see
Figure 6.17.

Definition. If S is a surface, then any w Œ W* such that Sw � S will be called a symbol
for S.

The fact that this new definition of a symbol for a surface is compatible with the
earlier one follows from Lemma 6.5.4(3).

W W* .= Œ ( ) = ŒÂ{ }w n a or for all aw 0 2

1 w n aw
a

( ) = ( )
ŒÂ
Â .
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The first step to the classification of surfaces is now completed. Figure 6.21 sum-
marizes the various correspondences that we have established. We have associated to
every surface a collection of symbols. Each of these symbols determines the surface
uniquely up to homeomorphism, so that whenever two surfaces have a symbol in
common they are homeomorphic. Before we move onto the next step we shall find
symbols for some more standard surfaces.

We already know from Lemma 6.5.4(4) that

are symbols for S2, P2, and S1 ¥ S1, respectively. Knowing this one can determine
symbols for other surfaces that can be formed from these basic ones by means of what
is called a “connected sum” operation. Let S1 and S2 be two surfaces. Intuitively, the
connected sum of S1 and S2 is the surface one gets by cutting out a disk from both
S1 and S2 and pasting the remainders together along the boundaries of the holes that
were generated. See Figure 6.22. To make this rigorous, choose a proper triangula-

A A A A and A A A A1 1 1 1 1 2 1
1

2
1- - -1, ,
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tion (Ki,ji) for Si and let si be a 2-simplex of Ki. If the Ki are simplicial complexes in
Rn, we can choose n to be large enough so that we can reposition the polyhedra ÔKiÔ
in such a way that s1 = s2 = ÔK1Ô « ÔK2Ô.

Definition. Any space that is homeomorphic to the underlying space of the simpli-
cial complex

is defined to be the connected sum of S1 and S2 and is denoted by S1 # S2.

6.5.5. Proposition. The connected sum operation # is well defined, that is, the
homeomorphism type of S1 # S2 does not depend on the triangulations (Ki,ji) or the
choice of simplices si. Furthermore,

(1) S1 # S2 is a surface.
(2) (Commutativity) S1 # S2 � S2 # S1.
(3) (Associativity) S1 # (S2 # S3) � (S1 # S2) # S3.
(4) (Identity) S1 # S2 � S1.

Proof. The hard part of this proof is to show that the operation # is well defined.
The rest is easy. See [AgoM76].

6.5.6. Proposition. Table 6.5.1 shows the symbols for the sphere and the connected
sum of n tori and n projective planes.

Proof. See [AgoM76].

Definition. The symbols in Table 6.5.1 are called the normal forms for the corre-
sponding surfaces.

The next step in classifying surfaces involves manipulating labeled polygons. One
ends up with the next theorem, the first main theorem dealing with the classification
of surfaces. On an intuitive level the proof involves starting with a labeled polygon
that corresponds to the symbol of a given surface and then, by cutting and pasting,
changing that polygon into another labeled polygon that defines a symbol having one
of the normal forms shown in Table 6.5.1. The details are lengthy and messy but not
hard.

L K K i= »( ) - { }1 2 s
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Table 6.5.1 Surface symbols.
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6.5.7. Theorem. Every surface is homeomorphic either to the sphere, or to a con-
nected sum of tori, or to a connected sum of projective planes.

Proof. See [AgoM76].

To finish the classification of surfaces we need to show that the surfaces in
Theorem 6.5.7 are nonhomeomorphic.

Definition. Let S be a surface and let (K,j) be any proper triangulation of S. Let
ni(K) denote the number of i-simplices in K. The Euler characteristic of S, c(S), is
defined by

6.5.8. Proposition. The Euler characteristic for a surface is a well-defined integer
that does not depend on the triangulation of the surface that is chosen for the defi-
nition. Furthermore,

(1) c(S2) = 2 , c(S1¥S1) = 0, and c(P2) = 1.
(2) If S1 and S2 are surfaces, then c(S1#S2) = c(S1) + c(S2) - 2.

Proof. The fact that the Euler characteristic is well defined is a special case of a 
much more general result proved later in Section 7.4. Part (1) is easily verified from 
triangulations of the spaces in question. (Any reader who has trouble finding a trian-
gulation for the torus or projective plane can find one in Section 7.2.) To prove (2), 
let K1, K2, L, s1, and s2 be as in the definition of the connected sum. The complexes 
Ki and L triangulate the surfaces Si and S1 # S2, respectively, and the 2-simplex si
belongs to Ki. Since L has all the 2-simplices of K1 and K2 except for s1 and s2, it follows
that

But, in L, the boundary of s1 has been identified to the boundary of s2. Therefore,

and

because one does not want to count the 0- and 1-simplices in the boundary of s1 and
s2 twice. The three equations easily lead to the result in part (2) of the proposition.

It follows from Proposition 6.5.8 and Theorem 6.5.7 that it is easy to compute the
Euler characteristic of any surface.

We are almost ready to prove the second part of the classification theorem for 
surfaces. Before we do, we need to bring up orientability again and also define a 
commonly used term in connection with surfaces, namely the “genus.” First of all, the

n L n K n K0 0 1 0 2 3( ) = ( ) + ( ) - ,

n L n K n K1 1 1 1 2 3( ) = ( ) + ( ) -

n L n K n K2 2 1 2 2 2( ) = ( ) + ( ) - .

c S n K n K n K( ) = ( ) - ( ) + ( )0 1 2 .
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sphere and the connected sum of tori are orientable surfaces whereas the connected
sum of projective planes is not. We shall not be able to prove this, however, until the
next chapter and after we have a precise definition of orientability.

Definition. If S is a surface, define the genus of S to equal 0 if S is homeomorphic
to the sphere and equal to n if S is homeomorphic to a connected sum of n tori or n
projective planes, n ≥ 1.

Intuitively, if the genus of an orientable surface is n, then the surface is homeo-
morphic to a sphere with n handles. See Figure 6.23. Since the projective plane is the
union of a disk and a Moebius strip, it is often referred to as a sphere with a cross-
cap in the literature. With this terminology, a nonorientable surface of genus n is called
a sphere with n crosscaps.

A simple formula relates the genus g of a surface S to its Euler characteristic c:

(6.3)

The next proposition summarizes what we just shown.

6.5.9. Proposition. Table 6.5.2 shows the Euler characteristic, orientability, and
genus of the listed surfaces.

g if is orientable

otherwise

= -( )
= -

2 2

2

c
c
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Figure 6.23. Two surfaces as spheres with
handles.

Table 6.5.2 The geometric invariants of some surfaces.
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6.5.10. Theorem. The sphere, the connected sum of n tori, n ≥ 1, and the connected
sum of m projective planes, m ≥ 1, are nonhomeomorphic spaces.

Proof. The proof follows easily from Proposition 6.5.9 and the topological invari-
ance of the Euler characteristic.

Theorems 6.5.7 and 6.5.10 together comprise what is called the classification
theorem for closed surfaces. This theorem can be summarized by the following:

Algorithm for determining the homeomorphism type of a given surface S:

Step 1: Decide whether or not S is orientable.
Step 2: Compute the Euler characteristic of S from a triangulation.
Step 3: Look up the surface type in Table 6.5.2.

Computing the Euler characteristic is a simple counting procedure but determining
orientability is a little more subtle. The problem is that we do not yet have a formal
definition of orientability. We shall return to that point in the next chapter (Section
7.5).

If we do not count connected sums, then the only concrete example of a nonori-
entable surface that we have so far is the projective plane. There is another well-known
nonorientable surface, called the Klein bottle, named after the mathematician Felix
Klein who first described it. This surface is easier to visualize than the projective plane
and we finish this section with a brief discussion of it.

First, recall that to construct a torus one can start with a tube (Figure 6.17(b))
and then bring the ends around and glue them together (Figure 6.17(a)). We vary this
construction slightly. We again start with a tube (Figure 6.24(a)), but rather than
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gluing the ends together like we do for the torus, we bend one end and bring it to the
inside of the tube (Figure 6.24(b)), and finally glue that end to the other one from the
inside (Figure 6.24(c)). Of course, as can be seen from Figure 6.24, this involves pierc-
ing the tube. As a result we do not get a legitimate surface since we have a self-inter-
section along a circle (marked X in Figures 6.24(b) and (c)). Unfortunately, we cannot
eliminate this singularity because the surface K that we were trying to define, like the
projective plane, cannot be imbedded in R3. We are seeing K after it has been “pushed”
into R3. On the other hand, if we had a fourth dimension, then we could grab one
part of the surface near the intersection X and lift it up into the fourth dimension,
thereby removing any intersection and creating a real surface without singularities.
This is in analogy with the way that one can remove the self-intersection of a circle
immersed in the plane as a figure eight. We can remove the self-intersection by lifting
one part of the circle near the intersection up into the third dimension. See Figure
6.25. If one can understand how a two-dimensional person could try to visualize that
three-dimensional construction, then one should be able visualize what the surface K
looks like. It is clear from the construction, that K can also be described as a square
with sides identified as shown in Figure 6.24(d). This means that we can give the fol-
lowing precise definition of a Klein bottle:

Definition. Any surface with symbol A1A2A1A2
-1 is called a Klein bottle.

Proposition 6.5.11. The Klein bottle K is a nonorientable surface that is homeo-
morphic to P2 # P2.

Proof. Represent the Klein bottle via the labeled polygon shown in Figure 6.26. If
we cut K along the lines indicated by c and d, then we get two Moebius strips with
the shaded region being one of them. This shows that K is gotten by taking two
Moebius strips and gluing them together along their boundaries. This is precisely what
we have in the case of P2 # P2, since the projective plane can be gotten by gluing a
disk to a Moebius strip along their boundaries.

Intuitively, we can see that the Klein bottle is nonorientable because it is one-
sided. Here we are thinking of the surface as made of, say, paper and we are walking
along it. See our discussion of the Moebius strip in Section 1.6. Because of the one-
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Figure 6.25. Eliminating a self-intersection using a third dimension.



sidedness, one could say that if one were to pour water “into” a Klein bottle, then the
water would come right “out,” although this is not quite true since gravity would keep
some of it inside.

Sometimes a Klein bottle is referred to as a sphere with a twisted handle and the
connected sum of k Klein bottles, as a sphere with k twisted handles.

6.6 Bordered and Noncompact Surfaces

We finish the chapter with a few comments on “bordered” and noncompact surfaces.
To allow for a boundary we broaden the definition of a combinatorial surface.

Definition. A combinatorial surface (with or without boundary) is a polyhedron S
that admits a triangulation (K,j) satisfying:

(1) K is a two-dimensional connected simplicial complex.
(2) Each 1-simplex of K is a face of at least one but not more than two 2-

simplices of K.
(3) For every vertex v in K, the distinct 2-simplices s1, s2, . . . , ss of K to which v

belongs can be ordered in such a way that si, 1 £ i £ s - 1, meets si+1 in pre-
cisely one 1-simplex. If s > 1, then ss and s1 have either just v or a single 1-
simplex in common.

The boundary of S, denoted by ∂S, is defined to be the set j(Ô∂KÔ). If ∂S = f, then S
is called a closed surface. A surface with nonempty boundary is called a surface with
boundary or a bordered surface.

Clearly, if S is a combinatorial surface using the new definition and if ∂S = f, then
S is just a combinatorial surface as defined earlier in Section 6.5. As before, com-
pactness and connectedness is built into the definition of these new surfaces. We shall
again drop the adjective “combinatorial.”

Topologically a bordered surface can be represented by a polygon some, but not
necessarily all, of whose sides have been identified in pairs. The unidentified sides of
the polygon give rise to the boundary of the surface. Therefore, to classify bordered
surfaces one can take the same approach as the one used to classify closed surfaces.
One shows that every bordered surface can be represented by a labeled polygon and
that such representatives can be put into a “normal form.”
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6.6.1. Theorem. (The Classification Theorem for Bordered Surfaces) Two bordered
surfaces are homeomorphic if and only if they have the same number of boundary
components, they are both orientable or nonorientable, and they have the same Euler
characteristic.

Proof. See [AgoM76].

Theorem 6.6.1 tells us when two bordered surfaces are homeomorphic, but what
does the typical one look like? To answer that question, we need an easy to under-
stand list of bordered surfaces to which an arbitrary one can be compared. A simple
construction produces such a list. Start with a disk and some rectangular strips. Suc-
cessively paste the two ends of these strips to the boundary of the disk. The bordered
surface that one gets in this way is called a “disk with handles.” See Figure 6.27. Note
that each strip can be attached in different ways. Before we paste the ends to the disk,
we have the option of either giving or not giving the strip a half-twist (see Figure
6.27(a) and (b)). The ends themselves can be pasted in a manner so that the strip
either does or does not interlock with previous strips (compare Figures 6.27(c) and
(d)). By computing the number of boundary components, the orientability, and the
Euler characteristic of such disks with handles, one can show, using Theorem 6.6.1,
that every bordered surface is homeomorphic to one of these (see [Mass67]). One
corollary of this that all bordered surfaces can be imbedded in R3. This was not true
for closed surfaces.

Finally, the classification of noncompact surfaces with or without boundary turns
out to be much more difficult than that of compact surfaces because the number of
possibilities is so much greater. Some examples of noncompact surfaces are:

(1) Any open subset of a compact surface (alternatively, the complement of an
arbitrary closed set).

(2) The surface of a ladder with an infinite number of rungs.
(3) The surface of an infinite wire grid that is infinite in both directions.
(4) Infinite connected sums of surfaces.

We refer the interested reader to [Mass67]. The classification results are much messier
than those in the compact case. Note that all the triangulations are infinite in this case.
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6.7 EXERCISES

Section 6.1

6.1.1. The proof of Euler’s formula (Theorem 6.1.1) used the fact that the triangular faces in
the decomposition of a disk D2 can be listed in a sequence T1, T2, . . . , Tk, such that Ti

meets

in either one or two edges. Sketch a proof and discuss potential problems. (In [BurM71]
it is proved that the analogous fact for cell decompositions of higher-dimensional disks
does not hold.)

6.1.2. A common way to express Euler’s theorem is to say that no matter how a sphere is
divided into nf regions with ne edges and nv vertices, the sum nv - ne + nf will always
equal 2. Compute nv - ne + nf for the decomposition of S2 shown in Figure 6.28. Where
does the proof of Euler’s theorem fail in that example? If we want to preserve the valid-
ity of the theorem, then what conditions must a “permissible region” satisfy so that
Euler’s theorem will hold for all decompositions of S2 into permissible regions?

Section 6.3

6.3.1. Let K be a simplicial complex and let x Œ ÔKÔ. Prove that there is a unique simplex 
s Œ K such that x Œ int s.

6.3.2. Show that if L and M are subcomplexes of a simplicial complex K, then L « M is a sub-
complex of K.

6.3.3. Prove that if K is a simplicial complex, then so is ∂K.

6.3.4. Let K be a simplicial complex.

(a) Prove that K is connected if and only if ÔKÔ is connected.
(b) Define a component of K to be a maximal connected subcomplex L of K. Show that

K L L Ln= » » »1 2 K ,

X Ti
j i

jU-
£ <

=1
1
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Figure 6.28. A decomposition of S2 for which Euler’s
theorem fails.



where the Li are components of K. Show that Li « Lj = f, if i π j.
(c) Prove that a subcomplex L of K is a component of K if and only if ÔLÔ is a com-

ponent of ÔKÔ.

6.3.5. Let K be a simplicial complex and let f : ÔKÔ Æ Rm be a map. Prove that f is continu-
ous if and only if fÔs is continuous for all s Œ K.

6.3.6. Prove Proposition 6.3.3. (Hint: Use Exercise 6.3.5.)

Section 6.5

6.5.1. Sketch a proof of the fact that a closed nonorientable surface cannot be imbedded in
R3 by justifying and proving the following:

(a) A closed curve that meets a closed surface in R3 “transversally” must meet it in an
even number of points.

(b) If a closed surface in R3 contains a Moebius strip, then there is a curve close to
the median curve of the Moebius strip that meets the surface in only one point.

6.5.2. What surface has symbol abcda-1b-1c-1d-1?

6.5.3. Which of the surfaces listed in Proposition 6.5.6 is homeomorphic to the following:

(a) a connected sum of a torus and Klein bottle
(b) a connected sum of a torus and projective plane

Justify your answer.

6.5.4. The genus of a surface can be defined as the maximum number of disjoint circles along
which a surface can be cut without disconnecting it. Justify this characterization of the
genus.

6.5.5. If one is going to make computations with a triangulation of a space there are obvious
reasons for choosing a minimal triangulation, that is, a triangulation that has the fewest
number of simplices. Let S be a surface triangulated by a simplicial complex K. Prove
the following lower bounds on ni = ni(K), the number of i-simplices in K:

(a) S = S2 : n0 ≥
≥
≥

4
6
4

1

2

n
n
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Figure 6.29. A bordered surface for Exercise 6.6.1.



(b) S = P2 :

(c) S = S1 ¥ S1 :

Hint: Use facts about the Euler characteristic and relations between the numbers ni

as was done in the proof of Theorem 6.1.2.

Section 6.6

6.6.1. Triangulate the bordered surface shown in Figure 6.29. What is its Euler characteris-
tic? Represent the surface as a disk with handles.

n0 ≥
≥
≥

7
21
14

1

2

n
n

 n0 ≥
≥
≥

6
15
10

1

2

n
n
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C H A P T E R  7

Algebraic Topology

7.1 Introduction

The central problem of algebraic topology is to classify spaces up to homeomorphism
by means of computable algebraic invariants. In the last chapter we showed how two
invariants, namely, the Euler characteristic and orientability, gave a complete classi-
fication of surfaces. Unfortunately, these invariants are quite inadequate to classify
higher-dimensional spaces. However, they are simple examples of the much more
general invariants that we shall discuss in this chapter.

The heart of this chapter is its introduction to homology theory. Section 7.2.1
defines the homology groups for simplicial complexes and polyhedra, and Section
7.2.2 shows how continuous maps induce homomorphisms of these groups. Section
7.2.3 describes a few immediate applications. In Section 7.2.4 we indicate how homol-
ogy theory can be extended to cell complexes and how this can greatly simplify some
computations dealing with homology groups. Along the way we define CW complexes,
which are really the spaces of choice in algebraic topology because one can get the
most convenient description of a space with them. Section 7.2.5 defines the incidence
matrices for simplicial complexes. These are a fundamental tool for computing
homology groups with a computer. Section 7.2.6 describes a useful extension of
homology groups where one uses an arbitrary coefficient group, in particular, Z2. After
this overview of homology theory we move on to define cohomology in Section 7.3.
The cohomology groups are a kind of dual to the homology groups. We then come to
the other major classical topic in algebraic topology, namely, homotopy theory. We
start in Sections 7.4.1 and 7.4.2 with a discussion of the fundamental group of a topo-
logical space and covering spaces. These topics have their roots in complex analysis.
Section 7.4.3 sketches the definition of the higher-dimensional homotopy groups and
concludes with some major theorems from homotopy theory. Section 7.5 is devoted
to pseudomanifolds, the degree of a map, manifolds, and Poincaré duality (probably
the single most important algebraic property of manifolds and the property that sets
manifolds apart from other spaces). We wrap up our overview of algebraic topology
in Section 7.6 by telling the reader briefly about important aspects that we did not
have time for and indicate further topics to pursue. Finally, as one last example,



Section 7.7 applies the theory developed in this chapter to our ever-interesting space
Pn.

The reader is warned that this chapter may be especially hard going if he/she has
not previously studied some abstract algebra. We shall not be using any really
advanced ideas from abstract algebra, but if the reader is new to it and has no one
for a guide, then, as usual, it will take a certain amount of time to get accustomed to
thinking along these lines. Groups and homomorphism are quite a bit different from
topics in calculus and basic linear algebra. The author hopes the reader will perse-
vere because in the end one will be rewarded with some beautiful theories. The next
chapter will make essential use of what is developed here and apply it to the study of
manifolds. Manifolds are the natural spaces for geometric modeling and getting an
understanding of our universe.

Anyone reading this chapter should at least read Sections 7.2.1–7.2.5 as carefully
as possible. They give the reader uninitiated to algebraic topology a taste of what the
subject is about. It is important to pay attention to the details and work through them,
otherwise little will sink in and everything will be just a blur. Two other important
topics are the fundamental group and pseudomanifolds. Although we try to be as clear
as we can be about basic concepts, the proofs in the chapter will tend to get less and
less detailed as we go along because we want to give as much of an overview as pos-
sible. Even if things start getting too abstract, it is recommended that one glance over
all the material (definitions and basic theorems) to at least get an overall picture of
how algebraic topology tries to pin down the structure and classification of topolog-
ical spaces.

7.2 Homology Theory

7.2.1 Homology Groups

The motivation for the homology groups (and especially the homotopy groups defined
later in the chapter) is based on the intuitive idea that topological spaces can be char-
acterized in terms of the number and type of “holes” that they have. There is no precise
definition of a hole. The simplest examples of spaces without holes are the Euclidean
spaces Rn. The prototype of a space that has an “n-dimensional hole” is Sn. The hole
exists because Sn cannot be contracted to a point within Sn without tearing it. In our
discussion we shall use surfaces and their one-dimensional holes as examples because
one can draw nice simple pictures in this case to illustrate what we are talking 
about.

Consider the infinite cylinder C in Figure 7.1. In terms of holes, we would say that
the cylinder has a “vertical hole.” The existence of this hole is demonstrated by the
fact that we have closed curves (circles), such as a and b, that cannot be contracted
to a point in C. The curves a and b actually determine the same hole in C. One reason
for this is that one can deform one curve into the other. On the other hand, the closed
curves a and b in the torus T in Figure 7.1 correspond to the presence of two distinct
holes, an “inside” and “outside” hole. Of course, some closed curves, such as g in the
cylinder C, can be contracted to a point and do not correspond to any hole. It follows
that if we are going to study (one-dimensional) holes by means of closed curves then
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we need to look at some sort of equivalence classes of closed curves with respect to
a suitable equivalence relation. One natural such equivalence relation would be homo-
topy. This is what one uses for the definition of homotopy groups. For homology
groups we shall use a weaker and more algebraic notion.

Note that the curve g in C bounds a disk D and that the union of the two curves
a and b in C also bounds a region. This suggests that we define an equivalence rela-
tion for closed curves where the equivalence class that represents the trivial element
corresponds to curves that bound. We continue this line of thought in the context of
simplicial complexes. One of the useful aspects of simplicial complexes is that they
have both a geometric and an abstract nature to them. It is the latter that we want to
take advantage of right now because it will let us switch into a symbol manipulation
mode where purely algebraic manipulations replace geometric operations.

Figure 7.2 shows two 2-simplices, s1 = v0v1v2 and s2 = v1v2v3, in a simplicial
complex K. Consider the edges t1 = v0v1, t2 = v0v2, t3 = v1v2, t4 = v1v3, and t5 = v2v3 in
K. As point sets, the boundaries of s1, s2, and s1 » s2 are t1 » t2 » t3, t3 » t4 » t5,
and t1 » t2 » t4 » t5, respectively. What is the relationship between the boundary of
the region s1 » s2 and the boundaries of the individual simplices s1 and s2? We could
say that the edge t3, considered as part of the boundary of s1, and the edge t3, con-
sidered as part of the boundary of s2, have, in some sense, cancelled each other. This
idea of cancellation can be made more meaningful if we use a more suggestive alge-
braic notation and write “+” instead of “».” If we want the function “boundary of” to
be additive, then we want the equation

t t t t t t t t t t1 2 4 5 1 2 3 3 4 5+ + + = + +( ) + + +( )
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to hold. If we treat simplices as formal symbols, then one way to satisfy this equation
is to identify the expression t3 + t3 (which one is also tempted to write as 2t3) with 0.
A homology theory based on this approach (the mod 2 homology groups) will be dis-
cussed in Section 7.2.6. In this section we describe a second approach. It may seem
slightly more complicated initially but will lead to better invariants.

First of all, we introduce a notion of orientation for simplices. For now, we shall
leave things to intuition and infer the orientation of a simplex simply from the order
in which its vertices are listed. For example, the expression vw will be used to deter-
mine not only the 1-simplex with vertices v and w but also the direction (in this case
from v to w) in which one should “walk” if one were to walk along that edge. Given
an orientation of a 2-simplex, we get a natural orientation of the boundary curve. For
example, returning to the simplicial complex in Figure 7.2, using the expression v0v1v2
for the 2-simplex s1 indicates that it has been oriented in the counterclockwise fashion
and its boundary will be thought of as a closed path that is intended to be traversed
also in a counterclockwise fashion, say by starting at v0 and then walking from v0 to
v1, from v1 to v2, and finally from v2 back to v0.

We can express the relationships between oriented simplices and their boundaries
symbolically by introducing a boundary operator ∂*, so that what we were just saying
can be summarized by equations of the form

and

More generally, since arbitrary oriented regions also define an orientation on their
boundary, it makes sense to have the operator ∂* defined on those. In the case of the
union of the two simplices s1 and s2 the geometry would imply that

(7.1)

On the other hand, from an algebraic point of view we would like

(7.2)

The difference between the two expressions on the right of equations (7.1) and (7.2)
is that the second has an extra v1v2 + v2v1 term. In terms of walking along paths, the
difference between the two paths is that in the second we took extra strolls, first from
v1 to v2 and later from v2 back to v1. This suggests that we should identify v1v2 + v2v1
with 0. By formally defining v2v1 = -v1v2 we make this even more plausible. Geomet-
rically, it means that -v1v2 represents the path from v1 to v2 traversed in the opposite
direction. We would then have the reasonable looking equations

This as far as we go in our motivational discussion and we now start our rigorous devel-
opment of homology groups. What we tried to indicate was that if one is interested in
studying the holes in a space, then one approach to this leads to symbol manipulation
involving oriented simplices, formal linear sums of these, and boundary maps. A
homology group will be a “group of cycles” modulo a “group of boundaries.”

v v v v v v v v1 2 2 1 1 2 1 2 0+ = + -( ) = .

∂ ∂ ∂* +( ) = * ( ) + * ( )
= + +( ) + + +( )

v v v v v v v v v v v v

v v v v v v v v v v v v
0 1 2 1 3 2 0 1 2 1 3 2

0 1 1 2 2 0 1 3 3 2 2 1 .

∂* »( ) = + + +v v v v v v v v v v v v v v0 1 2 1 3 2 0 1 1 3 3 2 2 0.

∂* ( ) = + +v v v v v v v v v1 3 2 1 3 3 2 2 1.

∂*( ) = + +v v v v v v v v v0 1 2 0 1 1 2 2 0
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Let s be a q-simplex in Rn. An orientation of s cannot just be an ordering of the
set V of its vertices because there are many orderings. We need an equivalence rela-
tion on the set of orderings. Note that any two orderings of V differ by a permutation
of V.

Definition. An orientation of s is an equivalence class of orderings of the vertices of
s, where two orderings are said to be equivalent if they differ by an even permutation
of the vertices.

The fact that the inverse of an even permutation is an even permutation easily
implies that we are dealing with an equivalence relation. Furthermore, there are only
two equivalence classes. The two possible orientations of a q-simplex s = v0v1 · · · vq,
q ≥ 1 are determined by the orderings (v0,v1, . . . ,vq) and (v1,v0,v2,v3, . . . ,vq). If m is one
orientation of s, then it will be convenient to let -m denote the other. we have -(-m)
= m. A 0-simplex has only one orientation. Note the similarity between the definition
of the orientation of a simplex with the definition of the orientation of a vector space.

Definition. An oriented q-simplex [s] is a pair (s,m), where s is a q-simplex and 
m is an orientation of s. The notation [v0v1 · · · vq] denotes the oriented q-simplex (v0v1
· · · vq,m) where m the orientation determined by the ordering (v0,v1, . . . , vq). If q = 0,
then there is only one orientation, and we shall always write simply v0 instead of [v0].
If q ≥ 1 and if [s] is an oriented q-simplex, then -[s] is defined to be the oriented q-
simplex consisting of s together with the opposite orientation, that is, if [s] = [v0v1
· · · vq], then -[s] = [v1v0v2v3 · · · vq]. For uniformity of notation, [s] may also be
denoted by +[s].

Now, let K be a simplicial complex and let Sq denote the set of oriented q-
simplices of K.

Definition. A q-chain of K, 0 £ q £ dim K, is a function f :Sq Æ Z with the additional
property that if q ≥ 1, then

for every [sq] in Sq. The set of all q-chains of K is denoted by Cq(K). Given f, g Œ Cq(K),
define the sum

by

7.2.1.1. Theorem. (Cq(K),+) is an abelian group.

Proof. First of all, it is easy to see that f + g Œ Cq(K). The additive identity for + is
the zero function, which maps all oriented q-simplices to zero. The additive inverse
of any f in Cq(K), denoted by -f, is defined by the formula

f g f gq q q+( ) [ ]( ) = [ ]( ) + [ ]( )s s s .

f g Sq+ Æ: Z

f fq q-[ ]( ) = - [ ]( )s s
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for all [sq] Œ Sq.

It is convenient to have Cq(K) defined for all values of q, including negative values,
even though the only groups that are really interesting to us are the ones with 0 £ q
£ dim K.

Definition. If q < 0 or q > dim K, define Cq(K) = 0.

Definition. For all q, the abelian group (Cq(K),+) is called the group of q-chains of
K. The “vector”

is called the (oriented) chain complex of K.

The definition of q-chains as functions is neither convenient nor intuitive. We shall
now describe the more common notation that one uses when working with q-chains.
For each oriented q-simplex a = [sq] Œ Sq define a q-chain

by

Such “elementary” q-chains aF actually generate Cq(K). To see this, choose one orienta-
tion for each q-simplex of K and let Sq

+ be the collection of oriented q-simplices defined
by these choices. (The easiest way to simultaneously pick an orientation for all the sim-
plices of K is to order the vertices of K once and for all and then to take the induced ori-
entation.) The essential property of Sq

+ is that it is a subset of Sq satisfying:

(1) If q = 0, then Sq
+ = Sq.

(2) If q ≥ 1, then, for any b Œ Sq, either b or -b belongs to Sq
+ but not both.

7.2.1.2. Lemma.

Proof. This is easy to prove (Exercise 7.2.1.1). See Appendix B for a clarification of
the notation. A proof can also be found in [AgoM76].

Because the map

is clearly an isomorphism, it follows from Lemma 7.2.1.2 that if K has nq q-simplices,
then Cq(K) is isomorphic to a free abelian group, which is a direct sum of nq copies

Z ZÆ
Æ

a
a

F

Fnn

C Kq
S

F
q

( ) = ≈
Œ +a

aZ .

a b b b a
a a

a a

F q

F

F

for S and

and

( ) = Œ π ±
( ) =

-( ) = -

0

1

1

, ,

,

.

aF qC KŒ ( )

C K C K C K C K# . . . , , , , . . .( ) = ( ) ( ) ( )( )-1 0 1

-( ) [ ]( ) = - [ ]( )( )f fq qs s
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of Z. Since the map a Æ aF imbeds Sq in Cq(K), we shall identify a with aF. With this
identification, we now have a rigorous mathematical definition of the notion, referred
to in the motivational part at the beginning of this section, of “formal linear combi-
nations” of oriented q-simplices. Furthermore, by treating the elements of Cq(K) as
such formal sums, which we shall do in the future, we shall make our computations
more intuitive. The reader should remember, however, that the definition of Cq(K)
depends only on K and not on any particular choice of orientations.

Now that we know about q-chains, we move on to a definition of the boundary map.

Definition. The boundary map

is defined as follows:

(1) If 1 £ q £ dim K, then ∂q is the unique homomorphism with the property that

for each oriented q-simplex [v0v1 · · · vq] of K, where “viˆ ” denotes the fact that
the vertex vi has been omitted.

(2) If q £ 0 or q > dim K, then ∂q is defined to be the zero homomorphism.

7.2.1.3. Lemma.

(1) The maps ∂q are well-defined homomorphisms.
(2) For all q, ∂q-1°∂q = 0.

Proof. Assume that 1 £ q £ dim K, which is the only case where something has to
be proved. Let s be a q-simplex and si a (q - 1)-dimensional face of s. Suppose that

Let [o] and [oi] be the orientations of s and si induced by the orderings

respectively.

Claim. The orientation n = (-1)i[oi] of si depends only on the orientation m = [o]
and not on the particular ordering o.

First, consider what happens to the orientation [oi] when we pass from the order-
ing o to the ordering

which corresponds to interchanging two vertices vs and vt. If s π i π t, then we have
interchanged two vertices of si, so that [o¢i] = -[oi] and

¢ = ( ) <o v v v v0, . . . , , . . . , , . . . , , ,t s q s t

o o= ( ) = ( )v v v v v v0 1 0, , . . . , , . . . , ˆ , . . . , ,q i i qand

s s= ◊ ◊ ◊ = ◊ ◊ ◊ ◊ ◊ ◊v v v v v v0 1 0q i i qand ˆ .

∂q q
i

i q
i

q

v v v v v v0 1 0
0

1◊ ◊ ◊[ ]( ) = -( ) ◊ ◊ ◊ ◊ ◊ ◊[ ]
=
Â ˆ

∂q q qC K C K: ( ) Æ ( )-1
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If s = i, then the new ordering of the vertices of s is

and

A similar equation holds if t = i. Therefore, interchanging two distinct vertices of o
always results in a change of sign of n. Since the representative o for m is well defined
up to an even permutation of the vertices and since every even permutation is the
composition of an even number of transpositions, the Claim is proved.

Definition. The orientation n of si is called the orientation of si induced by the 
orientation m of s.

The Claim implies that ∂q is well defined because the “boundary” (q - 1)-chain

is well defined for each oriented q-simplex [v0v1 . . . vq]. Furthermore, because this 
(q - 1)-chain is exactly what the (oriented) boundary of the oriented q-simplex should
be intuitively, we are justified in calling the maps ∂q “boundary maps.” For example,
the definition of ∂2 implies that

which is what we want. Part (1) of the lemma is now proved since to define a homo-
morphism on a free group it suffices to specify it on a basis (Theorem B.5.9).

To prove part (2), we may assume that q ≥ 2. It suffices to show that

for every oriented q-simplex [v0v1 . . . vq] of K, since these generate Cq(K). Now

= -( ) -( )
Ê
ËÁ

◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊[ ]

+ -( ) ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊[ ]
ˆ
¯̃

=

-

=

-

= +

ÂÂ

Â

1 1

1
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1

0
0

1
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0

i j
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i

j i q
i

q

j

j i

q

i j q

v v v v

v v v v

ˆ ˆ

ˆ ˆ .

∂ ∂ ∂

∂

q q q q
i
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i

q

i
q i q

q
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=

-

( ) [ ]( ) = -( ) ◊ ◊ ◊ ◊ ◊ ◊[ ]
Ê
ËÁ

ˆ
¯̃

= -( ) ◊ ◊ ◊ ◊ ◊ ◊[ ]( )

Â

Â

1 0 1 1 0
0

1 0

1

1

o v v v v v v

v v v

. . . ˆ

ˆ

∂ ∂q q q-( ) [ ]( ) =1 0 1 0o v v v. . .

∂2 0 1 2 1 2 0 2 0 1

1 2 2 0 0 1

v v v v v v v v v

v v v v v v

[ ]( ) = [ ] - [ ] + [ ]
= [ ] + [ ] + [ ],

-( ) ◊ ◊ ◊ ◊ ◊ ◊[ ]
=
Â 1 0

0

i
i q

i

q

v v vˆ

n n¢ ¢= -( ) [ ] = -( ) -( ) [ ] = - -( ) [ ] = -- -
1 1 1 1

1t t t i
i

i
io o oi .

v v v v v v v0 1 1 1 1, . . . , , , , . . . , , . . . ,i t i t t q- + - +( )
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Observe that, for s < t, each term [v0 · · · v̂s · · · v̂t · · · vq] appears twice in the sum above.
It appears once with coefficient (-1)i+j-1 when i = s and j = t, and a second time with
coefficient (-1)i+j when j = s and i = t. It follows that the terms in the sum cancel pair-
wise, so that the sum is zero. The lemma is proved.

We shall see that the second part of Lemma 7.2.1.3 is fundamental to the whole
theory of homology groups. Here are some more basic definitions.

Definition. Let c Œ Cq(K). If ∂q(c) = 0, then we shall call c a q-cycle of K. If c = ∂q+1(d)
for some d Œ Cq+1(K), then we shall call c a q-boundary of K. The set of q-cycles and
q-boundaries of K will be denoted by Zq(K) and Bq(K), respectively.

Clearly,

so that we are dealing with subgroups of Cq(K). Furthermore, by Lemma 7.2.1.3(2),
the group Bq(K) is actually a subgroup of Zq(K). It follows that we have inclusions

and it makes sense to talk about the quotient group of q-cycles modulo q-boundaries.

Definition. The q-th homology group of K, Hq(K), is defined by

As in the case of Cq(K), it is notationally convenient to have the groups Bq(K),
Zq(K), and Hq(K) defined for all values of q. Of course, only values of q satisfying 0 £
q £ dim K are interesting. Negative values of q will in particular always be ignored in
computations.

With the definition of the homology groups we have arrived at some important
algebraic invariants for polyhedra, although we shall have to establish quite a few
other facts before we will be ready to prove this. We could have used other regular
figures, such as q-dimensional cubes, as building blocks for spaces to define these
groups but there are at least two reasons for the choice of simplices, namely, with
other figures both the orientation and the important maps ∂q would have been more
complicated to define.

7.2.1.4. Example. To compute the homology groups of K = {v0}.

Solution. Clearly,

so that

C K if q

C K and

B K

q ( ) = >
( ) =
( ) =

0 0

0
0 0

0

, ,

,

,

Zv

H K
Z K

B Kq
q

q
( ) =

( )
( ) .

B K Z K C Kq q q( ) Ã ( ) Ã ( )

Z K and B K imq q q q( ) = ( ) = +ker ,∂ ∂ 1
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K = ∂ <v0v1v2>

|K| = boundary of triangle

v0

v1

v2
Figure 7.3. A triangulating complex for a circle.

7.2.1.5. Example. To compute the homology groups of K = ∂< v0v1v2 >. See Figure
7.3.

Solution. In this case

Trivially,

Next, assume that

is a 1-cycle. Then

It follows that c - a = a - b = b - c = 0, which implies that a = b = c. Hence,

But B1(K) = 0, and so

H K Z K1 1( ) = ( ) ª Z.

Z K1 0 1 1 2 2 0( ) = [ ] + [ ] + [ ]( ) ªZ v v v v v v Z.

0 1

1 0 2 1 0 2

0 1 2

= ( )
= -( ) + -( ) + -( )
= -( ) + -( ) + -( )

∂ x

a a b b c c

c a a b b c

v v v v v v

v v v .

x a b c= [ ] + [ ] + [ ]v v v v v v0 1 1 2 2 0

H K Z K B K if qq q q( ) = ( ) = ( ) = >0 1, .

C K if q

C K and

C K

q ( ) = >
( ) = [ ] ≈ [ ] ≈ [ ]
( ) = ≈ ≈

0 1

1 0 1 1 2 2 0

0 0 1 2

, ,

,

.

Z v v Z v v Z v v

Zv Zv Zv

H K Z K B K if q and

H K Z K C K

q q q( ) = ( ) = ( ) = >
( ) = ( ) = ( ) ª

0 0

0 0 0

, ,

.Z



Before computing H0(K) it is convenient to introduce some more notation.

Definition. Let K be a simplicial complex. If x, y Œ Cq(K), then we shall say that 
x is homologous to y, or that x and y are homologous, and write x ~ y, provided that 
x - y = ∂q+1(w) for some w Œ Cq+1(K). Also, if z Œ Zq(K), let [z] = z + Bq(K) Œ Hq(K).
The coset [z] is called the homology class in Hq(K) determined by z.

Note. Recall that if v is a vertex of K, then we use v to denote the element of C0(K)
rather than [v]. Therefore, [v] will always mean the homology class of v.

The relation ~ on Cq(K) is clearly an equivalence relation and two q-cycles x, y Œ
Zq(K) Ã Cq(K) determine the same homology class in Hq(K) if and only if x ~ y.

Returning to the computation of H0(K) in Example 7.2.1.5, note that Z0(K) =
C0(K). Also,

because

This proves that H0(K) is generated by the homology class [v0]. On the other hand, if
n[v0] = 0, then

for some 1-chain

Applying ∂1 to the element x and equating the coefficients of the vertices v0, v1, and
v2 that one gets to the same coefficients in nv0 = nv0 + 0v1 + 0v2 easily shows that n =
0. It follows that the map from Z to H0(K) that sends k to k[v0] is an isomorphism,
that is,

This finishes Example 7.2.1.5.

7.2.1.6. Example. To compute the homology groups of K = ∂ <v0v1v2v3>. See Figure
7.4.

Solution. First of all, since there are no q-simplices for q > 2,

On the other hand,

H K if qq ( ) = >0 2, .

H K0( ) ª Z.

x a b c= [ ] + [ ] + [ ]v v v v v v0 1 1 2 2 0 .

n xv0 1= ( )∂

∂ ∂1 0 1 1 0 1 1 2 2 1v v v v v v v v[ ]( ) = - [ ]( ) = -and .

v v v0 1 2~ ~
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Now B2(K) = 0 and ∂0 = 0. Therefore, H2(K) = Z2(K) and Z0(K) = C0(K). To compute
the group Z2(K), let

be a 2-cycle. By definition, ∂2(z) = 0. Computing the coefficients of the 1-simplices in
∂2(z) and setting them equal to 0 implies that a = -b = -c = d. In other words,

and so

We could compute H1(K) by calculating Z1(K) and B1(K) using arguments as
before, but the approach to calculating homology groups by explicitly determining
the group of cycles and the group of boundaries would become very tedious as spaces
get more complicated. To simplify computations it is helpful to use certain tricks and
shortcuts. The point is that we are looking for homology classes. Any representative
cycle for such a class will do, and so we are free to replace any such cycle by a homol-
ogous one.

Let z be a 1-chain. The equation

shows that the chains [v2v3] and [v2v1] + [v1v3] are homologous. Therefore, if the ori-
ented 1-simplex [v2v3] appears in z with some nonzero coefficient, then we can replace
[v2v3] by [v2v1] + [v1v3] to get a homologous 1-chain z1 in which [v2v3] does not appear.

v v v v v v v v v2 3 2 1 1 3 2 1 2 3[ ] = [ ] + [ ]+ [ ]( )∂

H K2( ) ª Z.

Z K2 0 2 1 0 1 3 1 2 3 0 3 2( ) = [ ] ≈ [ ] ≈ [ ] ≈ [ ]( )Z v v v v v v v v v v v v ,

z = [ ] + [ ] + [ ] + [ ]a b c dv v v v v v v v v v v v0 1 2 0 1 3 1 2 3 0 2 3

C K

C K and

C K

2 0 1 2 0 1 3 1 2 3 0 2 3

1 0 1 1 2 0 2 0 3 3 2 1 3

0 0 1 2

( ) = [ ] ≈ [ ] ≈ [ ] ≈ [ ]
( ) = [ ] ≈ [ ] ≈ [ ] ≈ [ ] ≈ [ ] ≈ [ ]
( ) = ≈ ≈ ≈

Z v v v Z v v v Z v v v Z v v v

Z v v Z v v Z v v Z v v Z v v Z v v

Zv Zv Zv Zv

,

,

33.
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K = ∂ <v0v1v2v3>

|K| = boundary of tetrahedron

v0
v1

v2

v3
Figure 7.4. A triangulating complex for a sphere.



Similarly, we may replace any occurrence of [v1v2] in z1 by [v1v0] + [v0v2]. This will
give us a 1-chain z2, which is homologous to the original z and which contains neither
[v2v3] nor [v1v2]. If we assume further that z actually was a 1-cycle, then z2 will be a
1-cycle and [v0v2] cannot appear in z2 either, otherwise the coefficient of v2 in ∂1(z2)
would not vanish. An argument similar to the one used in the computation of H1(K)
in Example 7.2.1.5 now shows that z2 must in fact be a multiple of

In other words, H1(K) is generated by [x]. On the other hand, x = ∂2([v0v1v3]) and so
[x] = 0 and we have proved that

Finally, the group H0(K) can be computed like in Example 7.2.1.5. The first step
is to show that H0(K) is generated by [v0]. Next, one shows that n[v0] = 0 implies that
n = 0. We again get that

This finishes Example 7.2.1.6.

7.2.1.7. Example. The simplicial complex K in Figure 7.5 triangulates the torus. We
want to compute the homology groups of K.

Solution. Again, since there are no q-simplices for q > 2,

To compute H2(K), orient the 2-simplices s in K as indicated by the circular arrows
in Figure 7.5. In this example, the notation [s] will denote the 2-simplex s together
with that preferred orientation. Let S denote the element in C2(K) that is the sum of
these oriented 2-simplices, that is,

H K if qq ( ) = >0 2, .

H K0( ) ª Z.

H K1 0( ) = .

x = [ ] + [ ] + [ ]v v v v v v0 1 1 3 3 0 .

370 7 Algebraic Topology

v0

v2 v6

v5 v7

v8

v1

v0 v3 v4 v0

v1

v2

v0
v4v3

v

v

u u

|K| = S1 ¥ S1
Figure 7.5. A triangulating complex for the

torus.



For example, [v0v2v8] is one oriented simplex that appears in the sum S.

Claim 1. S is a 2-cycle.

To see that ∂2(S) = 0, consider an arbitrary 1-simplex vivj in K. If vivj is a face of
the two 2-simplices s and s¢, then the coefficients of [vivj] in ∂2([s]) is the negative of
the coefficient of [vivj] in ∂2([s¢]). It follows that the coefficient of [vivj] in ∂2(S) is zero.

Claim 2. [S] generates Z2(K).

To prove Claim 2 let z be a 2-cycle. Let s and s¢ be an arbitrary pair of 2-simplices
in K that meet in an edge vivj. It is easy to see that the coefficient of [vivj] will vanish
in ∂2(z) if and only if [s] and [s¢] appear in z with the same multiplicity. Since this is
true for all pairs of adjacent 2-simplices in K, we must have that z = aS for some
integer a.

Claim 1 and 2 prove that

To determine H1(K), define two 1-cycles u and v by

Claim 3. H1(K) is generated by [u] and [v].

To prove Claim 3 observe that any 1-chain z is homologous to a 1-chain z1 of the
form

We leave this as an exercise for the reader. For example, one can start by first replac-
ing any appearing [v2v3] in z by [v2v6] + [v6v3], then replacing any [v2v6] by [v2v1] +
[v1v6], and so on. Each of these replacements produces a new chain that is homolo-
gous to the previous one, so that the final chain z1 is homologous to z. This is similar
to what we did in Example 7.2.1.6. If we were to start with a 1-cycle z, then z1 will
also be a 1-cycle. However, for an element like z1 to be a 1-cycle, it must satisfy two
other properties. First, ai must be 0 for i = 7, 8, 9, 10; otherwise, one or more of the
vertices v5, v6, v7, and v8 would appear in ∂1(z1) with a nonzero coefficient. Second,
a1 = a2 = a3 and a4 = a5 = a6; otherwise, ∂1(z1) would not be zero. This shows that any
1-cycle z is homologous to a 1-cycle of the form au + bv, where a, b Œ Z and Claim 3
is proved.

Claim 4. The homology classes [u] and [v] are linearly independent.

z a a a a a

a a a a a for some ai

1 1 0 3 2 3 4 3 4 0 4 0 1 5 1 2

6 2 0 7 3 6 8 6 5 9 4 8 10 8 7

= [ ] + [ ] + [ ] + [ ] + [ ]
+ [ ] + [ ] + [ ] + [ ] + [ ] Œ

v v v v v v v v v v

v v v v v v v v v v Z, .

u and v= [ ] + [ ] + [ ] = [ ] + [ ] + [ ]v v v v v v v v v v v v0 1 1 2 2 0 0 3 3 4 4 0 .

H K Z K2 2( ) = ( ) = ªZ ZS .

S = [ ]
-

Â s
s2 simplex in K

.
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Assume that

in H1(K) for some integers a and b. It follows that the cycle au + bv is a boundary,
that is,

for some 2-chain x. Let [s] be any oriented 2-simplex that appears in x. The simplex
s will have at least one edge vivj that is different from those appearing in u and v.
Since every edge belongs to precisely two 2-simplices, let s¢ be the other 2-simplex
that has vivj for an edge. The only way that the coefficient of [vivj] will vanish in ∂2(x)
is the coefficients of [s] and [s¢] in x are equal. A simple extension of this argument
shows that every oriented 2-simplex [s] of K must appear in x with the same coeffi-
cient. Therefore, x = kS, for some integer k and where S is the 2-chain defined earlier,
and

This means that a = b = 0 and Claim 4 is proved.
Claim 3 and 4 prove that the map that sends (a,b) Œ Z ≈ Z to a[u] + b[v] Œ H1(K)

is an isomorphism and

Finally, one can show that

using the same argument as in Examples 7.2.1.5 and 7.2.1.6. This finishes Example
7.2.1.7.

7.2.1.8. Example. The simplicial complex K in Figure 7.6 triangulates the projec-
tive plane. We want to compute the homology groups of K.

H K0( ) ª Z

H K1( ) ª ≈Z Z.

∂ ∂ ∂2 2 2 0 0x k k k( ) = Â( ) = Â( ) = ◊ = .

au bv x+ = ( )∂2

a u b v[ ] + [ ] = 0

372 7 Algebraic Topology

v3

v2

v1

v0 v5 v4 v3

v2

v1

v0

v4

v7

v6 v8

v9

v5
u

u

|K| = P2
Figure 7.6. A triangulating complex for the

projective plane.



Solution. We shall only sketch the computation of H1(K) and H2(K) in this example
and leave the details and the computation of the other groups as an exercise to the
reader.

Claim 1. Z2(K) = 0.

Orient the 2-simplices in K as shown in Figure 7.6. If z is any nonzero 2-cycle,
then z must contain all the oriented 2-simplices of K with equal multiplicity. For
example, if

then all the oriented 2-simplices adjacent to v6v7v9 must appear with the same mul-
tiplicity because that is the only way that the boundary of z can vanish. In other words,
z must be of the form aS where S is the sum of all the oriented 2-simplices. But

where

It follows that a must be zero and Claim 1 is proved. This also shows that

Claim 2. If z is a 1-cycle, then z is homologous to ku for some integer k.

Claim 2 is proved by first showing that z is homologous to a 1-cycle z1 of the form

But since ∂1(z1) = 0 we must have a7 = a8 = a9 = a10 = 0. Finally, one shows that all the
remaining 1-simplices in z1 must appear with the same multiplicity, proving Claim 2.

Claim 3. [u] π 0.

If u = ∂2(c) for some 2-chain c, then one can show by an argument similar to the one
in the proof of Claim 1 that all the oriented 2-simplices must appear in c with multi-
plicity 1, that is, c = S. This contradicts the fact that ∂(S) = 2u, and proves Claim 3.

Claims 2 and 3 and the fact that 2[u] = 0 (since ∂(S) = 2u) clearly prove that

This finishes what we have to say about Example 7.2.1.8.

H K1 2( ) ª Z .

z a a a a a

a a a a a for some ai

1 1 0 1 2 1 2 3 2 3 4 3 4 5 4 5

6 5 0 7 4 7 8 7 6 9 5 9 10 9 8

= [ ] + [ ] + [ ] + [ ] + [ ]
+ [ ] + [ ] + [ ] + [ ] + [ ] Œ

v v v v v v v v v v

v v v v v v v v v v Z, .

H K2 0( ) = .

u = [ ] + [ ] + [ ] + [ ] + [ ] + [ ]v v v v v v v v v v v v0 1 1 2 2 3 3 4 4 5 5 0 .

∂ Â( ) = 2u,

z a= [ ] +v v v6 7 9 . . . ,
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One can see from the examples above that homology groups of a simplicial com-
plex K do give us important information about the holes in the underlying space ΩKΩ.
A point, which has no holes at all, had zero homology groups above dimension zero.
In Examples 7.2.1.5 and 7.2.1.7 the generators of H1(K) were associated in a natural
way with one-dimensional holes. The two-dimensional hole in the sphere and the
torus corresponded to the generator of H2(K). The fact that the group H0(K) was non-
zero in all of our examples (it was isomorphic to Z) also makes sense if one recalls
that 0-dimensional holes intuitively correspond to imbedded 0-spheres and S0 con-
sists of two points. Exercise 7.2.1.2 asks you to prove that the rank of H0(K) equals
the number of connected components of ΩKΩ. The spaces in our examples were all con-
nected and had a single connected component.

Working through our examples should also have brought out another point, namely,
the algebraic nature of homology theory. Although our original motivation was to
detect geometric “spherical” holes (perhaps even imbedded spheres), the “homological
holes,” or k-cycles, are more general. For example, the results in the case of the projec-
tive plane may have been somewhat unexpected for someone new to homology (twice
the generator of H1(K) was zero and there was no 2-cycle) but they all make sense once
one understands this algebraic nature of homology a little better. A k-cycle for a simpli-
cial complex cannot always be represented as an imbedded k-sphere in ΩKΩ and an
imbedded k-sphere in ΩKΩwhose corresponding k-cycle is homologous to zero does not
necessarily bound a (k + 1)-disk in ΩKΩ. The general question of when k-cycles can be rep-
resented by imbedded k-spheres and when imbedded k-spheres bound (k + 1)-disks is
extremely interesting but often difficult to answer, even for manifolds. For example, it is
already nontrivial to determine those 1-cycles that can be represented by imbedded
circles in the simple case of the torus. The fact is that homology theory is really associ-
ated to abstract simplicial complexes because all that it needs is an appropriate opera-
tor ∂q on linear combinations of formal symbols of the form [v0v1 · · · vq]. We may have
used some geometric intuition to motivate our proofs, but the proofs themselves were
independent of it. This is the reason that the study of topology that deals with simplicial
complexes is called combinatorial topology. We shall see in Section 7.2.5 how a com-
puter can compute homology groups. However we look at it though, we should be
excited by the prospect that we have a theory that detects geometric invariants.

We move on and introduce some more standard terminology. Let K be a simpli-
cial complex. The group Cq(K) is by definition a finitely generated free abelian group
with the q-simplices of K forming a set of generators. Since subgroups and quotient
groups of finitely generated abelian groups are again finitely generated, we conclude
that Hq(K) is finitely generated. It follows from the fundamental theorem about such
groups (Theorem B.5.7) that

where Fq is a free group and Tq is the torsion subgroup of Hq(K).

Definition. The rank of Fq, which is also the rank of Hq(K), is called the qth Betti
number of K and will be denoted by bq(K). The torsion coefficients of Tq are called
the qth torsion coefficients of K.

Clearly, once one knows the Betti numbers and torsion coefficients, one knows
the homology groups. The Betti numbers and torsion coefficients for Examples
7.2.1.4–8 above are easily determined.

H K F Tq q q( ) ª ≈
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Let us show how homology groups can be used to tackle the problem of classify-
ing topological spaces. At the moment homology groups have only been defined for
simplicial complexes, but we could define the homology groups of a polyhedron to be
the homology groups of a simplicial complex that triangulates it. The problem is that
spaces can be triangulated in many different ways. Therefore, the next theorem, which
asserts the topological invariance of homology groups, is essential here. Its proof will
be given shortly.

7.2.1.9. Theorem. Suppose that K and L are simplicial complexes and that ΩKΩ is
homeomorphic to ΩLΩ. Then Hq(K) is isomorphic to Hq(L) for all q.

Proof. This is an immediate corollary of Theorem 7.2.3.1 in Section 7.2.3 since
homeomorphisms are homotopy equivalences.

Definition. Let X be a polyhedron. Choose any triangulation (K,j) for X and define
the qth homology group of X, Hq(X), by Hq(X) = Hq(K). The qth Betti number of X,
bq(X), and the qth torsion coefficients of X are defined to be the rank and torsion coef-
ficients of K, respectively.

Although the groups Hq(X) are not uniquely defined since a polyhedron has many
triangulations, they are well defined up to isomorphism by Theorem 7.2.1.9. This is
all we need to be able to conclude that homology groups give us topological invari-
ants of spaces and not just properties of particular triangulations and are therefore
exactly the type of computable algebraic invariants we were looking for in Section
6.2. See [AgoM76] for a wide range of applications justifying the hard work we put
into our effort. Some of these will also be discussed in Section 7.2.3. The next chapter
will also look into the subject further, but at this point we are lacking one important
ingredient of the theory, namely, we do not yet know how homology groups behave
with respect to maps.

Table 7.2.1.1 summarizes the computations we have made so far and some that
come from Exercises 7.2.1.3–4. The results are stated for polyhedra rather than sim-
plicial complexes because that is what we are after anyway, not the intermediate struc-
tures, the simplicial complexes.

We finish this section with a comment about the concept of orientability. Looking
at Table 7.2.1.1 we see that what distinguishes closed compact orientable surfaces S
from nonorientable ones is the group H2(S), or, to put it another way, the ability to
find a nonzero 2-cycle. A little reflection shows that we got a nonzero 2-cycle precisely
because it was possible to orient the 2-simplices of a triangulating simplicial complex
so that adjacent 2-simplices induced the opposite orientation on the 1-simplex in their
boundary which they had in common. This shows that the condition of orientability
as described in Chapter 1 is actually easily computed by combinatorial methods – one
simply needs to find a 2-cycle.

7.2.2 Induced Maps

In Section 7.2.1 we defined a mapping from simplicial complexes K to their homol-
ogy groups Hq(K). We now show how this mapping of objects extends to a mapping
of maps in a natural way.
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Definition. Let K and L be simplicial complexes and let f :K Æ L be a simplicial
map. Define maps

as follows:

If q < 0 or q > dim K, then f#q = 0.
If 0 £ q £ dim K, then f#q is the unique homomorphism defined by the condition
that

for each oriented q-simplex [v0v1 · · · vq] of Cq(K). (The map f#q is well defined
because the group Cq(K) is a free group with generators [v0v1 · · · vq].)

7.2.2.1. Lemma. ∂q ° f#q = f#q-1 °∂q for all q. In other words, for all q there is a com-
mutative diagram

Proof. Clearly, it suffices to show that

for every oriented q-simplex [v0v1 · · · vq] in K and we do this by computing both sides
of this equation.

Case 1. The vertices f(v0), f(v1), . . . , and f(vq) are all distinct.

∂ ∂q q q q q qf fo o# #( ) ◊ ◊ ◊[ ]( ) = ( ) ◊ ◊ ◊[ ]( )-v v v v v v0 1 1 0 1

C K C L

C K C L

q
f

q

q q

q f q

q

q

( ) æ Æææ ( )
Ø Ø
( ) æ Æææ ( )- -

-

#

#
.

∂ ∂

1 1
1

f f f f if f f for i j

otherwise

q q q i j# , ,

, ,

v v v v v v v v0 1 0 1

0

◊ ◊ ◊[ ]( ) = ( ) ( ) ◊ ◊ ◊ ( )[ ] ( ) π ( ) π
=

f C K C Lq q q# : ( ) Æ ( )
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Table 7.2.1.1 Some spaces and their homology groups.

X H0(X) H1(X) H2(X) Hi(X)
i > 2

D0 Z 0 0 0
S0 Z ≈ Z 0 0 0
S1 Z Z 0 0
S2 Z 0 Z 0
S1 ¥ S1 Z Z ≈ Z Z 0
P2 Z Z2 0 0
The Klein bottle Z Z ≈ Z2 0 0
Orientable surface (genus k) Z k (Z ≈ Z) Z 0
Nonorientable surface (genus k) Z Zk-1 ≈ Z2 0 0



In this case,

Case 2. The vertices f(v1), f(v2), . . . , and f(vq) are all distinct, but f(v0) = f(v1).

The assumption f(v0) = f(v1) implies that

and

Case 3. The vertices f(v0), f(v1), . . . , f(vi), . . . , f(vq) are all distinct, but f(vi) = f(vj)
for some i < j.

This case follows easily from Case 2 because [v0v1 · · · vq] = ±[vivjv0v1 · · · v̂i · · · v̂j
· · · vq].

Case 4. There exist distinct indices i, j, and k, such that f(vi) = f(vj) = f(vk).

In this case,

and

∂ ∂q q q qfo #( ) ◊ ◊ ◊[ ]( ) = ( ) =v v v0 1 0 0

f f

f

f f f

q q q q
i

i

q
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i

i

q

q i q
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#

ˆ

ˆ

- -
=

=
-
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Ê
ËÁ

ˆ
¯̃

= -( ) ( ) ◊ ◊ ◊ ◊ ◊ ◊[ ]

= -( ) ( ) ( ) ◊ ◊ ◊

Â

Â
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0

0

0
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1 2

1

1
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The lemma is proved.

Now the maps f#q are no more interesting by themselves than were the chain groups
Cq(K). What will be important are the maps that they induce on the homology groups,
and Lemma 7.2.2.1 is essential for that. We generalize the construction somewhat.

Definition. A chain map

is a “vector” j = (. . . ,j-1,j0,j1, . . .) of homomorphisms jq :Cq(K) Æ Cq(L) satisfying
∂q °jq = jq-1 °∂q.

Having a chain map (. . . ,j-1,j0,j1, . . .) is equivalent to having a commutative
diagram

Note that f# = (. . . , f#-1,f#0,f#1, . . .) is a chain map by Lemma 7.2.2.1 called the chain
map induced by the simplicial map f.

7.2.2.2. Lemma. Let j :C#(K) Æ C#(L) be an arbitrary chain map. Then

(1) j(Zq(K)) Õ Zq(L), for all q.
(2) j(Bq(K)) Õ Bq(L), for all q.

Proof. This follows easily from the definition of a chain map. If z Œ Zq(K), then

which proves (1). To prove (2), note that

Definition. Let j :C#(K) Æ C#(L) be an arbitrary chain map. Define maps

j* ( ) Æ ( )q q qH K H L:

j ∂ ∂ jq p p qc c+ + +( )( ) = ( )( )1 1 1 .

∂ j j ∂ jq q q q qz z( )( ) = ( )( ) = ( ) =- -1 1 0 0,

◊ ◊ ◊ æ Æææ ( ) æ Æææ ( ) æ Ææ ( ) Æ ◊ ◊ ◊
Ø Ø Ø

◊ ◊ ◊ æ Æææ ( ) æ Æææ ( ) æ Ææ ( ) Æ ◊ ◊ ◊

+ +

+ +

+ -

+ -

+ -

∂ ∂ ∂

∂ ∂ ∂

j j j

q q q

q q q

C K C K C K

C L C L C L

q q q

q q q

q q q

2 1

2 1

1 1

1 1

1 1

j : # #C K C L( ) Æ ( )

f f

f

q q q q
t

t

q

t q

t

t

q

q t q

# #

#

ˆ

ˆ .

( )( ) ◊ ◊ ◊[ ]( ) = ( ) -( ) ◊ ◊ ◊ ◊ ◊ ◊[ ]
Ê
ËÁ

ˆ
¯̃

= -( ) ( ) ◊ ◊ ◊ ◊ ◊ ◊[ ] =

- -
=

=
-

Â

Â

1 0 1 1
0

0

0
1 0

1

1 0

o∂ v v v v v v

v v v

378 7 Algebraic Topology



by

7.2.2.3. Lemma. j*q is a well-defined homomorphism.

Proof. First of all, by Lemma 7.2.2.2(1), the definition makes sense, since jq(z) Œ
Zq(L). To show that j*q is well defined, let a Œ Hq(K) and assume that a = [z] = [z¢], z,
z¢ Œ Zq(K). Then z - z¢ belongs to Bq(K). Therefore,

by Lemma 7.2.2.2(2), that is, [jq(z)] = [jq(z¢)]. This proves that j*q is well defined.
Next, let [zi] = zi + Bq(K) be elements of Hq(K). Then

Thus, j*q is a homomorphism and Lemma 7.2.2.3 is proved.

Definition. The maps j*q are called the homomorphisms on homology induced by the
chain map j. In particular, if f :K Æ L is a simplicial map, we shall let

denote the map on the homology group induced by the chain map f#.

Consider the simplicial complex K = ∂ ·v0v1v2Ò. The next two examples compute
f*q for two simplicial maps f :K Æ K.

7.2.2.4. Example. To compute f*q when f is the constant map defined by f(vi) = v0.

Solution. The given f induces the constant map ΩfΩ:ΩKΩÆΩKΩ, ΩfΩ(x) = v0. We know
from Example 7.2.1.5 that

and

so that we only have to worry about what happens in dimensions 0 and 1. The map
f#1 :C1(K) Æ C1(K) is obviously the zero map by definition, and so f*1 :H1(K) Æ H1(K)

H K for qq ( ) = >0 1,

H K H K0 1( ) ª ( ) ª Z

f H K H Lq q q* ( ) Æ ( ):

j j
j
j j
j j

j j

* *

* *

[ ] + [ ]( ) = +( ) + ( )( )
= +( ) + ( )
= ( ) + ( )( ) + ( )
= ( ) + ( )( ) + ( ) + ( )( )
= [ ]( ) +

q q q

q q

q q q

q q q q

q q

z z z z B K

z z L

z z B L

z B L z B L

z z

1 2 1 2

1 2

1 2

1 2

1 2

B

[[ ]( ).

j j jq q q qz z z z B L( ) - ( ) = -( ) Œ ( )¢ ¢

j j* [ ]( ) = ( )[ ] Œ ( )q q qz z z Z K, .
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is also the zero map. Next, note that the group H0(K) is generated by the element 
v0 + B0(K) and

This implies that f*0 is the identity map.

7.2.2.5. Example. To compute f*q when f is defined by f(v0) = v0, f(v1) = v2, and f(v2)
= v1.

Solution. It follows from an argument similar to the one in the previous example
that f*q = 0 if q > 1 and f*0 is the identity map. Only f*1 is different this time. Recall
from Example 7.2.1.5 that

is a generator of H1(K). Since

it follows that f*1 is the negative of the identity map.

The next lemma lists some basic properties of the maps f#q and f*q that are easy
to prove.

7.2.2.6. Lemma. Let f :K Æ L and g :L Æ M be simplicial maps between simplicial
complexes. Then

(1) (g° f)#q = g#q ° f#q : Cq(K) Æ Cq(M).
(2) (g° f)*q = g*q ° f*q : Hq(K) Æ Hq(M).
(3) If K = L and f = 1K, then f#q and f*q are also the identity homomorphisms.

Proof. This is Exercise 7.2.2.1.

Now simplicial complexes and maps are basically only tools for studying topo-
logical spaces and continuous maps. We shall show next how continuous maps induce
homomorphisms on homology groups.

Definition. Let K and L be simplicial complexes and suppose that f :ΩKΩ Æ ΩLΩ is a
continuous map. A simplicial approximation to f is a simplicial map j :K Æ L with the
following property: If x Œ ΩKΩ and if f(x) Œ s for some simplex s Œ L, then ΩjΩ(x) Œ s.

The next lemma summarizes two important properties of simplicial 
approximations.

f a f B K

f f f f f f B K

B K

a

* ( ) = [ ] + [ ] + [ ]( ) + ( )
= ( ) ( )[ ] + ( ) ( )[ ] + ( ) ( )[ ]( ) + ( )
= [ ] + [ ] + [ ]( ) + ( )
= -

1 1 0 1 1 2 2 0 1

0 1 1 2 2 0 1

0 2 2 1 1 0 1

# v v v v v v

v v v v v v

v v v v v v

a B K= [ ] + [ ] + [ ]( ) + ( )v v v v v v0 1 1 2 2 0 1

f B K f B K B K* + ( )( ) = ( ) + ( ) = + ( )0 0 0 0 0 0 0 0v v v# .
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7.2.2.7. Lemma. Let f : ΩKΩ Æ ΩLΩ be a continuous map and suppose that j :K Æ L
is a simplicial approximation to f.

(1) The map ΩjΩ :ΩKΩ Æ ΩLΩ is homotopic to f.
(2) If f = ΩyΩ, where y :K Æ L is a simplicial map, then y = j.

Proof. To prove (1), define a homotopy h :ΩKΩ ¥ [0,1] Æ ΩLΩ between f and ΩjΩ
by

for x Œ ΩKΩ and t Œ [0,1]. That h(x,t) actually lies in ΩLΩ follows from the fact that
ΩjΩ(x) and f(x) lie in a simplex of L, which means that the segment [ΩjΩ(x),f(x)] is
contained in ΩLΩ because simplices are convex.

To prove (2), let v be a vertex of K. Then w = f(v) is a vertex of L. Since a vertex
is also a 0-simplex, the definition of a simplicial approximation implies that j(v) = w.
This proves the lemma.

Part (2) of Lemma 7.2.2.7 means that the only simplicial approximation to a sim-
plicial map is the map itself. An arbitrary continuous map does not have a unique
simplicial approximation, however.

If K is a simplicial complex, define a new simplicial complex, denoted by sd(K),
as follows:

(1) The vertices of sd(K) are the barycenters b(s) of the simplices s in K.
(2) The q-simplices of sd(K), q > 0, are all the q-simplices of the form b(s0)b(s1)

· · · b(sq), where the si are distinct simplices of K and s0 � s1 � . . . � sq.

It is easy to show that sd(K) is a simplicial complex (Exercise 7.2.2.3) that is a sub-
division of K. Clearly, Ωsd(K)Ω = ΩKΩ.

Definition. The simplicial complex sd(K) is called the (first) barycentric subdivision
of K. The nth barycentric subdivision of K, denoted by sdn(K), is defined inductively
by

Figure 7.7 shows a simplex and its barycentric subdivision.

7.2.2.8. Theorem. (The Simplicial Approximation Theorem) Let K and L be sim-
plicial complexes and suppose that f :ΩKΩÆΩLΩ is a continuous map. Then there is 
an integer N ≥ 0 such that for each n ≥ N, f admits a simplicial approximation j :
sdn(K) Æ L.

Proof. See [AgoM76].

sd K K

sd K sd sd K for nn n

0

1 1

( ) =
( ) = ( )( ) ≥-

,

, .

h t t t fx x x,( ) = ( ) + -( ) ( )j 1
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Associated to barycentric subdivisions are natural homomorphisms

that correspond to sending an oriented simplex [s] to the sum of the oriented sim-
plices into which the barycentric subdivision divides s. For example,

See Figure 7.7. More precisely, define the maps sd#q inductively on the oriented 
simplices as follows:

(1) If v is a vertex of K, then sd#0(v) = v.
(2) Assume 0 < q < dim K and sd#q-1 has been defined. If [s] is an oriented q-

simplex of K, then

(We are using the expression w[v0v1 . . . vq] to denote the oriented simplex
[wv0v1 . . . vq] and let this operation distribute over sums.)

If q < 0 or dim K < q, then we define sd#q to be the zero map.

7.2.2.9. Lemma. The maps sd#q are well-defined homomorphisms. Furthermore, 
∂q ° sd#q = sd#q-1 °∂q, so that sd# = (. . . , sd#-1,sd#0,sd#1, . . .) is a chain map that induces
homomorphisms

Proof. This is an easy exercise. See [AgoM76].

We can extend our definitions and define homomorphisms

sd C K C sd Kq
n

q q
n

# : ( ) Æ ( )( )

sd H K H sd Kq q q* : .( ) Æ ( )( )

sd b sdq q q# # .s s s[ ]( ) = ( ) [ ]( )( )-1 ∂

sd b b b b b b

b b b b
#2 0 1 2 0 1 2 0 0 1 0 1 2 0 1 1 0 1 2 1 1 2

0 1 2 1 2 2 0 1 2 2 0 2

v v v v v v v v v v v v v v v v v v v v v

v v v v v v v v v v v v

[ ]( ) = ( ) ( )[ ] + ( ) ( )[ ] + ( ) ( )[ ]
+ ( ) ( )[ ] + ( ) ( )[ ]] + ( ) ( )[ ]b bv v v v v v0 1 2 0 2 0 .

sd C K C sd Kq q q# : ( ) Æ ( )( )
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inductively by

The maps sdn
#q induce homomorphisms (actually isomorphisms)

We are now ready to show how continuous maps induce homomorphisms on
homology groups. Let K and L be simplicial complexes and let

be a continuous map. The Simplicial Approximation Theorem implies that there is an
n ≥ 0, such that f admits a simplicial approximation

Definition. The homomorphism

defined by

is called the homomorphism induced on the qth homology group by the continuous
map f.

7.2.2.10. Lemma.

(1) f*q is a well-defined homomorphism.
(2) If K = L and f = 1K, then f*q is the identity homomorphism.
(3) If M is a simplicial complex and g :ΩLΩ Æ ΩMΩ is a continuous map, then 

(g° f)*q = g*q ° f*q.

Proof. See [AgoM76].

7.2.2.11. Theorem. Let K and L be simplicial complexes and suppose that f, 
g :ΩKΩÆΩLΩ are continuous maps that are homotopic. Then f*q = g*q :Hq(K) Æ Hq(L)
for all q.

Proof. See [AgoM76].

f sdq q q
n

* * *= j o

f H K H Lq q q* ( ) Æ ( ):

j : .sd K Ln ( ) Æ

f K L: Æ

sd H K H sd Kq
n

q q
n
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sd zero map for n
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q
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7.2.3 Applications of Homology Theory

Before describing some applications, it is worthwhile to briefly pause and summarize
what we have accomplished so far; otherwise, it is easy to lose sight of the global
picture and get lost in a sequence of lemmas and theorems. The main results can be
summarized by the following:

Fact 1. For every simplicial complex K and every integer q there is an abelian group
Hq(K) called the qth homology group of K.

Fact 2. For every continuous map f :ΩKΩÆΩLΩbetween the underlying spaces of two
simplicial complexes K and L there are a homomorphisms

whose natural properties are best summarized by the commutative diagram

f H K H Lq q q* ( ) Æ ( ):
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|K|
|K|

|K|

|L|

|M|
1

Hq(K) Hq(K)

Hq(L)

Hq(M)

f*q

(1|K|)*q

g*q

(f ¢)*q

(g°f)*q

1Hq(K)

f , f ¢

f � f ¢

g

=

=

The top line in the diagram deals with simplicial complexes and maps and
the bottom lines deal with groups and homomorphisms.

For our purposes, Facts 1 and 2 contain essentially everything that we need to know
about homology groups and induced maps. Many of our applications will follow in a
purely formal way from Facts 1 and 2 with the geometry being irrelevant. Actual defini-
tions are only needed for a few specific computations. There is one caveat though. We
would really like to have well-defined homology groups and induced maps associated to
polyhedra and their continuous maps. Singular homology theory (see Section 7.6)
accomplishes that, but we shall at times pretend that we have this here also. To avoid
such pretense and restore rigor we could pick a fixed triangulation for each polyhedron
and translate continuous maps between them to maps between the underlying spaces of
the simplicial complexes. This would validate our arguments but the messy details
would obscure geometric ideas. By the way, homology theory can be described axiomat-
ically by means of the so-called Eilenberg-Steenrod axioms. Facts 1 and 2 correspond to
a subset of these axioms. Statements made in Chapter 6 about algebraic topology asso-
ciating “algebraic invariants” to spaces should make a lot more sense now.

7.2.3.1. Theorem. Two simplicial complexes K and L with homotopy equivalent
underlying spaces have isomorphic homology groups.



Proof. Let f :ΩKΩÆΩLΩand g : ΩLΩ Æ ΩKΩ be continuous maps such that g° f � 1ΩKΩ
and f °g � 1ΩLΩ. Then Fact 2 implies that

for all q. It follows that f*q is an isomorphism and the theorem is proved.

7.2.3.2. Corollary. Homotopy equivalent polyhedra have isomorphic homology
groups.

7.2.3.3. Corollary. If a polyhedron X has the homotopy type of a point, then

In particular, these are the homology groups of Dn.

There is one consequence of Theorem 7.2.3.1 that would be disappointing to
anyone who might have hoped to use homology groups to classify topological spaces.
They are not strong enough invariants to distinguish spaces up to homeomorphism.
For example, Corollary 7.2.3.3 shows that both a single point and the disk Dn have
the same homology groups but are clearly not homeomorphic. The best we could hope
for now is that they distinguish spaces up to homotopy type. Unfortunately, they fail
to do even that except in special cases. (There exist polyhedra, such as the spaces in
Example 7.2.4.7, that have isomorphic homology groups but that are not homotopy
equivalent.) Nevertheless, homology groups are strong enough to enable one to prove
many negative results, that is, if one can show that two spaces have nonisomorphic
homology groups, then it follows that the are not homeomorphic. In fact, they would
not even have the same homotopy type.

Before we state several invariance results that can be proved using homology
groups, we need to compute the homology groups for the higher-dimensional spheres.

7.2.3.4. Theorem. If n ≥ 1, then

Proof. The case n = 1 is left as an easy exercise for the reader. Assume that n ≥ 2.
Let s = v0v1 · · · vn be any n-simplex. Let M = ·sÒ and N = ∂M be the simplicial 
complexes associated to the simplex and its boundary. Since Sn-1 is homeomorphic
to ∂s = ΩNΩ, it suffices to compute Hk(N). The definition of the simplicial homology
groups implies that

Therefore,

B N B M for k n or k n

Z N Z M for all k
k k

k k
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and Corollary 7.2.3.3 proves Theorem 7.2.3.4 for these values of k.
To compute Hn-1(N), note that

and so

We shall show that S is in fact a generator of Zn-1(N). If

then

Let s < t. The coefficient of the oriented (n - 2)-simplex [v0v1 . . . v̂s . . . v̂t . . . vn] is

Since this coefficient has to vanish, it is easy to check that z = a0S. It follows that 
Zn-1(N) = ZS. But Bn-1(N) = 0 and Zn-1(N) has no elements of finite order, so that

and the theorem is proved.

7.2.3.5. Theorem.

(1) The spheres Sn and Sm have the same homotopy type only when n = m. In
particular, Sn is homeomorphic to Sm if and only if n = m.

(2) The Euclidean space Rn is homeomorphic to Rm only when n = m.

Proof. Part (1) follows from Theorem 7.2.3.4 and Corollary 7.2.3.2. To prove part
(2), we use the stereographic projection

pn
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n
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Suppose that h :Rn Æ Rm is a homeomorphism. Define

by

The map H will be a homeomorphism and therefore n = m by part (1). The theorem
is proved.

The next three theorems are less trivial.

7.2.3.6. Theorem. (Invariance of Dimension) If K and L are simplicial complexes
with ΩKΩ ª ΩLΩ, then dim K = dim L.

Proof. See [AgoM76].

Definition. The dimension of a polyhedron is defined to be the dimension of any
simplicial complex that triangulates it.

Theorem 7.2.3.6 shows the dimension of a polyhedron is a well-defined topologi-
cal invariant.

7.2.3.7. Theorem. (Invariance of Boundary) If K and L are simplicial complexes
and h :ΩKΩ Æ ΩLΩ is a homeomorphism, then h(Ω∂KΩ) = Ω∂LΩ.

Proof. See [AgoM76].

Theorem 7.2.3.7 makes it possible to define the boundary of a polyhedron.

Definition. Let X be a polyhedron. Define the boundary of X, denoted by ∂X, by

where (K,j) is any triangulation of X.

7.2.3.8. Theorem (Invariance of Domain) If U and V are homeomorphic subsets of
Rn and if U is open in Rn, then so is V.

Proof. See [AgoM76].

Returning to our definition of topological manifolds in Section 5.3, we are finally
able to prove the claimed invariance of two aspects of the definition.

7.2.3.9. Corollary. The dimension of a topological manifold and its boundary are
well defined.

∂ j ∂X = ( )K ,
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Proof. The corollary is an easy consequence of Theorems 7.2.3.5 and 7.2.3.8.

Next, we return to the Euler characteristic as defined in Chapter 6. We are now
in a position to put this invariant in a more general context. What we had in Chapter
6 was a combinatorial concept defined for surfaces that was easy to compute by some
simple counting and yet was claimed to be a topological invariant. We can now define
that topological invariant in a rigorous manner.

Definition. If K is a simplicial complex, let nq(K) denote the number of q-simplices
in K and define the Euler-Poincaré characteristic of K, c(K), by

What makes c(K) a topological invariant is the fact that it is related to the Betti
numbers bq(K) of K.

7.2.3.10. Theorem. (The Euler-Poincaré Formula) Let K be a simplicial complex.
Then

Proof. By definition, the boundary map ∂q :Cq(K) Æ Bq-1(K) is onto and has kernel
Zq(K) and the natural projection Zq(K) Æ Hq(K) is onto and has kernel Bq(K). There-
fore, Theorem B.5.8 implies that

These identities and the fact that rank (Cq(K)) = nq(K) gives us that
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since the rank (Bi(K)) terms cancel each other in the sum. This proves the theorem
because bq(K) = rank(Hq(K)).

It follows from Theorem 7.2.3.10 that this combinatorially defined number c(K)
is a topological invariant associated to the underlying space ΩKΩ. In fact, it is 
more than that and actually depends only on the homotopy type of ΩKΩ because that
is the case for the Betti numbers.

Theorem 7.2.3.10 suggests the following definition of a well-known invariant of a
polyhedron.

Definition. If X is a polyhedron, the Euler-Poincaré characteristic of X, c(X), is
defined by

The typical way to compute the Euler-Poincaré characteristic of a polyhedron X
is of course to use a simplicial complex K that triangulates X and use the numbers
nq(K). This is also how it is often defined. Our definition has the advantage that the
property of it being an intrinsic invariant of a polyhedron that is independent of any
triangulation is built into the definition.

7.2.4 Cell Complexes

The homology theory we developed was based on simplices, but as we have men-
tioned before, we could have used other spaces as our basic building blocks, such as
n-dimensional cubes, for example. The main advantage of simplices is a theoretical
one. They simplify some formulas and constructions. A big practical disadvantage of
simplices, however, is the fact that the simplicial complexes that triangulate spaces
typically contain a great many simplices. Even a simplicial complex that triangulates
a simple space such as the basic n-dimensional simplex already has an exponential
number of simplices (as a function of n). Any algorithm for computing homology
groups based on simplices would quickly be overwhelmed by their number for all but
relatively low-dimensional spaces. Fortunately, one can define homology groups based
on more efficient decompositions of spaces.

Definition. An open k-cell is any space c that is homeomorphic to Rk. The integer k is
called its dimension is denoted by dim c. An open cell is an open c-cell for some k. A cell
decomposition of a space is a collection of disjoint open cells whose union is the space.

Note that the dimension of an open cell is well defined by Theorem 7.2.3.5. 
A straightforward generalization of simplicial complexes is to look for cell decom-
positions where we allow curved cells rather than just linear cells like the simplices.
Actually, we shall go a step further.

Definition. A map f : (X,A) Æ (Y,B) is called a relative homeomorphism if f :X Æ Y
is a continuous map that maps X – A homeomorphically onto Y – B.

c bX X( ) = -( ) ( )
=

Â 1
0

q
q

q

Xdim

.
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Note that the relative homeomorphism f need not be a homeomorphism because
it might not be one-to-one on A.

Definition. Let A be a closed subspace of X. We shall say that X is obtained from A
by adjoining k n-cells ci

n, n ≥ 0 and 0 £ i < k (we allow k = •), if the following holds:

(1) Each ci
n is a subspace of X and X = A » cn

0 » cn
1 ». . . .

(2) If

c
.

i
n = ci

n « A,

then ci
n - c

.
i
n and cj

n - c
.

j
n are disjoint for i π j.

(3) X has the weak topology with respect to the sets A and ci
n.

(4) For each n-cell ci
n, there exists a relative homeomorphism

that maps Sn-1 onto the set c
. n

i . The map fi is called a characteristic map for
the n-cell ci

n and gi = fiΩSn-1 is called the attaching map for the n-cell ci
n.

Condition (4) justifies us calling ci
n an n-cell or cell or closed n-cell (one can show that

ci
n is a closed subset of X). Note however that, although ci

n - c
. n

i is an open n-cell since
it is homeomorphic to Rn, ci

n may not be homeomorphic to the closed disk Dn because
f is not required to be one-to-one on Sn-1.

Like in Section 5.3, one can think of these attaching maps as specifying a way to
glue an n-disk Dn to a space along its boundary Sn-1. This continues the cut-and-paste
paradigm from the last chapter except that we are not doing any “cutting” right now.
An alternate description of X is that

7.2.4.1. Example. The n-sphere Sn can be thought of as a space obtained from a
point by attaching an n-cell using an attaching map that collapses the boundary of
the n-cell to a point. For example, consider S1. A natural characteristic map is

which shows that S1 can be thought of as the point (-1,0) with a 1-cell attached.

Definition. A CW complex C is a Hausdorff space X together with a sequence of
closed subspaces Xn of X, n = -1, 0, 1, . . . , satisfying

(1) f = X-1 Ã X0 Ã X1 Ã . . .

(2)

(3) Each Xn is obtained from Xn-1 by adjoining n-cells ci
n via characteristic 

maps fn,i. The n-cells ci
n are called the (closed) n-cells of C and ci

n - c
. n

i = ci
n -

Xn-1, the open n-cells.
(4) X has the weak topology with respect to the subspaces Xn.

X X=
=

•
n

n 0
U .

f f t t t: , , cos ,sin ,D S1 111= -[ ] Æ ( ) = ( )p p

X A D D= » » »g
n

g
n

0 1 . . . .

fi n n
i
n

i
n: , ( , )

.
D S c c-( ) Æ1
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The space X is called the underlying space of the CW complex C and denoted by 
ΩCΩ. If the subspace structure on X defined by C is clear from the context, one often
uses the phrase “the CW complex X” to refer to C. We define Cn, called the n-skeleton
of C, to be the CW complex with underlying space Xn and sequence of closed 
subspaces

The subspace Xn is usually also called the n-skeleton of C. A CW complex C is finite
if it has only finitely many cells. It has dimension n if it has at least one n-cell but no
m-cells for m > n (equivalently, ΩCnΩ = ΩCn+1Ω = . . .). If C has dimension n for some 
n (denoted by dim C = n), then it is said to be finite dimensional, otherwise, it is said
to be infinite dimensional. If the characteristic maps are all homeomorphisms, then
the CW complex is said to be regular, otherwise, it is irregular.

CW complexes were first defined by J.H.C. Whitehead in 1949. The “C” stands for
“closure finite” and the “W” for “weak topology.” The term closure finite is the tech-
nical term for the property that every closed n-cell of a CW complex C meets only a
finite number of open cells in ΩCn-1Ω. For a proof that this property is satisfied by a
CW complex as defined above see [LunW69]. Whitehead’s definition of a CW complex
actually differed slightly from the one given here. He started with abstract cell decom-
positions for which that property had to be stipulated. One can easily show that con-
dition (4) of the definition is trivially satisfied for finite CW complexes and can be
omitted if one restricts oneself to such complexes.

A CW complex defines a cell decomposition for a space. One normally thinks of
a CW complex as a space where one start with some 0-cells (points), then attaches
some 1-cells, then some 2-cells, and so on. Cells are to CW complexes what sim-
plices are to simplicial complexes. (Note that the initial set of points can also be
thought of in terms of having attached some 0-cells to an initially empty space.)
Clearly, every simplicial complex is a regular CW complex because it defines an
obvious sequence of cells and skeletons. The main difference between the cell decom-
position induced on a space X by a regular CW complex and a triangulation of X
is that cells have a flexible number of faces and are potentially “curved” from the
start.

Figure 7.8 shows the inductive aspect of the definition of a regular CW complex
by showing the steps that represent a disk as a regular CW complex. We started with
two points and then attached two 1-cells and one 2-cell. It is easy to construct a regular
cell decomposition for a torus by dividing a rectangle into four equal subrectangles
and identifying the boundary pieces appropriately. This structure will have four 0-
cells, eight 1-cells, and four 2-cells and is quite an improvement, in terms of numbers
of cells, over the standard triangulation of the torus shown in Figure 7.5. In fact, 
we can even do better. Figure 7.9 shows a CW complex whose underlying space 
is the torus and which consists of four cells – one 0-cell a, two 1-cells b and c, and
one 2-cell. The boundary of the 2-cell in Figure 7.9(a) is mapped onto the 1-skeleton
a » b » c in Figure 7.9(b) by mapping the edges b1 and c1 to b and c, respectively,
using the orientation indicated by the arrows. This will send the vertices a and ai to
a. Note that if we were to cut along the circles b and c in the torus we would unfold
it to a rectangle.

X X X X X X- -Ã Ã Ã Ã Ã Ã1 0 1 1. . . . . . .n n n
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Definition. A subcomplex of a CW complex C is a CW complex L such that

(1) ΩLΩ is a closed subspace of ΩCΩ,
(2) ΩLnΩ = ΩLΩ « ΩCnΩ, and
(3) each cell of L is a cell of C.

Definition. A CW complex is locally finite if each of its closed cells meets only a 
finite number of other cells (of any dimension). It is normal if each closed cell is a
subcomplex.

Definition. Let C and C¢ be CW complexes. A continuous map f : ΩCΩ Æ ΩC¢Ω is called
a cellular map if f(Cq) Õ (C¢q) for all q.

Here are some basic facts that hold for CW complexes. Some are easy to prove
and are good exercises for the reader. The proofs of those that are not can be found
in [LunW69] or [Jäni84].

(1) Polyhedra are CW complexes. Every finite CW complex has the homotopy type
of a polyhedron and every finite regular normal CW complex can be triangulated. 
We can drop the finiteness conditions here if we allow infinite simplicial complexes.
CW complexes are more general than polyhedra however. In particular, [LunW69] gives
an example of a finite three-dimensional CW complex that cannot be triangulated.
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(2) If C is a CW complex, then its skeletons Cn are subcomplexes.
(3) Arbitrary unions and intersections of subcomplexes are subcomplexes.
(4) Every compact subset of a CW complex lies in a finite subcomplex.
(5) A CW complex is compact if and only if it is finite.
(6) If X is a locally finite CW complex, then any union of closed cells is a closed

subset of X.
(7) If X is a CW complex and Y is an arbitrary topological space, then a map f :

X Æ Y is continuous if and only if fΩs is continuous for every closed cell s in X.
(8) Let X and Y be CW complexes and let A be a subcomplex of X. Any continu-

ous map f :X Æ Y that is cellular on A is homotopic to a cellular map g :X Æ Y rela-
tive to A, that is, there is a homotopy h :X ¥ I Æ Y so that h(x,0) = f(x), h(x,1) = g(x),
and h(a,t) = f(a), for all a Œ A and t Œ I.

(9) If the spaces X and Y are finite CW complexes, then so is X ¥ Y.
(10) If the subspace A is a subcomplex of a CW complex X, then the cells in X –

A and one 0-cell corresponding to A define a cell decomposition for X/A that make it
into a CW complex.

(11) Attaching cells to a CW complex produces a CW complex.
(12) Let X and Y be CW complexes and let A be a subcomplex of X. If f :A Æ Y

is a cellular map, then Y »f X is a CW complex.
(13) A CW complex is a paracompact space and hence also a normal space.
(14) A connected CW complex is metrizable if and only if it is locally finite.

The cell decompositions of CW complexes are usually more natural decomposi-
tions of a space than triangulations and there are typically substantially fewer cells in
a cell decomposition than simplices in a triangulation, but there are a number of other
advantages to using CW complexes, making them the spaces of choice for topologists.
For example, properties (9)–(11) are easy for CW complexes and would be more com-
plicated for simplicial complexes because it would involve subdivisions.

It is possible to define a homology theory for a finite regular normal CW complex
C (actually for any CW complex, but this gets more involved) merely by copying what
was done in the case of simplicial complexes. For details see [CooF67]. In other words,
one can define the notion of an oriented cell and then the group of q-chains, Cq(C),
of C is obtained by taking formal linear combinations of oriented q-cells in C. There
is also a natural boundary map

and well-defined group

called the qth homology group of C.
Using the fact that any continuous map f :ΩCΩ Æ ΩC¢Ω between the underlying

spaces of two CW complexes C and C¢ is homotopic to a cellular map, there is an
induced natural homomorphism

f H C H Cq q q* ( ) Æ ( ): .¢

H C
imq

q

q
( ) =

+

ker ∂
∂ 1

∂q q qC C C C: ( ) Æ ( )-1
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The groups Hq(C) and homomorphisms f*q satisfy all the properties that their 
simplicial analogs did. Finally, one can prove the important theorem that asserts 
that if C is a finite regular normal CW complex and K is a simplicial complex with
ΩCΩ homeomorphic to ΩKΩ, then Hq(C) is isomorphic to Hq(K). This means that one
can obtain the homology groups of a polyhedron either from a simplicial or a cell
structure.

Definition. If C is a finite CW complex, then let nq(C) denote the number of q-cells
in C and define the Euler-Poincaré characteristic of C, c(C), by

The Euler-Poincaré characteristic of a CW complex is really nothing new.

7.2.4.2. Theorem. If C is a finite regular normal CW complex, then c(C) = c(ΩCΩ).

Proof. See [CooF67]. Note that the hypothesis implies that ΩCΩ is a polyhedron.

We know that the Euler-Poincaré characteristic and the dimension of a polyhe-
dron is a topological invariant. There is an interesting related fact.

Definition. If f(x0,x1, . . .) is any function of the indeterminates xi and if C is a CW
complex, then define

We shall say that f is topologically invariant function if f(C) = f(C¢) for all CW com-
plexes C and C¢ with homeomorphic underlying spaces.

7.2.4.3. Example. If

then

7.2.4.4. Theorem. The only topologically invariant functions f(x0,x1, . . .) on CW
complexes are those that are functions of the Euler-Poincaré characteristic and 
the dimension, that is, if C and C¢ are CW complexes with dim C = dim C¢ and
c(C) = c(C¢), then f(C) = f(C¢).

Proof. See [AgoM76].

f C n C n C n C n C and g C C( ) = ( ) - ( ) ( ) + ( ) ( ) = ( )0 1 3 7
2 c .

f x x x x x x and g x x x
q

q
q

0 1 0 1 3 7
2

0 1
0

1, , . . . , , . . . ,( ) = - + ( ) = -( )
=

•

Â

f C f n C n C( ) = ( ) ( )( )0 1, , . . . .

c C n C
q

q
q

C
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=
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.
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This leads to the next topic in this section. Given a polyhedron X, what is the
fewest number of cells needed in a cellular decomposition of X? The answer to this
question is not only important for computation purposes but also to the topological
classification of polyhedra. Exercise 6.5.5 gave a partial answer in some special cases
to the corresponding question for simplicial complexes.

Definition. Let cn be an n-cell of a CW complex C that does not belong to any higher-
dimensional cell of C. If cn-1 is an (n - 1)-cell of C that is contained in cn but to no
other higher-dimensional cell of C, then cn-1 is called a free cell of C.

Let C be a CW complex. Let cn be a top-dimensional cell in C that contains a free
(n - 1)-dimensional cell cn-1. Let C¢ be the subcomplex one obtains after removing the
cells cn and cn-1, that is,

Definition. We shall say that C¢ is obtained from C by an elementary collapse from
cn-1 through cn. Conversely, we say that C is obtained from C¢ by an elementary expan-
sion using the cell pair (cn, cn-1).

See Figure 7.10. An elementary collapse through a free cell gives rise to a natural
attaching maps, so that C can be thought of as being obtained from C¢ by attaching
an n-cell.

Definition. Let C and C¢ be CW complexes. We say that C collapses to C¢ and write
C Ø C¢ if there exists a sequence of CW complexes C0 = C … C1 … . . . … Cn = C¢ so that
Ci+1 is obtained from Ci via an elementary collapse. In that case we also say that C¢
expands to C.

Figure 7.10 shows a sequence of elementary collapses that collapse a disk to a
point. Figure 7.11 shows how a cell decomposition of an annulus can be collapsed to
a circle. The numbers in the 2-cells of Figure 7.11(a) indicate the order of their col-
lapse, which are then to be followed by the 1-cell collapses whose order is indicated
by the numbers in Figure 7.11(b). We end up with the circle in Figure 7.11(c).

C C n n n n¢ = - -( ) - -( )- -c c c c
. .

.1 1
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7.2.4.5. Theorem. Let C and C¢ be CW complexes. If C collapses to C¢, then ΩC¢Ω is
a deformation retract of ΩCΩ.

Proof. It suffices to prove the theorem in the case where C¢ is obtained from C by
an elementary collapse from an (n - 1)-cell cn-1 through an n-cell cn because the
general case can be proved by induction. See Figure 7.12. The result follows from the
fact that it is easy to construct a deformation retraction of Dn to Sn-1

- by “pushing
down” through Dn from S+

n-1 and is left as an exercise.

7.2.4.6. Corollary. Let C and C¢ be CW complexes. If C collapses to C¢, then C and
C¢ have the same homotopy type. In fact, the inclusion map of ΩC¢Ω in ΩCΩ is a homo-
topy equivalence.

Proof. This follows from Theorems 7.2.4.5 and 5.7.7.

Corollary 7.2.4.6 just reinforces what we have said before, namely, that homo-
logy and homotopy invariants are not good enough for detecting when spaces are
homeomorphic.

Returning to the problem of finding a minimal cell decomposition of a polyhe-
dron X, the idea is to start with any CW complex C with ΩCΩ = X and then

(1) Collapse C as much as possible to a CW complex C1.
(2) Pick a cell c1 in C1 that does not belong to any other cell in C1, remove it from

C1, and collapse the remainder as much as possible to another CW complex C2.
(3) Repeat step (2) as long as there are cells ci to pick.
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This will lead to a cell complex built up from a sequence of cells c1¢, c2¢, . . . , ck¢
derived from the ci whose underlying space has the same homotopy type as ΩCΩ. This
approach leads to Table 7.2.4.1 that lists the number of cells in a minimal cell decom-
positions for compact connected surfaces (without boundary).

Will the construction above lead to a minimal cell decomposition? In low dimen-
sions, the answer is yes, but in general, the answer is no. To see why this is so, con-
sider Figure 7.13 which shows part of the steps in the construction of the space called
the dunce hat. Start with the triangle shown in Figure 7.13(a) and identify the three
edges c1

1, c1
2, and c1

3 using the orientation of the edges shown by the arrows. Figure
7.13(b) does not yet show the final picture because one still needs to identify the two
edges marked c. The dunce hat is clearly not collapsible because it has no free edges
but one can prove that it is contractible. A consequence is that there are cellular
decompositions so that if one is not careful about choosing the sequence of collapses,
one might not end up with a minimal cell decomposition. This can happen even 
in the case of a simple space such as Dn. There are cellular decompositions of Dn,
n > 2, with the property that no sequence of collapses will end up with a point. See
[BurM71].

If we look back over the examples we have given of topological spaces since we
started talking about topology in Chapter 5, we can see that, as far as manifolds were
concerned, they have been pretty limited and were restricted to such “standard” spaces
as surfaces, Rn, Sn, Dn, Pn, etc. We got the most variety of spaces from surfaces, but
our classification theorems showed that they also fit into simple patterns. Once one
gets above dimension 2, however, things change drastically and a neat classification
is no longer possible. Just so that the reader does not think that there is nothing new
out there and gets bored with all the current examples, we finish this section by defin-
ing a well-known class of three-dimensional manifolds that are quite different from
the ones we have seen up to now. Fortunately, they are relatively easy to describe in
terms of a cell structure.
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Table 7.2.4.1 Minimal cell decompositions.

X n0(X) n1(X) n2(X)

Orientable surface (genus k) 1 2k 1
Nonorientable surface (genus k) 1 k 1

v1 v

c

v

c
v2 v3c1

c1 c1

c2

(a) (b)

3

21

Figure 7.13. The dunce hat.



Definition. Let p and q be relatively prime positive integers and assume that 
0 £ q £ p/2. Define the lens space L(p,q) as follows: Let S be the reflection in R3 about
the x-y plane and let R be the rotation about the z-axis through an angle of 2pq/p
radians. Then

where ~ is the equivalence relation induced by the identification of x Œ S2
+ with R(S(x)).

In other words, we are identifying the point x in the upper hemisphere with the point
in the lower hemisphere obtained by reflecting x about the xy-plane and then rotat-
ing by 2pq/p. We are not identifying any points in the interior of the disk D3.

Here is another description of L(p,q). See Figure 7.14(a). Let

The points ck divide the equator of the sphere into p equal arcs. Let a = e3 and b =
-e3 be the north and south pole of the sphere, respectively. We get the following cell
decomposition of D3:

0-cells: a, b, ck
1-cells: the great arcs from a to ck and from b to ck and the arcs along the unit

circle from ck to ck+1
2-cells: 2p curved triangles, denoted by vckck+1, bounded by the arcs from v to ck,

from ck to ck+1, and from ck+1 back to v, where v is a or b
3-cells: D3

(All indices are taken modulo p.) L(p,q) is now the disk D3 where we identify the
curved triangle ackck+1 in the upper hemisphere with the curved triangle in the lower
hemisphere bck+qck+q+1 and the vertices are identified in the order listed. Figure 7.14(b)
shows the case of L(5,1) where we have linearized the construction and have replaced
the sphere by a suspension of a five-sided polygon. The shaded triangle ac3c4 gets
identified with the shaded triangle bc4c0.

ck k p k p k p= ( ) = -cos ,sin , , , , . . . , .2 2 0 0 1 1p p

L p q, ~,( ) = D3
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Note that L(1,q) is the sphere S3, but this case has to be treated in a slightly
special way if one wants a nice cell decomposition. One has to add another vertex
at -e1.

Lens spaces were first defined by Tietze ([Tiet08]). We list some of their proper-
ties below:

(1) They are closed compact three-dimensional manifolds.
(2) They can be triangulated.
(3) L(2,1) is homeomorphic to P3.
(4) The homology groups of L(p,q) are

(5) c(L(p,q)) = 0.
(6) L(p,q) is homeomorphic to L(p,q¢) if and only if

(7) L(p,q) and L(p,q¢) have the same homotopy type if and only if qq¢ or -qq¢ is a
quadratic residue modulo p.

Properties (1)–(3) are easy to prove. Figure 7.14(b) should make clear what one
needs to do for (2). For properties (4) and (5) use the cell decomposition of L(p,q)
induced by the cell decomposition of D3 described above to compute its homology
groups. Property (6) was proved by Reidemeister ([Reid35]). Property (7) was proved
by Whitehead ([Whit41]). More details about lens spaces can also be found in [SeiT80]
and [HilW60].

Although it is obvious that homotopy equivalence is a weaker relation than home-
omorphism (consider a disk and a point or, more generally, any deformation retract),
it is not so obvious with respect to some types of spaces like manifolds without bound-
ary. This makes the next example and lens spaces all the more interesting.

7.2.4.7. Example. A consequence of properties (6) and (7) is that the 3-manifolds
L(7,1) and L(7,2) have the same homotopy type but are not homeomorphic.

7.2.5 Incidence Matrices

This section discusses the so-called incidence matrices. These matrices played an
important role in the history of combinatorial topology. An excellent detailed account
of these matrices can be found in [Cair68]. Computers can easily use them to compute
homology groups.
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Let K be a simplicial complex of dimension n and, as before, let nq = nq(K) be the
number of q-simplices in K. For each q, assume that we have chosen an orientation
for all the q-simplices in K and let

be the set of these oriented q-simplices of K. The set Sq
+ will be a basis for the free

abelian group Cq(K). Define integers eq
ij by the equation

and note that

Definition. The integer eq
ij is called the incidence number of [sq

i] and [sq
j+1]. The qth

incidence matrix Eq, 0 £ q < dim K, of K is defined to be the (nq ¥ nq+1)-matrix

whose rows and columns are indexed by the elements of Sq
+ and S+

q+1, respectively.

7.2.5.1. Example. Suppose that K = ·v0v1v2Ò and that we have chosen the Sq
+ as

follows:

The incidence matrices of K are then given by
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Next, we define the incidence matrices with respect to arbitrary bases

for the free abelian groups Cq(K). Since we have bases, there are unique integers hq
ij

such that

Definition. The qth incidence matrix of K with respect to the bases {cq+1} and {cq} is
defined to be the (nq ¥ nq+1)-matrix

Let c be an arbitrary (q + 1)-chain. If we express c with respect to the basis {cq+1},
then

for some unique integers aj and

This shows that the boundary homomorphisms ∂q of K, and hence the homology
groups of K, are completely determined once the incidence matrices are known with
respect to some bases. Our goal in the remainder of this section is to show how the
homology groups of K can be computed from knowledge of the basic incidence matri-
ces Eq of K alone.

7.2.5.2. Lemma. Choose a basis for each group Cq(K). The matrix product of any
two successive incidence matrices with respect to any such choice of bases is the zero
matrix. Using the notation above, this means that for all q

Proof. This is a straightforward consequence of Lemma 7.2.1.3(2).
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Lemma 7.2.5.2 and some purely algebraic manipulations of matrices lead to

7.2.5.3. Theorem. It is possible to choose bases for all the groups Cq(K) simul-
taneously with respect to which the qth incidence matrix has the normalized 
form

(7.3)

where

(1) the dq’s are positive integers,
(2) dq

i+1 divides dq
i, and

(3) nq - gq ≥ gq-1.

Outline of Proof. Choose a basis

for each group Cq(K) and assume that Nq is the qth incidence matrix with respect
to these bases. We shall transform the matrices Nq into the form (7.3) by appropri-
ate changes to the bases and so we need to know how changes to bases affect the
matrices. First of all, note that changing the basis {cq} clearly affects both Nq and
Nq-1.

Claim 1. The matrices Nq have the following properties:

(a) Replacing

corresponds to changing all signs in the ith column of Nq-1 and ith row of Nq.
(b) Replacing

c c c c by c c c cq
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corresponds to interchanging the ith and jth columns in Nq-1 and the ith and jth rows
in Nq

(c) Replacing

for some integers k and i π j corresponds to replacing the ith column of Nq-1 by
the ith column plus k times the jth column and replacing the jth row of Nq by the jth
row minus k times the ith row.

The proof of parts (a) and (b) of Claim 1 is easy and left to the reader. Part (c) is
readily deduced from the identities

and

Claim 1 is proved.
Now consider the 0th incidence matrix E0 = (e0

ij) of K. Note how each column has
only two nonzero entries, namely, one +1 and one -1.

Claim 2. Any integer matrix P = (pij) having the property that each nonzero
column has precisely two nonzero entries, one of which is +1 and the other is -1, can
be transformed into a normalized matrix as defined by Theorem 7.2.5.3 via a sequence
of matrix operations of the type described in Claim 1 above.

Claim 2 is proved by induction on the number of rows (or columns) in P. 
First, by interchanging rows, we may assume that p11 = +1. The next step is to 
zero out the first row past the first entry by a sequence of column operations. 
Specifically, if p1j = ±1 for some j > 1, then replace the jth column of P by ( jth column
- p1j (1st column)). The new matrix P¢ = (p¢ij) will have p¢1j = 0 and either the 
jth column is zero or there are again just two nonzero entries, one +1 and the other
-1. By a sequence of such operations we arrive at a matrix P≤ = (p≤ij) such that 
p≤11 = 1, p≤1j = 0, for j > 1, and P≤ also satisfies the same hypotheses as the original
matrix P. Now p≤i1 will equal -1 for some i > 1. Subtracting the 1st row from the
ith row of P≤, will give us a matrix Q = (qij), such that qi1 = q1j = 0 for i, j > 1. The 
inductive hypothesis would then apply to the matrix (qij)2£i,2£j and finish the proof
of Claim 2.

In order to prove our theorem we shall prove the following assertions for 
k > 0:
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Assertion Ak: It is possible to choose bases for the groups Cq(K) so that with
respect to these bases the incidence matrices are

(All other incidence matrices are uninteresting since they are zero.)

Note the following important property of the matrices Nk in assertion Ak that
follows easily from the fact that, by Lemma 7.2.5.2, the product N*

k-1Nk is the zero 
matrix.

Claim 3. The last gk-1 rows of the matrix Nk in assertion Ak are zero.

We shall use induction on k to prove the assertions Ak above. Assertion A1 follows
from Claims 1 and 2. These claims show that E0 can be transformed into the nor-
malized form N0

* by changing the basis of C0(K) and C1(K) appropriately. Although
the 1st incidence matrix may have changed, the ith incidence matrices for i ≥ 2 have
not. One can check that the proof actually shows that d0

i = 1, for 1 £ i £ g0.
Assume inductively that assertion Ak is true for some k > 0. One can show that Nk

can be transformed into a normalized form such as is required for Theorem 7.2.5.3
by a sequence of matrix operations of the type described in Claim 1. This fact is a
special case of a normalization theorem for matrices that is not hard but too long to
reproduce here. A proof can, for example, be found in [Cair68].

Using Claim 3 we may assume that only the first nk - gk-1 rows of Nk will be affected
as we transform the matrix to its normalized form. Translating the changes we make
in the matrix into the corresponding changes in the basis for Ck(K) and their effect
on N*

k-1, we can easily see that only the first nk - gk-1 columns of N*
k-1 are manipu-

lated. Since these consist entirely of zeros, the matrix N*
k-1 is left unchanged. Of

course, the matrix Ek+1 will certainly have changed, but we have established assertion
Ak+1. By induction, assertion Ak is true for all k > 0. Assertion An proves Theorem
7.2.5.3.

A detailed version of the qth incidence matrix (7.3) of Theorem 7.2.5.3: Recall
that the rows and columns of the incidence matrices are indexed by the chains in the
chosen basis of the appropriate chain groups of K. Therefore, assume that 0 £ q £ n
and that the basis elements of Cq(K) corresponding to the rows of Nq

* have been labeled
as follows:

The first gq basis elements are labeled as Aq
i ’s (note that g-1 = gn = 0),

the last gq-1 are labeled as Cq
i ’s,

the remaining b = nq - gq - gq-1 basis elements, if there are any, are labeled as Bq
i ’s,

and
if the dq

i are the elements shown in the normalized matrix (7.3), then the integer
rq is defined by

With this notation, matrix (7.3) can be rewritten as

r dq i
qi= >{ }( )max , .0 1

N N N E Ek k k n
* *

- + -0 1 1 1, . . . , , , , . . . , .
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The detailed version of the incidence matrices makes computing the homology
groups of K easy because it tells us all we need to know about the groups Cq(K) and
homomorphisms ∂q. In particular, it is easy to see that

is a basis for Hq(K). Also,

o([Ai
q]) = di

q, with the di
q’s being the torsion coefficients of Hq(K),

o([Bi
q]) = •, and

rk Hq(K) = bq.

Finally, incidence matrices can be defined for CW complexes using their cells. All
the information about homology groups that one could deduce in the simplicial case
remain valid. This greatly simplifies computations because the dimensions of these
matrices will be much smaller.

7.2.6 The Mod 2 Homology Groups

A more precise name for the homology groups of a simplicial complex K as defined
in Section 7.2.1 is to call them the homology groups “with coefficients in Z.” The
reason is that chain group Cq(K) consisted of formal integer linear combinations of
oriented q-simplices. It is easy to generalize this.

Let G be an arbitrary abelian group and let Sq again denote the set of oriented q-
simplices of K. If 0 £ q £ dim K, define the group Cq(K;G) of q-chains with coefficients
in G by
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Clearly, Cq(K) is just Cq(K;Z). The elements of Cq(K;G) can be thought of as formal
sums

(7.4)

where ga Œ G, motivating the terminology. Elements are added by collecting the coef-
ficients of the a and then adding them using the group addition. Pretty much every-
thing we did earlier carries over without any problem if we simply replace Z by G.
There is a boundary homomorphism

and we can define the subgroup Zq(K;G) of q-cycles and the subgroup Bq(K;G) of q-
boundaries with coefficients in G. Again, Bq(K;G) Ã Zq(K;G). Finally,

Definition. The group

is called the qth homology group of K with coefficients in G.

Simplicial maps f : K Æ L induce homomorphisms

and one can again show that the homology groups Hq(K;G) are topological invariants
and so we can associate a unique (up to isomorphism) group Hq(X;G) to every poly-
hedron X. They are important new invariants associated to a space even though it
turns out that each is completely determined by Hq(X;Z) and Hq-1(X;Z) by the so-
called “universal coefficient theorem.” A very important special case is the case where
G = Z2 and it is worthwhile to look at that case more carefully.

Let K be simplicial complex. Since +1 is the same as -1 in Z2, there is no need to
orient the simplices of K to define Cq(K;Z2). It follows that if Tq is the set of all q-sim-
plices in K, then Cq(K;Z2) can be identified with the set of all maps

that is, an element of Cq(K;Z2) (usually called a mod 2 q-chain) can be thought of as
consisting of a linear sum of q-simplices of K. To add mod 2 q-chains we simply collect
the coefficients of like simplices but must remember that s + s = 0 for every s Œ Tq
because 2 = 0 in Z2. For example, if K is the simplicial complex determined by the
simplex v0v1v2v3, then

g Tq: ,Æ Z2
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and

(7.5)

Recall our intuitive discussion of “holes” in Section 7.2.1. It is what we are doing now
that makes precise the first approach to homology groups in that section.

The boundary map

satisfies

that is, ∂q sends the boundary of a q-simplex to the sum of all of its (q - 1)-dimen-
sional faces. Proving ∂q-1 ° ∂q = 0 is easy in this case because each (q - 2)-dimensional
face a q-simplex belongs to precisely two (q - 1)-dimensional faces of the simplex and
2 = 0 in Z2. The mod 2 homology groups of K, Hq(K;Z2), are now defined to be the
usual quotient group of the kernel of ∂q (called the mod 2 q-cycles) by the image of
∂q+1 (called the mod 2 q-boundaries).

We can relate the mod 2 q-chains of K to subsets of ΩKΩ.

Definition. Let c Œ Cq(K;G). The support of c, denoted by ΩcΩ, is the union of all the
q-simplices appearing in c with a nonzero coefficient.

Observe that if we represent q-chains c in Cq(K;Z2) by the subset ΩcΩ of ΩKΩ, which
is their support, then

(1) The subset Ωc + dΩ is the closure of the symmetric difference ΩcΩDΩdΩ of the
subsets ΩcΩ and ΩdΩ.

(2) The subset Ω∂q(c)Ω is the union of all the (q - 1)-simplices that are the face of
an odd number of q-simplices appearing in c.

Now, since Z2 is a field, the groups Cq(K;Z2), Zq(K;Z2), Bq(K;Z2), and Hq(K;Z2) are
actually vector spaces over Z2.

Definition. The qth connectivity number of K, kq(K), is defined to be the dimension
of the vector space Hq(K;Z2) over Z2. If X is a polyhedron, then the qth connectivity
number of X, kq(X), is defined to be the qth connectivity number of any simplicial
complex K that triangulates X.

Connectivity numbers are the mod 2 analogs of Betti numbers. They are well
defined in the case of a polyhedron because the groups Hq(X;Z2) are well defined up
to isomorphism.

∂q q
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q
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7.2.6.1. Theorem. Let K be a simplicial complex. Then

Proof. The proof of this theorem is the same as that of Theorem 7.2.3.10. The only
difference is that one uses the mod 2 groups now and works with the dimensions of
these vector spaces rather than the ranks of the corresponding groups in the usual
homology theory with integer coefficients. One also needs to use the fact that

7.2.6.2. Corollary. If X is a polyhedron, then

Connectivity numbers have a simple geometric interpretation in the special case
of surfaces.

7.2.6.3. Lemma. Let S be a closed and compact combinatorial surface. Then

(1) k0(S) = 1.
(2) k2(S) = 1.
(3) k1(S) = 2 - c(S).

Proof. Exercise 7.2.6.1(b) proves (1). Next, it is easy to see that H2(S;Z2) ª Z2 because
the sum of all the 2-simplices of S is a mod 2 2-cycle that generates H2(S;Z2). (We
should point out that this fact is actually a special case of Theorem 7.5.1(1) in Section
7.5.) This proves (2). Parts (1), (2), and Corollary 7.2.6.2 now imply (3).

Lemma 7.2.6.3 shows that the first connectivity number k1(S) (which is the only
one that is interesting for surfaces) does not depend on the orientability of the surface
S. This was certainly not the case with the first Betti number b1(S) and more evidence
that mod 2 homology theory does not detect orientability properties of spaces. We
shall also see this later with respect to the top dimensional homology groups of
pseudomanifolds. The next theorem is the main result that we are after right now.

7.2.6.4. Theorem. The first connectivity number k1(S) of a combinatorial surface S
equals the maximum number of distinct, but not necessarily disjoint, simple closed
curves in S along which one can cut and still have a connected set left over.

Outline of Proof. First of all, we need to explain the expression “simple closed
curves” in our current context. A collection of subsets Xi of S will be called a collec-
tion of simple closed curves in S if each Xi is homeomorphic to the circle S1 and there

c kX X( ) = -( ) ( )Â 1
q

q
q=0

 Xdim

.

dim ; . C K n Kq qZ2( ) = ( )

c kK K
q

q( ) = -( ) ( )Â 1
q=0

 Kdim
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is a triangulation (K,j) of S and subcomplexes Li of K such that j(ΩLiΩ) = Xi. We shall
use this notation in the argument below.

Define a number d(S) by

We need to prove that k1(S) = d(S). It is easy to see from the normal form for a surface
that was given in Chapter 6 and Lemma 7.2.6.3(3) that

(7.6)

Conversely, let d(S) = k and assume that k > k1(S). Let Si be the generator of
H1(Li;Z2) = Z1(Li;Z2) Õ Z1(K,Z2), that is, Si is the sum of the 1-simplices in Li. Since
k1(S) is the dimension of the vector space H1(K;Z2) and k > k1(S), the 1-cycles Si deter-
mine a linearly dependent set of elements in H1(K;Z2). Therefore, there must be a 2-
chain c Œ C2(K;Z2), so that

where ai Œ {0,1} and not all ai are zero. The chain c cannnot be the sum of all the 2-
simplices of K, because it would be easy to check that ∂2(c) = 0 in that case. Since we
are assuming that ∂2(c) π 0, at least one 2-simplex s of K does not belong to c. Using
this fact one shows that

is not connected. This contradicts our initial hypothesis and proves that k > k1(S) is
impossible, and so

(7.7)

Inequalities (7.6) and (7.7) prove the theorem.

Finally, the mod 2 homology groups can be computed using “mod 2” incidence
matrices.

7.3 Cohomology Groups

In addition to homology groups there are also cohomology groups associated to a
space. These groups are a kind of dual of the homology groups. We shall run into
them in Section 7.5.2 when we discuss the Poincaré duality theorem for manifolds.
They provide a formal setting that makes proving facts about homology easier, even
though they are closely related to the latter and add nothing new as far as the group
structures are concerned. However, it is possible to define a natural ring structure for
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them whose analog on the homology level is more complicated. This richer algebraic
structure leads to a whole host of new topological invariants. We outline the defini-
tion of cohomology groups in the case of simplicial complexes.

Let K be a simplicial complex.

Definition. The qth cochain group of K, denoted by Cq(K), is defined by

Define the coboundary map

by

Using the fact that ∂q-1 °∂q = 0, it is straightforward to check that dq+1
°dq = 0, so

that im dq-1 Õ ker dq. The elements of im dq-1 and ker dq are called q-coboundaries and
q-cocycles, respectively.

Definition. The qth cohomology group of K, denoted by Hq(K), is defined by

Definition. Let K and L be simplicial complexes and f :K Æ L a simplicial map.
Define the induced homomorphism

by

It is easy to show that

and so f#q induces well-defined induced homomorphisms

We mentioned earlier that cohomology groups do not add anything new as groups.
The following theorem is one example of this.
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7.3.1. Theorem. Let K be a simplicial complex. If Tq(K) is the torsion subgroup of
Hq(K) and if rq is the rank of Hq(K), then

Proof. See [Cair68].

Another point made earlier was that one important difference between co-
homology and homology is that cohomology admits a natural product. Here is how
one gets this product. First, order the vertices of the simplicial complex K and let “<”
denote this ordering.

Definition. If f Œ Cp(K) and g Œ Cq(K), then define f ◊g Œ Cp+q(K) by

for all oriented (p + q)-simplices [v0v1 . . . vp+q] of K with v0 < v1 < . . . vp+q. This product
of cochains induces a product

called the cup product.

Two distinct orderings of the vertices of K will induce isomorphic product struc-
tures on the cohomology groups. The cup product makes the cohomology groups into
a “graded ring.” As an example of how the cohomology ring gives more information,
consider the space X in Figure 7.15 that consists of the wedge of a sphere and two
circles. One can show that X has the same homology groups as the torus 
S1 ¥ S1 (Exercise 7.3.1), so that homology cannot tell those two spaces apart. On the
other hand, the cohomology ring structure of X and the torus are different (even
though both have the same cohomology groups). By the way, X does not have the
same homotopy type as the torus.

This concludes our brief overview of cohomology groups, but we shall get more
glimpses of them in the future.

» ( ) ¥ ( ) Æ ( )+: H K H K H Kp q p q

f g f gp q p p p q◊( ) ◊ ◊ ◊[ ]( ) = ◊ ◊ ◊[ ]( ) ◊ ◊ ◊[ ]( )+ + +v v v v v v v v v0 1 0 1 0 1

H K T K freeq
q( ) ª ( ) ≈ ( )-1  abelian group of rank rq .
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X = S2vS1vS1
Figure 7.15. A space with the same homology groups as the

torus.



7.4 Homotopy Theory

7.4.1 The Fundamental Group

We motivated homology theory by saying that it was an attempt to analyze the “holes”
in a space. For homology theory “holes” were treated algebraically, but we pointed
out at the time that the more natural classification of holes would be via homotopy
theory. We shall now take up this homotopy approach, beginning with the one-dimen-
sional “holes” or closed paths. By studying the number of homotopy classes of closed
paths we shall arrive at another important invariant associated to a topological space.
However, rather than studying maps of the circle it is convenient to use maps of an
interval where both end points are mapped to the same point because this simplifies
a number of formulas. Such maps are clearly equivalent to maps of a circle. Through-
out this section I will, as usual, denote the unit interval [0,1].

Let X be a pointed topological space with base point x0. We define a composition
or “product” of closed paths in X.

Definition. Given maps a, b : (I,∂I) Æ (X,x0) define a map a*b : (I,∂I) Æ (X,x0) by

See Figure 7.16. If one thinks of a and b as describing paths that one walks along,
then a*b corresponds to first walking along a at twice the original speed and then
along b, also at twice the speed. The next four lemmas lead up to the main result,
which is Theorem 7.4.1.5.

7.4.1.1. Lemma. Let a, a¢, b, b¢ : (I,∂I) Æ (X,x0). If a �∂I a¢ and b �∂I b¢, then a*b
�∂I a¢*b¢.

Proof. If f(t,s) and g(t,s) are homotopies between a, a¢ and b, b¢, respectively, then
the map

a b a

b

*( )( ) = ( ) £ £

= -( ) £ £

t t if t

t if t

2 0
1
2

2 1
1
2

1

, ,

, .
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a*b

a(0) = a(1)

a(2t)

b(0) = b(1)

b(2s–1)

a b

0 2t 1 0 12s–1

0 t 11/2 s Figure 7.16. The composition of closed paths.



defined by

is a homotopy between a*b and a¢*b¢. See Figure 7.17.

7.4.1.2. Lemma. Given maps a, b, g : (I,∂I) Æ (X,x0), then (a*b)*g �∂I a* (b*g).

Proof. It is easy to check that

and

The map h defined by

a b g a

b

g

* *( )( )( ) = ( ) £ £

= -( ) £ £

= -( ) £ £

t t for t

t for t

t for t

2 0
1
2

4 2
1
2

3
4

4 3
3
4

1

, ,

, ,

, .

a b g a

b

g

*( ) *( )( ) = ( ) £ £

= -( ) £ £

= -( ) £ £

t t for t

t for t

t for t

4 0
1
4

4 1
1
4

1
2

2 1
1
2

1

, ,

, ,

, ,

h t s f t s if t

g t s if t

, , , ,

, , ,

( ) = ( ) £ £

= -( ) £ £

2 0
1
2

2 1
1
2

1

h : , ,I I I I X x¥ ¥ » ¥( ) Æ ( )0 1 0∂ ∂
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Figure 7.17. The homotopies in Lemma 7.4.1.2.



is a homotopy between (a*b)*g and a* (b*g). See Figure 7.18.

Define the constant path c :I Æ X by c(t) = x0.

7.4.1.3. Lemma. For any a : (I,∂I) Æ (X,x0), a*c �∂I a �∂I c*a.

Proof. Define a map h by

Then h is a homotopy between a*c and a. See Figure 7.19. A similar homotopy can
be defined between c*a and a, proving the lemma.

7.4.1.4. Lemma. Given a, define b by b(t) = a(1 - t). Then a*b �∂I c �∂I b*a.

Proof. First observe that

a b a

a

*( )( ) = ( ) £ £

= -( ) £ £

t t for t

t for t
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It is easy to check that the map h defined by

is a homotopy between a*b and the constant path c. See Figure 7.20. A similar map
shows that b*a is homotopic to c.

Let p1(X,x0) denote the set of equivalence classes of maps a : (I,∂I) Æ (X,x0) with
respect to the equivalence relation �∂I. More precisely,

Define a product*on p1(X,x0) as follows: If [a], [b] Œ p1(X,x0), then [a]* [b] = [a*b].

7.4.1.5. Theorem. The operation * on p1(X,x0) is well defined and makes p1(X,x0)
into a group.

Proof. The fact that * is well defined follows from Lemma 7.4.1.1. Lemma 7.4.1.2
shows that * is associative. Lemma 7.4.1.3 shows that if c(t) is the constant path, then

p ∂1 0 0X x I I X x, , , , .( ) = ( ) ( )[ ]

h t s ts for t

s ts for t

, , ,

, ,

( ) = ( ) £ £

= -( ) £ £

a

a

2 0
1
2

2 2
1
2

1
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Figure 7.19. The constant path acts as an identity.
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[c] is the identity for *. Lemma 7.4.1.4 shows that each element of p1(X,x0) has an
inverse with respect to *.

Definition. The group p1(X,x0) is called the fundamental group or first homotopy
group of the pointed space (X,x0). The point x0 is called the base point for this fun-
damental group.

So now we have another group associated to a space, but what information does
it give us? Before we compute the group for some spaces we look at some general
properties of it. First of all, the isomorphism type of the fundamental group is inde-
pendent of the base point if the space is path-connected.

7.4.1.6. Theorem. If X is path-connected, then p1(X,x0) is isomorphic to p1(X,x1)
for all x0, x1 Œ X.

Proof. Let g :I Æ X be a path from x1 to x0. Define a map

by

where is defined by

The map ag(t) is the path that walks along g(t), then a(t), and then backtracks along
g(t). See Figure 7.21. It is easy to check that T is a well-defined isomorphism (Exer-
cise 7.4.1.1).

Note. Because of Theorem 7.4.1.6, the base point is often omitted for path-
connected spaces X and p1(X) is used to denote p1(X,x0) for some x0 Œ X.

7.4.1.7. Theorem. A contractible space has a trivial fundamental group.

Proof. The homotopy that shows the space is contractible to a point easily provides
a homotopy between every closed path in the space with the constant path (Exercise
7.4.1.2).

7.4.1.8. Corollary. A point, Rn, and Dn all have a trivial fundamental group.

a g
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g

g t t for t
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a ∂g : ,I I X( ) Æ

T a ag[ ]( ) = [ ],

T : , ,p p1 0 1 1X x X x( ) Æ ( )



7.4.1.9. Theorem. The fundamental group of S2 is trivial.

Proof. Here is a sketch of the proof. Let a : (I,∂I) Æ (S2,e1). The Simplicial Approx-
imation Theorem implies that a is homotopic (relative to ∂I) to a map that misses a
point p π e1 in S2. Since S2 - p can be contracted to e1 this proves that a is homo-
topic to the constant map and the theorem is proved.

Just in case the reader is beginning to think that the fundamental group is 
always trivial, we give some examples of simple spaces for which the group is 
nontrivial.

7.4.1.10. Theorem.

(1) p1(S1) ª Z.
(2) p1(P2) ª Z2.
(3) The fundamental group of a wedge of two circles (figure eight) is a free group

on two generators.

Proof. See [Mass67] or [Cair68]. One way to prove part (1) is to show that the iso-
morphism is defined by the degree of the map as sketched in Section 5.7 and defined
rigorously in Section 7.5.1. Later in Corollary 7.4.2.23 we shall see alternate proofs of
(1) and (2).

Next, we look at how the fundamental group behaves with respect to continuous
maps. Let (X,x0) and (Y,y0) be pointed spaces. Let f : (X,x0) Æ (Y,y0) be a continuous
map. Define

by

7.4.1.11. Lemma. The map f* is a well-defined homomorphism of groups.

Proof. This is Exercise 7.4.1.3.

f f* [ ]( ) = [ ]a ao .

f* ( ) Æ ( ): , ,p p1 0 1 0X x Y y
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x0 = g (1)

x1 = g (0)

a(t)

g (t)

Figure 7.21. Proving that the fundamental group
is independent of the base point.



Definition. The homomorphism f* is called the homomorphism induced by the con-
tinuous map f.

7.4.1.12. Theorem.

(1) If f, g : (X,x0) Æ (Y,y0) are homotopic continuous maps, then

(2) If f : (X,x0) Æ (Y,y0) and g : (Y,y0) Æ (Z,z0) are continuous maps, then

Proof. This is Exercise 7.4.1.4.

We can now prove the homotopy invariance of the fundamental group.

7.4.1.13. Theorem. Homotopy equivalent spaces have isomorphic fundamental
groups.

Proof. This is an easy consequence of Theorem 7.4.1.12.

Note that Theorem 7.4.1.7 is actually an easy consequence of Theorem 7.4.1.13
since a contractible space has the same homotopy type as a point.

There is a nice relationship between the fundamental group of two spaces and
that of their product.

7.4.1.14. Theorem. Let (X,x0) and (Y,y0) be pointed spaces and let

be the natural projections defined by p(x,y) = x and q(x,y) = y. Then the map

defined by

is an isomorphism.

Proof. See [Mass67].

Theorem 7.4.1.14 enables us to compute many more fundamental groups.

7.4.1.15. Corollary. p1(S1 ¥ S1) ª Z ≈ Z.

s a a a[ ]( ) = [ ] [ ]( )p qo o, ,

s p p p: , , ,1 0 0 1 0 1 0X Y x y X x Y y¥ ¥( ) Æ ( ) ¥ ( )

p and q: :X Y X X Y Y¥ Æ ¥ Æ

g f g f* * *= ( ) ( ) Æ ( )o o : , , .p p1 0 1 0X x Z z

f g* *= ( ) Æ ( ): , , .p p1 0 1 0X x Y y
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Proof. The corollary follows from Theorems 7.4.1.10(1) and 7.4.1.14. See also Corol-
lary 7.4.2.23(3).

Theorem 7.4.1.10(3) showed that the fundamental group of a space is not neces-
sarily abelian. Is there any connection between it and the first homology group? After
all, in both cases we are dealing with one-dimensional “holes.” To answer that ques-
tion we describe a natural map from one to the other.

Note. To simplify the discussion below we are pretending (as we earlier said we
would) that polyhedra have well-defined homology groups.

Let X be a connected polyhedron and let x0 Œ X. Define

as follows: Let [a] Œ p1(X,x0), where a : (I,∂I) Æ (X,x0). If is the map

then a induces a unique map b :S1 Æ X with the property that a(t) = b(j(t)). (b is the
unique map that makes the diagram

commutative.) Now b induces a map b* on homology groups. If i is a fixed (“stand-
ard”) generator of H1(S1), then

7.4.1.16. Theorem.

(1) The map m defines a homomorphism of groups called the Hurewicz
homomorphism.

(2) The map m sends p1(X,x0) onto H1(X).
(3) The kernel of m is the commutator subgroup of p1(X,x0).

Proof. See [Cair68].

It follows from Theorem 7.4.1.16 that H1(X) is the abelianization of p1(X,x0). The
advantage of the fundamental group of a space is that it gives somewhat more infor-
mation about the space than the first homology group. The disadvantage is that it is
more complicated to compute.

m a b[ ]( ) = ( ) Œ ( )* i H1 X .

b

a
j

(I,∂I)

S1 X

j p pt t t( ) = ( )cos ,sin ,2 2

j : I SÆ 1

m p: ,1 0 1X x X( ) Æ ( )H
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Definition. A path-connected space that has a trivial fundamental group is called
simply connected.

Analyzing spaces and maps gets much more complicated if the spaces involved
are not simply connected. The fundamental group has a subtle but significant influ-
ence on the topology of a space and its name is quite appropriate. It is probably the
single most important group from the point of view of algebraic topology. A great
many theorems have as part of their hypotheses the assumption that a space is simply
connected. See for example Theorems 7.4.3.7 and results in Section 8.7, 8.9, and 8.10.

A nice way to summarize some aspects of the fundamental group and its rela-
tionship to the first homology group is as follows: If

is a continuous map, then (again ignoring the current nonuniqueness of homology
groups) there is a commutative diagram

where m is the Hurewicz homomorphism.
We end this section with an application of the fundamental group. The group plays

a central role in the study of knots. Some references for knot theory are [CroF65],
[Livi93], [Rolf76], and [Mass67].

Definition. A subspace K of R3 is called a knot if K is homeomorphic to S1. The
space R3 - K is called the complement of the knot K. Two knots K1 and K2 are said
to be equivalent if there is a homeomorphism h :R3 Æ R3, so that h(K1) = K2.The equiv-
alence class of a knot is called its knot type. A knot is trivial if it is equivalent to the
standard S1 in R3. A knot is called a polygonal knot if it is the union of a finite number
of (linear) segments, that is, it is a polygonal curve. A knot is said to be tame if it is
equivalent to a polygonal knot.

We are sticking to the traditional theory here, because the definition of a knot is
sometimes generalized to include imbeddings of n-spheres, n ≥ 1, in a space. We also
need to point out that there are other variations of the definition of a knot in the lit-
erature. Sometimes knots are defined to be maps, that is, imbeddings k :S1 Æ R3,
rather than subsets. In that case, the equivalence of knots is defined in terms of 
isotopies. (Two imbeddings h0 and h1 are said to be isotopic if there exists a one-
parameter family of imbeddings ht, or isotopy, between them.) Fortunately, there is
not much difference between the theories. For example, if we stick to orientation-
preserving homeomorphisms, then two knots are equivalent using our definition if
and only if they are isotopic. (We shall define what it means for a homeomorphism
between oriented manifolds to be orientation preserving in Section 7.5.1. A homeo-
morphism h :R3 - K Æ R3 - K is said to be orientation preserving if its extension to
S3 Æ S3 is.)

p p
m m

1 0 1 0

1 1

X x Y y

X Y
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,

( ) æ Ææ ( )
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Sometimes it is convenient to consider knots in S3 rather than R3 because S3 is a
compact space, but there is again no real difference in the theory since, using the 
stereographic projections, S3 can be thought of as just R3 with one point added. Note
also that, since all knot, are homeomorphic to S1, classifying them is not a question
of determining if they themselves are homeomorphic because they are. What makes
knots different is their imbedding in R3. Every knot in the plane is necessarily trivial
by the Schoenflies theorem.

In order not to have to deal with wild imbeddings, one also usually assumes that
knots are polygonal.

Definition. Let K be a knot. The fundamental group p1(R3 - K) is called the group
of the knot K. (The base point of the fundamental group was omitted because we are
only interested in the group up to isomorphism.)

The group of a knot plays a large role in the study of knots but does not deter-
mine the knot completely because there exist inequivalent knots that have the same
knot group, such as for example, the square knot and the granny knot shown in Figure
7.22. Certainly, equivalent knots have isomorphic knot groups because their comple-
ments are homeomorphic. The knot group is only one of many interesting invariants
associated to a knot.

Before we list a few important known facts about the classification of knots, we
define a well-known infinite family of knots that serve as useful examples.

Definition. A torus knot of type (p,q), where p and q are relatively prime, is a knot
that can be imbedded in a torus and has the property that it cuts a meridian circle of
the torus in p points and a circle of latitude in q points. In cylindrical coordinates, a
specific instance of such a knot is the curve

that lies in the torus in R3 (the circle in the x-z plane with center (2,0,0) and radius
1 rotated about the z-axis) defined by the equation

r z-( ) + =2 1
2 2 .

r q p

z q p

= + ( )
= ( )

2 cos

sin

q
q

square knot granny knot

Figure 7.22. Two inequivalent knots with isomorphic knot groups.
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Figure 7.23 shows an example of a torus knot.

7.4.1.17. Theorem.

(1) A tame knot is trivial if and only if the group of the knot is infinite cyclic (iso-
morphic to Z). There is an algorithm that determines whether or not a knot
is trivial.

(2) Two tame knots have homotopy equivalent complements if and only if their
knot groups are isomorphic. (Conjecture: If two tame knots have homeomor-
phic complements, then they have the same knot type.)

(3) There exist infinitely many knot types. For example, the torus knots of type
(p,q) are all inequivalent.

(4) The abelianization of every knot group is infinite cyclic.
(5) If K is a tame knot, then pi(R3 - K) = 0 for i > 1.

Proof. The proofs of most of these facts are much too complicated to give here. See
the references for knot theory listed earlier.

7.4.2 Covering Spaces

The topic of this section is intimately connected with the fundamental group but also
has important applications in other areas such as complex analysis and Riemann sur-
faces. Section 8.10 in the next chapter will continue the discussion and discuss the
related topic of vector bundles.

We begin with some basic terminology and motivational remarks. See Figure 7.24.

Definition. A bundle over a space X is a pair (Y,p), where Y is a topological space
and p :Y Æ X is a continuous surjective map. One calls Y the total space, p the pro-
jection, and X the base space of the bundle. The inverse images p-1(x) Õ Y for x Œ X,
are called the fibers of the bundle.

In our current context we should think of the total space of a bundle as consist-
ing of a union of fibers that are glued together appropriately. Of course, the general
case of an arbitrary surjective map p does not lead to anything interesting. The inter-
esting case is where all the fibers are homeomorphic to a fixed space F. The obvious
example of that is the product of the base space and F.

Definition. A bundle over X of the form (X ¥ F,p), where p is the projection onto
the first factor defined by p(x,f) = x, is called the product bundle with fiber F.

Figure 7.23. A torus knot of type (3,5).



Next, we define a notion of equivalence of bundles over a space. We begin by defin-
ing general bundle maps. They should preserve the fibers (map fibers to fibers) since
that is the only structure present.

Definition. A bundle map from a bundle (Y1,p1) over a space X to a bundle (Y2,p2)
over X is a map

with the property that

is a commutative diagram (p1 = p2 ° f). The bundle map f is called a bundle isomorphism
and we say that the bundles (Y1,p1) and (Y2,p2) are isomorphic if f is a homeomorphism.
If (Y,p) = (Y1,p1) = (Y2,p2), then a bundle isomorphism is called a bundle automorphism
of (Y,p).

Definition. A bundle (Y,p) over a space X that is isomorphic to a product bundle is
called a trivial bundle. The bundle is called a locally trivial bundle if for every x Œ X
there is an open neighborhood U of x in X such that (p-1(U),pΩp-1(U)) is isomorphic
to a trivial bundle over U.

If all locally trivial bundles were trivial bundles, there would be no point in intro-
ducing the concept of bundle. The next example describes a very simple nontrivial
bundle.

7.4.2.1. Example. If we consider Pn as the quotient space of Sn where antipodal
points are identified and let p :Sn Æ Pn be the quotient map, then one can show that
(Sn,p) is a locally trivial bundle over Pn (Exercise 7.4.2.1). Every fiber is the discrete
space consisting of two points. Clearly, (Sn,p) is not a trivial bundle because Sn is con-
nected and the trivial bundle with fibers consisting of two points would not be.

Y Y

X

1 2

1 2

f

p p

æ Ææ

f : Y Y1 2Æ
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p

fibers p–1(x) ≈ FFigure 7.24. Basic bundle terminology.



It is the bundles with discrete fibers that interest us in this section. In Section 8.10
we shall look at bundles whose fibers are vector spaces.

Definition. A covering space for a space X is a locally trivial bundle with base space
X with the property that every fiber is a discrete space. The covering is called an 
n-fold covering if every fiber consists of n points. The bundle automorphisms of a 
covering space are called covering transformations.

Example 7.4.2.1 already described a 2-fold covering space. Here are some more
examples.

7.4.2.2. Example. The map

defines a covering space (R,p) of S1 whose fibers

are a countable discrete set of points.

7.4.2.3. Example. Consider the circle S1 as a subset of the complex plane C. The
map

defines a bundle (S1,p) over S1 that is an n-fold covering space for S1.

7.4.2.4. Example. The map

defines a is a covering space (R2,p) of the torus S1 ¥ S1.

That all the total spaces in our examples were manifolds should not be 
surprising.

p s t t t t t, cos ,sin , cos ,sin .( ) = ( ) ( )( )

p : R S S R R2 1 1 2 2Æ ¥ Ã ¥

p nz z( ) =

p : S S1 1Æ

p t t n n- ( ) = + Œ{ }1 2p Z

p t t t( ) = ( )cos ,sin

p : R SÆ 1
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7.4.2.5. Theorem. The total space of a covering space of a topological manifold is
a topological manifold.

Proof. This is obvious from the local triviality property of the bundle.

When one works with covering spaces or bundles in general, some of the most
important tools are map-lifting tools.

Definition. Let (Y,p) be a covering space for a space X and let g : [a,b] Æ X be a con-
tinuous curve. A map g̃ : [a,b] Æ Y is called a lifting of the curve g starting at g̃(a) if
we have a commutative diagram

that is, p°g̃ = g. More generally, given a map f :Z Æ X, any map f̃ :Z Æ Y is called a
lifting of f if we have a commutative diagram

that is, p°f̃ = f.

7.4.2.6. Theorem. (The Path-Lifting Theorem) Let (Y,p) be a covering space for a
space X. Let x0 Œ X and y0 Œ p-1(x0). Then every continuous curve g : [0,1] Æ X lifts
to a unique continuous curve g̃ : [0,1] Æ Y that starts at y0.

Proof. We sketch a proof of this theorem. It will give the reader a good idea of the
kind of arguments one uses with covering spaces. Figure 7.25 shows what is involved.

Z Xfæ Ææ ,
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Figure 7.25. Lifting paths.
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The easy case is where one can find an open neighborhood U of x0 over which the
covering space is trivial and that contains the curve g(t). The set p-1(U) will consist of
disjoint open sets in Y that are homeomorphic copies of U. Let V be the one that con-
tains y0 and let pV = pΩV. Then g̃ = pV

-1
°g is the unique curve we seek. For the general

case, we separate the proof into two parts.
We prove uniqueness first. Let g̃1 and g̃2 be two liftings of g that start at y0. Con-

sider the sets

These are obviously disjoint sets whose union is [0,1]. Using continuity, it is easy to
show that both of these sets are open in [0,1]. Since 0 Œ A, A is nonempty. But [0,1]
is connected and so B must be the empty set and we have proved uniqueness.

To prove the existence of a g̃, consider the set

Figure 7.26 should help the reader follow the rest of the argument. Since the cover-
ing space is trivial over an open neighborhood of x0 and we know how to lift paths
over such a neighborhoods, the set C will contain a small neighborhood of 0 and
hence, if c is the supremum of C, then 0 < c £ 1. If c = 1, we are done. Assume that 
c < 1. Choose a neighborhood U of g(c) over which the covering space is trivial. Choose
e > 0, such that [c - 2e,c + 2e] Ã [0,1] and g([c - 2e,c + 2e]) Ã U. By the definition of
c, there is a lifting

of

Because the curve gΩ[c - 2e,c + 2e] lies in U it can be lifted to Y, that is, the lifting g̃
can be extended to a lifting of gΩ[0,c + 2e]. This contradicts the fact that c was the
supremum of the set C and so c < 1 is impossible.

g e: , .0 c -[ ] Æ X

˜ : ,g e0 c -[ ] Æ Y

C t there t= Œ[ ] [ ]{ }0 1 0, , . is a lifting of  overg

A B= Œ[ ] ( ) = ( ){ } = Œ[ ] ( ) π ( ){ }t t t and t t t0 1 0 11 2 1 2, ˜ ˜ , ˜ ˜ .g g g g

y0 = g (0)

y0 = g (0) X

Y

p

U

lifting of g | [c – e, c + 2e]

~ ~g (c – e)

g (c – e) g (c + 2e)g (c) Figure 7.26. Proving the existence of path 
liftings.



The importance of Theorem 7.4.2.6 is not only that every path in the base space
lifts to path in the total space but that the lift is essentially unique, meaning that if
two lifted paths agree at one point, then they agree everywhere. The unique lifting
property generalizes to arbitrary connected spaces not just the interval [0,1]. Another
important lifting theorem is the following:

7.4.2.7. Theorem. (The Homotopy Lifting Theorem) Let (Y,p) be a covering space
for a space X. Let h :Z ¥ [0,1] Æ X be a continuous map. Define ht :Z Æ X by ht(y) =
h(y,t). If h̃0 is a lifting of h0, then h lifts to a unique continuous map h̃ :Z ¥ [0,1] Æ Y
so that h̃(y,0) = h̃0(y).

Proof. See [Jäni84]. Figure 7.27 tries to indicate the relationship between the various
maps.

7.4.2.8. Corollary. (The Monodromy Lemma) Let (Y,p) be a covering space for a
space X. Let g0, g1 : [0,1] Æ X be two continuous curves that start at the same point x0
and end at the same point x1, that is, x0 = g0(0) = g1(0) and x1 = g0(1) = g1(1). Assume
that g0 and g1 are homotopic by a homotopy h that fixes the endpoints, that is, h(t,0)
= x0 and h(t,1) = x1, for all t Œ [0,1]. If, g̃0, g̃1 : [0,1] Æ Y are liftings of g0 and g1, respec-
tively, that start at the same point in Y, then g̃0 and g̃1 will end at the same point, that
is, g̃0(1) = g̃1(1).

Proof. This is an easy consequence of Theorem 7.4.2.7.

Corollary 7.4.2.8 is an important uniqueness type theorem. It says that if one lifts
two homotopic paths that start and end at the same point, then the lifted paths will
also end at the same point if they start at the same point.

The next two results describe some relationships between the fundamental groups
of the total and base space of a covering space.

7.4.2.9. Theorem. Let (Y,p) be a covering space for a space X. Let x0 Œ X and y0 Œ
p-1(x0). Then the induced homomorphism

p* ( ) Æ ( ): , ,p p1 0 1 0Y y X x
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is one-to-one.

Proof. See [Mass67] or [Jäni84]. Basically, if an element [f] maps to 0, then the map
p°f is homotopic to a constant in X and this homotopy lifts to a homotopy between f
and the constant map in Y.

A natural question is if y1 Œ p-1(x0), then what is the relation between the sub-
groups p*(p1(Y,y1)) and p*(p1(Y,y0)) in p1(X,x0)? There is an easy answer.

7.4.2.10. Theorem. Let (Y,p) be a covering space for a space X and let x0 Œ X. If Y
is connected, then the subgroups p*(p1(Y,y0)) in p1(X,x0) as y0 ranges over the points
in p-1(x0) generate a conjugacy class of subgroups in p1(X,x0).

Proof. See [Mass67]. The result follows easily from the following observations. Let
y0, y1 Œ p-1(x0). Let ã : [0,1] Æ Y be a curve with ã(0) = y0 and ã(1) = y1. The curve a
= p° ã : [0,1] Æ X is a loop at x0. If [g̃] Œ p1(Y,y1), then define m̃ : [0,1] Æ Y by

Now, set g = p° g̃ and m = p° m̃. It is easy to show that [m̃] Œ p1(Y,y0) and [m] = [a]-1[g][a]
Œ p1(X,x0). See Figure 7.28.

Next, we would like to classify covering spaces. Let (Y,p) be a covering space for
a space X and let x0 Œ X and y0 Œ p-1(x0). First, we shall answer the question about
when maps from some arbitrary space Z into X lifts to a map into Y. Let z0 Œ Z. The
specific question is, given a map f : (Z,z0) Æ (X,x0), when does a lifting f̃ : (Z,z0) Æ
(Y,y0) exist? In terms of diagrams, we are given f and p and are looking for an f̃ that
will produce a commutative diagram

˜ ˜ , , ,

˜ , , ,

˜ , , .

m a

g

a

t t t

t
t

t t

( ) = ( ) ŒÈ
ÎÍ

˘
˚̇

=
-Ê

Ë
ˆ
¯ ŒÈ

ÎÍ
˘
˚̇

= -( ) ŒÈ
ÎÍ

˘
˚̇

3 0
1
3

3 1
2

1
3

2
3

3 3
2
3

1
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A necessary condition is clearly that f*(p1(Z,z0)) Õ p*(p1(Y,y0)). The amazing fact is
that this condition is also sufficient provided that some weak connectivity conditions
hold.

Definition. A topological space X is said to be locally path-connected if every neigh-
borhood of a point contains a neighborhood that is path-connected.

Fortunately, the spaces of interest to us are locally path-connected. Manifolds are
trivially locally path-connected, but so are CW complexes (use induction on the
number of cells).

7.4.2.11. Theorem. Let (Y,p) be a covering space for a space X. Let Z be a path-
connected and locally path-connected space. Let x0 Œ X, y0 Œ p-1(x0), and z0 Œ Z. Then
a map f : (Z,z0) Æ (X,x0) lifts to a map f̃ : (Z,z0) Æ (Y,y0) if and only if f*(p1(Z,z0)) Õ
p*(p1(Y,y0)).

Proof. See [Mass67] or [Jäni84]. The diagram below should help clarify what is
being said:

We can deduce a number of important results from Theorem 7.4.2.11.

7.4.2.12. Theorem. Let (Y1,p1) and (Y2,p2) be covering spaces for a space X, where
Y1 and Y2 are path-connected and locally path-connected spaces. Let x0 Œ X and yi Œ
pi

-1(x0). The two covering spaces are isomorphic via a bundle isomorphism f : (Y1,y1)
Æ (Y2,y2) if and only if p1*(p1(Y1,y1)) = p2*(p1(Y2,y2)).

Proof. See [Mass67]. The following diagram might again help:

To get the next theorem we need another technical definition.

p

p

1 2 2
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2 1 2 2

Y y
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X x
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p p
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Definition. A topological space X is said to be semi-locally simply connected if every
point x in X has a neighborhood U so that every closed curve in U that starts at x is
homotopic to a constant map in X.

Manifolds and CW complexes are semi-locally simply connected (use induction
on the number of cells for CW complexes).

7.4.2.13. Theorem. Let X be a path-connected, locally path-connected, and semi-
locally simply connected space. Let x0 Œ X. If G is an arbitrary subgroup of p1(X,x0),
then there is a path-connected and locally path-connected space Y and covering space
(Y,p) of X, so that for some point y0 Œ p-1(x0), p*(p1(Y,y0)) = G.

Proof. See [Mass67] or [Jäni84].

Definition. A universal cover or universal covering space for a space X is a covering
space (Y,p) for X, with the property that Y is path-connected, locally path-connected,
and simply connected.

By Theorem 7.4.2.12, the universal covering space of a space (if it exists) is unique
up to isomorphism. Therefore, if the projection p is obvious from the context, then
the common expression “the universal cover Y of X” refers to the universal covering
space (Y,p).

7.4.2.14. Example. The space R is the universal cover of the circle S1 (see Example
7.4.2.2).

7.4.2.15. Example. The sphere Sn is the universal cover of projective space Pn (see
Example 7.4.2.1).

7.4.2.16. Theorem. Let X be a path-connected, locally path-connected and semi-
locally simply connected space. Then X has a universal covering space and any two
are isomorphic.

Proof. Only the existence part of this theorem needs proving. See [Mass67] or
[Jäni84].

The reason that a universal covering space (Y,p) for a space X has the name it
has is that if (Y¢,p¢) is any other covering space for X, then there a unique (up to iso-
morphism) map p̃ : Y Æ Y¢ making the following diagram commutative

In fact, (Y,p̃) will be a covering space for Y¢. In other words, the universal covering
space of a space “covers” every other covering space of the space.

The covering transformations of a covering space are interesting. They obviously
form a group.

Y Y

X

˜

.

pæ Ææ ¢
¢p p
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Definition. Cov(Y,p) will denote the group of covering transformations of a cover-
ing space (Y,p).

7.4.2.17. Theorem. Let (Y,p) be a covering space for a path-connected and locally
path-connected space X. Let x0 Œ X and y0 Œ p-1(x0). Let G = p*(p1(Y,y0)) and let NG
be the normalizer of G in p1(X,x0). Given an element [g] Œ NG, there is exactly one
covering transformation h[g] that maps y0 into the end point g̃(1) of the lifting g̃ of g
that starts at y0. The map

is a homomorphism with kernel G, that is,

Proof. See [Mass67] or [Jäni84].

7.4.2.18. Corollary. Let (Y,p) be the universal covering space for a path-connected
and locally path-connected space X and let x0 Œ X. Then Cov(Y,p) ª p1(X,x0). If
p1(X,x0) is finite and n = Ωp1(X,x0)Ω, then (Y,p) is an n-fold covering.

7.4.2.19. Example. The covering transformations of the universal covering space
(R,p) defined in Example 7.4.2.2 are the maps

defined by

The maps hn are obviously covering transformations. Note that hn = h1
n.

7.4.2.20. Example. The only covering transformation of the covering space Sn over
Pn is the antipodal map of Sn.

7.4.2.21. Corollary. Let (Y,p) be the universal covering space for a path-connected
and locally path-connected space X and let x0 Œ X. Then X ª Y/~, where ~ is the equiv-
alence relation defined by y ~ y¢ if there is an h Œ Cov(Y,p), such that y¢ = h(y).

7.4.2.22. Example. Let m, n Œ Z. Define maps

by

h x y x m y nm n, , ,( ) = + +( )2 2p p

hm n, : R R2 2Æ

h t t nn ( ) = + 2p .

hn : R RÆ

Cov p
N
G

GY, .( ) ª

N Cov p

h
G Æ ( )

[ ] Æ [ ]

Y,

g g
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and think of the torus S1 ¥ S1 as the quotient space of R2/~, where ~ is the equiva-
lence relation

If p : R2 Æ R2/~ is the quotient map, then (R2,p) is the universal covering space of the
torus. With this interpretation, the maps hm,n are obviously the covering transforma-
tions. Note that hm,n = hm

1,0 hn
0,1.

Using Corollary 7.4.2.18 and what we showed in Examples 7.4.2.19, 7.4.2.20, and
7.4.2.22 we now have alternate proofs of the facts stated in Theorem 7.4.1.10(1) and
(2) and Corollary 7.4.1.15, namely,

7.4.2.23. Corollary.

(1) p1(S1) ª Z.
(2) p1(Pn) ª Z2.
(3) p1(S1 ¥ S1) ª Z ≈ Z.

All this talk about covering transformations and the last three examples leads to
another question. Suppose that we turn things around and start with a group of
homeomorphisms G of a space Y and define

(7.8)

where

Definition. The space Y/G in equation (7.8) is called the quotient space of Y modulo
the group G.

If p : Y Æ Y/G is the quotient map, then is (Y,p,Y/G) a covering space with G the
group of covering transformations? The answer in general is no. At the very least the
homeomorphisms in G could not be allowed to have fixed points, but we need some-
thing stronger.

Definition. A group of homeomorphism G of a space X is said to be properly
discontinuous if every point x in X has a neighborhood U so that all the sets h(U),
h Œ G, are disjoint.

Clearly, no homeomorphism in a properly discontinuous group of homeomor-
phism can have a fixed point. Furthermore, it is easy to see that the covering 
transformations of a covering space form a properly discontinous group of homeo-
morphisms of the total space.

7.4.2.24. Theorem. Let Y be a connected, locally path-connected topological space
and G a properly discontinuous group of homeomorphism of Y. If p : Y Æ Y/G is the

y y y y1 2 2 1~ if h for= ( ) Œ some h G.

Y G Y= ~,

o

x y h x ym n, , .,( ) ( )~
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quotient map, then (Yp) is a covering space for Y/G with G the group of covering 
transformations.

Proof. See [Mass67].

As a nice application of this discussion of covering transformations we relate this
to the lens spaces defined in Section 7.2.4. As before, let p and q be relatively prime
positive integers and assume that 0 £ q £ p/2. Consider the unit sphere S3 in complex
2-space C2. (One can identify C2 with R4.) Define rotations

by

where z1, z2 Œ C and i = 0, 1, . . . , p-1. (The e2pi/p are the pth roots of unity.) Since 
si = s0

i, we have in effect defined a group

of order p of rotations acting on S3. Define

and let

be the quotient map.

7.4.2.25. Theorem. The new spaces L(p,q) are homeomorphic to the lens spaces
L(p,q) defined in Section 7.2.4. Furthermore,

(1) (S3,h) is the universal covering space for L(p,q).
(2) G = Cov(S3,h).

Proof. See [CooF67] or [HilW60]. Parts (1) and (2) are obvious.

7.4.2.26. Corollary. p1 (L(p,q)) ª Zp.

This concludes our overview of the theory of covering spaces. The gist of the main
results stripped of their technical details is summarized by the following:

(1) The theory of covering spaces for simply connected spaces is uninteresting
because the only covering space in that case is where the space covers itself.

(2) The universal covering space of a space covers every other covering space of
the space.

h : ,S3 Æ ( )L p q

L p q G,( ) = S3

G p= { }-s s s0 1 1, , . . . ,

s p p
i

i p qi pe ez z z z1 2 1
2

2
2, , ,( ) = ( )

si : S S3 3Æ
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(3) The covering transformations of the universal covering space of a space have
no fixed points and are in one-to-one correspondence with the elements of the fun-
damental group of the space. They act transitively on the fibers, that is, any point in
the total space can be mapped into any other point belonging to the same fiber as the
first.

(4) Every conjugacy class of a subgroup of the fundamental group of a space
defines a covering space for that space.

See [Jäni84] for a variety of applications of covering space theory.

7.4.3 Higher Homotopy Groups

There is an important generalization of the fundamental group of a space that leads
to higher-dimensional homotopy groups.

Definition. Let n ≥ 2. Given maps a, b : (In,∂In) Æ (X,x0), define a map

by

Definition. Let

be the set of equivalence classes of maps a with respect to the equivalence relation
�∂I

n. Define a product * on pn(X,x0) as follows: If [a], [b] Œ pn(X,x0), then

7.4.3.1. Theorem. The operation * on pn(X,x0) is well defined and makes pn(X,x0)
into a group called the nth homotopy group of the pointed space (X,x0).

Proof. The proof is similar to the one for the fundamental group. Exercise 7.4.3.1.

There is a perhaps easier way to visualize the product in pn(X,x0). First, we need
a definition.

Definition. Let X, Y, and Z be pointed spaces with base points x0, y0, and z0, respec-
tively. If f : X Æ Z and g : Y Æ Z are continuous maps with f(x0) = z0 and g(y0) = z0,
then define a map

a b a b[ ] * [ ] = *[ ].

p a a ∂ ∂n
n n

nX x I I X x I, : , ,0 0( ) = ( ) Æ ( ){ } �

a b a

b

*( )( ) = ( ) £ £

= -( ) £ £

t t t t t t if t

t t t if t

n n

n

1 2 1 2 1

1 2 1

2 0
1
2

2 1
1
2

1

, , . . . , , , . . . , , ,

, , . . . , , .

a b ∂* ( ) Æ ( ): , ,I I X xn n
0
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This map is called the wedge of f and g.

With this definition we can now give an alternate definition of the product in
pn(X,x0). First of all, we can clearly identify maps (In,∂In) Æ (X,x0) with maps (Sn,e1)
Æ (X,x0). Let

(7.9)

be the map that collapses Sn-1 to the base point of Sn ⁄ Sn and that wraps the upper
and lower hemisphere of Sn around the first and second factor of Sn ⁄ Sn, respectively.
Let [a], [b] Œ pn(X,x0). If we represent a and b as maps

then the product [a]* [b] is nothing but the homotopy class of the composite map
(a⁄b) ° c. See Figure 7.29.

We now have homotopy groups pn(X,x0) defined for n ≥ 1. It is convenient to make
a definition for n = 0. Note that S0 = {-1,+1}.

Definition. p0(X,x0) is defined to be the set (there is no group structure) of homo-
topy classes of maps

(Equivalently, p0(X,x0) is the set of path components of X.)

Although p0(X,x0) has no group structure, one often refers to it as the 0th homo-
topy “group.”

7.4.3.2. Theorem. The group pn(X,x0) is abelian whenever n ≥ 2.

Proof. Figure 7.30 shows how to construct a homotopy between a*b and b*a.

Just as in the case of the fundamental group, higher homotopy groups are inde-
pendent of the base point if the space is path-connected. One therefore often writes
pn(X) instead of pn(X,x0).

f : , , .S X x0
01( ) Æ ( )

a b, : , , ,S e X xn
1 0( ) Æ ( )

c n n n: S S SÆ ⁄

f g by f g f and f g g⁄ ⁄ Æ ⁄ = ⁄ =: .X Y Z X Y
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Continuous maps induce homomorphisms on the homotopy groups in a natural
way, similar to how it was done in the case of the fundamental group. Let (X,x0) and
(Y,y0) be pointed spaces. Given a continuous map

define

by

7.4.3.3. Lemma. The map f* is well defined. It is a homomorphism of groups when
n ≥ 1.

Proof. Exercise 7.4.3.2.

Definition. The map f* is called the homomorphism induced by the continuous map
f.

The fact that the higher (n ≥ 2) homotopy groups are abelian sets them apart from
the fundamental group. In other ways, they satisfy similar properties however. For
example, one can show, just like in Theorem 7.4.1.14, that there are isomorphisms

(By the way, no such isomorphism exists for homology. A theorem, the Künneth
theorem, relates the homology of the product of two spaces to that of the spaces but
it is much more complicated.) There are also natural homomorphisms

(7.10)m p: , ,n nHX x X0( ) Æ ( )

p p pn n nX Y x y X x Y y¥ ¥( ) Æ ( ) ¥ ( ), , , .0 0 0 0

f f* [ ]( ) = [ ]a ao .

f nn n* ( ) Æ ( ) ≥: , , , ,p pX x Y y0 0 0

f : , ,X x Y y0 0( ) Æ ( )
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called the Hurewicz homomorphisms, which generalize the homomorphism for the
fundamental group. (We are again pretending that Hn(X) is well defined.) These 
homomorphisms are neither onto nor one-to-one in general though. The homotopy
groups capture the idea of “holes” better than the homology groups. After all, the 
n-sphere Sn is the prototype of an n-dimensional “hole.”

Nontrivial “higher” homotopy groups of spheres are one important example of
what sets homotopy groups apart from homology groups. The homology groups Hi(X)
are all 0 if i is larger than the dimension of X, but this is not necessarily the case for
homotopy groups. For example,

One well-known theorem that relates the homotopy and homology groups in a
special case is

7.4.3.4. Theorem. (The Hurewicz Isomorphism Theorem) If n ≥ 2 and if X is a con-
nected polyhedron whose first n - 1 homotopy groups vanish, then the Hurewicz
homorphism

is an isomorphism.

Proof. See [Span66].

Theorem 7.4.3.4 is one result that can be used to compute higher homotopy
groups.

7.4.3.5. Theorem. Let n ≥ 1.

(1) pi(Sn) = 0 for 0 £ i < n.
(2) pn(Sn) ª Z.

Proof. To prove (1) consider a map f : Si Æ Sn. The map f is homotopic to a map
that misses a point, say en+1. (To prove this fact, use the simplicial approximation
theorem with respect to some triangulations of the spheres.) But Sn - en+1 is home-
orphic to an open disk that is contractible. It follows that f is homotopic to a constant
map and proves (1). The case n = 1 in part (2) is just Corollary 7.4.2.23(1). If n > 1,
then (2) follows from (1), Theorem 7.4.3.4, and Theorem 7.2.3.4.

It should be noted that Theorem 7.4.3.4 implies nothing about the homomor-
phisms

for i > n (n as in the theorem). In general, homotopy groups are much harder to
compute than homology groups but they are stronger invariants than homology
groups. As an example of the latter, there is the following theorem:

m p: ,i iHX x X0( ) Æ ( )

m p: ,n nHX x X0( ) Æ ( )

p3
2S Z( ) ª .
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7.4.3.6. Theorem. A continuous map f : X Æ Y between CW complexes is a homo-
topy equivalence if and only if it induces isomorphisms on all (n ≥ 0) homotopy
groups.

Proof. See [LunW69].

The best that one can do for homology is

7.4.3.7. Theorem. Let X and Y be simply connected CW complexes. A continuous
map f : X Æ Y is a homotopy equivalence if and only it induces isomorphisms on all
homology groups.

Proof. See [Span66].

Theorem 7.4.3.7 is false if X and Y are not simply connected. For a counter-
example, see [Span66], page 420. There is an analog of the theorem when spaces are
not simply connected, but things get much more involved. It is based on the notion
of a simple homotopy equivalence. See [Dieu89].

We finish with one last application.

Definition. A topological space that has the homotopy type of the n-sphere Sn is
called a homotopy n-sphere. A polyhedron is called a homology n-sphere if it has the
same homology groups as Sn.

7.4.3.8. Theorem. Every simply connected homology n-sphere, n ≥ 2, is a homo-
topy n-sphere.

Proof. By Theorems 7.4.3.4 we get a map between the Sn and the space that is an
isomorphism on homology. Now use Theorem 7.4.3.7.

Theorem 7.4.3.8 is also false if we drop the simply connected hypothesis. In
[SeiT80] one can find an example of a three-dimensional space, called a Poincaré
space, that is a homology 3-sphere but that has a nontrivial fundamental group and
hence cannot be of the same homotopy type as S3 (nor homeomorphic to it). The nice
thing about Theorems 7.4.3.7 and 7.4.3.8 is that, in order to prove something about
homotopy type, we do not have to mess around with complicated homotopy groups
but can simply work with homology groups, which is a much easier task. We do have
to check that spaces are simply connected though.

7.5 Pseudomanifolds

This section specializes to manifold-like spaces. We shall define what it means for
them to be orientable and relate this concept to homology. Some applications of this
can be found in the next section.

Definition. A polyhedron X is called an n-dimensional pseudomanifold or n-
pseudomanifold or simply pseudomanifold if it admits a triangulation (K,j) satisfying

438 7 Algebraic Topology



(1) Every simplex of K is a face of some n-simplex in K.
(2) Every (n - 1)-simplex of K is a face of at least one, but not more than two, n-

simplices of K.
(3) Given any two n-simplices a and b in K there is a chain a = s1, s2, . . . , sk =

b of n-simplices si in K so that si and si+1 meet in an (n - 1)-simplex.

The pseudomanifold is said to be closed if ∂K = f.

Note that condition (3) in the definition implies that pseudomanifolds are compact
connected spaces. This is not an essential but convenient standard assumption. It is
easy to see that every (combinatorial) surface is a pseudomanifold, but not every two-
dimensional pseudomanifold is a surface. Figure 7.31(a) shows a two-dimensional
pseudomanifold with boundary that is not a surface with boundary. Figure 7.31(b)
shows a pinched sphere (a sphere with two points identified). The problem occurs at
the points p that do not have the correct neighborhood. In general, every triangula-
ble n-manifold is an n-pseudomanifold. Although the boundary of every manifold is
a manifold, Figure 7.31(a) also shows that this need not be the case for pseudoman-
ifolds. Nevertheless, pseudomanifolds have enough nice manifold-type properties, so
that they are interesting because many properties of manifolds are true simply
because they satisfy the pseudomanifold conditions. Finally, one nice fact (Theorem
7.5.2) is that it does not matter how we triangulate a pseudomanifold because every
triangulation will satisfy properties (1)–(3). One way to prove this topological invari-
ance of the combinatorial structure of a pseudomanifold is to establish the following
interesting property of the top-dimensional mod 2 homology group of a pseudoman-
ifold (and hence manifold) first.

7.5.1. Theorem. Let X be an n-dimensional pseudomanifold.

(1) If ∂X = f, then Hn(X;Z2) ª Z2.
(2) If ∂X π f, then Hn(X;Z2) = 0.

Proof. See [AgoM76]. The proofs are not hard. They are similar to our computa-
tions of homology groups for Sn and consists in finding the obvious cycles and bound-
aries. Note that over Z2 the orientation of simplices does not play a role.

7.5.2. Theorem. (Invariance of Pseudomanifolds) Let X be an n-dimensional
pseudomanifold and let (L,Y) be any triangulation of X. Then L satisfies properties
(1)–(3) in the definition of a pseudomanifold.
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Proof. See [AgoM76]. The proof is also not hard but too long to give here. It does
make use of Theorem 7.5.1.

To define the orientability of pseudomanifolds, we start with a combinatorial def-
inition and then show how one can use a homology group to detect this property.

Definition. Let X be an n-dimensional pseudomanifold and let (K,j) be a triangu-
lation of X. We shall say that X is orientable if the n-simplices of K can be oriented
coherently, that is, the n-simplices of K can be oriented simultaneously in such a way
that any two n-simplices that meet in a common (n - 1)-dimensional face induce oppo-
site orientations on that face. Such a choice of orientations of n-simplices, if it exists,
is called an orientation of X. If X is not orientable, one calls X nonorientable.

The next theorem shows that the definition is well defined and independent of 
the particular triangulation that is chosen. It also shows that orientability is easily
determined.

7.5.3. Theorem. A closed n-dimensional pseudomanifold X is orientable if and only
if Hn(X) ª Z.

Proof. See [AgoM76]. The proof again relies on finding the right cycles like in the past.

Using the results in Table 7.2.1.1 for surfaces, we see that our new rigorous defi-
nition of orientable agrees with our previous intuitive definition. More importantly,
we now have an algorithm for determining the orientability of a surface. It is also
clear that choosing an orientation of a closed n-dimensional pseudomanifold X is
equivalent to choosing a generator of Hn(X). Theorem 7.5.1 shows that the mod 2
homology groups tell us nothing about the orientability of X.

Before we state another useful criterion for when a pseudomanifold is orientable
we need to discuss a few more concepts associated to pseudomanifolds.

Let K be a simplicial complex that triangulates an n-dimensional pseudomanifold
Mn. Recall the definition of the barycentric subdivision sd(K) of the simplicial complex
K given in Section 7.2.2. Its vertices are the barycenters of the simplices in K. If b(s)
again denotes the barycenter of the simplex s, then the k-simplices of sd(K), k > 0,
are all the k-simplices of the form b(s0)b(s1) . . . b(sk) where the si are distinct sim-
plices of K and s0 � s1 � . . . � sk.

Definition. Let sk be a k-simplex of K. Define the dual (n - k)-cell s*
n-k by

s*
n-k = � {b(s)b(s1)b(s2) . . . b(sn-k) Ω si is a simplex in K and s� s1 � s2 � . . . � sn-k}.

Call b(s) the barycenter of s*
n-k.

7.5.4. Example. Consider the two-dimensional simplicial complex K shown in
Figure 7.32 whose vertices are labeled with uppercase letters and whose edges are
drawn with thick lines. The barycentric subdivision of K is drawn with thin lines and
its additional vertices are labeled with lowercase letter. The dual cell of the 0-simplex
A is the union of the 2-cells Aab, Abc, Acd, Ade, Aef, and Afa in the barycentric 
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subdivision. The dual cell of the 1-simplex AB is the union of the two 1-simplices ab
and af. The dual of the 2-simplex ABC is the 0-simplex b.

The dual cell s*
n-k will not necessarily be homeomorphic to Dn-k. It is if we are

dealing with a proper triangulation for a combinatorial manifold but not for an arbi-
trary pseudomanifold. For example, the dual cell of the vertices p in Figure 7.31 are
not disks. In order for the dual cells to have nice properties we do not need anything
as strong as a combinatorial manifold.

Definition. A closed compact connected topological n-dimensional manifold is
called a homology manifold if it admits a triangulation (K,j) with the property that
the boundary of the star of every vertex in K is a homology (n - 1)-sphere.

Earlier results in this chapter show that the property of being a homology mani-
fold is a topological invariant.

7.5.5. Theorem.

(1) Every homology manifold is a pseudomanifold.
(2) An n-dimensional homology manifold is a manifold when n £ 3.

Proof. See [SeiT80] or [Cair68].

Not every n-dimensional homology manifolds is a manifold when n > 4 (see
[SeiT80] for counterexamples), but they have enough in common to be able to prove
the important duality theorems in Section 7.5.2.

Returning to the dual of a k-simplex sk in a simplicial complex K that triangu-
lates a pseudomanifold Mn, we have

7.5.6. Proposition.

(1) s*
n-k is an (n - k)-dimensional pseudomanifold.

(2) If M is a homology manifold, then ∂s*
n-k is an (n - k - 1)-dimensional homol-

ogy sphere.
(3) The simplex sk and its dual cell s*

n-k intersect in the single point b(s).
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Proof. See [SeiT80] or [Cair68].

Definition. The collection of dual cells of K, denoted by K*, is called the dual cell
complex of K.

If the dual cells were homeomorphic to disks, then we really would have a CW
complex as defined in Section 7.2.4. Even without this, K* has many properties in
common with such a cell complex because the dual cells are contractible and one can
compute the homology groups from them. See [SeiT80] or [Cair68]. Note further that
since we have a notion of a barycenter of dual cells, we can define duals of the cells in K*
in the same way that we defined the duals of cells in K. With this definition of the dual
cell complex of the dual complex, it is easy to see that (K*)* = K, because the dual cell of
a dual cell consists of cells whose union is a cell in the original complex. We will allow
ourselves to talk of the dual of a cell both in the case where it belongs to K and also when
it belongs to K*. We can also define what we mean by an orientation of a dual cell.

Definition. An orientation of a dual cell s*
n-k consists of a collection of compatible

orientations of the (n - k)-simplices of s*
n-k, that is, if two of the (n - k)-simplices meet

in an (n - k - 1)-simplex t, then they should induce opposite orientations on t.

Let Mn be an n-dimensional pseudomanifold and let (K,j) be a triangulation of
it. For simplicity, assume M = ΩKΩ. Let v be a vertex of K. Consider an edge loop 
g = (v = v0,v1, . . . ,vk = v) at v and the dual cells cn

i = (vi)* and ci
n-1 = (vivi+1)* of dimen-

sion n and n - 1, respectively. Now, an orientation of cn
i induces an orientation of 

ci
n-1. Conversely, it is easy to see that an orientation of ci

n-1 induces an orientation of
cn

i. Therefore, if we start with an orientation o of cn
0, then this will define an orienta-

tion on c0
n-1, then on cn

1, then on c1
n-1, and so on, until we arrive back at cn

0 with an
induced orientation that we shall denote by g(o). The orientation g(o) may or may not
agree with the original orientation o, but if we walk around the edge loop twice, that
is, if we were to use the edge loop g2 = (v = v0,v1, . . . ,vk = v0,v1, . . . ,vk = v), then defi-
nitely g2(o) = o, because there are only two possible orientations for a simplex or dual
cell. In any case, one can show, using the Simplicial Approximation Theorem, that,
starting with an orientation o “at v”, any continuous map a : (I,∂I) Æ (M,v) will induce
a well-defined orientation a(o) at v that corresponds to walking around a(t) carrying
o. It should be intuitively clear that if a(o) = o for all a, then M is orientable. If 
a(o) π o for some a, then we get a well-defined subgroup

of p1(M,v) of index 2. The subgroup H gives rise to a double covering space (M̃,p̃) for
M. One can show that M̃ is an orientable pseudomanifold. The results are summa-
rized in the next theorem.

7.5.7. Theorem.

(1) Every simply connected pseudomanifold is orientable.
(2) If M is a nonorientable pseudomanifold, then there is a double covering space

(M̃,p̃) for M with M̃ an orientable pseudomanifold and this double covering
with orientable total space is unique (up to isomorphism).

H o o= [ ] Œ ( ) ( ) ={ }a p a1 M v,
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Proof. One can find more details for the argument sketched above in [SeiT80]. Part
(1) actually follows from part (2) because a simply connected space cannot have any
nontrivial covering space.

7.5.1 The Degree of a Map and Applications

This section describes some applications related to orientable pseudomanifolds. We
shall yet again assume that polyhedra have well-defined homology groups.

Definition. Let Mn be a closed orientable pseudomanifold. If f :Mn Æ Mn is a con-
tinuous map, define the degree of f, denoted by deg f, to be the unique integer defined
by the property that

for all a Œ HnMn (ªZ).

7.5.1.1. Theorem. Let Mn be a closed orientable pseudomanifold and let f, g :Mn Æ
Mn be continuous maps.

(1) If f is the identity map, then deg f = 1.
(2) If f is a constant map, then deg f = 0.
(3) If f and g are homotopic, then deg f = deg g.
(4) deg (f °g) = (deg f )(deg g).
(5) If f is a homeomorphism, then deg f = ±1.

Proof. Easy.

To better understand the degree of a map f :Sn Æ Sn for arbitrary 
n ≥ 1, note that by Theorems 7.4.1.16, 7.4.3.4, and 7.4.3.5 there is a commutative
diagram

with the Hurewicz homomorphisms m being isomorphisms for all such n. Homology
classes are more algebraic and less geometric than elements of homotopy groups. By
looking at what happens in the diagram at the homotopy group level it is more intu-
itively obvious that the degree of f roughly states how many times Sn is wrapped
around itself by f.

7.5.1.2. Theorem. Let n ≥ 1. The reflection r :Sn Æ Sn defined by

p p
m m

n
n

f n
n

n
n

f n
nH H

S S

S S

( ) æ Ææ ( )
Ø Ø

( ) æ Ææ ( )

*

*

,

f a f a*( ) = ( )deg
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has degree -1.

Proof. It is not hard to prove the theorem by simple computations using an appro-
priate triangulation (K,j) of Sn and the simplicial map of K corresponding to r, but
the details are rather messy and we do not repeat them here. See [AgoM76]. Intu-
itively, think of Sn as a cell complex with two n-cells that consist of two hemispheres
(the parts with the x-coordinates nonnegative or nonpositive). Then a generator of
Hn(Sn) can be represented by a cycle that consists of the sum of these two cells ori-
ented appropriately. The reflection will then map each of these oriented n-cells into
the other, but with the opposite orientation.

7.5.1.3. Theorem. Let n ≥ 1. The antipodal map f :Sn Æ Sn, f(p) = -p, has degree 
(-1)n+1.

Proof. Consider the reflections ri :Sn Æ Sn, 1 £ i £ n+1, defined by

Clearly, f = r1 ° r2 ° . . . ° rn+1. Therefore, the theorem follows easily from Theorems
7.5.1.1(4) and 7.5.1.2.

Actually, the case where n is odd can be proved directly without appealing to
Theorem 7.5.1.2. In terms of coordinates,

If n = 1, then f is just a rotation through 180 degrees and is homotopic to the 
identity. The map

defined by

is one such homotopy. In the case of an arbitrary odd n, we have an even number of
coordinates and we can again define a homotopy between f and the identity by using
a map like h for each pair of coordinates x2i-1 and x2i, i = 1,2, . . . (n + 1)/2.

Using the properties of the degree of a map, we can easily deduce some 
well-known theorems. See also Section 8.5.

7.5.1.4. Theorem. Sn is not a retract of Dn+1.

Proof. Suppose that we have a retraction r :Dn+1 Æ Sn. Let i :Sn Æ Dn+1 be the natural
inclusion map. The maps

h x x t t x x t x x1 2 1 2 2 1, , cos , sin ,( ) = ( ) - -( ) + ( ) -( )p p

h : ,S S1 10 1¥ [ ] Æ

f x x x x x xn n1 2 1 1 2 1, , . . . , , , . . . , .+ +( ) = - - -( )

r x x x x x x x xi n i i i n1 2 1 1 1 1 1, , . . . , , . . . , , , , . . . , .+ - + +( ) = -( )

r x x x x x xn n1 2 1 1 2 1, , . . . , , , . . . ,+ +( ) = -( )
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lead to maps

This would imply that the degree of the identity map r° i :Sn Æ Sn is zero because
Hn(Dn+1) = 0. Since the identity map has degree 1 (Theorem 7.5.1.1(1)), the retraction
r cannot exist.

More generally, if W is an orientable pseudomanifold whose boundary ∂W is non-
empty and connected, then ∂W is not a retract of W. One can use the same argument,
but one would have to prove that Hn(W) = 0 first, which involves facts about homol-
ogy groups that we have not proved. Intuitively, the fact is clear however because there
is no nonzero n-cycle since the boundary of the sum of all the n-simplices in a trian-
gulation is nonzero.

7.5.1.5. Theorem. (The Brouwer Fixed Point Theorem) Every continuous map 
f :Dn Æ Dn has a fixed point.

Proof. If f has no fixed points, then the map

defined by

is a retraction of Dn onto Sn-1, which is impossible by Theorem 7.5.1.4.

Finally,

Definition. Let Mn be a closed orientable pseudomanifold. A homeomorphism 
h :Mn Æ Mn is said to be orientation preserving if it has degree +1 and orientation
reversing if it has degree -1.

Note that by Theorem 7.5.1.1(5), the degree of h is ±1. More generally,

Definition. Let Mn and Wn be closed oriented pseudomanifolds and let f :Mn Æ Wn

be a continuous map. As indicated earlier, we can interpret the orientations as corre-
sponding to a choice of generators mM Œ Hn(Mn) and mW Œ Hn(Wn). Define the degree
of f, denoted by deg f, to be the unique integer defined by the property that

If f is a homeomorphism, then f is said to be orientation preserving if it has degree +1
and orientation reversing if it has degree -1.

The degree of a map between pseudomanifolds satisfies properties similar to those
stated in Theorem 7.5.1.1. We leave their statements and proofs as exercises for the
reader.

f f*( ) = ( )m mM Wdeg .

r p q S p p S( ) = ( )point  of  where the ray from f  through  meets n-1 n-1

r n n: D SÆ -1

H H Hn
n

n
n r

n
nS D S( ) æ Ææ ( ) æ Ææ ( )* *+i 1 .

S D Sn n r niæ Ææ æ Ææ+1



7.5.2 Manifolds and Poincaré Duality

This section discusses a very important property satisfied by the homology groups 
of manifolds. It helps greatly in their determination and is a cornerstone in their 
classification.

Throughout this section we assume that Mn is a closed, compact, and connected
n-dimensional homology manifold and that K is a simplicial complex that triangu-
lates it. Identify the homology groups of M with those of K.

First, consider the case where M is an oriented manifold. The orientation induces
a well-defined orientation on all the n-simplices of K. Consider an oriented k-simplex
[sk] and an oriented version of its dual cell [s*

n-k]. Both correspond to a union of ori-
ented k-, respectively, (n - k)-simplices of sd(K). Let n be any k-simplex of sd(K) con-
tained in s (= sk) and assume that [n] has orientation compatible with [s]. Similarly,
let t* be any (n - k)-simplex of sd(K) in s*

n-k and assume that [t*] has orientation com-
patible with [s*

n-k]. By Proposition 7.5.6(3) n and t* have a single vertex in common.
Let

where the pi are vertices of sd(K), pk is the vertex that n and t* have in common, and
the integers a and b are ±1. Let

where the integer c is ±1 and is chosen so that the oriented n-simplex [x] has the ori-
entation induced by the given orientation of M. The integers a, b, and c clearly depend
on how the points pi are ordered.

7.5.2.1. Example. See Figure 7.33. We have two 2-cells with a counterclockwise ori-
entation. Here n = 2, s = p0p3, n = p0p1, k = 1, s* = p2p1 » p1p4, t* = p2p1, x = p0p1p2,
a = 1, b = c = -1.

Definition. The intersection number of [sk] and its dual [s*
n-k], denoted by I([sk],

[s*
n-k]), is defined by

x[ ] = [ ]c np p p0 1 . . . ,

n t[ ] = [ ] [ ] = [ ]* +a and bk k k np p p p p p0 1 1. . . . . . ,
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7.5.2.2. Lemma. The intersection number I = I ([sk],[s*
n-k]) is well defined.

Proof. We have to show

(1) I does not depend on the order of the vertices pi and
(2) I does not depend on the choice of n and t*.

A proof of these two facts can be found in [SeiT80].

As we pointed out earlier, although the dual cells in the dual complex K* may not
be disks, the fact that we have a homology manifold means that, algebraically, they
are linear combinations of simplices that act like disks from the point of view of
homology. If one worked through the details one would be able to show that repre-
sentatives of homology classes can be replaced by linear combinations of the dual
cells and that a homology theory that uses chain groups based on dual cells would
produce the same homology groups as before. Furthermore, there is also no problem
with defining incidence matrices for the dual cells and these would play the same role
as the incidence matrices for the simplicial theory.

7.5.2.3. Theorem. Given K and K*, if one orients the cells of K and K* in such a
way that the intersection number of dual cells is +1, then the incidence matrix Ek-1

for K is the transpose of the incidence matrix E*
n-k for K* multiplied by (-1)k.

Proof. See [SeiT80].

7.5.2.4. Theorem. (The Poincaré Duality Theorem) The kth Betti number of an ori-
entable homology manifold Mn is the same as the (n - k)-th Betti number and the k-
dimensional torsion coefficients are the same as the (n - k - 1)-dimensional torsion
coefficients for k = 0, 1, . . . , n.

Proof. See [SeiT80].

Theorem 7.5.2.4 applies only to orientable manifolds. If the manifold is not ori-
entable, then the theorem is false, but one can prove a duality theorem provided one
uses Z2 for coefficients. In that case things get simpler because one does not have to
worry about orientations.

7.5.2.5. Theorem. (The Mod 2 Poincaré Duality Theorem) The kth connectivity
number of a homology manifold Mn (orientable or not) is the same as the (n - k)-th
connectivity number for k = 0, 1, . . . , n.

Proof. See [SeiT80].

7.5.2.6. Corollary. The Euler characteristic of an odd-dimensional homology 
manifold is 0.

I a b ck n k
s s[ ] [ ]( ) =

-
, .*
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Proof. One simply uses Poincaré duality to show that the terms in the alternating
sum cancel each other.

Here is an application of what we know so far.

7.5.2.7. Theorem. If Mn is a simply connected n-dimensional homology manifold
with the property that

then Mn has the homotopy type of Sn.

Proof. First of all, the hypotheses imply that n ≥ 2. Next, Poincaré duality implies
that Hi(M) = 0 for 0 < i < n. Theorem 7.5.3 and the Hurewicz isomorphism theorem
(Theorem 7.4.3.4) then implies that there is a map f :Sn Æ M, so that [f ] Œ pn(M) gets
sent to ±1 in Hn(M) (which we identified with Z). This map f induces isomorphisms
on all homology groups. Since M is simply connected, f will also induce isomorphisms
on the homotopy groups (Theorem 7.4.3.7). Therefore, f is a homotopy equivalence
(Theorem 7.4.3.6).

Comparing Theorem 7.5.2.7 with Theorem 7.4.3.8, points out the importance of
Poincaré duality. It basically means that we only need to check things on the homol-
ogy level up to dimension n/2 rather than up to dimension n.

The above discussion of duality in manifolds was really a combinatorial ap-
proach to the subject. There are more general approaches. For example, given an n-
dimensional homology manifold M, one can define a pairing

(7.11)

with c•d defined as follows: Choose the representatives c and d for the homology
classes so that they intersect transversally, that is, they intersect in a finite number of
points. The orientations of the cells of c and d induce an orientation number of ±1 at
these points. Add up these ±1’s and define c•d to be this sum.

Generalizing further, one can define a pairing

(7.12)

where the representatives c and d are again chosen to intersect transversally and c”«“d
is the cycle defined by the intersection of the simplices of c and d.

In the end though, these geometric approaches to Poincaré duality are “brute
force” approaches. The cleanest and most elegant way is via cohomology groups. Here
is a brief outline of what one needs to do. First, we need to define something called
the cap product. Let X be a topological space and define a map

(7.13)« ( ) ¥ ( ) Æ ( )-: C C Ci
n n iX X X

c d c[ ] ( )( ) Æ «[ ], ”“ d

H H Hr s r s nM M M( ) ¥ ( ) Æ ( )+ -

c d c d[ ] ( )( ) Æ ∑,

H Hk n kM M Z( ) ¥ ( ) Æ-

H for i ni
nM( ) = < £0 0 2,
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as follows: Let g Œ Ci (X), a Œ Cn (X). Then, using the product of cochains, there is a
unique element in Cn-i(X), denoted by g « a, with the property that

(7.14)

for all f Œ Cn-i(X). In the case of simplicial complexes and an oriented n-simplex [s],

(7.15)

where the front k-face of s consists of those points with barycentric coordinates (t0,t1,
. . . ,tk,0, . . . ,0) and the back k-face of s consists of those points with barycentric coor-
dinates (0, . . . 0,tn-k, . . . ,tn).

7.5.2.8. Proposition. The map « defined by equation (7.13) is well defined, 
bilinear, and satisfies

(1) (g ◊h) « a = g « (h « a)
(2) 1 « a = a
(3) ∂ (g « a) = (dg) « a + (-1)dim g g « ∂a

Proof. See [MilS74].

Property (3) in Proposition 7.5.2.8 implies that « induces a well-defined bilinear
map

(7.16)

Definition. The map « defined in equation (7.16) is called the cap product for X.

7.5.2.9. Theorem. (The Poincaré Duality Theorem) Let Mn be an orientable homol-
ogy manifold and let m be a generator of Hn(M) ª Z. The homomorphism

is an isomorphism for all i.

Proof. See [MilS74].

Theorem 7.5.2.9 and Theorem 7.3.1 imply Theorem 7.5.2.4.

7.6 Where to Next: What We Left Out

We have covered a lot of algebraic topology, but there is much more and we have only
scratched the surface. Of course, we have left out many details and proofs and these
should be filled in and understood before moving on, but we would like to mention

H H

a a

i
n iM M( ) Æ ( )

Æ «
-

m

« ( ) ¥ ( ) Æ ( )-: H H Hi
n n iX X X

g g n i
i n i« [ ] = -( ) [ ]( ) -( )[ ]-( )s s s1 back i - face of front -face of ,

f g a f g a«( ) = ◊( )( ),
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some additional topics in this section that would be the natural next step for the inter-
ested reader. Since the topics get progressively more advanced, any references for
them will necessarily make for harder and harder reading for someone who has only
learned about algebraic topology from reading this book. A good general reference is
[Span66].

There are a great many tools for computing homology groups. One of the most
important is the definition of relative homology groups. If L is a subcomplex of a sim-
plicial complex K, then one can define relative homology groups Hq(K,L). These groups
are gotten by looking at the groups Cq(K)/Cq(L) and the induced boundary maps

Then

(By making the natural definition Cq(f) = 0, one identifies Hq(K) with Hq(K,f).) One
can show that, for q > 0, Hq(K,L) is isomorphic to Hq(M), where M is a simplicial
complex that triangulates the quotient space ΩKΩ/ΩLΩ.

Definition. A sequence of abelian groups and homomorphisms

is said to be an exact sequence if ker hq = im hq+1 for all q.

There is an exact sequence

called the homology sequence of the pair (K,L) that relates the three homology groups
Hq(L), Hq(K), and Hq(K,L), so that if one knows two of the groups, then the third is
fairly well determined. This is extremely useful in determining the homology groups
of a space from knowledge of the homology groups of subspaces. Simplicial maps on
pairs of complexes induce maps on relative homology groups.

One of the problems with simplicial homology theory is that, although one can
eventually show that it is a topological invariant, this is not obvious at the start since
the groups for a space seem to depend on a particular simplicial subdivision. It would
be nicer if one could define groups that are intrinsically topological invariants. Sin-
gular homology theory provides the answer. In this theory maps of simplices replace
the simplices themselves.

Definition. The simplex Dn = e0e1 . . . en is called the standard n-simplex.

Definition. Let X be a topological space. A continuous map T :Dq Æ X is called a
singular q-simplex of X. Let Sq be the set of singular simplices of X. Define the group
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of singular q-chains of X, denoted by Cq
s(X), by

The group operation “+” on Cq
s(X) is the obvious one, namely, if f, g Œ Cq

s(X) and 
T Œ Sq, then

By identifying T with the map fT :Sq Æ Z, where

we see ( just like in the case of the chain groups for a simplicial complex) that Cq
s(X)

can be thought of as the set of all finite linear combinations n1T1 + n2T2 + . . . + nkTk,
ni Œ Z, of singular simplices Ti of X.

Definition. Given a singular q-simplex T :Dq Æ X, define the ith face of T,

by

The boundary map

is the homomorphism defined by the condition that

for each singular q-simplex T :Dq Æ X.

Oneshows like before that ∂s
q-1 °∂q

s = 0, so that one can again define homology groups.

Definition. The qth singular homology group, denoted by Hq
s(X), is defined by

Definition. Given a continuous map f :X Æ Y, define a homomorphism
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by the condition that fs
#q(T) = f °T for every singular q-simplex T :Dq Æ X.

One can show that ∂q
s
° fs

#q = fs
#q-1 °∂q

s, so that the maps fs
#q induce well-defined 

homomorphisms

With the groups Hq
s(X), their corresponding relative groups Hq

s(X,A) for a subspace A
of X, and maps fs

*q, along with their relative analogs, we never have to worry about
triangulations. The topological invariance is trivially built into the definition. Fur-
thermore, polyhedra now have real groups associated to them, not groups up to iso-
morphism. The nontrivial part is showing that they give the same groups as the
simplicial homology theory. The solution to this problem comes from the fact, referred
to earlier in Section 7.2.3, that homology theories can be axiomatized using the 
Eilenberg-Steenrod axioms. We can take our various definitions of homology groups
simply to be existence results that assert that there are objects that satisfy the abstract
theory. Any two theories that satisfy the axioms will have isomorphic groups if they
have isomorphic homology groups for a point.

Since cohomology groups are derived algebraically from chain groups, one can
obviously define singular cohomology groups.

Although homotopy groups are much harder to compute than homology groups,
there are tools that help in this. One such is the fact that one can define relative homo-
topy groups pn(X,A,x0) that play the same role for homotopy theory that the relative
homology groups play for homology theory. Given a topological space X, a subspace A,
and a point x0 Œ A, these groups are obtained from relative homotopy classes of maps

where the homotopies have to keep mapping ∂In to A. Maps between pairs of spaces
induce homomorphisms of the relative groups. There is also an exact sequence

From an abstract point of view, we can think of H* and p* as examples of “func-
tors” from the “category” of topological spaces to the “category” of groups. (The reason
for the quotes around some terms is that they have precise mathematical definitions
that we cannot go into here.) This is how topological questions get translated into
algebraic questions.

The theories we have talked about, homology, homotopy, and so on, really apply
to arbitrary topological spaces. Of course manifolds are the most interesting ones, in
particular three-dimensional manifolds, because those are the spaces with which we
have contact in everyday life. Therefore, it should not be surprising that a great deal
of work has been done in low-dimensional topology. Unfortunately, we shall see in the
next chapter that, as counter-intuitive as it might seem, a lot more is known about n-
dimensional manifolds for n ≥ 5 than three- and four-dimensional manifolds. As a
starting point for more information on advanced aspects of this subject we suggest
the books [Mois77] and [Matv03].
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Finally, we have said that one major goal of topologists is to find algebraic invari-
ants for spaces that can be used to classify them up to homeomorphism. This chapter
has described homology groups, homotopy groups, and cohomology rings that are
general-purpose invariants that apply to arbitrary topological spaces. In the next
chapter we shall learn about additional invariants that can be defined in the special
case of differentiable manifolds. A great many tools for computing the various invari-
ants of this chapter have been developed. We have indicated some of them above.
Another extremely powerful tool is the construction of what are called spectral
sequences, but this subject is much too advanced and technical to even sketch here.
The reader would have to have a fairly good understanding of most of the topics
described in this chapter beforehand. One good reference is [McCl85].

With regard to the computability of the task of evaluating algebraic invariants,
there is unfortunately one negative result along these lines.

7.6.1. Theorem. There cannot exist any algorithm for deciding whether or not two
given compact, orientable, triangulable 4-manifolds are homeomorphic.

Proof. See [Mark58]. The proof depends on the fact that almost any group can be
the fundamental group of a 4-manifold and the algebraic fact that the question
whether two arbitrary (nonabelian) group representations determine isomorphic
groups is undecidable.

Theorem 7.6.1 means that the homeomorphism problem for n-manifolds has a
hope of being solvable only when n £ 3. The only open case is therefore n = 3.

7.7 The CW Complex Pn

In this last section of the chapter, we return once again to the spaces Pn and describe
them from the point of view of algebraic topology. We begin by defining their standard
cell decomposition. This is done best by first describing Sn as a regular CW complex.

Definition. The standard regular CW complex representation of Sn is the CW complex
defined by the collection of i-dimensional cells ci

1 = Si
+ and ci

2 = Si
- in Ri+1 for 0 £ i £

n. The attaching map fi,j for the cell ci
j is the obvious one which projects the disks Di

to either the upper or lower hemisphere of Si.

Figures 7.8(a) and (c) show the decompositions for S0 and S1, respectively. Now
think of Pn as the quotient space of Sn where we identify antipodal points and let

(7.17)

be the standard double covering projection.

Definition. The standard regular CW complex representation of Pn is the CW complex
defined by the collection of i-dimensional cells ci = p(ci

1) and attaching maps fi = p°fi,1,
for 0 £ i £ n.

p n n: S PÆ
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It is worthwhile pointing out the following properties of this CW complex repre-
sentation of Pn explicitly:

(1) There is one i-dimensional cell for each dimension 0 £ i £ n.
(2) The i-skeleton of Pn is just Pi and we have a filtration

where Pi is obtained from Pi-1 by attaching an i-cell.

This cell structure of Pn allows us to compute the homology and cohomology of the
space fairly easily if we use the approach based on oriented cells described in Section
7.2.4. The fact is that each i-cell ci

1 in Si has a natural orientation obtained by pro-
jecting the standard orientation of Di upward. The projection p projects this orienta-
tion to an orientation of the cell ci in Pn. If we denote our CW complex for Pn by C,
then since there is only one cell in each dimension i, 0 £ i £ n,

and to compute the homology groups we simply have to analyze the boundary maps
on the cells ci.

7.7.1. Theorem. The homology groups of Pn are given by

(1) H0 (Pn) ª Z

(2) Hi (Pn,Z2) ª Z2, 0 £ i £ n,

Proof. Here is a sketch of the argument that proves (1). Let us orient the cells cj
i+1

based on the orientation of Di+1 induced from the standard orientation [e1,e2, . . . , ei+1]
of Ri+1. Consider the cell c1

i+1 in Sn with i ≥ 2. The boundary of that cell consists of
the two cells ci

1 and ci
2. What orientation does the boundary map on c1

i+1 induce on
these two cells? Well, the orientation induced on ci

1 and ci
2 have to be [e1,e2, . . . , ei]

and [-e1,e2, . . . , ei], respectively. The reason is that adding ei+1 at the end of the first
basis and -ei+1 at the end of the second must lead to the standard orientation of Di+1

and it is easy to check in the second case that

But under the antipodal identification map the cell ci
2 and its orientation [-e1,e2,

. . . , ei] gets mapped to the cell ci
1 with orientation [e1,-e2, . . . , -ei]. The latter agrees
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with the orientation [e1,e2, . . . , ei] if i is odd and -[e1,e2, . . . , ei] if i is even. In the
first case, ∂cj

i+1 will equal 2ci
1 and in the second, 0. What this shows is that, for 0 < i

£ n,

and, for 0 < i < n,

Part (2) of the theorem follows from the fact that 2 is the same as 0 in Z2. For a
more rigorous proof of this theorem see [CooF67].

7.7.2. Theorem. The cohomology groups and cohomology ring structure of Pn are:

(1) H0 (Pn) ª Z

(2) Hi (Pn,Z2) ª Z2, 0 £ i £ n,
(3) As a ring using the cup product, H*(Pn,Z2) is a polynomial ring with one 

generator wn Œ H1(Pn,Z2) satisfying a single relation wn
n+1 = 0, that is,

If i :Pn Ã Pn+1 is the natural inclusion, then i*(wn+1) = wn.

Proof. See [CooF67] and [Span66]. We could use Theorem 7.3.1 for part (1).

We finish with a result about the homotopy groups of Pn. Recall, however, our
earlier comment that the sphere Sn has nontrivial higher homotopy groups.

7.7.3. Theorem. Let n ≥ 1.

(1) Since P1 is homeomorphic to S1, p1 (P1) ª Z.
(2) If n > 1, then p1 (Pn) ª Z2.
(3) pi (Pn) ª pi (Sn) for i ≥ 2.

H
w

w
n n

n
n

*( ) ª
[ ]

( )P Z
Z

, “ ” .2
2

1+

H
n even

n odd
n nP

Z

Z
( ) ª Ï

Ì
Ó

¸
˝
˛

2

H
for dd

for even
i nP

Z
( ) ª Ï

Ì
Ó

¸
˝
˛

0

2

0 < i < n and i o

0 < i < n and i

B C if i is even

if i is odd
i ( ) =

ª
0

2Z .

Z C if i is even

if i is odd
i ( ) =

ª
0

Z

7.7 The CW Complex Pn 455



Proof. See [Stee51] or [Span66]. The isomorphisms in (3) are induced by the 
projection map in (7.17).

7.8 EXERCISES

Section 7.2.1

7.2.1.1. Prove Lemma 7.2.1.2.

7.2.1.2. Prove that if K is a simplicial complex, then

rank (H0(K)) = number of connected components of ΩKΩ.

7.2.1.3. Prove that the homology groups of the Klein bottle are as indicated in Table 7.2.1.1.
You can use a triangulation similar to that of the torus shown in Figure 7.5.

7.2.1.4. Prove the results indicated in Table 7.2.1.1 for

(a) orientable surfaces of genus k
(b) nonorientable surfaces of genus k

7.2.1.5. If X and Y are polyhedra, prove that

Section 7.2.2

7.2.2.1. Prove Lemma 7.2.2.6.

7.2.2.2. Let K = ∂<v0v1v2v3> be the simplicial complex in Example 7.2.1.6. Compute the maps
f*q for the simplicial map f :K Æ K defined by f(v0) = v0, f(v1) = v2, f(v2) = v1, and 
f(v3) = v3.

7.2.2.3. Let K be a simplicial complex. Show that sd(K) is also a simplicial complex.

Section 7.2.3

7.2.3.1. Let K be a simplicial complex. Show that the cone on ΩKΩ is a polyhedron and 
determine its homology groups.

7.2.3.2. If K is a nonempty simplicial complex and if ΩKΩ has k components, prove that the
suspension of ΩKΩ has the following homology groups:
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H S K k

H S K H K qq q
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Section 7.2.4

7.2.4.1. Describe a minimal cell decomposition for the Klein bottle.

7.2.4.2. Triangulate the dunce hat and compute its homology groups.

7.2.4.3. (a) Prove that the homology groups of the lens spaces are what they were stated to
be.

(b) Prove that the Euler characteristic of a lens space is 0.

Section 7.2.5

7.2.5.1. Compute the incidence matrices for the simplicial complex K = ∂<v0v1v2v3>. Work
through the proof of Theorem 7.2.5.3 and determine the normalized form of the inci-
dence matrices and the bases of the chain groups that define them. Show how these
matrices determine the known homology groups.

Section 7.2.6

7.2.6.1. (a) If X is a point, then prove that

(b) Let X be a polyhedron. Prove that H0(X;G) is isomorphic to a direct sum of as
many copies of G as there are components of X. In particular, the 0th connec-
tivity number of X, k0(X), is nothing but the number of components of X.

7.2.6.2. Compute Hq(X;Z2), for all q, where X is

(a) Sn

(b) S1 ¥ S1

(c) P2

(d) the Klein bottle

Section 7.3

7.3.1. Prove that the space X = S2 ⁄ S1 ⁄ S1 in Figure 7.15 has the same homology groups as
the torus.

Section 7.4.1

7.4.1.1. Complete the proof of Theorem 7.4.1.6 by filling in all missing details.

7.4.1.2. Prove Theorem 7.4.1.7.

7.4.1.3. Prove Lemma 7.4.1.11.

7.4.1.4. Prove Theorem 7.4.1.12.

H G
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0
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Section 7.4.2

7.4.2.1. Show that the bundle (Sn,p) over Pn in Example 7.4.2.1 is locally trivial.

7.4.2.2. Give an intuitive justification of the fact that the lens spaces defined in Sections 7.2.4
and 7.4.2 are homeomorphic.

Section 7.4.3

7.4.3.1. Prove Theorem 7.4.3.1.

7.4.3.2. Prove Lemma 7.4.3.3.

Section 7.5

7.5.1. Work through the details of a proof of Theorem 7.5.1.

7.5.2. Work through the details of a proof of Proposition 7.5.6.

Section 7.5.1

7.5.1.1. Let f, g :Sn Æ Sn, n ≥ 1, be continuous maps.

(a) Prove that if f(p) π g(p) for all p Œ Sn, then

(b) Prove that if deg f π (-1)n+1, then f has a fixed point.
(c) Prove that if deg f π 1, then f(p) = -p for some p Œ Sn.

deg deg .f gn+ -( ) ( ) =1 0
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C H A P T E R  8

Differential Topology

8.1 Introduction

Most of what we did in the last three chapters applied to topological spaces that could
be quite general, even if one restricted oneself to polyhedra. In this chapter we spe-
cialize to studying manifolds. Topological manifolds were defined in Chapter 5 and
then studied further in the context of pseudomanifolds and homology manifolds in
Chapter 7. As topological spaces they look like Rn or Rn

+ locally. To put it another way,
to a sufficiently small bug in a manifold the space around it would look flat. Now we
shall study differentiable manifolds, which have a differentiable structure in addition
to their topology. Having a differentiable structure on a manifold means that we can
transfer many other properties and techniques from Enclidean space over to it. In
particular, we can use calculus and linear algebra. This turns out to play an im-
portant role in the analysis of the manifold because we will be able to do things that
we can not do with an ordinary topological manifold. Smooth curves and surfaces,
spaces important in geometric modeling and CAGD, are instances of differentiable 
manifolds.

Although we sketch an intrinsic definition of a differentiable manifold later in this
chapter, our working definition will be one that defines certain subspaces of Rn to be
manifolds. By defining a manifold in terms of what could be considered as a partic-
ular imbedding of the corresponding “abstract” manifold, we simplify the definition
of tangent vector and tangent space, which are an essential part of a manifold. The
intrinsic definition of a manifold is not that much harder, but with our approach we
make it somewhat easier for the reader who has never seen any of this material before
and who does not feel entirely comfortable with n dimensions. Defining manifolds as
parameterized subspaces of Euclidean space is also the way one usually sees them
defined in CAGD. In one sense, there is no loss of generality because an important
theorem asserts that even abstract manifolds can be realized as subspaces of a suit-
ably high dimensional Euclidean space. On the other hand, one should be aware of
the fact that the disadvantage of studying manifolds as subsets of Euclidean space is
that it might seem as if some of the invariants we define for them depend on the sur-
rounding space when in fact they do not. Abstraction enables one to see essential



aspects more clearly. That is the reason that one defines an abstract n-dimensional
vector space and does not just deal with Rn (although the two are isomorphic). In the
case of manifolds, they have lots of intrinsic properties that do not depend on any
particular imbedding. For example, on one level anyway, there really is no difference
between all the circles of radius one in the plane. They all correspond to different
imbeddings of an “abstract” version of a unit circle. In fact, until we get to differen-
tial geometry where the metric matters, all circles are the “same.”

Section 8.2 discusses parameterizations of spaces, which is essential for the defi-
nition of a manifold given in Section 8.3 and the abstract manifolds defined in Section
8.8. The idea of a manifold originated in Riemann’s groundbreaking lecture “On the
Hypotheses which lie at the Foundation of Geometry” delivered to the faculty at the
University of Göttingen in 1854. The ideas expressed in this talk are usually consid-
ered to be the most influential in the history of differential geometry. An integral part
of a differentiable manifold is its tangent space, which is defined in Section 8.4.
Section 8.5 discusses what it means for a manifold to be orientable. Sections 8.6 and
8.7 give an overview of what is involved in the classification of manifolds. They give
the reader a taste of some difficult but beautiful results on the structure of manifolds.
Key to this is the handle decomposition of a manifold and cobordism theory along
with algebraic topology invariants. This part of the theory is relatively new. It covers
about a twenty year period starting in the middle 1950s and culminated in the main
structure theorems for manifolds that are known today. See [AgoM76b]. Next, in
Section 8.8 we move on to an intrinsic definition of a manifold. Sections 8.9 and 8.10
define vector bundles and discuss some of their basic properties with emphasis on
their role in the study of manifolds. Section 8.11 defines what it means for maps or
manifolds to be transverse. The degree of a map and intersection numbers serve as
two examples of how transversality can be used, but it appears in a great many essen-
tial ways in proofs related to differentiable manifolds. In Section 8.12 we continue
the topic of differential forms and integration that we started in Sections 4.9 and 4.9.1,
but this time in the setting of manifolds. Finally, in Section 8.13 we take another look
at the projective spaces Pn and we introduce the Grassmann manifolds in Section
8.14.

8.2 Parameterizing Spaces

Parameterizations are a generalization of Descartes’ idea that a good approach to
studying a geometric space is to introduce coordinates for its points, because one can
then use equations or other analytic tools to study the space. They are used in many
places and are fundamental to the idea of a manifold, especially the abstract mani-
folds defined at the end of this chapter.

Definition. Let X be a subset of Rn. If there a subset U of Rk and a surjective Cr map

then F is called a Cr parameterization of X. The set X is called the underlying space of
F in that case.

F: ,U XÆ
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Usually, parameterizations will be one-to-one maps, or close to that. In that case,
they basically allow us to associate coordinates to points of a space, that is, if

then we can think of q as having coordinates (u1, u2, . . . , uk). (In the context of param-
etrizations and a set U we shall often use parameters ui rather than xi.) The modifier
“Cr” is often omitted and may need to be determined from the context. As a general
rule, unless explicitly stated otherwise, the assumption will be that a parameterization
is a C• map. The reason is that we frequently want to have the ability to talk about
the derivative of the map. Actually, to be of class C3 would be adequate for everything
we do in this book but we do not want to get involved in that sort of technical detail.
In this context, for differentiability to make sense, U will be either an open subset of
Rk or have a “nice” boundary, that is, every boundary point will have a neighborhood
that looks like Rk

+.

8.2.1. Example. The graph of any function admits a natural parameterization.
More precisely, if A Õ Rm and if f :A Æ Rn, then the map

defined by

(8.1)

is a parameterization of the graph of f. One can think of this map as projecting orthog-
onally up from A to the graph. Here are two examples:

See Figure 8.1. In differential geometry the parameterization F(x,y) = (x,y,f(x,y)) of
the surface that is the graph of the function f(x,y) is often called a Monge patch.

To get a parameterization for a space, one usually has to think of some geomet-
ric way that its points can be described by some real numbers. These real numbers
correspond to “directions” as to “how one can get to the point.” For example, the coor-
dinates of the point (2,3) in R2 can be thought of as saying that one can get to it from
the origin by walking a distance 2 along the x-axis and then a distance 3 along a line
parallel to the y-axis.

8.2.2. Example. Consider the unit sphere S2 as being a surface of revolution
obtained by rotating one half of the unit circle about the x-axis. By definition of a
surface of revolution, the sphere is then a union of circles each of which is the inter-
section of the surface with a plane parallel with the yz-plane that meets the x-axis at
some x-value. But any one of these circles is, again by definition, just a point revolved
about the x-axis. Since points on a circle of fixed radius can be specified by one real

f x x x x x

f x y x y x y x y x y
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number, an angle, it is therefore clear that one could tell someone how to get to a
point on the sphere by telling that person two numbers, x and q. The x-value speci-
fies a circle and its radius and the q-value a point on that circle. This leads to the para-
meterization of S2 defined by

(8.2)

See Figure 8.2. Note that is the radius of the circle at x.

8.2.3. Example. A slightly more complicated example is a parameterization of the
Moebius strip. See Figure 8.3. One can think of the Moebius strip as a union of line
segments parameterized by [-1,1], one for each point on the circle of radius 2 about
the origin. Now an ordinary vertical cylinder centered on the z-axis of radius 2 could
be parameterized by

1 2- x

F x x x x x, , cos , sin , ,q q q q p( ) = - -( ) - £ £ £ £1 1 1 1 02 2 .
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but in the case of the Moebius strip we need to rotate the line segments about their
center point. When q is zero, we start with a horizontal line segment from 1 to 3 on
the x-axis. As q increases, we start rotating the line segment about its center on the
circle of radius 2 with the top end tilting up toward the z-axis. When q gets to p, the
line segment is vertical. The parameterization is easy to write in vector form. Let

and let uq denote the unit vector which, at “time” q, points from pq = 2eq to the point at
the top of the vertically-slanted line segment. Then the parameterization we want is

It remains to compute uq in terms of q and t. But uq lies on the unit circle in the ver-
tical plane through the origin with basis eq and e3. If it makes an angle a with the
vector eq, then

Since a = q/2, we are led to the following formula for F:

(8.3)

where 0 £ q < 2p and -1 £ t £ 1.

Parameterizations are intended to help in the study of a space. They are usually
not of interest by themselves. The idea is that by determining properties of the map
one gets some information about intrinsic properties of the space. As mentioned
earlier, the definition as it stands is really too general to expect something like this to
work unless the map is essentially one-to-one.

F q
q

q
q

q
q

, cos
2

cos , sin
2

sin , sin
2

,t t t t( ) = +Ê
Ë

ˆ
¯ +Ê

Ë
ˆ
¯

Ê
Ë

ˆ
¯2 2

u e eq qa a= +cos sin 3.

F q q q, t t( ) = +2e u .

eq q q= ( )cos ,sin ,0

F q q q q p, cos , sin , , ,t t and t( ) = ( ) £ < - £ £2 2 0 2 1 1
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Definition. Let U Õ Rk. A Cr map, r ≥ 1,

is said to be regular at a point p in U if DF(p) is one-to-one. The map F is said to be
regular if it is regular at every point of U.

The parameterization in Example 8.2.1 of the graph of a function is regular,
assuming that the function is differentiable. The parameterization in Example 
8.2.3 is also regular. Both are in fact globally one-to-one. In general, regular para-
meterizations are locally one-to-one (Theorem 4.4.6), but not necessarily globally 
one-to-one.

8.2.4. Example. The parameterization

of the unit circle is a regular parameterization but is not globally one-to-one.

The parameterization of S2 defined in Example 8.2.2, although often used, is not
regular. For one thing, it is not differentiable when x is ±1. For another, when x is ±1
the circle being rotated has degenerated to a point and F is not locally one-to-one
there. The nonregularity may, however, not be a problem if one is not interested in
those values of x.

Even if one sticks to regular parameterizations, there are still many ways to para-
meterize a space. For example, if a curve is parameterized by an interval and one
thinks of the parameter as time, then one can traverse or walk along the curve with
many different velocities and each one would correspond to a different parameteri-
zation of the curve. When using parameterizations as a vehicle for studying spaces
we must be careful to stick to those properties that are an invariant of the underly-
ing space.

Definition. Let U, V Õ Rk and X Õ Rn. Let r ≥ 1 and let F :U Æ X and Y :V Æ X be
two regular Cr parameterizations of a space X. We say that Y is a regular reparame-
terization of F if Y = F m for some one-to-one and onto Cr map m :V Æ U with Dm(q)
one-to-one for all q in V. The map m will be called a change of coordinates or change
of parameters transformation. The map m is said to be orientation preserving if
det(Dm(q)) > 0 for all q in V; otherwise, m is said to be orientation reversing. If m exists,
then F and Y are said to be equivalent parameterizations.

See Figure 8.4. Think of the map m as defining a change of coordinates. We shall
sometimes say that Y was obtained from F by a change in coordinates. The proper-
ties of spaces that we want to study via parameterizations should be invariant under
regular reparameterizations. It is easy to show that the notion of being equivalent is
an equivalence relation on the set of regular parameterizations of a set X.

8.2.5. Example. Consider the parameterizations

o

F q q q q( ) = ( ) Œcos sin ,, , R

F : U RÆ n
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defined by

The map

is an orientation-reversing reparameterization because . See Figure 8.5.

8.3 Manifolds in Rn

Topological manifolds were defined in Section 5.3. Now we add a differential struc-
ture. In this section we restrict ourselves to subsets of Euclidean space because, by

¢( ) = -m pt 2

m p m
p

: , , , ,-[ ] Æ [ ] ( ) = -( )11 0 1t t
2

F Yq q q( ) = ( ) ( ) = -( )cos sin, , .and t t t1 2

F: 0 111 1, ,p[ ] Æ -[ ] Æ+ +S Sand Y:
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doing so, the definitions really only involve concepts that should be familiar to the
reader, such as the differentiability of vector-valued functions. The price we pay,
however, is that they are not entirely satisfactory from a mathematical point of view.
For one thing, the reader will find that we never really define a differential structure
anywhere in this section. We shall only be defining whatever is needed for two ideas
to make sense, namely, that a manifold has tangent planes and that certain functions
are differentiable. The correct and intrinsic definitions are postponed to Section 8.8
at which point the reader has hopefully gotten a feeling for the geometric ideas, so
that the additional abstraction will not be a problem.

We again phrase our definitions in a way that includes manifolds with boundary
right at the start. The reader should compare the new definition with the one in
Section 5.3.

Definition. A subset M of Rn is called a k-dimensional Cr manifold, r ≥ 0, if, for every
point p in M, there is an open neighborhood Vp of p in M, an open set Up in Rk

+, and
a Cr homeomorphism Fp :Up Æ Vp, which is assumed to be regular if r ≥ 1. The maps
Fp are called local (Cr) parameterizations for M. A C• manifold is called simply a dif-
ferentiable or smooth manifold. If Vp = M, then Fp is called a proper (Cr) parameteri-
zation for M. The boundary of the manifold M, ∂M, is defined by

If ∂M = F, then M is called a closed manifold.

See Figure 8.6. Clearly, every Cr manifold is also a Cs manifold for 0 £ s £ r. Since
a C0 manifold is almost by definition a topological manifold, it follows that every Cr

manifold is a topological manifold and so the terminology used with the latter applies.
Furthermore, from what we know about topological manifolds it follows that the
dimension and boundary of Cr manifolds are well defined. It is also easy to show that
the boundary of a k-dimensional Cr manifold is a (k - 1)-dimensional Cr manifold
(without boundary). One slight difference between this definition and the earlier one
in Section 5.3 is that we have used an arbitrary open set Up in Rk

+ rather than just the
whole halfspace Rk

+ One does not gain any generality by doing so, but it will match

∂ = Œ ( ) Œ{ }- -M p M p RpF 1 1k .
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the definitions in Section 8.8 better. The reason for using sets Up will become appar-
ent later in Section 8.8.

Note. Trying to handle both closed manifolds and manifolds with boundary does
introduce some complications because results involving the latter sometimes need
special hypotheses. One difference shows up when it comes to limits or derivatives.
In the future, such limits or derivatives at points on the boundary should always be
taken to mean one-sided limits or derivatives although we shall not explicitly say so.
With that standing assumption, theorems that we state for manifolds will hold for
both types unless we say otherwise.

We shall see that one important difference between a subset of Rn being a topo-
logical manifold and being a differentiable manifold is that a subset that is a differ-
entiable manifold has a nice, unique “tangent plane” at every point. Think of a sphere
and its tangent planes. A precise definition of tangent planes will be given in the next
section. Their existence is a consequence of the regularity of the local parameteriza-
tions. For that reason, the regularity property of local parameterizations is an essen-
tial hypothesis and not just a minor property that has been tacked on to the definition.
This means that, although the boundary of a square is a topological 1-manifold, it is
not a Cr-manifold, r ≥ 1, because there is no unique tangent line at the corners. A more
correct way of stating this fact is to say that the boundary is not a differentiable sub-
manifold of Rn. In general, this section simply specifies sufficient conditions for a
subset to be a differentiable submanifold of Rn, namely, a differentiable imbedding of
an abstract manifold as defined in Section 8.8. It should also be pointed out that if a
set M is a Cr manifold, then we have assumed the existence of certain local Cr para-
meterizations, but it does not follow that every local parameterization of M will be
a Cr parameterization. See Example 8.3.2 below.

8.3.1. Example. Euclidean space Rk is a k-dimensional differentiable manifold
because we can let Up = Rk and let F be the identity map. It is also easy to show that
Dk is k-dimensional differentiable manifold with boundary Sk-1.

8.3.2. Example. The unit circle S1 is a one-dimensional differentiable manifold
because it can be covered by local C• parameterizations

defined by

Each map Fi covers half of the circle and is a C• map since we have stayed away from
u = ±1. The maps

F

F

F

F
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2
2

3
2
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2
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1

1

1

u u u

u u u

u u u and

u u u
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defined by

are a simpler set of local C• parameterizations. There are lots of different local C•

parameterizations for S1. On the other hand, there are also lots of local parameteri-
zations that are not C•. For example the map

defined by

is parameterization of a neighborhood of the point (0,1) that is continuous (C0) but
not C1 because the derivative does not exist at u = 0.

The next theorem states an important property of differentiable manifolds,
although its proof is much too involved to present here. The main consequence for
us is that simplicial homology groups are defined for such manifolds and we can use
what we know about pseudomanifolds and homology manifolds.

8.3.3. Theorem. Every Cr manifold M, r ≥ 1, admits a triangulation that is infinite
in general, but if M is compact, then M has a finite triangulation that makes it into a
pseudomanifold if it is connected. Every closed compact connected Cr manifold, r ≥
1, is a homology manifold.

Proof. See [Munk61].

Manifolds are defined in terms of parameterizations and that is the most common
way they are presented, but there is another way, namely, they can sometimes be
defined as the set of zeros of a function. For example, the sphere S2 is the set of zeros
of the polynomial

Definition. Let f :Rn Æ Rm . Define the set of zeros of f , V(f) , by

In practice, f is usually a polynomial, and in that case V(f) is also called an (affine
algebraic) variety. Algebraic geometry is that field in mathematics which tries to
analyze the topological structure of V(f) in terms of algebraic invariants associated to

V f f f( ) = ( ) = Œ ( ) ={ }-1 00 p R pn .

p x y z x y z, , .( ) = + + -2 2 2 1

j u u u u

u u u

( ) = - - +( ) +( ) Œ - ](

= - -( ) -( ) Œ )[

1 1 1 1 0

1 1 1 0 1

2

2
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, , , ,

j : -( ) Æ +11 1, S
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Ë
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the polynomial f. It happens that there are some very deep connections between the
two. We shall look at some of this in Chapter 10. The graphs of functions can always
be thought of as varieties. For example, in Figure 8.7 the graph of the functions

are varieties V(f), where

Not all zero sets V(f) are nice, locally Euclidean spaces. For example, consider the
point p in the set in Figure 8.8(a) and the line L in the set in Figure 8.8(b). We can
think of these as zero sets of the function x2 - y2 in the plane and 3-space, respec-
tively. In the first case we cannot find any neighborhood of p that looks like a line. No
matter how small the neighborhood, it will always look like a cross. A similar problem
exists in the second case. It is possible to give examples where worse problems arise.
This leads to the following question: Is there a simple criterion that can be applied to

f x y z z g x y, , , .( ) = - ( )

z g x y= ( ),
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f that guarantees that V(f) will be a nice space? First of all, note that this is a local
question that has to do with what neighborhoods of points look like.

8.3.4. Theorem. (The Implicit Parameterization Theorem) Let f :Rn Æ Rm be a dif-
ferentiable map. If f(x) = (f1(x), . . . ,fm(x)) and if the m ¥ n Jacobian matrix f¢ = (∂fi/∂xj)
has constant rank k < n on an open set containing V(f), then V(f) is a differentiable
manifold in Rn of dimension n - k.

Proof. We need to show that we can parameterize a neighborhood of an arbitrary
point x0 in V(f). Without loss of generality assume that x0 is the origin. By Theorem
4.4.5 we can get local diffeomorphisms g and h of neighborhoods of the origin in Rn

and Rm, respectively, so that

The map g can now be used to define the parameterization of a neighborhood of x0
that we need.

8.3.5. Example. To analyze the set V(f) for the function f(x,y,z) = z - x2.

Solution. We have that

Clearly, f¢ has rank 1 on the zero set V(f) and so by Theorem 8.3.4 V(f) is a smooth
surface (two-dimensional manifold). In fact, V(f) is the parabolic “trough” shown in
Figure 8.9(a).

8.3.6. Example. To analyze the set V(f) for the function f (x,y,z) = (x2 + 3y2 + 2z2 -
1,z).

¢( ) = -( )f x y z x, , , , .2 0 1

h f g x x x xn k1 1 0 0, . . . , , . . . , , , . . . , .( )( )( ) = ( )
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Solution. Since

and f¢ has rank 2 on the zero set V(f), Theorem 8.3.4 implies that V(f) is a 
smooth curve. This is easily verified because V(f), the set of common zeros of the 
functions

is just the ellipse in the plane defined by the equation x2 + 3y2 = 1. See Figure 8.9(b).

The following theorem is a local version of Theorem 8.3.4.

8.3.7. Theorem. Let f :Rn Æ Rm and assume that f(p) = 0. If the rank of Df is k in
a neighborhood of p, then there is a neighborhood U of p with U « V(f) an (n - k)-
dimensional manifold.

Proof. Since being a manifold is a local property, one can use the same argument
as in Theorem 8.3.4.

Next we define what it means for a map between manifolds to be differentiable.
It might seem as if there is nothing to do since Section 4.3 already defined a notion
of differentiability for functions defined on subsets of Rm. However, since our mani-
folds are not necessarily open subsets of Rm, it is the definition given at the end of
that section that would have to be used. Unfortunately, using that definition for the
differentiability of a function on an arbitrary set one would not able to get a well-
defined derivative of the function. Therefore, we shall use a definition based on the
parameterizations of a manifold. After all, a parameterization corresponds to a coor-
dinate system for a neighborhood of a point in the manifold and it makes sense to
define differentiability with respect to such local coordinates.

Definition. Let Mn and Nk be Cr manifolds in Rm. A map f :Mn Æ Nk is said to be 
of class Cr or a Cr map at a point p in Mn if there is an open set U in Rn, an open
neighborhood V of p in Mn, and a local Cr parameterization FU,V :U Æ V, so that

is a Cr map. The rank of f at the point p is the rank of D(f FU,V) at u = FU,V
-1(p). The map

f is a Cr map if it is of class Cr at every point p in M. A differentiable map is a C• map.

See Figure 8.10. Notice that this definition does not yet define a derivative of the
map f. We will do that in the next section because we need to define tangent vectors
first. Right now we only have a notion of differentiability and rank. In this book we
shall be mostly concerned with C• maps and not get involved in the fine points of Cr

maps, n π •.

o

f mo FU,V U N R: Æ Õ
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8.3.8. Theorem. The definition of differentiability and rank for maps between man-
ifolds in Euclidean space is well defined and equivalent to the one given in Section
4.3.

Proof. To show that differentiability and rank are well defined we must show that
the definitions do not depend on the local Cr parameterization FU,V. Let U¢ be another
open set in Rn, V¢ another open neighborhood of p in Mn, and FU¢,V¢ :U¢ Æ V¢ another
Cr parameterization. The main observation is that

and the map FU,V
-1 FU¢,V¢ is a CR diffeomorphism between open sets in Rn. We may

have to restrict the maps to smaller open sets so that the composites are defined, but
we shall leave the details to the reader. See also Theorem 4.3.25.

8.3.9. Example. To show that the antipodal map f :S1 Æ S1 defined by f(p) = -p is
a C• map.

Solution. Let p0 Œ S1 and assume that p0 = (cosq0,sinq0). The map

defined by

is a local C• parameterization of a neighborhood of p0. Now,

is just

f o F: q q0 0
21 1- +( ) Æ, R

F q q q( ) = ( )cos sin,

F: q q0 0
11 1- +( ) Æ, S

o

f fo o o oF F F F¢ ¢
-

¢ ¢= ( )U ,V U,V U,V U ,V
1
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and this map is clearly C•. If p0 = (x0,y0) with y0 > 0, then we could have chosen another
local C• parameterization such as

where

This time

which is also C•.

Definition. Let f :Mn Æ Nk be a differentiable map between differentiable mani-
folds. If f has rank n at all points of M, the f is said to be an immersion. If f is a 
homeomorphism onto f(M) Õ N and is an immersion, then f is called an imbedding.
If f is a homeomorphism between M and N and an immersion, then it is called a 
diffeomorphism.

Immersions may only be locally one-to-one. For example, a figure eight is an
immersion of a circle in the plane but not an imbedding.

8.3.10. Theorem. If f :Mn Æ Nk is a diffeomorphism, then n = k and f-1 :N Æ M is
also a diffeomorphism.

Proof. The fact that n = k follows from the invariance of domain theorem, Theorem
7.2.3.8. Since f is a homeomorphism, it has an inverse which is also a homeomor-
phism. To prove that f-1 is a diffeomorphism, use the inverse function theorem,
Theorem 4.4.2.

Definition. A differentiable manifold Nk that is a subset of a closed manifold Mn is
called a (differentiable) submanifold of Mn if the inclusion map is an immersion. If
the manifold Mn has a nonempty boundary, then we also require that for every p Œ
Nk, there is an open neighborhood U of p in Mn, an imbedding h :U Æ Rn, and an
open subset V Ã Rk

+ Ã Rn, so that Nk « U = h-1(V).

The reason for the complication in the case of manifolds with boundary is that
we do not want N to meet the ∂M in a bad way. See Figure 8.11(a) for some cases of
h, U, and V. Figure 8.11(b) shows some good submanifolds and Figure 8.11(c) some
imbedded manifolds that we would not want to call submanifolds. Among other
things, unless N is contained in ∂M, N - ∂N should not meet ∂M and ∂N should always
meet ∂M nicely (“nice” means transversally as defined in Section 8.11).

Finally, another common term is the following:

f x x xo Y( )( ) = - - -( ), ,1 2

Y x x x( ) = -( ), .1 2

Y: , ,-( ) Æ11 1S

f o F( )( ) = - -( )q q qcos sin,
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Definition. A submanifold Nk of a manifold Mn is said to have codimension n - k
in Mn.

Unless stated otherwise, all manifolds from now on are assumed to be differen-
tiable manifolds.

8.4 Tangent Vectors and Spaces

Curves are basic to understanding our definition of tangent vectors and tangent spaces
of manifolds.

Definition. A Cr parametric curve is a Cr function F : [a,b] Æ Rn. The space X =
F([a,b]) traced out by F will be called the path of the parametric curve F. A differen-
tiable parametric curve is a C• parametric curve. The parametric curve F is said to be
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closed if F(a) = F(b). If F is closed and F is one-to-one on [a,b] or one-to-one on (a,b),
then F will be called a proper parametric curve or proper parameterization of the path
X.

Note that a parametric curve is a function. We have reserved the word “curve” by
itself to mean a set, in the same way that “path” or “surface” refer to a set. The reader
needs to be cautioned about the terminology. The problem is that these words are
often used to mean either a set or a function with only the context making clear which
is meant. Our terminology attempts to more or less allow for the common usage of
the words dealing with curves and surfaces while at the same time maintaining the
important distinction between a set and a function. As an example of this, we point
out to the reader that expressions such as “differentiable parametric curve,” “the para-
metric curve F(t),” etc., will often be abbreviated to “differentiable curve,” “the curve
F(t),” etc., respectively, in the future.

Let F : [a,b] Æ Rn be a differentiable parametric curve. If

then we know that

Definition. The vector F¢(t) is called the tangent vector of the curve F at F(t). In
certain contexts it is called the velocity of F at F(t) and its length, |F¢(t)|, is called the
speed of F at F(t). The vectors

are called the unit tangent vectors of the curve.

Some simple cases and pictures should convince the reader that the term 
“tangent vector” makes sense because the vectors that one gets are indeed what one
would want to call “tangent” to the curve. One can see this also from the definition
of the derivative, which makes F¢(t) a limit of secant lines. The terms “velocity” and
“speed” also make sense because the derivative specifies a rate of change. Note that
F¢(t) is another curve and so one can keep differentiating (if the derivative exist) to
get higher-order derivatives F≤(t), . . . , F(k)(t), . . . of F(t).

8.4.1. Example. Define F(t) = (t2 + 3t,sin t,5). Then F¢(t) = (2t + 3,cos t,0) and the
tangent vector to F at (0,0,5) is (3,1,0). Also, F≤(t) = (2,-sin t,0), and so F≤(0) = (2,0,0).

8.4.2. Example. Consider the parameterization of the unit circle defined by F(q) =
(cosq,sinq). Then F¢(q) = (-sinq,cosq) and this vector is clearly a vector “tangent” to
the circle at F(q) since F(q)•F¢(q) = 0.

Next, note that if g(t) = t, then, using the chain rule, the tangent vector F¢(t) is just

¢( )
¢( ) ¢( ) =( )F t

F t
if F tor 0 0

¢( ) = ¢( ) ¢( ) ¢( )( )F t F t F t F tn1 2, , . . . , .

F t F t F t F tn( ) = ( ) ( ) ( )( )1 2, , . . . , ,
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Thus, if we understand tangent vectors of the curve corresponding to the x-axis, then
we get the tangent vector for an arbitrary parametric curve by mapping the tangent
vectors along the x-axis over to it.

Now let us move on to higher dimensions. It clearly makes sense to talk about the
tangent plane of a surface in R3 at a point. Higher-dimensional manifolds in Rn also
have tangent planes. There are a number of different rigorous definitions that can be
given for the tangent space of a submanifold of Euclidean space. The easiest way is
to take advantage of the fact that we understand tangent vectors to parametric curves.

Definition. Let M be a manifold and let p Œ M. If

is any parametric curve in M with g(0) = p, then g ¢(0) is called a tangent vector of M
at p. The set of tangent vectors to M at p is called the tangent space of M at p and is
denoted by Tp or Tp(M). The set

is called the tangent plane of M at p.

See Figure 8.12.

Caution. Later on, such as in Sections 8.11, 8.12, and 9.16, we shall, for technical
reasons, want to “index” tangent vectors by the point at which they are defined. There-
fore the definition of “tangent vector” and “tangent space” will be changed slightly.
This will in no way alter any facts about these concepts but only involve a simple and
obvious translation of terminology. The later definitions are needed for the theory of
abstract manifolds. Right now we are quite happy to stick to subspaces of Rn and to
keep the notation as simple as possible.

Note that the tangent space and the tangent plane are just translations of each
other. The tangent space passes through the origin (since the constant curve g(t) = p,
produces the zero tangent vector) and the tangent plane at p passes through p. To
justify the terminology we need to show that the Tp(M) is a vector space. We also need
a practical way to compute these spaces.

p v v p+ Œ{ }| T

g : , , ,-[ ]Æ >a a aM 0

DF t g t DF t( ) ¢( )( ) = ( )( )1 .
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8.4.3. Theorem. Let M be a k-dimensional submanifold of Rn and let p Œ M. Let V
be an open neighborhood of p in M and let F :U Æ V be any parameterization of V,
where U is an open set in Rk. Let q Œ U and F(q) = p.

(1) If M = Rk = Rn, then Tp(Rk) = Rk.
(2) Tp(M) is a k-dimensional vector space. In fact, Tp(M) = DF(q)(Rk).
(3) The tangent plane of M at p is a k-dimensional plane.

(4) The vectors , i = 1,2, . . . , k, are a basis for Tp(M).

Proof. Figure 8.13 should help the reader follow the proof. To prove (1) note that
the lines through q parallel to the coordinate axes in Rk correspond to some very
special curves gi defined by

Clearly, gi(0) = q. Furthermore, it is also easy to check that gi¢(0) = ei. This gives us a
clue as to how to define a curve g(t) through q that has as a tangent vector an arbi-
trary vector v Œ Rk. Simply let

Then g ¢(0) = v, from which (1) follows.
To prove (2) note that if g(t) is a parametric curve in Rk through q, then m(t) =

F(g(t)) is a curve in M through p. The chain rule implies that

g t tv q v t q v ti i
i

k

k k( ) = + = + +( )
=
Âq e

1
1 1 , . . . , .

g i i i i i kt t q q q t q q( ) = + = +( )- +q e 1 1 1, . . . , , , , . . . , .

∂
∂

( )F
ui

q
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(8.4)

This shows that DF maps tangent vectors to Rk at q to tangent vectors to M at p, that
is,

Since F is a local parameterization, DF(q) is a one-to-one linear map from Rk to Rn.
It remains to show that DF(q) is onto Tp(M).

Let v Œ Tp(M) and let m(t) be a curve in M with m(0) = p and m¢(0) = v. We need to
find a curve g(t) in Rk with g(0) = q and m(t) = F(g(t)), because then the chain rule
(equation (8.4)) implies that

But F-1(m(t)) is such a curve (there is no loss in generality in assuming that m lies in
V) and (2) is proved.

Part (3) clearly follows from (2). Finally, we prove (4). Using the gi defined above,
define curves mi through p by mi(t) = F(gi(t)). The mi can be thought of as defining a
local curvilinear coordinate system for M at p. See Figure 8.13. Furthermore, the curves
mi(t) are often called the ui-parameter curves for the parameterization F(u1,u2, . . . ,uk).
In the special case of a surface, one would refer to m1(t) and m2(t) as the u- and v-
parameter curves at p in M, respectively.

Recalling how partial derivatives are defined it is easy to see that

On the other hand, the chain rule shown in equation (8.4) shows that

This proves (4).

8.4.4. Corollary. If M is a surface in R3, then the cross product 
is a normal vector for Tp(M).

Note: The fact that (4) holds in Theorem 8.4.3 was built into our definition of local
parameterizations of a manifold because they are assumed to be regular. However, as
mentioned earlier, it is sometimes natural to use parameterizations that are not
regular. For example, consider the parameterization of the surface of revolution
obtained by rotating the parabolic arc y = 1 - x2, -1 £ x £ 1, about the x-axis. One can
parameterize this surface via the map

F x x x x x, , cos , sin , , .q q q q p( ) = -( ) -( )( ) - £ £ £ £1 1 1 1 02 2

∂ ∂ ( ) ¥ ∂ ∂ ( )F Fx yq q

m gi i iD D¢( ) = ( ) ¢( )( ) = ( )( )0 0F Fq q e .

mi
i

n

i iu u u
¢( ) =

∂
∂

( ) ∂
∂

( )Ê
Ë

ˆ
¯ =

∂
∂

( )0 1F F F
q q q, . . . , .

DF q v( ) ¢( )( ) =g 0 .

D T T Tk k
p p

n nF q R R M R Rq( ) ( ) = Æ ( ) Õ ( ) =( ): .

¢( ) = ( ) ¢( )( )m g0 0DF q .
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Compare this with Example 8.2.2. This parameterization is differentiable everywhere
but not regular and property (4) fails when x is ±1. Nonregularity may be a problem
if one is interested in the tangent plane at those points where the parameterization is
not regular because the standard way to find an equation for the tangent plane is to
compute the normal using Corollary 8.4.4. Therefore, if condition (4) is important,
then one needs to check that the parameterization at hand is in fact a regular para-
meterization at the points in question.

8.4.5. Example. To find the tangent plane X to S2 at the point .

Solution. Let us use the parameterization

for the upper hemisphere. Then

Since ,

are a basis for X. A normal vector for X is (1,0,1) = (1,0,-1) ¥ (0,1,0). These answers
clearly agree with one’s intuition of what the plane should be.

Using a parameterization and Corollary 8.4.4 to determine the tangent plane
involves a fair amount of computation. It turns out that if we are able to present our
surface as the zeroes of a function, then it is much easier to get equations for the
tangent planes. Compare the next result to Proposition 4.5.7.

8.4.6. Proposition. Let M be a manifold in Rn and suppose that f :Rn Æ R is a dif-
ferentiable function such that M = V(f). Let a Œ M. The tangent plane X of M at a is
defined by the equation

(8.5)

If a = (a1,a2, . . . ,an) and p = (x1,x2, . . . ,xn), then this equation can be written as

(8.6)

Proof. If g : [-c,c] Æ M is any curve in M through a, then

f tg ( )( ) = 0

∂
∂

( ) -( ) + +
∂

∂
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∂
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by hypothesis. Differentiating this equation using the chain rule yields

In other words, the gradient of f is orthogonal to every tangent vector. It follows that 
—f gives us a normal vector of the tangent plane that we are trying to find.

8.4.7. Example. To redo Example 8.4.5 using Propositions 8.4.6.

Solution. Define

The sphere is the zero set of f and —f = (2x,2y,2z). According to Proposition 8.4.6,

will be a normal vector to the plane. This agrees with the result in Example 8.4.5.

8.4.8. Example. To show that the lines normal to the tangent planes of an arbitrary
sphere pass through its center.

Solution. Consider the sphere S of radius r with center p0. If

then S = V(f). It is easy to check that

Since the point-normal form of the line L through p and p0 is p + t(p - p0), the normal
—f(p) is a direction vector and we are done. See Figure 8.14.

Now we look at how differentiable maps induce natural maps on tangent spaces.
Let

be a differentiable map between differentiable manifolds. Let p be a point of Mn and
let q = f(p). Define

as follows: Let v be any vector in the tangent space Tp(Mn) and let g(t) be any curve
lying Mn with g(0) = p and g ¢(0) = v. Then

Df Tn k
p p qT M N: ( ) Æ ( )

f n k: M Æ N

— ( ) = -( )f p p p2 0 .

f rp p p( ) = - -0
2 2,

— Ê
Ë

ˆ
¯ = ( )f

1

2
0

1

2
2 0 2, , , ,

f x y z x y z, , .( ) = + + -2 2 2 1

— ( ) ∑ ¢( ) =f a g 0 0.
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(8.7)

See Figure 8.15.

Definition. The map Dfp is called the derivative of f at the point p.

8.4.9. Theorem.

(1) The map Dfp is a well-defined linear map.
(2) If Mn = Rn and Nk = Rk, then Dfp = Df(p).

Proof. There are two parts to the proof of (1). To show that the map is well defined
one must show that its definition does not depend on the curve g. In general, there
will be lots of curves g(t) satisfying g(0) = p and g ¢(0) = v. To show the linearity prop-
erty, observe that

Df fp v( ) = ( )¢ ( )o g 0 .
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and use the fact that D(f g)(0) is a linear map. The details are left as Exercise 
8.4.4.

Part (2) says that the map Dfp generalizes the ordinary definition of the derivative
as defined in Section 4.3. Given a map f :Rn Æ Rk, we defined a derivative Df(p). If
we think of Rn and Rk as differentiable manifolds, then we just defined a new deriv-
ative Dfp. The two derivatives are the same linear maps because of the definitions
involved and the fact that the tangent spaces at points of Rn and Rk are just Rn and
Rk, respectively (Theorem 8.4.3(2)).

8.4.10. Example. To compute Dfx at a point x Œ R for the map defined by

Solution. Let v Œ Tx(R) = R. The curve

satisfies g(0) = x and g ¢(0) = v. But

so that

We leave it to the reader to check that this agrees with Df(x)(v). What would have hap-
pened if we had chosen the curve

which also satisfies h(0) = x and h¢(0) = v? Well,

and

so that which agrees with the answer we got using the curve g(t).f xo h( )¢( ) =0 2 v ,

f t x t t to h( )¢( ) = + +( )[ ] +( )2 3 13 2v v ,

f t x t to h( )( ) = + +( )[ ]3 2
v

h t x t t( ) = + +( )3 v ,

f t x t and f xo og g( )¢ ( ) = +( ) ( )¢ ( ) =2 0 2v v v .

f t x to g( )( ) = +( )v
2
,

g g: , , ,-( ) Æ ( ) = +11 R vt x t

f x x( ) = 2 .
f :R RÆ

o

f D fo og g( )¢ ( ) = ( )( )( )0 0 1 ,
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8.5 Oriented Manifolds

This section returns to the topic of orientability. Section 1.6 looked at orientation in
the context of vector spaces, which amounted to studying local orientations. In
Section 7.5 we viewed orientation in the global context of (triangulated) pseudoman-
ifolds. Now we want to describe orientation in the context of differentiable manifolds.
The new definition will be compatible with the definition for pseudomanifolds, but
will make use of the differential structure that we are assuming.

Let Mk be a k-dimensional submanifold of Rn. Since each tangent space of Mk is
a vector space we can talk about orientations in these tangent spaces.

Definition. Let T :V Æ W be an isomorphism between two k-dimensional vector
spaces V and W. Define

(8.8a)

by

(8.8b)

where (v1,v2, . . . ,vk) is an ordered basis of V. If m is an orientation of V, then T*(m) is
called the orientation of W induced by the isomorphism T.

It is easy to see that T* is a well-defined one-to-one correspondence between the
orientations of V and W. See Exercise 8.5.1.

Definition. Let s be a map that associates to each p Œ Mk an orientation of the
tangent space Tp(Mk). Such a choice is said to be a continuously varying choice of ori-
entations if for every p Œ Mk there is an open neighborhood V of p in Mk, a parame-
terization F :U Æ V of V defined on an open set U in Rk, and an orientation m of Rk

so that DF(q)*(m) = s(F(q)), for q Œ U.

The definition of continuously varying orientations is simpler than it may sound.
See Figure 8.16. For example, in the case of a surface all it says is that if, say, the
tangent plane at a point of the surface has been oriented in a “counter clockwise”
fashion, then the tangent planes at nearby points are also oriented the same way. We
want to exclude random choices of orientations—some counter clockwise and others
clockwise. Note that we only chose one orientation m of Rk and not one in each Tq(Rk)
because all those tangent spaces are the same and equal to Rk itself.

It is easy to show that the concept of continuously varying orientations does not
depend on any particular parameterization. See Exercise 8.5.2.

Definition. An orientation of a differentiable manifold M is any continuously varying
choice s of orientations for the tangent spaces of M. A manifold is said to be orientable
if it admits an orientation. An oriented manifold is a pair (M,s), where M is a mani-
fold and s is an orientation for M.

T v v v T v T v T v* , , . . . , , , . . . , ,1 2 1 2k k[ ]( ) = ( ) ( ) ( )[ ]

T orientations of orientations of* : V WÆ
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Exercise 8.5.3 describes another way to define the orientability of a manifold.

Definition. Let F :U Æ Mk be a regular parameterization of a k-dimensional mani-
fold M. The orientation s of M that associates to each p = F(q) Œ M the orientation

(8.9)

of the tangent space Tp(M) is called the standard orientation of M induced by F.

Dealing with ordered bases is not very convenient and so we now describe a better
way to specify an orientation of a manifold in a common special case, but first some
definitions.

Definition. Let Mk be a k-dimensional Cr submanifold of Rn. A Cr vector field of Rn

defined over M is a Cr (vector-valued) function

The vector field n is called tangential to M or simply a Cr vector field of M if n(p) Œ
Tp(M) for all p Œ M. The vector field n of Rn is called normal to M or a Cr normal
vector field of M in Rn if n(p) is orthogonal to Tp(M) for all p Œ M. (The phrase “in
Rn” is often dropped if Rn is clear from the context.) In any case we say that the vector
field is a unit vector field or a nonzero vector field if n(p) has unit length or is nonzero,
respectively, for all p Œ M.

Vector fields of manifolds associate vectors to points of a manifold with the vector
at a point lying in the tangent space (or plane) at that point. Figure 8.17(a) shows a
vector field of S1. Figure 8.17(b) shows a normal vector field of S1 in R2. As usual, the
adjective “Cr” will be suppressed. The two typical cases are continuous (C0) or C•.
Nonzero vector fields are often normalized to unit vector fields.

n: .M Rk nÆ

∂
∂

( ) ∂
∂

( ) ∂
∂
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˚̇
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With regard to the question of orientability, there is one case where normal vector
fields are especially interesting.

8.5.1. Theorem. Let Mn-1 be a submanifold of Rn. Then Mn-1 is orientable if and
only if Mn-1 admits a nonzero normal vector field.

Proof. See Figure 8.18. Since the tangent space at every point of Mn-1 is an (n - 1)-
dimensional vector subspace of Rn, for each point p of Mn-1 we can express Rn

uniquely as an orthogonal direct sum of the tangent space Tp = Tp(Mn-1) and a one-
dimensional subspace Np, that is,

Suppose now that Mn-1 is orientable. Then Mn-1 admits a continuously varying
choice s of orientations for its tangent spaces. Assume that s(p) = [v1,v2, . . . , vn-1] for
some ordered basis (v1,v2, . . . ,vn-1) of Tp. Choose that unique unit vector np in Np
(there are two to choose from) so that the ordered basis (v1,v2, . . . ,vn-1,np) induces
the standard orientation of Rn. It is not hard to show that the vector field

R p p
n T N= ≈ .
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defined by

(8.10)

is a nonzero normal vector field for Mn-1.
Conversely, suppose that

is a nonzero normal vector field for Mn-1. For each p Œ M, choose an ordered basis
(v1,v2, . . . ,vn-1) of Tp so that (v1,v2, . . . , vn-1,n(p)) induces the standard orientation of
Rn. The map

(8.11)

will define an orientation of Mn-1.

It follows from Theorem 8.5.1, that we can define an orientation on an orientable
(n - 1)-dimensional manifold Mn-1 in Rn simply by defining a nonzero normal vector
field. This is typically the way one does it. Conversely, if a manifold is oriented, then
the given orientation defines a unique unit normal vector field on it.

8.5.2. Example. The normal vector field

defined by n(p) = p shows that the unit sphere S2 is orientable and defines the stan-
dard orientation of it.

Definition. Let F :U Æ Mn-1 be a regular parameterization of an (n - 1)-dimensional
submanifold Mn-1 in Rn. If s is an orientation of Mn-1, then the unit normal 
vector field of Mn-1 described in the proof of Theorem 8.5.1 and defined by equation
(8.10) is called the normal vector field of Mn-1 in Rn induced by s. If s is the standard
orientation of Mn-1 induced by F, then that normal vector field is called the standard
normal vector field of Mn-1 induced by F.

Note. If an orientable submanifold Mn-1 of Rn is closed (without boundary) and
bounded, like for example the unit sphere in R3, then it divides space into bounded
and unbounded parts and it makes sense to talk about “inward” and “outward” point-
ing normals for it.

Next, we address two related natural questions. First, we know that every compact
connected differentiable manifold is a pseudomanifold (Theorem 8.3.3). Therefore, it
is reasonable to ask whether the notion of orientable defined in this section is com-
patible with that given in Section 7.5. The second question is whether there are some
simple criteria for determining the orientability of a manifold, since one certainly does

n: S R2 3Æ

p v v vÆ [ ]-1 2 1, , . . . , n

n: M Rn n- Æ1

n p np( ) =

n: M Rn n- Æ1
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not want to define continuously varying families of orientations of tangent spaces or
normal vector fields. To prove the compatibility of our two definitions of orientabil-
ity one might be tempted to take a direct approach and show, for example, that 
orientations of tangent spaces induce coherent orientations of the simplices in a 
triangulation. Unfortunately, that would be technically complicated because homeo-
morphisms do not preserve any vector space structure. The better approach is to prove
the next theorem from the definitions without reference to pseudomanifolds, using
only properties of homology groups.

8.5.3. Theorem. A closed compact connected n-dimensional differentiable mani-
fold Mn is orientable (according to the definitions in this section) if and only if 
Hn(Mn) ª Z.

Proof. Conceptually the proof is not hard and consists of two steps:

Step 1: Relate an orientation of a tangent plane at a point to an orientation of
a neighborhood of the point in M.

Step 2: Relate a “continuously varying” collection of local orientations to a
homology class.

Although we have not defined what is meant by the orientation of a neighborhood
of a point it should be at least intuitively obvious. Think back to our discussion of the
orientation of a surface. It is the old story. We have a concept in the linear setting of
vector spaces and we extend it to curved spaces via a linearization process, that is, we
use tangent planes to approximate the space locally. Filling in the details for Step 1
would be very messy given our current approach to manifolds. To do things more ele-
gantly involves a more abstract approach that we cannot go into here. One would need
to know about vector bundles (defined in Section 8.10) and more. More details for
Step 1 can be found in [MilS74] or [Span66].

Step 2 is the more straightforward part and not that hard, but we are not able to
present it here because it uses properties of homology groups we did not state or prove
in Chapter 7. Roughly speaking, one shows that an orientation of M is equivalent to
a choice of generator

for each p Œ M that “varies continuously” in the sense that for some compact neigh-
borhood N of p there is a class

that “restricts” to mp. The existence of such generators leads to a unique nonzero
element

called the fundamental homology class of the oriented manifold that is a generator for
Hn(Mn). Again see [MilS74] or [Span66].

mM MŒ ( )Hn
n

mN M M NŒ -( )Hn ,

mp M M p ZŒ -( ) ªHn ,
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8.5.4. Corollary. If Mn is a closed compact connected n-dimensional manifold, then
it is orientable with the definition given in this section if and only if it is orientable
with the definition of orientability of pseudomanifolds given in Section 7.5.

Proof. This corollary is an immediate consequence of Theorems 7.5.3, 8.3.3, and
8.5.3.

Using Theorem 8.5.3 it is now relatively easy to determine whether a connected
differentiable manifold is orientable because we can compute the homology groups
from the pseudomanifold structure.

We finish this section with a result about the existence of nonzero vector fields.
Manifolds certainly admit nonzero (tangential) vector fields locally, that is, over 
sufficiently small neighborhoods of any given point. One gets this from the local 
parameterizations. On the other hand, it is an interesting question as to whether a
manifold admits a global nonzero vector field. A famous result (Corollary 8.5.6 below)
states that S2 does not have any nonzero vector field. This is the so called “hairy bil-
liard ball” problem, which says that no matter how one combs a hairy billiard ball
there will always be a discontinuity somewhere (a “cowlick”). See Figure 8.19. Of
course, the “hairy circle” can be combed as Figure 8.17(a) shows. One can generalize
the question about nonzero vector fields to asking how many linearly independent
vector fields (the vectors are linearly independent at each point) a k-dimensional man-
ifold admits. A beautiful deep result in topology answers this question completely. See
[AgoM76]. What is beautiful about this is that it is a perfect example of where an
answer to a question needs a good understanding of many fields in mathematics. It
points out the virtue of having a broad knowledge and not just expertise in one 
specialty!

8.5.5. Theorem. Sn admits a nonzero vector field if and only if n is odd.

Proof. If n is odd, say n = 2k + 1, then

is a nonzero vector field. Next, suppose that n is even, say n = 2k, and that s is a
nonzero vector field on Sn. We may clearly assume that s(p) is a unit vector for all p,
so that we may consider s as a map from Sn to Sn. Define

s x x x x x x xk k k1 2 2 2 2 1 2 2 2 1, , . . . , , , . . . , ,+ + +( ) = - -( )
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by

If C(p), p Œ Sn, denotes the unit circle in the two-dimensional plane through the origin
with orthonormal basis consisting of the vectors p and s(p), then h(p,t) moves from
p to -p on this circle C(p) as t moves from 0 to 1. Thus, h is a homotopy between the
identity map of Sn and the antipodal map. But the identity map has degree 1 and the
antipodal map has degree (-1)2k+1 = -1 by Theorem 7.5.1.3. This contradiction shows
that s cannot exist.

8.5.6. Corollary. An even-dimensional sphere, in particular S2, does not admit a
nonzero vector field.

8.6 Handle Decompositions

This section begins the study of the topological structure of manifolds. We shall now
make good on the promise we made in Section 4.6 to show how closely their struc-
ture is related to critical points on real-valued functions defined on them.

Before we get started, it is important that the reader understand certain notation
used in this section. If an n-dimensional manifold M is a subset of Rm, then the points
of M are m-tuples, but this is the wrong way to look at them. Every point p of M has
an open neighborhood V and a local parameterization j :U Æ V defined on an open
subset U of Rn. The function j(u1,u2, . . . ,un) defines a curvilinear coordinate system
in V, so that, typically

(1) one thinks of the point p as having coordinates ui, and
(2) when one deals with a function f defined on M one thinks of f restricted to V

as a function of the parameters ui.

Formally, point (2) means that instead of working with the function f in a neighbor-
hood of the point p, one works with the function fj(u1,u2, . . . ,un) = f(j(u1,u2, . . . ,un)).
Because expressions would become cumbersome if one were to use the precise nota-
tion fj, one is sloppy and writes things like f(u1,u2, . . . ,un) in this case. There should
be no confusion now that we have explained what is meant.

Notation. Expressions such as “in local coordinates ui the function f has the form
f(u1,u2, . . . ,un) = . . .” will mean “fj(u1,u2, . . . ,un) = . . .”

This way of talking about functions on manifolds is very common. Of course, there
are many local parameterizations j for p, but it will not matter which we choose for
what we want to do, so that we will not bother to mention j explicitly. (In other 
contexts, if things do depend on j, then one has to take that dependence into account.)

h t t tp p p, .( ) = ( ) + ( ) ( )cos sinp p s

h n n: ,S S¥ [ ] Æ0 1
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In particular, when we talk about critical points, critical values, nondegenerate critical
points, or the index of a critical point for functions f :M Æ R in this section, we shall
mean these concepts as they were defined in Section 4.5 for fj. In Exercise 8.6.1 you
are asked to show that everything is well defined and independent of the choice of j.

Now let us return to the subject matter of this section. Let M be an n-dimensional
closed manifold and consider a smooth real-valued function f :M Æ R. Figure 8.20
shows the prototype of the kind of conclusions we want to draw. The figure shows a
vertical torus and the function we have in mind is the height function f, that is,

The function f clearly has four critical points at A, B, C, and D corresponding to crit-
ical values a, b, c, and d, respectively. Furthermore, these are non-degenerate critical
points because in a neighborhood of these points the manifold looks like the graph
of the functions

respectively. Define

How does Ms change as the value s changes? Well, Ms is the empty set if s < 0. If s is
any number between 0 and a, then Ms is diffeomorphic to a disk. When s is between
b and c, then Ms is diffeomorphic to a cylinder. When s is between c and d, then Ms
is like a torus with a disk removed. Finally, Ms is the torus if s ≥ d.

There is another way to describe the topological changes in Ms. Consider the 
difference between Mb-e and Mb+e. That change is equivalent to adding a “handle” to

Ms f s= -• ](( )-1 , .

f x y x y

f x y x y
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( ) = - -

2 2

2 2

2 2

2 2
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Mb-e. See Figure 8.21. By a handle we mean, in this case, that we have glued a rec-
tangular strip D1 ¥ D1 to the boundary of Mb-e along D1 ¥ S0. The “handle” part comes
from 0 ¥ D1. It is not accidental that the index of the critical point b is 1, which is
also the “dimension” of the handle.

8.6.1. Theorem. Every closed compact differentiable manifold M admits a smooth
real-valued function f which has only nondegenerate critical points with distinct crit-
ical values.

Proof. See [Miln65a].

A function f for M of the type guaranteed by Theorem 8.6.1 clearly has at least
two critical points, namely, the two which correspond to the global minimum and
maximum of f. It is also clear that it is possible to find an f that has an arbitrary
number of nondegenerate critical points. We simply have to perturb f in a suitable
nice way. This leads to some questions. What is the minimum number of critical points
that f can have? For a fixed k, what can we say about the manifold if k is its minimum
number of critical points? A sphere clearly admits an f that has precisely two critical
points (at its north and south pole). If another manifold admits a function with only
two critical points, is it diffeomorphic to a sphere? Is there any relation between the
minimum number of critical points and algebraic invariants such as the homology
groups? These questions will be addressed in the next section. Our first order of busi-
ness is show what nondegenerate critical points imply about the local structure of a
manifold.

8.6.2. Theorem. Let f :M Æ R be a smooth function with only nondegenerate crit-
ical points. Let a < b and assume that [a,b] does not contain any critical values of f
and that

is compact. Then A is diffeomorphic to f-1(a) ¥ [0,1]. In particular, Ma is diffeomor-
phic to Mb and the inclusion map Ma Ã Mb is a homotopy equivalence.

Proof. See [Miln63].

We may not omit the hypothesis that A is compact in Theorem 8.6.2.

A = [ ]( )-f a b1 ,
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8.6.3. Theorem. Let f :M Æ R be a smooth function and let p be a nondegenerate
critical point for f with index k. Let c = f(p). Assume that f-1([c - e, c + e]) is compact
and has no critical point other than p for some e > 0. Then Mc+e has the same homo-
topy type as Mc-e with a k-cell attached.

Proof. We sketch a proof. For more details see [Miln63]. The height function for the
vertical torus is again a good example for showing what we want to do. Consider
Figure 8.22. The idea will be to deform f to a function F :M Æ R so that F is less that
f in a small neighborhood of p and

corresponds to Mc-e with the horizontally lined region labeled H attached. By pushing
H in along the horizontal lines to the cell ek one shows that A has the homotopy type
of Mc-e with a k-cell attached. But Mc+e can be contracted to A and so we will be done.
We shall now fill in some of the details.

Now since p is a nondegenerate critical point, it follows from Theorem 4.6.3 that
we can find local local coordinates ui for a neighborhood of p in which p corresponds
to the origin 0 and the function f has the form

in an open neighborhood U of the origin. The graph of f is easily analyzed in this coor-
dinate system. Figure 8.23 tries to depict the general case. To understand the picture,
try to imagine what one would see if one were to look vertically down at the critical
point p in Figure 8.22

Choose a sufficiently small e > 0, so that

(1) f-1([c - e, c + e]) is compact and contains no critical point other than p and
(2) U contains the closed ball B of radius 2e around p.

Define

ek
n k k nu u u u u u and u u= ( ) + + £ = = ={ }+1 2 1

2
2

2 2
1 0, , . . . , . . . . . . .e

f u u u c u u u un k k n1 2 1
2 2

1
2 2

, , . . . , . . . . . .( ) = - - - + + ++

A = -• -[ ]( )-F c1 , e
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Clearly, ∂ek = Mc-e « ek.
Next, define functions

so that

and choose a C• function m :R Æ R satisfying

(1) m(0) > e
(2) m(x) = 0 for x ≥ 2e, and
(3) -1 < m¢(x) £ 0 for all x.

Finally, using the local coordinates ui, define the function

in local coordinates by

Claim 1. F-1([-•,c - e]) = Mc+e.

Claim 1 is proved by considering the ellipsoid defined by x + 2h £ 2e and noting
that the functions f and F agree outside the ellipsoid and inside it we have

F f c on

f outside

= - +( ) = - + - +( )
=

m x h x h m x h2 2 U

U

,

.

F: M RÆ
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Claim 2. F and f have the same critical points.

To prove Claim 2, it suffices to prove that the only critical point of F inside U is
0. But

and

Since —x and —h only vanish at 0, the same holds for —F and the claim is proved.

Claim 3. F-1([c-e,c+e]) is compact and contains no critical points.

Claim 1 and the fact that F £ f shows that

It follows that F-1([c-e,c-e]) is compact. The only critical point it can contain is 0, but
this is impossible since

Claim 3 is proved.
Next, define the region H by

Then F-1([-•,c-e]) = Mc-e » H. Putting all these facts together proves Theorem 8.6.3.

Definition. The set Mc-e » H is usually referred to as Mc-e with an attached k-handle
H.

8.6.4. Theorem. Let f :M Æ R be a smooth function that has only nondegenerate
critical points. Assume that Mc is compact for all c. Then M has the homotopy type
of a CW complex with one cell of dimension k for each critical point of f with 
index k.
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Proof. See [Miln63].

We have just seen the close connection between the nondegenerate critical points
of a real-valued function on a manifold and the manifold’s topological structure. Here
is another useful variant of some theorems that show this connection.

8.6.5. Theorem. (The Weak Morse Inequalities) Let M be a closed compact smooth
n-dimensional manifold. Let ck be the number of critical points of index k for some
function f :M Æ R which has only nondegenerate critical points. Let bk be the kth
Betti number of M. Then

Proof. See [Miln63]. This is an easy consequence of Theorem 8.6.4 and properties
of the homology groups (Section 7.2.3).

We finish this section by summarizing its main results. Let M be a closed compact
connected smooth n-dimensional manifold. We know that M admits a smooth func-
tion f :M Æ R that has only nondegenerate critical points. It is not hard to show that
we may assume f(M) = [0,n] and that k is the critical value of all critical points of f
with index k. With this assumption, we basically showed that M has (up to diffeo-
morphism) a filtration

where each Mk is obtained from Mk-1 by attaching as many k-handles as there are
critical points of index k. In other words,

where the attaching has taken place along Sk-1 ¥ Dn-k in each handle. Since M is con-
nected, we may assume that there is only one handle of dimension 0 and n. This handle
decomposition of a manifold is the starting point of the main classification results for
manifolds. The reader should compare this with what we know about surfaces. Each
connected closed surface can be constructed by starting with a disk and then adding
a certain number of 1-handles and finally one disk to cap it off. The nonorientable
surfaces are obtained by giving the 1-handles a “twist.”

Again let M be a closed compact connected n-dimensional manifold and consider
a smooth real-valued function

with only nondegenerate critical points and so that 0 and n are the minimum and
maximum values of f, respectively. We know that such functions f exist. This time
rather than using f to build M using handles from the bottom up (thinking of f as a
“height” function), let us build from the top down. To this end define

f n: ,M RÆ [ ] Ã0

M M D D D D D Dk k
k n k k n k k n k= » ¥ » ¥ » » ¥-
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If we define

then note that Ms, as defined for f, is the same as Mn-s, as defined for g.
Now let p be a critical point of index k for f and assume that it is the only criti-

cal point with critical value c = f(p). Assume that f has no critical values in [c - e,c +
e] other than c. Let

This set is diffeomorphic to Dk ¥ Dn-k and is the set that Mc-e and Mc+e have in
common. It follows from what we did above that

and

See Figure 8.24 and compare this to Figure 8.21. To put it another way, Mc-e has
the same homotopy type as Mc+e with an n - k cell attached and Mc+e has the 
homotopy type of Mc-e with a k cell attached. Since we get the same space 
whether we start building it from the top or the bottom, what this shows is a 
fundamental duality between k and n - k cells. This is the Poincaré duality in Section
7.5.2.

M M D DS Dc c
k n k
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g n f= - Æ: ,M R

Ms f s= •[ ]( )-1 , .

496 8 Differential Topology

Mc–Œ

Dk ¥ Sn–k–1

Dk ¥ Dn–k

Mc–Œ

Mc+Œ

P p

Figure 8.24. The dual handle decomposition.



8.7 Spherical Modifications

We begin this section by reinterpreting some of the results from the previous section.
There we constructed manifolds by successively attaching a handle to the boundary
of another manifold. The basic step had the form

where the handle Dk ¥ Dn-k is attached to ∂N along Sk-1 ¥ Dn-k. If we now concentrate
on the boundaries of the manifolds, what has happened is that to get from ∂N to ∂N¢
we cut out Sk-1 ¥ Dn-k from ∂N and glued Dk ¥ Sn-k-1 in its place along Sk-1 ¥ Sn-k.
We formalize this construction. Let M be a manifold and suppose that we have an
imbedding

Define a manifold M¢ by

Definition. We shall say that the manifold M¢ is obtained from the manifold M by
a spherical modification of degree k or by surgery.

8.7.1. Theorem. If M is obtained from M¢ via a spherical modification of degree k,
then there is manifold W and a function f :W Æ [0,1] satisfying

(1) ∂W = M » M¢,
(2) f(M) = 0, f(M¢) = 1, and
(3) f has a single nondegenerate critical point of index k in the interior of W.

Proof. See [Wall68] or [Miln65a].

Definition. Two smooth n-dimensional manifolds M and N are said to be cobordant
if there is a smooth (n + 1)-dimensional manifold W so that the boundary of W is the
disjoint union of open and closed subsets M and N. In that case, W is said to be a
cobordism between M and N.

8.7.2. Theorem. Two compact smooth n-dimensional manifolds are cobordant 
if and only if one can get from one to the other by a finite sequence of spherical 
modifications.

Proof. See [Wall68] or [Miln65a].

We state a few of the main results on the classification of manifolds most of which
are consequences of the work of Smale [Smal61]. The key theorem is the next one.

¢ = - ¥( )( ) » ¥( )- -
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8.7.3. Theorem. (The h-cobordism Theorem) Let Wn be a compact smooth n-
dimensional manifold which is a cobordism between submanifolds V and V¢ satisfy-
ing the following conditions:

(1) All three spaces W, V, and V¢ are simply connected.
(2) The inclusion i :V Ã W induces isomorphisms iq* :Hq(V) Æ Hq(W) for all q.
(3) n ≥ 6.

Then W is diffeomorphic to V ¥ [0,1].

Proof. See [Miln65a].

Definition. Let Wn be a compact smooth n-dimensional manifold and which is a
cobordism between submanifolds V and V¢. If both V and V¢ are deformation retracts
of W, then W is said to be an h-cobordism between V and V¢ and V and V¢ are said
to be h-cobordant.

Theorem 8.7.3 gets its name from the fact that the hypotheses on W, V, and V¢
made W into an h-cobordism. (One needs Theorem 7.4.3.7 to see this.) There are some
important corollaries.

8.7.4. Corollary. Two simply connected closed smooth n-dimensional manifolds, 
n ≥ 5, which are h-cobordant are diffeomorphic.

The next corollary provides a characterization of the n-disk.

8.7.5. Corollary. Let Wn be a compact smooth simply connected n-dimensional
manifold, n ≥ 6, with simply connected boundary. Then the following four assertions
are equivalent:

(1) Wn is diffeomorphic to Dn.
(2) Wn is homeomorphic to Dn.
(3) Wn is contractible.
(4) Wn has the same homology groups as a point.

In 1904 Poincaré conjectured the following:

The Poincaré Conjecture: Every compact simply connected closed three-
dimensional manifold is homeomorphic to S3.

A generalization of this conjecture can be proved.

8.7.6. Corollary. (The Generalized Poincaré Conjecture) If Mn, n ≥ 4, is a closed
compact simply connected smooth manifold which has the same homology groups as
the n-sphere Sn, then Mn is homeomorphic to Sn.

Proof. When n ≥ 5, then the result is an easy consequence of Corollary 8.7.5 and
Theorem 7.5.2.7. The case n = 4 is more difficult and was proved in [Free82]. Note
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that because of Poincaré duality we really only need to assume that the ith homology
groups vanish for 0 < i £ n/2. The hypothesis of the manifold being simply connected
is essential.

Corollary 8.7.6 cannot be strengthened to diffeomorphic because it is known, for
example, that there are seven-dimensional manifolds M7 that are homeomorphic but
not diffeomorphic to S7. The case n = 2 is trivially true, given what we know about
surfaces. The original Poincaré conjecture for dimension 3 is unproved to this day,
although at the time of this writing a proof may finally have been found (see [Miln03],
which also contains a nice overview of the history of the conjecture). The main reason
that the proofs in higher dimensions do not work in dimension 3 is that they rely on
one’s ability to deform continuous maps into imbeddings and in three dimensions we
do not have enough space to be able to prove that this can always be done. It should
be noted that an algorithm that determines whether or not a triangulated, closed, ori-
entable three-dimensional manifold is homeomorphic to the 3-sphere does exist. See
[Thom98] for a discussion of this algorithm that was discovered by J.H. Rubinstein
in 1992. The proof depends on piecewise linear minimal surface theory. Unfortunately,
it is exponential in the number of tetrahedra and not practically useful, even in the
case of a very small number of tetrahedra.

Finally, we return to the problem of finding minimal cell decompositions for a
manifold. This problem is equivalent to finding a minimal handle decomposition.
Although we know that a manifold admits a handle decomposition, we may not get
a minimal one. For example, Figure 8.25 shows how the height function applied to
that sphere would produce a handle decomposition for the sphere which has one 0-
handle, one 1-handle, and two 2-handles. The basic idea for finding minimal handle
decompositions is to start with any decomposition and then to simplify it by letting
handles cancel each other. In Figure 8.25, the 1-handle and one of the 2-handles cancel
each other leaving a single 0- and 2-handle, which is a minimal handle decomposi-
tion for the sphere.

8.7.7. Theorem. (The Minimum Handle Decomposition Theorem) If Mn, n > 5, is
a simply connected compact closed differentiable manifold, then there is a nonde-
generate C• function f with a minimum number of critical points consistent with the
homology structure. We may assume that the value of the function at its critical points
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is its index. More precisely, if Hi(M) has rank r(i) and its torsion subgroup is a direct
sum of q(i) cyclic groups, then we may assume that f has p(i) + q(i) + q(i - 1) critical
points of index i.

Proof. See [Smal62].

There is a corresponding version of Theorem 8.7.7 for manifolds with boundary
that asserts that we can find a function relative to the boundary with a minimum
number of critical points.

Here are some final comments on the classification of manifolds. Clearly, arbi-
trary spaces cannot be classified up to homeomorphism using the homology, co-
homology, or homotopy groups. However, in the case of compact closed manifolds
one might have more hope along these lines because of their homogeneous structure
and theorems like the Poincaré duality theorem. It turns out that two compact closed
surfaces that are not homeomorphic do not have the same homotopy type. This
follows from the fact that if the surfaces are not homeomorphic then they have non-
isomorphic fundamental groups. See [Mass67]. On the other hand, such a theorem is
false for 3-manifolds. Specifically, we pointed out in Example 7.2.4.7 that there are
lens spaces that have the same homotopy type but are not homeomorphic.

8.8 Abstract Manifolds

Our definition of a manifold as a subset of Rn in Section 8.3 was not an intrinsic def-
inition. This section sketches how to define manifolds in an intrinsic way. We need to
get rid of the surrounding space. Rather than saying when a subset of Euclidean space
is a manifold we shall say when an arbitrary topological space is a manifold. In that
way we shall capture the intrinsic properties of such a space and not be distracted by
how or where they are imbedded and other special properties of Rn. For example, our
universe is generally conceived as a three-dimensional manifold (or higher dimen-
sional if one includes time or other dimensions). We do not think of our universe as
imbedded in another space but rather as being all there is.

To follow the next definitions see Figure 8.26.
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Definition. A (k-dimensional) coordinate neighborhood for a topological space M is
a pair (U,j), where U is an open subset of M and j :U Æ V is a homeomorphism onto
an open subset V of Rk

+.

Note that the map j for a coordinate neighborhood goes in the opposite direction
from that of a local parameterization for a submanifold of Rn as defined in Section
8.3. Compare Figure 8.6 with Figure 8.26.

Definition. Let r ≥ 1. A Cr differentiable structure or Cr structure for a k-dimensional
topological manifold M is an indexed collection S = {(Ui,ji)} of k-dimensional coor-
dinate neighborhoods for M satisfying the following conditions:

(1) The sets Ui cover M.
(2) If Uij = Ui « Uj π f, then the homeomorphism

is a Cr map.
(3) The collection S is maximal with respect to condition (2), that is, adding any

other coordinate neighborhood (U,j) to S would violate that condition.

A Cr manifold is a topological manifold M together with a Cr differentiable structure
for it. A C0 manifold will simply mean a topological manifold. A C• manifold is called
simply a differentiable or smooth manifold.

8.8.1. Theorem. Let Mk be an k-dimensional topological manifold.

(1) Any collection of coordinate neighborhoods for M satisfying (1) and (2) will
always extend to a unique collection satisfying (3).

(2) Any Cr structure of M induces a well-defined (k - 1)-dimensional Cr structure
on ∂M making it into a Cr manifold without boundary by using the restric-
tions of the relevant coordinate neighborhoods of M to the boundary.

Proof. This is an easy exercise.

Note. Condition (3) in the definition of a Cr structure is a technical condition to give
us freedom in choosing coordinate neighborhoods. Because of Theorem 8.8.1(1), to
define a Cr structure on a manifold, all that one ever bothers to do is define a collec-
tion of coordinate neighborhoods that satisfy conditions (1) and (2). Because of con-
dition (3), the indices i and j in the definition belong in general to some uncountable
set and are not intended to connote integers.

8.8.2. Example. The coordinate neighborhood (Rn, identity map) induces a C•

structure on Rn, called the standard C• structure, making it into an n-dimensional C•

manifold.

8.8.3. Example. The coordinate neighborhoods (Ui,ji), i = 1,2,3,4, where

j j j j jji j i i ij j ij= ( ) Æ ( )-
o

1
: U U
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and

induce a C• structure on the unit circle S1 (Exercise 8.8.1(a)). Note that the maps ji
are just the inverses of the maps Fi in Example 8.3.2.

8.8.4. Example. To find a C• structure for the unit sphere Sn, n ≥ 1.

Solution. Rather than generalizing the coordinate neighborhoods defined in
Example 8.8.3, we describe another collection {(U+,j+),(U-,j-)}:

where j+ and j- are the stereographic projections from en+1 and -en+1, respectively,
that is, j+ = pn and j- = pn r, where r is the reflection of Rn+1 about the plane xn+1 =
0. These coordinate neighborhoods induce a C• structure on Sn (Exercise 8.8.1(b)).

Let Mn and Nk be Cr manifolds with Cr structure coordinate neighborhoods
{(Ui,ji)} and {(Vj,yj)}, respectively. Define maps

by

It is easy to check that the coordinate neighborhoods {(Ui ¥ Vj,hij)} induce a Cr struc-
ture on M ¥ N unless both manifolds have boundary, in which case one has to make
some modifications to get legitimate coordinate neighborhoods for the points of ∂M
¥ ∂N. We will not present the details here, but they are straightforward.

Definition. The Cr structure induced by the coordinate neighborhoods {(Ui ¥ Vj,hij)}
is called the product C r structure. It makes M ¥ N into an (n + k)-dimensional Cr man-
ifold called the product Cr manifold.

Next, we define the concept of a differentiable map.

Definition. Let Mn and Nk be Cr manifolds with coordinate neighborhoods {(Ui,ji)}
and {(Vj,yj)}, respectively. A map f :Mn Æ Nk is said to be of class Cr or a Cr map if

y j jj i i i
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is a Cr map for all i and j. A C• map is called a differentiable map. If r ≥ 1, then the
rank of f at a point p of Mn is defined to be the rank of D(yj f ji

-1) at p where Ui is
a neighborhood of p and Vj is a neighborhood of f(p). If A Õ Mn, then the set of Cr

maps f :A Æ R will be denoted by Cr(A).

See Figure 8.27. Differentiability and rank are well-defined local properties. One
can show that a map is differentiable if and only if for each p in M and some Ui and
Vj that contain p and f(p) in their interior, respectively, the map yj f ji

-1 is di-
ferentiable. In other words, if one has differentiability with respect one pair of neigh-
borhoods one has it for all. Furthermore, once one has a notion of a Cr map and its
rank, the terms of immersion, imbedding, diffeomorphism, and submanifold are defined
as before and we do not duplicate the definitions here.

Manifolds admit different differentiable structures, but just because they are dif-
ferent does not mean that the resulting differentiable manifolds are not diffeomor-
phic. Calling two different differentiable structures on a manifold to be equivalent if
they define diffeomorphic differentiable manifolds defines an equivalence relation on
the set of differentiable structures. A famous problem that was largely solved in the
1960s and 1970s was to determine how many nonequivalent differentiable structures
a manifold admitted. The surprising answer is that it is more than one in general. 
For example, the comment after Corollary 8.7.6 about the seven-dimensional sphere
S7 can be interpreted as saying that S7 admits nonequivalent differentiable struc-
tures. In fact, one can show (see [FreL89]) that there are “fake” R4s, that is, four-
dimensional manifolds that are homeomorphic to R4 but not diffeomorphic to it, so
that even as simple a space as R4 admits nonequivalent differentiable structures. (On
the other hand, this is also an example that the fourth dimension is special, because
there are no fake Rns for n π 4.)

Note. In light of the fact that a manifold can have different differentiable structures,
what happens in the case of some of the well-known spaces such as Rn, Sn, a torus,
etc.? When we treat them as differentiable manifolds, which differentiable structure
are we talking about? Well, these spaces invariably have some fairly “obvious” coor-
dinate neighborhoods associated to them and so one assumes that these are being
used for the differentiable structure and one never mentions differentiable structures
explicitly. Although there may be more than one “obvious” collection of coordinate
neighborhoods, they will lead to the same or diffeomorphic differentiable manifolds.

oo

oo
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The really different differentiable structures are rather exotic. Also, when one builds
new manifolds from old ones, the constructions invariably induce a natural differen-
tiable structure on the new manifolds from the differentiable structure on the old
ones. Finally and most importantly, the actual differentiable structure usually does
not matter, only that one has one.

The reader may be wondering how differentiable manifolds differ from topologi-
cal manifolds. A deep result in the theory of manifolds says that not all topological
manifolds admit a differentiable structure. Now, the boundary of a square is a topo-
logical manifold that is not a differentiable submanifold of Rn, but being homeo-
morphic to S1, it does admit a nice differentiable structure. Therefore, saying that a
manifold does not admit a differentiable structure is saying much more, namely, that
every imbedding of it in Rn has “corners.” It follows that there is a big difference
between C0 and C1 manifolds, but it turns out that there is essentially no difference
between C1 and C• manifolds (see [Munk61] or [Hirs76]). For this reason and in order
not to get bogged down with technical issues as to how much differentiability one
needs for a result, we mostly consider C• manifolds. Also, when it comes to maps, the
next theorem shows that we can basically assume that all maps between differentiable
manifolds are differentiable.

8.8.5. Theorem. Any continuous map between differentiable manifolds can be
“approximated” by a differentiable map that is homotopic to the original. Further-
more, any two homotopic differentiable maps are homotopic by a differentiable
homotopy.

Proof. See [Hirs76] for a precise statement and proofs.

Proving the results we just mentioned about differentiable structures is beyond
the scope of this book. See Notes 1–4 in Section 6.5 for a few other related comments.
It follows from Theorem 4.4.5 that locally the imbedding of a k-dimensional smooth
manifold Mk in Rn looks like the imbedding of Rk in Rn. The next two theorems relate
the manifolds defined in Section 8.3 to the abstract manifolds we are studying now.
Combined, the theorems say that there is no difference between the two types of
spaces. It is simply a case of two different ways of looking at the same thing.

8.8.6. Theorem. A subset of Rn is a differentiable manifold in the sense of Section
8.3 if and only if it is a differentiable submanifold of Rn in the sense of this section.

Proof. This is a consequence of the Inverse Function Theorem.

8.8.7. Theorem. Every abstract manifold Mk can be imbedded in some Euclidean
space Rn.

Proof. See [Miln58], [Munk61], or [Hirs76].

The proof of Theorem 8.8.7 is not very hard if one is happy with any n. A classi-
cal result of H. Whitney, proved in 1936, states that n = 2k + 1 suffices. In fact, one
can improve this to n = 2k, but this is even more difficult.
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Among other things, Theorems 8.8.6 and 8.8.7 imply that Theorem 8.3.3 also holds
for abstract manifolds. The reader may also well ask why one bothers to give the more
complicated intrinsic definition of a manifold and not simply stick to submanifolds
of Rn. To repeat, the abstraction enables one to see essential aspects more clearly.
Manifolds have lots of intrinsic properties that do not depend on any particular imbed-
ding. Nevertheless, the usual way that one proceeds with problems dealing with
abstract manifolds Mk is to divide those problem into lots of local problems that can
then be translated into problems in Rk using a coordinate neighborhood. In this way,
an understanding of abstract manifolds largely reduces to a good understanding of
Euclidean space (in the same way that an understanding of vector-valued functions
largely reduces to an understanding of real-valued functions).

The last topic in this section is to show that abstract manifolds also have intrin-
sically defined tangent spaces associated to every point. There are two basic
approaches to defining tangent vectors for a manifold Mk. Let p Œ Mk.

The equivalence class of vectors approach to tangent vectors at p: This
approach is based on what we did in Section 8.3. If we think of Rk as a submanifold
of Rk, then the set of tangent vectors of curves in Rk through the point p is just Rk.
In other words, the space of all tangent vectors at all points looks like Rk ¥ Rk with
the tangent vectors at p being the set p ¥ Rk. For an abstract manifold we shall do
something similar for each coordinate neighborhood of p. For every coordinate neigh-
borhood (U,j) for p and a Œ Rk, we would like to call (U,j,a) a tangent vector at p.
The only problem is that p will in general belong to many different coordinate neigh-
borhoods. If (V,y) is another coordinate neighborhood of p and b Œ Rk, then we would
also have called (V,y,b) a tangent vector at p. We need an equivalence relation for
these tuples. Consider the diagram

Define a relation ~ as follows:

if

(8.12)

It is easy to check that ~ is an equivalence relation. Furthermore, if

and if one thinks of each vi as a differentiable function of u1, u2, . . . , and uk, then
equation (8.12) is equivalent to the set of equations

a b= ( ) = ( )a a a and b b bk k1 2 1 2, ,..., , ,...,

b p a= ( ) ( )( )( )-D y j jo 1 .

U a V b, , ~ , ,j y( ) ( )

U V M

U V R U V R

« Ã

«( ) Ã «( ) Ã

( ) æ Ææææ ( )
-

k

k k

k ku u u v v v

j y

j y
y j

1 2 1 2
1

, ,..., , ,..., .o
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(8.13)

Definition. An equivalence class of tuples (U,j,a) with respect to the relation ~,
denoted by [U,j,a] or [U,j,a]p, is called a tangent vector of Mk at p. One calls ai the
ith component of the tangent vector [U,j,a] in the coordinate neighborhood (U,j). The
tangent space of Mk at p, Tp(Mk), is the set of all tangent vectors to Mk at p. The set
Tp(Mk) is made into a vector space by defining

One can show that Tp(Mk) is in fact a k-dimensional vector space. Furthermore,
we can tie our new definition to the earlier one where we defined tangent vectors in
terms of curves.

Definition. If g : (c - e,c + e) Æ U (or g : [c,c + e) Æ U if p Œ ∂M) is a curve with 
g(c) = p, then

(8.14)

is called the tangent vector of g(t) at c.

Tangent vectors at points of curves in a manifold are well-defined tangent vectors
of the manifold that depend only on the curve near the points and not on the choice
of coordinate neighborhood (U,j). They can be used to define standard bases for the
tangent spaces. Define curves

by

Notation. Denote the tangent vector to gi(t) at 0 by ei,U.

It is easy to show that the vectors e1,U, e2,U, . . . , ek,U form a basis for Tp(Mk) (Exer-
cise 8.8.2). They are the natural basis of Tp(Mk) with respect to the coordinate neigh-
borhood (U,j) and the current definition of tangent vectors.

Definition. Let Mk and Wm be differentiable manifolds and let f :Mk Æ Wm be a dif-
ferentiable map. If p Œ Mk, then define a map

(8.15a)

by

Df T Tk
f

mp M Wp p( ) ( ) Æ ( )( ):

g j ji it t( ) = ( ) +( )-1 p e .

g e ei : ,-( ) Æ U

U D U, , , , ,...,j j g j g go o o( )( )( )[ ] = ( )( ) ( )( )Ê
Ë

ˆ
¯

È
ÎÍ

˘
˚̇

c
d
dt

u c
d
dt

u ck1 1

U a U U a b

U a U a

, , , , , ,

, , , , .

j j j
j j

[ ] + [ ] = +[ ]
[ ] = [ ]

b

c c

b a
v
ui j

i

jj

k
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∂
∂=
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1

.

506 8 Differential Topology



(8.15b)

where (U,j) and (V,y) are coordinate neighborhoods of p and f(p), respectively and

(8.15c)

The map Df(p) is called the derivative of f at p.

One can show that Df(p) is a well-defined linear transformation.
In classical terminology, tangent vectors are called contravariant tensors. This was

motivated by the definition that we just gave. The terms “covariant” and “contravari-
ant” have to do with how quantities transform under a change of coordinates. See
[Spiv70a] for a discussion of why this classical terminology is unfortunate and why
tangent vectors should really be called covariant tensors. The fact is that the termi-
nology has been around for so long, so that no one has dared to change it.

The linear functional approach to tangent vectors at p: First, define

F(p) = {f : U Æ R | U is an open neighborhood of p in M and f is differentiable}.

Definition. A tangent vector of Mk at p is a map

satisfying

(1) X(af + bg) = aX(f) + bX(g) for all f, g Œ F(p) and a, b Œ R.
(2) X(fg) = X(f)g(p) + f(p)X(g) for all f, g Œ F(p).

(The domain of af + bg and fg is the intersection of the domain of f and the domain of
g.) The tangent space of Mk at p, Tp(Mk), is the set of all tangent vectors to Mk at p.

Note. A map X satisfying properties (1) and (2) is usually called a derivation because
it acts like a derivative.

This definition is motivated by the following observations. Let us return to Section
8.3 and assume that manifolds are subsets of Euclidean space. If g : [a,b] Æ Mk is a
curve with g(c) = p, then g induces a map

defined by

The map g* is just the directional derivative of f at p in the direction g ¢(c). One can
show that g* depends only on the derivative of g(t) at c. In other words, one can think

g g* .f
d
dt

f c( ) = ( )( )o

g*: F p R( ) Æ

X F: p R( ) Æ

b p a= ( ) ( )( )( )-D fy j jo o 1 .

Df p U a V b( ) [ ]( ) = [ ], , , , ,j y
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of a tangent vector as something that specifies a direction in which one can take a
derivative. Here are some properties of these tangent vectors:

(1) Let cU denote the constant map on the neighborhood U with value c. Then

This follows from the identities

(2) Let f :U Æ R and V Õ U. Then

that is, X(f) depends only on the local behavior of f and not on its domain.

(3) Let (U,j) be a coordinate neighborhood of p and let j(q) = (u1(q),u2(q),
. . . ,uk(q)), q Œ U. If

then define

(8.16)

It is easy to see that ∂/∂ui is a tangent vector at p called the partial derivative with
respect to ui. Furthermore, ∂/∂u1, ∂/∂u2, . . . , ∂/∂uk are a basis for the tangent space
Tp(Mk) (Exercise 8.8.3). (In contrast to other results that hold for Cr manifolds also,
the basis property of the ∂/∂ui needs C•, because to show that the ∂/∂ui span, one needs
Lemma 4.6.2. See [BisC64].) It follows that every tangent vector X can be written
uniquely in the form

One calls ai the ith component of the tangent vector X.

(4) Let (V,y) be another coordinate neighborhood of p and let y (q) = (v1(q),v2(q),
. . . ,vk(q)), q Œ V. If we express X with respect to the basis ∂/∂vj, that is, if

then

X b
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j
j
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∂
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(8.17)

We see that this matches equation (8.13) and the two definitions of tangent vectors
really amount to the same thing. In fact, the correspondence

(8.18)

defines the natural isomorphism between the two vector spaces that are called the
tangent space to the manifold.

Definition. Let Mk and Wm be differentiable manifolds and let f :Mk Æ Wm be a dif-
ferentiable map. If p Œ Mk, then define a map

(8.19a)

by

(8.19b)

for every X Œ Tp(Mk) and g Œ F(f(p)). The map Df(p) is called the derivative of f at p.

Just like with the previous equivalence class of vectors definition, one can show
that Df(p) is a well-defined linear transformation.

No matter which definition of tangent vectors one uses, given a map f between
differentiable manifolds, the rank of f at a point p is the rank of its derivative Df(p).

Let us summarize the main points that we covered in this section. We defined
abstract manifolds, tangent vectors, when a map is differentiable, and the derivative
of a map. One can show that for submanifolds of Euclidean space the notions of
tangent vectors, the derivative of a map, and the rank of a map are compatible with
those given in Section 8.4.

8.9 Vector Bundles

Bundles over a space were introduced in Section 7.4.2. The basic concept consisted
of three pieces, a total space, a projection map onto a base space, and a local trivial-
ity condition (each point of the base space had a neighborhood over which the bundle
looked like a product of the base neighborhood and another space called the fiber).
In Section 7.4.2 we concentrated on a very special case, that of covering spaces, where
the fiber was a discrete space. In this section we look at the case of where the fiber is
a vector space. Even though covering spaces are really part of the same general topic
of “fiber” bundles, for historical reasons the notation differs slightly between the two.
We shall now switch to the notation used for vector bundles. (In Section 7.4.2 we used
the expression “bundle over a space” to emphasize that the base space was not part
of the definition of “bundle”, which it will be here.)

Df X g X g fp( )( )( )( ) = ( )o

Df T Tp
k

f
mp M Wp( ) ( ) Æ ( )( ):
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Definition. An n-dimensional (real) vector bundle, or n-plane bundle, or simply vector
bundle if the dimension is unimportant, is a triple x = (E(x),px,B(x)) = (E,p,B)
satisfying

(1) E and B are topological Hausdorff spaces.
(2) The map p :E Æ B is continuous and onto.
(3) For each b Œ B, p-1(b) has the structure of an n-dimensional (real) vector

space.
(4) (Local triviality) For each b Œ B, there is an open neighborhood Ub of b and

a homeomorphism

such that

is a vector space isomorphism for all b¢ Œ Ub.

E is called the total space, p is called the projection, and B is called the base space for
x. The space p-1(b) is called the fiber of x over b. The pair (jb,Ub) is called a local coor-
dinate chart for the vector bundle. A one-dimensional vector bundle is often called a
line bundle. One sometimes refers to x as a vector bundle over B.

8.9.1. Example. If B is a topological space and p :B ¥ Rn Æ B is the projection onto
the first factor, then x = (B ¥ Rn,p,B) is clearly an n-plane bundle called the product
n-plane bundle over B.

Example 8.9.1 shows that there are lots of vector bundles, but the theory would
not be very interesting if they all were just product bundles. We shall see examples of
other bundles shortly, but we need a few more definitions first.

Definition. Let x = (E,p,B) be an n-plane bundle and let A Õ B. The restriction of x
to A, x|A, is the n-plane bundle x|A = (p-1(A),p|p-1(A),A).

Showing that x|A is an n-plane bundle is an easy exercise.

Definition. Let x = (E,p,B) be an n-plane bundle. A cross-section of x is a continu-
ous map

so that

that is, s(b) belongs to the fiber p-1(b) for every b Œ B. The zero cross-section is the
cross-section s where s(b) is the zero vector in p-1(b) for every b Œ B. A cross-section
s is said to be nonzero if s(b) is a nonzero vector in the vector space p-1(b) for every

p o s =1B ,

s B E: Æ

j pb
n n¢ ¥ ¢ ¥ Æ ¢( )-b R b R b: 1

j pb b bU  R U: ¥ Æ ( )-n 1
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b Œ B. The support of a cross-section s, denoted by support(s), is defined to be the set
of b Œ B with s(b) π 0. Two cross-sections s1 and s2 are said to be linearly independ-
ent if s1(b) and s2(b) are linearly independent vectors in p-1(b) for every b Œ B.

See Figure 8.28. It is easy to see that the set of cross-sections of a vector bundle
x is actually a vector space. In fact, if s is a cross-section of x and f is a real-valued
function on the base space B of x, then we can define a new cross-section fs for x by
means of the obvious formula

Note. Every vector bundle has the zero cross-section. One often identifies the base
space of a vector bundle with the image of this zero cross-section in the total space,
namely, the space of zero vectors in all the fibers.

Next, we define what is meant by a map between vector bundles. Such a map
should preserve fibers and the vector space structure.

Definition. Let xi = (Ei,pi,Bi) be vector bundles (of possibly different dimensions). A
vector bundle map F:x1 Æ x2 is a pair of maps (f̃,f), so that

(1) the diagram

commutes, that is, p2 f̃ = f p1, and
(2) the fiber maps

are linear transformations with respect to the vector space structure on each
fiber for all b1 Œ B1.

˜ ˜ :f f fF b b b b1 1
1

1 1
1

1 2
1

1( ) = ( ) ( ) Æ ( )( )- - -p p p
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E E
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1 2
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The map F is called a vector bundle isomorphism if f is a homeomorphism and f̃ is a
vector space isomorphism on each fiber (or, equivalently, f̃ is a homeomorphism
between E1 and E2). We say that x1 and x2 are isomorphic vector bundles, and write
x1 ª x2, if there exists a vector bundle isomorphism between them. An n-plane bundle
x = (E,p,B) that is isomorphic to the product bundle (B ¥ Rn, projection onto B,B) is
called a trivial vector bundle.

Clearly, if F = (f̃,f ) is a vector bundle isomorphism, then F-1 = (f̃-1,f-1) is a vector
bundle isomorphism called the inverse of F. One can also compose vector bundle
maps.

Now, one way of thinking of vector bundles is as locally trivial bundles with fiber
a vector space, that is, if x is an n-plane bundle over a space B, then there will exist
a covering of B by open sets U, so that x|U is trivial. To put is yet another way, an n-
plane bundle over a space B consists of a collection of product bundles (U ¥ Rn,pro-
jection onto U,U) for open sets U in B that are glued together along their fibers using
maps in GL(n,R). We shall make this clearer later when we discuss the tangent bundle
of a manifold. The generalization of this way of looking at a vector bundle is what is
called a fiber bundle (also written “fibre” bundle) where we allow an arbitrary space to
be the fiber except that one is also explicitly given a group which acts on the fibers.
In our case, this group would be GL(n,R).

Returning to the topic of cross-sections, an interesting question is whether or not
a vector bundle has a nonzero cross-section. Trivial bundles (other than the 0-dimen-
sional ones) certainly have lots of nonzero cross-sections. In fact, a trivial n-plane
bundles has n linearly independent cross-sections (Exercise 8.9.1). Therefore, a vector
bundle that has no nonzero cross-section cannot be trivial and this becomes one of
the tests for triviality.

It is time to give an example of a nontrivial vector bundle.

8.9.2. Example. Our nontrivial vector bundle is easy to describe in rough terms,
although it will take a little more work to explain rigorously. Basically, we are talking
about an “open” Moebius strip thought of as the total space of a line bundle (E,p,S1)
over the circle. See Figure 8.29. In a sense, we are simply removing the boundary of
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the Moebius strip defined in Chapter 6, but we shall modify our earlier construction
to match the vector bundle structure better. To this end, let the total space E be the
space [0,p] ¥ R with the two ends glued together after giving one end a 180° twist,
that is, the point (0,t) is identified with the point (p,-t). The base space is the center
line, or meridian, [0,p] ¥ 0 with the end point (0,0) glued to the end point (p,0). What
we get is a circle that is identified with S1 and we have the obvious projection map p
which maps each fiber c ¥ R to c. The space E is obviously not homeomorphic to S1

¥ R and so the bundle is not trivial. This is the quick and dirty description of the line
bundle we are after, but filling in the missing details would be a little messy. There-
fore, we shall now describe a quite different construction for the “same” bundle, one
that leads to a nice generalization in Section 8.13.

Let

be the standard 2-fold covering of P1, which maps every point q Œ S1 into the equiv-
alence class

Definition. The canonical line bundle g = (E,p,P1) over P1 is defined as follows:

(1) E = {([q],tq) Œ P1 ¥ R2 | t Œ R}.
(2) p([q],tq) = [q].

To show that g is a vector bundle, we must show that the fibers have a vector space
structure and that the bundle is locally trivial. Since the fibers of this bundle are just
the lines through the origin in R2, we can obviously consider them as one-dimensional
vector spaces. To prove the locally triviality property define sets

(8.26)

The sets Ui are open sets whose union is P1. Define homeomorphisms

by

where x = [q] and the representative q for x is chosen so that qi > 0. It is easy to check
that the maps ji are well-defined homeomorphisms because the sets Ũi do not contain
antipodal points. This finishes the proof that g is a line bundle. Exercise 8.9.2 asks the
reader to show that g is isomorphic to the open Moebious strip bundle described
above.

Finally, we prove that the line bundle g is not trivial by showing that it does not
admit any nonzero cross-section. Suppose that g had a nonzero cross-section s. It
would follow that the map

ji t tx x q, , ,( ) = ( )

j pi i i: U R U¥ Æ ( )-1

˜ , ˜ .U q S R S U U Pi i i iq q q and p= = ( ) Œ Ã >{ } Ã = ( ) Ã1 2
1 2 1 10

q q q P[ ] = -{ } Œ, 1

p: S P1 1Æ
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would have the form

(8.27)

for some continuous map

(Exercise 8.9.3). Such a map a takes on both positive and negative values. Since S1 is
connected, the intermediate value theorem implies that a must be zero somewhere,
which contradicts the hypothesis that s was a nonzero cross-section. This finishes
Example 8.9.2.

Here are some important constructions defined for vector bundles.

Definition. Let xi = (Ei,pi,Bi) be vector bundles. The vector bundle x1 ¥ x2 = (E1 ¥
E2,p1 ¥ p2,B1 ¥ B2) is called the vector bundle product of x1 and x2.

It is trivial to show that x1 ¥ x2 is in fact a vector bundle.

Definition. Let j = (E,p,B) be an n-plane bundle and let f :B1 Æ B be a map. Define
an n-plane bundle f*x = (E1,p1,B1) over B1 as follows:

(1) E1 = {(b1,e) Œ B1 ¥ E | f(b1) = p(e)}
(2) p1(b1,e) = b1
(3) The vector space structure for each fiber p1

-1(b1) is defined by

(4) Let b1 Œ B1 and let

be a local coordinate chart for x over a neighborhood U of f(b1). If V = f-1(U),
then the map

defined by

j1(b1¢,v) = (b1¢,j(f(b1¢),v)).

is a local coordinate chart for x1 over V.

j p1 1
1

: ,U ¥ Æ ( )-
R Vn

j p: U R U¥ Æ ( )-n 1

r s r s for r sb e b e b e e R1 1 1, , , , , .( ) + ¢( ) = + ¢( ) Œ

a a a: .S R q q1 Æ -( ) = - ( )with

s po( )( ) = [ ] ( )( )q q q q, ,a

s po : S E1 Æ
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The vector bundle f*x is called the induced (vector) bundle over B1, the (vector) bundle
over B1 induced by f, or the pullback (vector) bundle. Define

by

The bundle map (f̃,f) : f*x Æ x is called the canonical (vector bundle) map from f*j
to x.

8.9.3. Lemma. f*x is a well-defined n-plane bundle and (f̃,f) is a vector bundle map.

Proof. Easy.

We collect the main facts about induced bundles in the next theorem.

8.9.4. Theorem.

(1) If (f̃,f) :h Æ x is a vector bundle map between two n-plane bundles h and x,
then the induced vector bundle f*x is isomorphic to h.

(2) If j = (E,p,B) is a trivial vector bundle over B and if f :B1 Æ B is a map, then
f*j is a trivial vector bundle over B1.

(3) Let x = (E,p,B) be a vector bundle. If B1 is a paracompact space and if f, g :
B1 Æ B are homotopic maps, then the induced bundles f*x and g*x are iso-
morphic.

Proof. To prove (1) show that the vector bundle map

defined by

is the desired isomorphism. Fact (2) is easy. For fact (3) see [Huse66].

8.9.5. Corollary. Every vector bundle over a contractible paracompact space B is
trivial.

Proof. Let f be the identity map on B and let g :B Æ B be a constant map. If x is
any vector bundle over B, then f*x is easily seen to be isomorphic to x and g*x is trivial
by Theorem 8.9.4(2). Since f is homotopic to g, the Corollary now follows from
Theorem 8.9.4(3).

Next, we show how vector bundles over a space can be added.

˜ , ˜g fe e e( ) = ( ) ( )( )ph

˜ , : *g f1B h h x( )( ) Æ

˜ , .f b e e1( ) =

˜ :f E E1 Æ
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Definition. Let x1 = (E1,p1,B) be an n-plane bundle and x2 = (E2,p2,B) an m-plane
bundle over the same base space B. Define the Whitney sum of x1 and x2, denoted by
x1 ≈ x2, to be the vector bundle (E,p,B), where

(1) E = {(e1,e2) Œ E1 ¥ E2 | p1(e1) = p2(e2)},
(2) p(e1,e2) = p1(e1) = p2(e2),
(3) the vector space structure for each fiber p-1(b) = p1

-1(b) ¥ p2
-1(b) is just the

direct sum vector space structure, and
(4) if b Œ B and if

are local coordinate charts for x1 and x2, respectively, over a neighborhood U
of b, then

defined by

is a local coordinate chart for x1 ≈ x2 over U.

8.9.6. Lemma. x1 ≈ x2 is a well-defined (n + m)-dimensional vector bundle.

Proof. Easy.

One very useful notion for vector spaces is that of an inner product because then
one can talk about the length of vectors and whether two are orthogonal. It is con-
venient to have these concepts for vector bundles.

Definition. A Riemannian metric on a vector bundle x is a continuous function

such that the restriction of m to each fiber is a positive definite quadratic form.

8.9.7. Theorem. Every vector bundle over a paracompact space admits a Rie-
mannian metric.

Proof. See [Spiv70a].

Note. Because of the equivalence between quadratic forms and symmetric bilinear
maps, a Riemannian metric on a vector bundle x is sometimes defined to be a con-
tinuous function

< > ( ) ≈ ( ) Æ, : E E Rx x

m x: E R( ) Æ

j j j¢ ( )( ) = ¢( ) ¢( )( ) Œ Œb v,w b v b w v R w R, , , , , , ,1 2
n m

j p: ,U R U¥ Æ ( )+ -n m 1

j p j p1 1
1

2 2
1

: :U R U U R U¥ Æ ( ) ¥ Æ ( )- -n mand
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with the property that <,> is a positive definite symmetric bilinear map (inner product)
on each fiber. We shall feel free to switch between these two equivalent definitions of
a Riemannian metric.

Once a vector bundle has a Riemannian metric, then the terms “length”, “orthog-
onality”, “angle”, etc., will all make sense with regard to vectors in a fiber. One can
also define two natural sub-bundles.

Definition. Let x = (E,p,X) be a vector bundle with Riemannian metric m. Define

The bundles D(x) = (ED,p|ED,X) and S(x) = (ES,p|ES,X) are called the disk bundle and
sphere bundle associated to x, respectively.

Clearly, the disk and sphere bundles associated to an n-dimensional vector bundle
have fibers homeomorphic to Dn and Sn-1, respectively.

Finally, we define what it means for a vector bundle to be oriented.

Definition. Let x = (E,p,B) be a vector bundle. Let s be a map that associates to each
b Œ B an orientation of the vector space p-1(b). Such a choice is said to be a contin-
uously varying choice of orientations if for every local coordinate chart (jb,Ub) for x
and all b¢ Œ Ub,

where the vector space isomorphism

is defined by

(In other words, the orientations s(b¢) are the orientations induced from s(b) using
the isomorphisms Tb¢. See equation (8.8b).) An orientation of a vector bundle is a con-
tinuously varying choice of orientations in each fiber. A vector bundle is said to be
orientable if it admits an orientation. An oriented vector bundle is a pair (x,s), where
x is a vector bundle and s is an orientation of x.

8.9.8. Examples. It is easy to see that any trivial vector bundle is orientable. The
canonical line bundle g = (E,p,P1) over P1 is not orientable because a line bundle is
orientable if and only if it is trivial (Exercise 8.9.4).

Other examples pertaining to the orientability of vector bundles can be found in
the next section.

Definition. Let (x1,s1) and (x2,s2) be two oriented n-plane bundles and let F = (f̃,f) :x1
Æ x2 be a bundle map. We say that F is an orientation-preserving bundle map if
f̃ defines an orientation-preserving vector space isomorphism on each fiber of x1. We

T ¢ ( ) = ¢( )b bv b vj , .

T ¢
- -( )Æ ¢( )b b b: p p1 1

s s¢( ) = ( ) ( )( )¢b bbT * ,

E e E e E e E eD S= Œ ( ) £{ } = Œ ( ) ={ }m m1 1and .
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say that F is an orientation-reversing bundle map if f̃ defines an orientation-reversing
vector space isomorphism on each fiber of x1.

The pullback of an oriented vector bundle has a natural orientation because fibers
get mapped isomorphically onto fibers and so we can simply pull back the orienta-
tion with the inverse of the isomorphism. More precisely,

Definition. Let (x,s) be an oriented n-plane bundle and let f :B1 Æ B(x) be a map.
The induced orientation f*s on f*x is defined as follows: Let (f̃,f) : f*x Æ x be the canon-
ical map with fiber maps f̃F. If b1 Œ B1, then

8.9.9. Theorem. Any vector bundle x = (E,p,B) over a simply connected space B is
orientable.

Proof. See Figure 8.30. Fix a point b0 in B. Choose an orientation s0 in p-1(b0). Let
b Œ B. We shall define an orientaton s for x so that s(b0) = s0. Since B is path-
connected, there is a path g :I Æ B so that g(0) = b0 and g(1) = b. By Corollary 8.9.5,
g*x is a trivial bundle over I, which means that g*x admits a unique orientation hg so
that hg(0) is mapped to s0 by the canonical map from g*x to x. See Exercise 8.9.5 for
the uniqueness part. Let s(b) be the orientation of p-1(b) to which hg(1) is mapped by
the canonical map from g*x to x. We need to show that

(1) s is a well-defined map, and
(2) s is a continuously varying choice of orientations in each fiber.

We shall only prove (1) and leave (2) as an exercise for the reader. Suppose that there
is another path l :I Æ B so that l(0) = b0 and l(1) = b. Again, choose the unique ori-
entation hl for l*x so that hl(0) is mapped to s0 by the canonical map from l*x to x.
We must show that hl(1) maps to s(b). Since B is simply connected, there is a 
homotopy

f f fF* ˜
* .s s( )( ) = ( ) ( )( )( )-

b b b1 1
1

1
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between g(t) = h(t,0) and l(t) = h(t,1). Using Corollary 8.9.5 again, it follows that h*j
is a trivial bundle over I ¥ I. Identify g*x and l*x with h*x|I ¥ 0 and h*x|I ¥ 1, respec-
tively. Now h*x has an orientation hh that agrees with h(0) over (0,0). The uniqueness
of hh (Exercise 8.9.4) implies that hh agrees with hg and hl over I ¥ 0 and I ¥ 1, respec-
tively. Note also that the definition of a homotopy implies h(1 ¥ I) = b, so that hh|1 ¥
I must be constant (compare the induced orientation with the given one). In other
words, hh(0,1) = hg(1) and hh(1,1) = hl(1) must map to the same orientation of p-1(b)
and we are done.

8.10 The Tangent and Normal Bundles

The last section defined vector bundles and described some of their properties. Vector
bundles are very important to the study of manifolds as we shall see in this section.

Let Mn be a differentiable manifold. Define the n-plane bundle tM = (E,p,Mn) as
follows:

and

For a coordinate neighborhood (U,j) for M, define

by

We give E the weak topology induced by the condition that the sets p-1(U) should be
open and the maps jU continuous.

Definition. The n-plane bundle tM is called the tangent bundle of the manifold Mn.

8.10.1. Theorem. Let Mn be a differentiable manifold and tM = (E,p,Mn) its tangent
bundle. Then E is a 2n-dimensional differentiable manifold and p is a differentiable
map of rank n.

Proof. The proof is straightforward. See [Hirs76]. The natural coordinate neigh-
borhoods of the total space E are obtained from the compositions of the maps

p
j j

-
¥

( ) æ Æææ ¥ æ Æææææ ¥ =-
1 2

1U U R R R R
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n
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Here are two alternate descriptions of the tangent bundle of a manifold Mn. We
shall only define the new total spaces E in each case because the rest of the defini-
tions are obvious.

First alternate definition of tM: Let

(8.28)

where the equivalence relation ~ is defined as follows: If (U,j)} and (V,y) are coordi-
nate neighborhoods for Mn, then

is identified with

(8.29)

for all q Œ U « V. Recall our comments about fiber bundles earlier. We can now see
how the group GL(n,R) enters the picture, namely, through the linear isomorphism
D(y j-1)(j(q)).

Second alternate definition of tM: This description is only applicable when Mn is
a submanifold of some Rk: In this case, using our definitions related to the manifolds
in Section 8.4, define

(8.30)

In the terminology of Section 8.4, it could happen that two different points p and q
of Mn could call the same v Œ Rk as their tangent vector, but we differentiated between
the uses of v by the phrase “at p” or “at q.” That was an adequate way to deal with
the distinction there, but in the context of abstract manifolds it is important that
tangent vectors at one point of a manifold are different from those at another point
and to have that fact incorporated into the definition. The definition of E in (8.30) is
the most convenient way to accomplish that. The pair (p,v) (as an element of Tp(Mn))
now formalizes the entire phase “the tangent vector v of Mn at p.” As an added bonus
there is no need to worry about what topology to give E because E inherits a natural
topology as a subspace of Mn ¥ Rk. Note that if Mn = Rn, then the tangent space Tp(Mn)
at a point p is just p ¥ Rn, which agrees with the definition in Section 4.9.

Showing that these two new definitions of tM are equivalent to the original one is
left to the reader (Exercise 8.10.1). In the future we shall feel free to choose whichever
definition is most convenient.

8.10.2. Example. The tangent bundle of S1 is trivial. We can see that from Figure
8.31. The oriented tangent lines to the circle in R2 (Figure 8.31(a)) can be rotated into
a vertical direction in R3 (Figure 8.31(b)), so that the total space is nothing but S1 ¥

E p, v M R v M p= ( ) Œ ¥{ }n k nis a vector to attangent .

o

q q a V R,D ny j jo -( ) ( )( )( )( ) Œ ¥1

q a U R,( ) Œ ¥ n

E U R
U

= ¥
Ê
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ˆ
¯̃( )

n
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j

U

520 8 Differential Topology



R1. A more elegant way to prove this is to define a nonzero cross-section for the
tangent bundle and use this to define an isomorphism between the tangent bundle
and the trivial bundle.

Definition. If the tangent bundle of a manifold is trivial, then the manifold is said
to be parallelizable.

8.10.3. Example. The tangent bundle of S2 is not trivial. This fact follows from
Corollary 8.5.6 using the second alternate definition of the tangent bundle. More gen-
erally, since the tangent bundle of any even-dimensional sphere Sn does not admit a
cross-section, it is not trivial either.

Definition. Let M be a differentiable manifold with tangent bundle tM. A cross-
section of tM is called a vector field of M. The vector space of vector fields of M shall
be denoted by Vect (M). More generally, if A Õ M, then a cross-section of tM|A is called
vector field of M defined over A.

Given our second alternate definition of the tangent bundle of a manifold, it is
obvious that the new definition of a vector field for a manifold is equivalent to the
definition given in Section 8.5, but now we have a definition that also applies to
abstract manifolds.

Definition. A Riemannian metric for a differentiable manifold is a Riemannian metric
for its tangent bundle, which is also assumed to be differentiable if the manifold is.
A Riemannian manifold is a differentiable manifold together with a Riemannian
metric.

By Theorem 8.9.7 we know that every differentiable manifold admits a Rie-
mannian metric, but it is easy to see that directly, because one can always imbed the
manifold in some Euclidean space and use the induced inner product on vectors in a
tangent plane to the manifold. Because imbeddings are not unique, one can also see
from this that many different Riemannian metrics can be defined for a manifold.

Note. In future discussions involving differentiable manifolds we shall not hesitate
to assume, without any explicit statement, that they have been endowed with a 
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Riemannian metric if it is convenient. Furthermore, a Riemannian metric on a man-
ifold induces a natural Riemannian metric on every submanifold. We shall always
assume that the submanifolds have been given that induced metric.

Real-valued functions on manifolds give rise to vector fields. Assume that a dif-
ferentiable manifold Mn has a Riemannian metric <,> and let f :M Æ R be a differen-
tiable function. Let p Œ M and, using the functional approach to tangent vectors, let
X1(p), X2(p), . . . , Xn(p) be an orthonormal basis of the tangent space of M at p.

Definition. The vector field s for M defined by

is called the gradient of f and is denoted by —f .

The name of the gradient of f is justified because if M = Rn, then we just get the
usual gradient of a function. See Exercise 8.10.2 which also presents an alternative
characterization of —f.

We return now to the subject of orientation.

Definition. An orientation of an abstract differentiable manifold M is an orientation
of the tangent bundle of M, that is, a continuously varying choice of orientations of its
tangent spaces. A manifold is said to be orientable if it admits an orientation. An ori-
ented manifold is a pair (M,s), where M is a manifold and s is an orientation for M.

The notion of orientation for abstract manifolds is compatible with the earlier def-
inition for submanifolds of Euclidean space in Section 8.5. This follows from the fact
that Theorem 8.5.3 holds for abstract manifolds, namely, that an n-dimensional closed
compact connected abstract manifold is orientable if and only if its nth homology
group is isomorphic to Z (the idea behind the proof is the same).

Note on orientability. One problem when discussing orientability of manifolds is
that there are different ways to define this concept. This means that one always has
to address the issue of compatibility between the different definitions and one ends
up having to state several theorems rather than just one. The one general unifying
condition for an n-dimensional connected manifold Mn to be orientable is that
Hn(M,∂M) ª Z. One could make that the definition of orientability but the question
of whether other very useful ways of describing it are compatible would still be there
and therefore one would not save oneself any work.

8.10.4. Example. To show that the tangent bundle of Sn, n ≥ 1, is orientable.

Solution. We could appeal to the fact that Hn(Sn) is isomorphic to Z, but it may give
the reader a little more understanding if we prove this directly. Let us use the coor-
dinate neighborhoods (U+,j+) and (U-,j-) defined in Example 8.8.4 and the equiva-
lence class of vectors approach to the definition of tangent vectors. If p Œ U+ « U-,

s X f Xi i
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=
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then a tangent vector at p can be represented by a tuple (U+,j+,a)p with respect to
(U+,j+) or a tuple (U-,j-,b)p with respect to (U-,j-), where a, b Œ Rn. The two tuples
define the same tangent vector if

Clearly, the tangent vector representatives (U+,j+,e1)p, (U+,j+,e2)p, . . . , (U+,j+,en)p
define a continuously varying choice of orientations s(p) in the tangent spaces at
points p in U+. Similarly, we get a continuously varying choice of orientations m(p)
from the representatives (U-,j-,e1)p, (U-,j-,e2)p, . . . , (U-,j-,en)p. at points p in U-. We
will get an orientation for the tangent bundle of Sn from continuously varying orien-
tations s and m over U+ and U-, respectively, if and only if s(p) = m(p) for all p Œ U+
« U- or s(p) π m(p) for all p Œ U+ « U- (we can then simply reverse the orientations
of m). In our case, s(p) = m(p) because by Exercise 8.8.1(b),

so that the linear transformation

which identifies tangent vector representatives at p is orientation preserving.

Another interesting fact is that the analog of Theorem 7.5.7 holds for differen-
tiable manifolds. We shall only restate part (1).

8.10.5. Theorem. Every simply connected differentiable manifold is orientable.

Proof. This follows from Theorem 8.9.9.

Differentiable maps between differentiable manifolds induce bundle maps
between their tangent bundles.

Definition. Let Mn and Nk be differentiable manifolds and let f :Mn Æ Nk be a dif-
ferentiable map. Define a map

by the condition that for all p Œ M,

where

is the map defined earlier by equations (8.15) or (8.19) depending on how tangent
vectors are defined. The vector bundle map

Df Tfp M Mp p( ) ( ) Æ ( )( ): T
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is called the vector bundle map of the tangent bundles induced by f.

8.10.6. Theorem.

(1) Df is a well-defined differentiable map from E(tM) Æ E(tN).
(2) If f :M Æ M is the identity map, then Df is the identity map on E(tM).
(2) Let f :M Æ N and g :N Æ W be differentiable maps between differentiable mani-

folds. If

then Dh = Dg Df.

Proof. The proof of these facts is straightforward using the corresponding proper-
ties of differentiable maps between Euclidean spaces.

Definition. Let (Mn,s) and (Nn,t) be two oriented n-dimensional manifolds. A map
f :M Æ N is said to be orientation preserving or reversing if the induced map between
the tangent bundles is orientation preserving or reversing, respectively.

Because Theorem 8.5.3 holds for connected compact closed orientable abstract
manifolds, we can define the degree of a map f :M Æ M for such manifolds M just
like before.

8.10.7. Theorem. Let M be a connected compact closed orientable differentiable
manifold and let f :M Æ M be a diffeomorphism. Then f is orientation preserving if
and only if deg f = +1.

Proof. The proof involves relating what f does to the top-level homology group to
what f does to the fibers of the tangent bundle. One can do this using the definition
of the fundamental homology class in the proof of Theorem 8.5.3.

8.10.8. Example. Let n ≥ 1. The reflection

defined by

is orientation reversing since its degree is -1. Because the reader may find it helpful,
we shall also work through part of the tangent bundle definition of orientability using
equations (8.15) and the coordinate neighborhood (U+,pn), where U+ = Sn - {en+1} and
pn is the stereographic projection. If p Œ Sn and p π en+1, then equations (8.15) imply
that

r x x x x x xn n1 2 1 1 2 1, ,..., , ,...,+ +( ) = -( )

r n n: S SÆ

o

h g f= Æo : ,M W

F Df f= ( ) Æ, : t tM N
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where

for a Œ Rn. It is easy to check that

(One can see this intuitively by tracing the action of these maps one after another geo-
metrically. See Figure 8.32. See also Exercise 3.10.1.) This is an orientation reversing
linear map and implies that Dr(p) is orientation reversing on tangent spaces (use an
argument similar to the one in Example 8.10.4).

We finish this section with some more important vector bundle related facts for
differentiable manifolds.

Definition. Let Mn be a submanifold of a manifold Nk. The normal bundle of Mn in
Nk is the (k - n)-plane vector bundle nM = (E,p,Mn) defined as follows: Choose a 
Riemannian metric for Nk if it does not already have one. Using the natural inclu-
sions and commutative diagram

for the tangent bundles of M and N, respectively, we define the fiber of nM over p Œ
M to be the orthogonal complement of the n-dimensional plane pM

-1(p) in the k-
dimensional vector space pN

-1(p) and let E be the union of these fibers, that is,

E E

M N

M N

M N

t t
p p
( ) Õ ( )

Ø Ø
Õ

p r p x x x x x xn n n no o -( )( ) = -( )1
1 2 1 2, ,..., , ,..., .
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Figure 8.32. The case n = 2 in Example
8.10.8.



Set p = pN|E.

8.10.9. Lemma. nM is a (k - n)-plane bundle and tM ≈ nM ª tN|M.

Proof. This is immediate from the definitions.

If a different Riemannian metric is chosen, then we will get different but iso-
morphic normal bundles.

8.10.10. Theorem. For every differentiable manifold M there is a vector bundle x
over M so that tM ≈ x is trivial.

Proof. By Theorem 8.8.7 M can be imbedded in some Euclidean space Rm. Let nM
be the normal bundle of M in Rm. Since the tangent bundle of Rm is trivial, Lemma
8.10.9 implies that tM ≈ nM is trivial.

An interesting fact is the following:

8.10.11. Theorem. Let Mn be a differentiable manifold and let d :M Æ M ¥ M be
the diagonal map imbedding defined by d(p) = (p,p). Then the tangent bundle tM is
isomorphic to the normal bundle nM of d(M) in M ¥ M.

Proof. We shall identify M with d(M). Note first of all that there is a canonical 
diffeomorphism

defined by

where (Ui,ji) and (Uj,jj) are coordinate neighborhoods of points p and q in M and
the maps

are the projections onto the first and second factor, respectively (Exercise 8.10.3).
Under the identification h, every tangent vector v(p,q) at (p,q) Œ M ¥ M can be expressed
in the form (vp,vq), where vp is a tangent vector to M at p and vq is a tangent vector
to M at q. If M ¥ M has been given a Riemannian metric, then (vp,wp) will be a tangent
vector to d(M) at (p,p) in M ¥ M if and only if vp = wp and (vp,wp) will be a normal
vector to d(M) in M ¥ M if and only if wp = -vp. See Figure 8.33. This means that the
map
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induces a canonical isomorphism from tM to nM.

Definition. Let Mn be a submanifold of a manifold Nk. Suppose that there is a vector
bundle x = (E,p,M) and an imbedding f :E Æ N so that f s :M Æ N is the identity map
on M, where s is the zero section of x. If f(E) is an open neighborhood of M in N,
then the pair (x,f) is called a tubular neighborhood of M in N. The associated disk
bundle for x and the restriction of f to that is called a closed tubular neighborhood of
M in N. Often one identifies the total spaces with their image in N, so that the sub-
spaces f(E) and f(D(x)) are also called tubular neighborhoods of M, but the bundle
structure of the subspaces are assumed to be given in any case.

Figure 8.34(a) shows an example of a closed tubular neighborhood. The total
space of the closed tubular neighborhood D(x) of Mn in Nk is a k-dimensional differ-
entiable manifold with boundary the total space of the associated sphere bundle S(x)).

8.10.12. Theorem. Every closed submanifold of a closed manifold has a tubular
neighborhood.

Proof. See [Hirs76].

For more on tubular neighborhoods see [Hirs76]. A related notion is

o
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Figure 8.34. Tubular neighborhoods and collars.



Definition. Let M be a manifold with boundary ∂M. A collar for ∂M is an 
imbedding

such that f(p,0) = p for all p Œ ∂M. The map f|(∂M ¥ [0,1]) is called a closed collar for
∂M. Again, the subsets of M that are the images of the maps are sometimes called a
collar and closed collar, respectively, but one still assumes that the product structure
via a map f is known.

Figure 8.34(b) shows an example of a closed collar.

8.10.13. Theorem. Every boundary of a manifold has a collar.

Proof. See [Hirs76].

We shall use the last theorem to finish this section by showing that if (Mn,s) is an
oriented n-manifold with boundary, then the orientation s on M induces a unique ori-
entation m on the boundary ∂M. Let p Œ ∂M and consider Tp(∂M) as a subset of Tp(M).
Let np be a nonzero tangent vector for M that points into M and choose a basis v1,
v2, . . . , vn-1 for Tp(∂M) so that [v1,v2, . . . ,vn-1,np] defines the same orientation of Tp(M)
as s(p). (With a Riemannian metric we could have chosen the vector np to be normal
to ∂M.) It is easy to show that the orientation m(p) = [v1,v2, . . . ,vn-1] of Tp(∂M) is well-
defined. Finally, the fact that the boundary of M has a collar allows us to choose the
vectors np in such a way that they vary continuously with p, so that the function m
really does define an orientation of ∂M.

Definition. The orientation m for ∂M is called the orientation of ∂M induced by the
orientation s of M.

8.11 Transversality

If there is one concept that is key in the study of manifolds, it is the concept of trans-
versality. We have not run into it much because so many proofs have been omitted in
this chapter. Starting with Theorem 8.6.1, which is essential in understanding the
structure of manifolds, one would find over and over again that proofs need functions
whose singularities are well-structured. The existence of such functions or the ability
to deform a given function into one of that type is what transversality is all about.
This section will attempt to give a brief overview of some basic definitions and prin-
cipal results. The material was not presented earlier because we wanted to discuss it
in the context of abstract manifolds.

In Section 4.8 we defined what it means for a set in Rn to have measure 0. We
extend this concept to subsets of manifolds.

Definition. Let Mn be a manifold. A subset A of M is said to have measure
zero if for all coordinate neighborhoods (U,j) of M, j(U « A) has measure zero in Rn.

f : ∂ ¥ •[ ) ÆM 0, M
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To show that a subset A of a manifold has measure zero, it turns out that we do
not need to show that j(U « A) has measure zero for all coordinate neighborhoods
(U,j), simply for any collection that covers A. Furthermore, since n-rectangles do not
have measure zero, a closed subset of a manifold that has measure zero is nowhere
dense in the manifold.

Definition. Let Mn and Nk be Cr manifolds and let f :Mn Æ Nk be a Cr map, r ≥ 1.
A point p Œ M is called a critical point and f(p) is called a critical value of f if the rank
of f at p is less than k. If the rank of f equals k at p, then p is called a regular point
of f. The points of Nk that are not critical values are called regular values.

The definition of p being a regular point is equivalent to requiring that

is onto. It is a good exercise for the reader to convince him/herself that the definitions
here reduce to the definitions given in Section 8.6 when we are dealing with 
submanifolds of Rn and to the definitions in Section 4.5 when M = Rn and N = R.

8.11.1. Theorem. Let f :Mn Æ Nk be a differentiable map between differentiable
manifolds. Let p Œ M and q = f(p). If q Œ N - ∂N is a regular value for f and f|∂M,
then f-1(q) is a submanifold of M of dimension n - k, or equivalently, of co-
dimension k.

Proof. See Theorem 8.3.7.

8.11.2. Example. Consider the map

defined by

The derivative of f has rank 1 everywhere except at the origin. Therefore, f-1(1), which
is just the unit sphere Sn, is a submanifold of dimension n - 1 as guaranteed by
Theorem 8.11.1.

Definition. Let Mn and Nk be Cr manifolds and let f :Mn Æ Nk be a Cr map, r ≥ 1.
We say that the map f is transverse to a submanifold A in N if for all points p Œ f-1(A)
and a Œ A

Theorem 8.11.1 has the following generalization.

8.11.3. Theorem. Let f :Mn Æ Nk be a differentiable map between differentiable
manifolds and Ad a submanifold of N. Assume either that

T Df T Ta p aA p N( ) + ( )( ) = ( ).

f x x x x x xn n1 2 1
2

2
2 2

, , . . . , . . . .( ) = + + +

f n: R RÆ

Df T Tfp M Np p( ) Æ ( ):

8.11 Transversality 529



(1) ∂A Ã ∂N and the maps f and f|∂M are transverse to A, or
(2) A Ã N - ∂N and the maps f and f|∂M are transverse to both A and ∂A.

Then f-1(A) is a submanifold of M of dimension n - (k - d), or equivalently, of co-
dimension k - d, and ∂f-1(A) = f-1(∂A).

Proof. See Theorem 8.3.7.

If Theorem 8.11.3 looks complicated, it is because we have to worry about bound-
aries. If there are no boundaries, then the simple conclusion is that f-1(A) is an 
(n - (k - d))-dimensional submanifold whenever f is transverse to A.

8.11.4. Example. The inclusion map i :S2 Õ R3 is not transverse to the plane z = 1.
Note that although i-1(0,0,1) = (0,0,1) is a submanifold of S2, it has the wrong co-
dimension.

Definition. We say that two submanifolds A and B of a manifold M intersect trans-
versally if

for all points p Œ A « B.

Note that A and B intersect transversally if and only if the inclusion map A Õ M
is transverse to B, so that the definition of submanifolds intersecting transversally 
can be thought of as a special case of the definition of maps being transverse. 
Note also that the concept of manifolds intersecting transversally basically general-
izes what it means for two planes in Rn to transverse. See Exercise 1.5.18.

8.11.5. Example. The lines x + y = 0 and x - y = 0 intersect transversally at the
origin. The unit circle S1 does not intersect the line x = 1 transversally at (1,0).

If two submanifolds Ar and Bs of a manifold Mn intersect transversally, then 
their intersection is a (r + s - n)-dimensional submanifold. In particular, if a 
compact r-dimensional submanifold and a compact (n - r)-dimensional submanifold
intersect transversally in M, then their intersection consists of a finite collection of
points.

8.11.6. Theorem. (The Morse-Sard Theorem) Let Mn, Nk be manifolds of dimen-
sion n, k, respectively, and let

be a Cr map. Let C be the set of critical points of f. If

then f(C) has measure zero in N. The set of regular values of f is dense in M.

r n k> -( )max 0, ,

f : M NÆ

T T Tp p pA B M( ) + ( ) = ( )
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Proof. See [Hirs76]. Hirsch also explains why one needs the strange constraint 
on r.

[Hirs76] gives a number of applications of this theorem and Theorem 8.11.3. For
example, one can use it to give a fairly simple proof of the fact that there is no dif-
ferentiable retraction f :M Æ ∂M (see Exercise 8.11.1 and compare this result with
Theorem 7.5.1.4) and the Brouwer fixed-point theorem that every differentiable map
f :Dn Æ Dn has a fixed point. The standard proofs of the continuous versions of these
theorems involve algebraic topology. We shall sketch two applications of Theorem
8.11.3 and the Morse-Sard Theorem. The first results in an alternate definition of the
degree of a map and the second deals with intersection numbers, vector fields, and
the Euler characteristic. The transversality approach to these results will give us addi-
tional insights into the underlying geometry.

Let (Mn,s) and (Nn,m) be closed compact connected oriented differentiable man-
ifolds and assume that

is a differentiable map. By the Morse-Sard theorem, f has regular values. Let q Œ N
be one such regular value for f. By Theorem 8.11.3 and the compactness of M, f-1(q)
consists of a finite number of isolated points. Let p Œ f-1(q).

Definition. The degree of f at p, degp f, is defined by

degp f = +1, if Df(p) maps Tp(M) in an orientation preserving way to Tq(N)
= -1, if Df(p) maps Tp(M) in an orientation reversing way to Tq(N).

Define the degree of f over q, deg(f,q), by

Note that since the set f-1(q) is finite, the sum in the definition of deg(f,q) is finite.
Figure 8.35 attempts to show what we are doing in the case of a map f :S1 Æ S1. The
map f indicated in the figure has f-1(q) = {p1,p2,p3}, so that, with the orientations as
shown,

Observe also that if we assume that f(S1) is a rubber band and pull it tight, then the
two point p2 and p3 in the pre-image of q disappear but the degree over q of the new
map is still 1. This “pulling tight” corresponds to changing the map f by a homotopy
and should suggest that homotopies do not change the degree.

8.11.7. Example. Define f :S1 Æ S1 by f(z) = zn, z Œ C. Then deg(f,1) = n
because the n nth roots of unity map to 1 in an orientation-preserving way (Exercise
8.11.2).

deg f, .q( ) = - + =1 1 1 1

deg degf f if f

otherwise

f

, , ,

, .

q qp

p q
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=
Œ ( )

-

-
Â
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1

0

f

f n n: M NÆ
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8.11.8. Theorem.

(1) The value deg(f,q) does not depend on the choice of regular value q.
(2) If f, g :M Æ N are homotopic differentiable maps and if q and q¢ are regular

values for f and g, respectively, then deg(f,q) = deg(g,q¢).

Proof. See [Miln65b] or [Hirs76].

Theorem 8.11.8 means that the next two definitions are well defined.

Definition. The degree of f, deg f, is defined to be deg(f,q) for any regular value q
for f.

Definition. If g :M Æ N is any continuous map, then define the degree of g, deg g, to
be the degree of any differentiable map f :M Æ N that is homotopic to g.

8.11.9. Theorem. The definition of the degree of a map above agrees with the def-
inition of the degree of a map given in Section 7.5.1.

Proof. The proof is not hard, but the best way to prove this theorem is to use the
tangent bundle of a manifold, its relationship to orientability, and the connection
between that and the top-dimensional homology group of the manifold that we dis-
cussed in earlier sections.

Next, we use transversality to help shed more light on the duality in manifolds
that we discussed in Section 7.5.2. Let Nk be a closed submanifold of a manifold Wn+k.
We shall identify tN ≈ nN with tW|N and assume that the normal n-plane bundle nN is
oriented with orientation m. Let (Mn,s) be a closed compact oriented manifold. Con-
sider a differentiable map

that is transverse to N. We know that f-1(N) consists of a finite number of isolated
points. Let p Œ f-1(N).

f n: M WÆ
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Definition. The index of f at p with respect to N, Ip(f,N), is defined by

Ip = (f,N) = +1, if the composite

is orientation preserving (the composite is an isomorphism
because of our transversality hypothesis)

= -1, otherwise.

The intersection number of f with respect to N, I(f,N), is defined by

8.11.10. Theorem. If f, g :M Æ W are homotopic differentiable maps that are both
transverse to N, then I(f,N) = I(g,N).

Proof. See [Hirs76].

By Theorem 8.11.10, the next definition is well defined.

Definition. Given an arbitrary continuous map f :M Æ W, let g :M Æ W be any dif-
ferentiable map that is homotopic to f and transverse to N. Define the intersection
number of f with respect to N, I(f,N), to be I(g,N).

Definition. If Mn is actually a submanifold of Wn+k and if i :M Õ W is the inclusion
map, then define the intersection number of Mn and Nk in Wn+k, I(M,N), to be I(i,N).
If M is transverse to N and if p Œ M « N, then Ip(i,N) is called the index of the inter-
section of M and N at p.

The intersection number I(M,N) of the two submanifolds of “dual” dimensions n
and k in the (n + k)-dimensional manifold W is what is most interesting to us here.
Compare this with the intersection numbers in Section 7.5.2. The two concepts are
closely related. We can carry things a step further to get an intersection number of a
single manifold with “itself.”

Definition. If x is an oriented n-plane bundle over a closed compact oriented man-
ifold Mn, then define the Euler number of x, I(x), to be I(s0(M),s0(M)), where s0 is the
zero cross-section of x.

Here is a way to visualize the Euler number of the oriented vector bundle x. Think
of having two copies of M sitting at the zero cross-section in the 2n-dimensional total
space of x. The transversality theorem implies that we can move the second copy of
M slightly so that it meets the first copy transversally. The Euler number is then gotten
by assigning a +1 or -1 to each intersection and adding these together. We assign 
a +1 at an intersection if the orientation of the two copies of M induce the same 
orientation as the orientation induced on the total space of x by the orientation of M

I N ff f if f

otherwise

f
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and x and assign a -1 otherwise. If x is a trivial bundle, the Euler number would be
0 because we can move the second copy of M completely off the first so that they do
not intersect at all. In fact, all we need to separate the two copies of M is a nonzero
cross-section, so that we can see that there is a close connection between the Euler
number of a vector bundle and the existence of a nonzero cross-section. In general,
given a cross-section s the zeros of this cross-section will correspond to where s(M)
and s0(M) will intersect. One can show that the Euler number of x can be determined
from the intersections of s(M) and s0(M), no matter which cross-section s one chooses
as long as s(M) and s0(M) meet transversally.

8.11.11. Theorem. Let x be an oriented n-plane bundle over a closed compact ori-
ented manifold Mn. Then the Euler number of x vanishes if and only if x admits a
nonzero cross-section.

Proof. See [Hirs76].

Now it is hard to draw pictures that show what is going on because the dimen-
sions get too large; however, we can show something if we drop the hypotheses that
manifolds and bundles are oriented. First, we have to point out that the definitions
above dealing with intersection numbers can be given without any assumptions of
orientability as long as we do not use signed numbers and work modulo 2, that is,
take all values to lie in Z2 rather than Z. This will give us well-defined mod 2 inter-
section and Euler numbers. (We could also have defined a mod 2 degree of a map
between arbitrary manifolds.) Theorem 8.11.11 would hold for the mod 2 Euler
number without any hypothesis about orientability.

8.11.12. Example. Consider the open Moebius strip line bundle described in
Example 8.9.2 and Figure 8.29. Figure 8.36 shows the total space, which is an open
Moebius strip. A little thought will convince the reader that it is not possible to move
the zero cross-section so that the resulting curve does not intersect the zero cross-
section. The best we can do is reduce the number of intersections to one, as is the
case with the cross-section s1 in Figure 8.36. Another possible perturbation of the zero
cross-section is cross-section s2 which has three intersections but also has a mod 2
Euler number of one. This would imply that the bundle does not have a nonzero cross-
section, something we already knew.

An especially interesting case to which Theorem 8.11.11 applies is the tangent
bundle tM of M. Furthermore, because of Theorem 8.10.11 it follows that the Euler
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number of tM is the intersection number I(DM,DM) of the diagonal DM with itself in 
M ¥ M.

8.11.13. Theorem. The Euler number of the tangent bundle of a closed compact
oriented manifold M is just the Euler characteristic of M, that is, I(tM) = c(M).

Proof. See [Miln65b] and [MilS74]. Let s0 be the zero cross-section of tM. Because
the proof of Theorem 8.11.11 would show that I(tM) is determined from the inter-
sections of s(M) and s0(M) for any cross-section s of tM, a major part of the proof of
this theorem involves finding an s for which one can relate the indices Iq(s,s0(M)) at
a point q where s(M) and s0(M) intersect to the Euler characteristic.

Assume that M has a Riemannian metric <,> and let f :M Æ R be a function. Con-
sider the gradient vector field —f. This vector field vanishes at precisely the critical
points of f. Assume that f has only nondegenerate critical points. One can show that
at a critical point p of index k, Is(p)(s,s0(M)) = (-1)k. This fact and Theorem 8.6.5 proves
what we want to show.

Theorem 8.11.13 explains why I(x) is called the “Euler” number of the vector
bundle x.

We finish this section by stating one more general result about transversality.

8.11.14. Theorem. Let M and N be differentiable manifolds and let A be a sub-
manifold of N. The set of differentiable maps f :M Æ N that are transverse to A is
dense in the space of all differentiable maps f :M Æ N (the latter space can be given
a natural topology that basically says that functions are close if their derivatives are
close).

Proof. See [Hirs76].

Theorem 8.11.14 is a really fundamental theorem. It is just one of many theorems
of that type. In effect, these theorems say that maps between manifolds are always
close to and homotopic to maps that satisfy an appropriate transversality property, so
that there is no loss in generality if we assume that the original map has the desired
transversality property.

8.12 Differential Forms and Integration

In Section 4.8 we defined the integral of real-valued functions defined on subsets of
Rn. Section 4.9.1 extended the theory to integrating differential forms on open subsets
of Rn. This section will sketch how one can integrate over manifolds. In the case of
submanifolds of Rn, given a real-valued function f defined on the manifold, we could
of course approximate the manifold by a simplicial complex or other polygonal man-
ifold and then use a Riemann type sum of the form

volume f
polygonal cells

s s
s

( ) ( )Â p ,
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where ps is a point of the manifold on or close to the cell s, to approximate the inte-
gral. This would be the numerical approach. The limit of such sums could be defined
to be the integral. Unfortunately, this would not work for abstract manifolds. The
approach that works in general and that is also more elegant uses differential forms.
We already defined these for open subsets of Euclidean space. To define them for 
manifolds, we use the fact that manifolds look like Euclidean space locally and use
the coordinate neighborhoods of a manifold to carry the definitions we gave for
Euclidean space over to the manifold. For a more thorough discussion than given
here, see [Spiv70a] or [GuiP74].

Note. In this chapter we have given more than one definition for both manifolds
and their tangent vectors. Lack of space prevents us from giving all the corresponding
variants for definitions in this section. We shall therefore assume that all manifolds
are abstract manifolds and use the linear functional approach to tangent vectors
for manifolds. The translation of definition and results for manifolds in Rn and for
the equivalence class of vectors approach will be left as exercises.

Let Mn be a differentiable manifold (possibly with boundary). Define a vector
bundle wk

M = (E,p,Mn) by

and

The local coordinate charts for wk
M as well as the topology for E are defined in a

fashion very similar to what was done for the tangent bundle of M and we shall leave
that as an exercise for the reader. The fibers Lk(Tp(Mn)) of wk

M are just vector spaces
of alternating multilinear maps or exterior k-forms. The total space E of wk

M is actu-

ally a differentiable manifold of dimension n + .

Definition. The -dimensional vector bundle wk
M is called the exterior k-form 

bundle of M.

Other than the definition, the reader does not need to know anything else about
wk

M. The reason for introducing wk
M is that it provides a convenient way to talk about

differential forms below because the best way to think of a differential k-form is as a
cross-section in that bundle.

Definition. A differential k-form on M, or simply k-form or differential form, is a cross-
section of the bundle wk

M, that is, it is a map w defined on M that sends p Œ M to an
element w(p) Œ Lk(Tp(M)). The vector space of differential k-forms on M will be
denoted by Wk

0(M). There is a wedge product

n

k
Ê
Ë

ˆ
¯
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k
Ê
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¯
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defined by

Again, a 0-form on M is just a real-valued function on M. Furthermore, if

then Df can really be considered to be a 1-form. The reason is that the tangent bundle
for R is trivial and there is a canonical identification of all the tangent spaces of R
with R. We capture this idea more precisely with the following definition:

Definition. The differential of f, denoted by df, is the 1-form on M defined by

for p Œ M and v Œ Tp(M).

Using coordinate neighborhoods we now relate an arbitrary k-form to those
defined on Euclidean space. Let (U,j), j :U Æ Rn be a coordinate neighborhood for
M. and let

where ui :U Æ R. Exercise 8.12.2 asks you to show that the differentials dui are the
dual basis for the tangent vectors ∂/∂ui. It therefore follows from the properties of the
algebra of exterior forms listed in Section 4.9 that every differential k-form w on U
can be written in the form

(8.31)

for functions wi1...ik :U Æ R.

Definition. A differential form w on M is called continuous, differentiable, C•,
etc., if the functions wi1...ik in expression (8.31) are continuous, differentiable, C•,
etc., respectively, with respect to all coordinate neighborhoods (U,j). The vector 
subspace of Wk

0(M) that consists of C• differential k-forms on M will be denoted by
Wk(M).

It is easy to show that the definitions are well defined and do not depend on any
particular coordinate neighborhood. We shall always assume that we have C• mani-
folds, C• maps, and C• differential forms. Note that, although we used different def-
initions for the tangent space, this definition of Wk(Rn), where Rn is thought of as a
manifold, and the one in Section 4.9 agree under the natural correspondence between
the tangent space definitions.

w w= Ÿ Ÿ
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df fp v v( )( ) = ( )

f : M RÆ ,
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8.12.1. Lemma. Let f :M Æ R and let (U,j), j :U Æ Rn be a coordinate neighbor-
hood for M. If

then

(8.32)

on U.

Proof. This is a straightforward consequence of the definitions and Theorem 
4.9.2.

Definition. Given a map f :Mn Æ Nm between differentiable manifolds, there is a
well-defined induced map

(8.33)

that is defined just like the map in equations (4.33) and (4.34) in Section 4.9.

8.12.2. Theorem. Let f :Mn Æ Nm and g :Nm Æ R be differentiable functions. The
map f* on differentiable forms satisfies

(1) f*(w1 + w2) = f*(w1) + f*(w2)
(2) f*(gw) = (g f) f*w
(3) f*(w Ÿ h) = f*w Ÿ f*h
(4) Assume that n = m and let p Œ M and q = f(p). If (U,j) and (V,y) are coordi-

nate neighborhoods for p in M and q in N, respectively, with

then

(8.34)

Proof. The theorem basically follows from Theorem 4.9.3. More details can be found
in [Spiv70a].

Now let w be a k-form on M. Given any coordinate neighborhood (U,j) for M,
express w as in equation (8.31) with respect to (U,j). Define a (k + 1)-form dw over U
by

(8.35a)

(8.35b)=
∂

∂
Ÿ Ÿ Ÿ
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8.12.3. Lemma. Equation (8.35) defines a well-defined (k + 1)-form dw on M that
is independent of the choice of (U,j).

Proof. This is a straightforward computation.

Definition. The (k + 1)-form dw is called the differential of w. The map w Æ dw is
called the differential operator d for differential forms on M.

8.12.4. Theorem.

(1) If w and h are two k-forms, then d(w + h) = dw + dh.
(2) If w is an r-form and h is a t-form, then

(3) d(dw) = 0 for any k-form w, or simply, d2 = 0.
(4) If f :Mn Æ Wm is a differentiable map and w is a k-form on W, then f*(dw) =

d(f*w).

Proof. This is proved just like Theorem 4.9.4.

We are now ready to discuss integration on manifolds. Integrals will be defined
by means of differential forms like we did in Section 4.9.1. We shall continue follow-
ing the presentation given in [Spiv65] and [Spiv70a]. Recall that the theory of inte-
gration developed in Section 4.9.1 used cubes [0,1]k. Such spaces are of course not
differentiable manifolds since they have “corners.” However, these spaces are nice
enough so that everything that we did above, such as defining differential forms,
induced maps, etc., could have been done for them and the theorems would also
remain true, and so we shall treat them as if that had been done.

To begin with, we need to extend the definitions from Section 4.9.1 to the context
of manifolds.

Definition. A singular k-cube in M is a C• function c : [0,1]k Æ M. Define the (i,j)-
face of c to be the singular (n - 1)-cube, ci,j, by ci,j = c Ik

(i,j).

Definition. A formal linear combinations of singular k-cubes in M is called a 
singular k-chain and the set of these is denoted by Gk(M). The boundary of a singular
k-chain and the boundary operator

is defined just like in equations (4.36) and (4.37).

Definition. If w is a k-form on M and if c : [0,1]k Æ M is a singular k-cube, then
define the integral of w over c by

(8.36a)w w
c

ckÚ Ú=
[ ]

* .
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The integral of w over singular k-chain

is defined by

(8.36b)

Next, we need some lemmas to show that certain quantities are well defined.

8.12.5. Lemma. Let c : [0,1]n Æ Rn be a singular n-cube and let w be an n-form on
Rn. If c is one-to-one and det c¢ ≥ 0 everywhere, then

where f :Rn Æ R is the unique function with the property that

Proof. This follows immediately from the definitions, Theorem 8.12.2(4), and the
change of variable theorem for integrals.

8.12.6. Lemma. Let h : [0,1]k Æ [0,1]k be a one-to-one and onto C• map and assume
that det h¢ ≥ 0 everywhere. If c is any singular k-cube and if w is any k-form on Mn,
then

Proof. This is another straightforward computation using Lemma 8.12.5.

Definition. Given a singular k-cube c on Mn and a C• one-to-one and onto map
h: [0,1]k Æ [0,1]k with det h¢ π 0 everywhere, the map c h is called a reparameteriza-
tion of c. The reparameterization is said to be orientation preserving if det h¢ > 0 every-
where and orientation reversing if det h¢ < 0 everywhere.

Lemma 8.12.6 is very important for defining an integral on an abstract 
manifold. It shows that integrals of differential forms do not change under 
orientation-preserving reparameterizations. The reason that we have had to develop
differential forms in preparation for defining integration is that they transform cor-
rectly. If we had defined the integral of a function f :Mn Æ R over a singular k-cube c
on M by

then the result in Lemma 8.12.6 would not always hold. By the change of variable
theorem, the integral of a reparameterized function is not the same as the integral of

f ck o
0 1,[ ]Ú

o

w w
c c hÚ Ú=
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the original function. The formalism of differential forms and how they map is set up
the way it is, precisely so as to eliminate these reparameterization factors. Although
manifolds look like Euclidean space locally, the exact identification depends on the
coordinate neighborhood that we choose and so intrinsic properties of manifolds must
be defined so as to be independent of the choice of such neighborhoods.

8.12.7. Theorem. (Stokes’ Theorem) If w is a (k - 1)-form on a manifold M and if
c is a k-chain on M, then

Proof. The proof of this theorem is similar to the one for Theorem 4.9.1.4. See
[Spiv65] or [Spiv70a].

Next, we want to describe how one integrates over a whole manifold. Basically,
since we know how to integrate over Rn, we know how to integrate over a coordinate
neighborhood. The problem is that there are many ways to cover a manifold 
with coordinate neighborhoods and we must make sure that we make a consistent
definition. First of all, we need to revisit the definition of the orientation of a 
manifold Mn. The definition that we already have says that it is a continuously vary-
ing choice of orientations of its tangent spaces. We want to relate this to differential
forms.

8.12.8. Lemma. Let v1, v2, . . . , vn be a basis of an n-dimensional vector space V.
Let w Œ Ln(V). If

(8.37)

then

(8.38)

Proof. Define an n-form h Œ Ln(Rn) by

By Proposition 4.9.1(3), h = c det, where det is the determinant map of Rn and c is
some constant. Since,

we are done.
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8.12.9. Lemma. Let w be an n-form on a Riemannian n-manifold Mn. Let p Œ M.
If v1, v2, . . . , vn and w1, w2, . . . , wn are orthonormal bases of Tp(M), then

Proof. This follows from Lemma 8.12.8 and the fact that the matrix (aij) in equa-
tion (8.37) that relates the bases is an orthogonal matrix whenever the bases are ortho-
normal bases, so that its determinant is ±1.

8.12.10. Lemma. Let (Mn,s) be an oriented Riemannian n-manifold. For each p Œ
M, choose an orthonormal basis v1,p, v2,p, . . . , vn,p of Tp(M), so that s(p) = [v1,p,v2,p,
. . . ,vn,p]. There is a unique (nonzero) n-form w on M with the property that

(8.39)

Proof. By Lemma 8.12.8, for any n-form w, the value w(p)(v1,v2, . . . ,vn) is the same
for all orthonormal bases v1, v2, . . . , vn of Tp(M) with s(p) = [v1,v2, . . . ,vn]. Further-
more, if a1, a2, . . . , an is the dual basis for one such basis v1, v2, . . . , vn, then ai(vj) =
dij and Property (4.25d) of the wedge product implies that (a1Ÿa2Ÿ . . . Ÿan)(v1,v2,
. . . ,vn) = 1. It follows easily that we can define w by the condition that w(p) = a1,pŸa2,pŸ
. . . Ÿan,p, where the ai,p are a dual basis for the vi,p. If (U,j) is a coordinate neigh-
borhood for M, then w will have the form c du1Ÿdu2Ÿ . . . Ÿdun over this neighborhood
for some constant c. The uniqueness of the n-form w follows easily from the fact that
Ln(Tp(M)) ª R.

Definition. Given an oriented Riemannian manifold Mn, the unique n-form w
defined by equation (8.39) in Lemma 8.12.10 is called the volume element of M and
is usually denoted by dV, except in the case of surfaces where one typically writes dA
and in the case of curves where one writes ds.

We shall see shortly why the volume element has the name it has.
Lemma 8.12.8 implies that an n-form w on Rn divides the set of ordered bases of

Rn into two subsets in the same way that we defined an orientation of Rn, namely,
one set consists of those bases on which it is greater than zero and the other one con-
sists of those on which it is less than zero. Lemma 8.12.10 shows how an orientation
defines a nonzero form. This leads to the following observation that gives us another
way of thinking about orientation:

8.12.11. Theorem. An n-manifold Mn is orientable if and only if it has a nonzero
n-form.

Proof. Assume that M has a nonzero n-form w. If p Œ M, then choose the orienta-
tion of Tp(M) on whose representatives w is greater than zero. We leave it to the reader
to show that this defines a continuously varying choice of orientations of the tangent
planes. Conversely, assume that M is orientable. Endow M with a Riemannian metric,
choose an orientation s, and apply Lemma 8.12.10.

Moving on to the question of how to piece together local definitions of an inte-
gral on a manifold in a consistent way, the next lemma gives us exactly what we need.

w p v v vp p p( )( ) =1 2 1, , ,, , . . . , .n

w wp v v v p w w w( )( ) ± ( )( )1 2 2, , . . . , , , . . . ,n n= .1
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8.12.12. Lemma. Let (Mn,s) be an oriented n-manifold. Let c1, c2 : [0,1]n Æ M be
singular n-cubes that are extendable to a diffeomorphism on a neighborhood of [0,1]n.
Assume that the extensions of c1 and c2 are orientation-preserving diffeomorphisms
with respect to the standard orientation on Rn. If w is an n-form on M with the prop-
erty that

then

Proof. We have done all the hard work in Lemma 8.12.6. We basically want to apply
that lemma in the following way:

Certainly, h = c2
-1 c1 satisfies the hypothesis in the lemma. The only problem is that

h is not defined on all of [0,1]n, but this is where the hypothesis about the support of
w comes in. The proof of Lemma 8.12.6 remains valid in that case.

Definition. Let Mn be an oriented manifold and let w be an n-form on M. If c is a
singular n-cube which is extendable to a diffeomorphism on a neighborhood of [0,1]n

and if

then define

(8.40)

Lemma 8.12.12 implies that

if it exists, is a well-defined value and does not depend on the choice of c.
Now let Mn be an oriented manifold. Let w be an n-form on M that has compact

support. Theorems 5.8.6 and 5.8.7 and the compactness of the support of w imply that
we can find a collection of coordinate neighborhoods (Ui,ji) of M satisfying:

(1) [0,1]n Ã ji(Ui)
(2) The maps ci = ji

-1|[0,1]n are orientation-preserving singular n-cubes for M with
respect to the standard orientation of Rn.

(3) If Vi = ci((0,1)n), then the collection {Vi} is an open cover of M.
(4) Only finitely many Vi intersect the support of w.
(5) There exists a partition of unity F subordinate to the cover {Vi}.

w
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We use the partition of unity F in (5) to define the integral of w.

Definition. The integral of w over M is defined by

(8.41)

8.12.13. Lemma. If Mn is an oriented manifold, then the integral of an n-form w on
M with compact support is well defined.

Proof. The first observation is that each term

is defined because a ·w is an n-form to which the definition in equation (8.40) 
applies. Next, the sum on the right-hand side of equation (8.41) is only a finite sum
since by condition (4) above all but a finite number of terms are zero. This shows that
the right hand side of equation (8.41) makes sense. We need show that it does not
depend on the choice of the partition of unity F. Assume that Y is another partition
of unity. Then

which proves the independence and finishes the proof of the lemma.

8.12.14. Proposition.

(1) Let Mn be an oriented manifold. If w1 and w2 are n-forms on M with compact
support and if a1, a2 Œ R, then

that is, the integral is linear in the forms.
(2) Let Mn and Nn be oriented manifolds and f :M Æ N an orientation-preserving

diffeomorphism. If w is an n-form on N with compact support, then

Proof. This is an easy consequence of what has been proved so far.

Now, if Mn is an oriented n-manifold with boundary, then we know that the 
orientation on M induces a natural orientation on ∂M, so that ∂M becomes an 
oriented (n - 1)-manifold. We always assume that ∂M has been given that 
orientation.

w w
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8.12.15. Theorem. (Stokes’ Theorem) Let Mn be an oriented differentiable mani-
fold with boundary. If w is an (n - 1)-form on M with compact support, then

Proof. The proof is surprisingly simple using what we know, but we refer the reader
to [Spiv70a] for the details.

The following two well-known theorems are trivial consequences of Stokes’s
theorem.

8.12.16. Theorem. (Green’s Theorem) Given a surface S Ã R2 and differentiable
functions

then

We assume that the surface has been given the induced orientation from R2 and its
boundary the induced counter-clockwise orientation.

Proof. Exercise 8.12.3.

8.12.17. Theorem. (The Divergence Theorem) Let M3 be a differentiable sub-
manifold of R3 that has boundary. Let n(p) be the outward-pointing unit normal 
vector field on ∂M. We assume that M has been given the induced orientation 
and Riemannian metric from R3. Let F be a differentiable vector field on M.
Then

Proof. Exercise 8.12.4.

Two more topics related to differential forms on manifold seem worth mention-
ing. The first has to do with volume and volume elements.

Definition. Given an oriented Riemannian manifold Mn, if dV is the volume element
of M, then

is called the volume of M, assuming that the integral exists.

One can show that this definition of volume agrees with the classical definition of
lengths of curves, areas of regions in the plane, or volumes of solids. We shall show
some of this in Chapter 9.
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Now, the only formula for the volume element that we have at this point 
(see Lemma 8.12.10 and its proof) is that, for a given tangent space, it is the wedge
product of the dual basis of an orthonormal basis for that tangent space. It is 
convenient to have a formula for it in terms of any basis, not just an orthonormal
one.

8.12.18. Lemma. Let v1, v2, . . . , vn be an orthonormal basis for an n-dimensional
vector space V and v1*, v2*, . . . , vn* its dual basis. Let w1, w2, . . . , wn be any basis
for V and w1*, w2*, . . . , wn* its dual basis. If

(8.42)

then

(8.43)

Proof. Suppose that

It is easy to check that (gij) = (aij) (aij)T and taking determinants of both sides we get
that g = (det (aij))2. In particular, g ≥ 0. Since the vector space Ln(V) has dimension 1,
to prove equation (8.43) we only need to show that both sides evaluate to the same
value on some nonzero element. It follows from equation (4.25d) that

and

The lemma is proved.

The significance of Lemma 8.12.18 is its application to finding volume elements
for manifolds.

8.12.19. Theorem. Let Mn be an oriented Riemannian manifold. Let (U,j) be a
coordinate neighborhood for M and define functions

Then
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If we choose a coordinate neighborhood (U,j) so that j is orientation preserving, then

Proof. One simply has to use Lemma 8.12.18 on each tangent space Tp(M) for p Œ
U. Recall that the vectors ∂/∂ui form a basis for the tangent spaces and the differen-
tial forms dui are the dual basis. If j is orientation preserving, the determinant of the
matrix (aij) in the proof of Lemma 8.12.18 will be positive.

Theorem 8.12.19 shows that the volume element for an oriented Riemannian man-
ifold is readily determined from any orientation-preserving coordinate neighborhood.

To define the volume we had to integrate and we only showed how to do this over
oriented manifolds. What if a manifold is not orientable? Well, we can still integrate
something similar to the volume element. Intuitively, this makes sense since volume
is gotten by integration and it is natural to think of every manifold as having a
“volume” (with respect to a given Riemannian metric, of course, since area, volume,
etc. is meaningless without a metric).

Definition. Given a manifold Mn, a function w :M Æ R of the form

that is,

is called a volume element of M.

Note that we are not saying that a volume element is necessarily a differential
form. Furthermore, we are setting it up so that it will lead to an unsigned volume.
With respect to a coordinate neighborhood (U,j) it will look like

By Theorem 8.12.19,

is one such volume element. One can show that it is possible to define an integral

over any manifold M for any volume element w on M that has compact support. Sec-
tions 9.2 and 9.8 will have more to say about volume.

Example 8.12.20. Consider a surface S with a given Riemannian metric and
define a volume element by

(8.44)w p v w v w Sp p p p p( )( ) = Œ ( ), log , .area of paralle ram spanned by T
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If the surface S is oriented, then the integral of this volume element will give the usual
area of the surface. On the other hand, this volume element is also defined for the
Moebius strip, which we know is a nonorientable surface. In this case one can show
that the volume element is not a differential form, since a nonorientable n-manifold
cannot have a nonzero n-form.

The generalization of the volume element defined by equation (8.44) to n-
manifolds is discussed in [Spiv70a]. See also Section 9.8.

Finally, there is a direct connection between differential forms and cohomology.
Let Mn be a differentiable manifold.

Definition. A differential form w on M is called closed if dw = 0. It is called exact if
w = dh for some differential form h.

If we denote the vector space of closed k-forms on M by Zk
(d)(M) and the vector

space of exact forms by Bk
(d)(M), then Bk

(d)(M) is a subspace of Zk
(d)(M) because 

d2 = 0. It follows that we can define

Definition. The vector space Hk
(d)(M) is called the kth de Rham cohomology group

or vector space of M.

A very important result is the fact that the de Rham cohomology groups of a dif-
ferentiable manifold agree with the ordinary cohomology groups with real coefficients
(Section 7.3 described cohomology with integer coefficients), that is,

This shows that the differential forms of a manifold are intimately tied to the topol-
ogy of the space. Unfortunately, there is no space to expand on that connection here.
See [Spiv70a] or [GuiP74].

8.13 The Manifold Pn

Again, because projective space is such an interesting and important space, we devote
a separate section to study its properties as a differentiable manifold.

First of all, we show that Pn is a differentiable manifold. We need to show all of
its points have coordinate neighborhoods. For i = 1, 2, . . . , n + 1, define subsets Ui in
Pn by

(8.45)

and
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by

(8.46)

Clearly, the sets Ui cover Pn and the maps ji are well defined, one-to-one, and onto.
Note that

Definition. The map ji will be called the ith standard projection of Pn onto Rn. The
map ji

-1 will be called the ith standard imbedding of Rn in Pn.

This extends the terminology introduced in Section 3.5 where we called jn+1
the standard projection of Pn onto Rn and jn+1

-1 the standard imbedding of Rn in
Pn.

Next, if

and

then

is a C• map. This shows that Pn is an n-dimensional C• manifold.

Definition. Consider n-dimensional projective space Pn as the quotient space of Sn

where we have identified antipodal points. Let [p] Œ Pn denote the equivalence class
of p Œ Sn. Define the canonical line bundle gn = (E,p,Pn) over Pn as follows:

(1) E = {([p],tp) Œ Pn ¥ Rn+1 | t Œ R}.
(2) p([p],tp) = [p].
(3) For local coordinate charts, we choose any open set Ũ Ã Sn that does not

contain any antipodal points and let U = p(Ũ) Ã Pn. Define a homeomorphism

by

where q Œ Ũ is the unique point so that x = [q].
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It is clear that gn is a vector bundle because the sets U in (3) form an open cover
of Pn.

8.13.1. Theorem. The canonical line bundle gn over Pn is nontrivial.

Proof. The proof is the same as the proof for g1 in Example 8.9.2.

8.14 The Grassmann Manifolds

Definition. Let n > 0 and k ≥ 0. The Stiefel manifold or Stiefel variety Vn(Rn+k)
is defined to be the subspace of (Sn+k-1)n consisting of all n-tuples (u1,u2, . . . ,un),
where the ui are an orthonormal set of vectors of Rn+k. The Grassmann manifold
or Grassmann variety or Grassmannian Gn(Rn+k) is defined to be the set of n-dimen-
sional linear subspaces of Rn+k with the quotient topology induced by the projection
map

defined by

Stiefel and Grassmann manifolds are, like the projective spaces Pn, very impor-
tant spaces in topology. They have been studied extensively. Here are a few facts about
them:

(1) The pair (Vn(Rn+k),pn) is a locally trivial bundle over Gn(Rn+k) with all fibers
homeomorphic to O(n).

(2) The map that sends an n-dimensional linear subspace of Rn+k to its k-
dimensional orthogonal complement defines a natural homeomorphism
between Gn(Rn+k) and Gk(Rn+k).

(3) There is a canonical n-dimensional vector bundle gn(Rn+k) = (E,p,Gn(Rn+k))
over Gn(Rn+k), where

E = ((V,v) | V is an n-dimensional linear subspace of Rn+k and v Œ V}
Ã Gn(Rn+k) ¥ Rn+k

and
p(V,v) = V.

(4) Pn = G1(Rn+1) and gn = g1(Rn+1). In other words, the Grassmann manifolds can
be thought of as generalizations of projective space.

(5) The n-plane bundles gn(Rn+k) play a fundamental role in the classification of
vector bundles over a space. Let B be a topological space and let Vectn(B)
denote the isomorphism classes [x] of n-plane bundles x over B. Define a map

pn n iplane spanned by theu u u u1 2, , . . . , .( )( ) =

pn n
n k

n
n kV G: R R+ +( ) Æ ( )
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by

One can show that j is a bijection whenever B is paracompact and k is large
compared with n.

The first four facts are easy to show. It is the relationship of the Grassmann 
manifolds to the classification of vector bundles in Fact (5) and the consequences of
this that are nontrivial and the most significant for algebraic topology. One has a very
good understanding of the structure of these manifolds. Unfortunately, there is no
space to expand on this here and all we can do is refer the interested reader to [Stee51],
[Munk61], [Huse66], or [MilS74] for more information. However, Grassmann mani-
folds also play a role in algebraic geometry and we shall run into them again in
Chapter 10. We finish this section by showing that they are actually manifolds, justi-
fying the name. (Stiefel manifolds are also but we shall leave that as Exercise 8.14.1.)

8.14.1. Theorem. The Grassmann manifold Gn(Rn+k) is a compact nk-dimensional
C• manifold.

Sketch of proof. The compactness follows from the fact that it is the continuous
image of the Stiefel manifold, which is compact because it is a closed subspace of a
compact space. This also shows second countability. One way to prove that Gn(Rn+k)
is Hausdorff, is to show that one can define a continuous real-valued function on the
space that takes on different values at any two given points. Let V, W Œ Gn(Rn+k). Pick
a point p in Rn+k that belongs to the linear subspace V but not to W. The function

defined by

will do the job. It remains to show that the space is locally Euclidean.
Let V be an n-dimensional linear subspace of Rn+k and let B = (v1,v2, . . . ,vn) be a

basis for V. We can represent B by means of an n ¥ (n + k) matrix MB whose rows
are the vectors vi. Assume that the first n columns of MB are linearly independent. It
is easy to show that out of all the matrices MB we get as B ranges over all bases of V
there is a unique one MV of the form

(8.47)

where I is the n ¥ n identity matrix and NV is an n ¥ k matrix. Now let

pv R V: n k+ Æ
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n k

n
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be the orthogonal projection of Rn+k onto V and let O be the open neighborhood of
V in Gn(Rn+k) consisting of all n-dimensional linear subspace W of Rn+k that pV proj-
ects onto V. The map

defined by

where (nij) is the n ¥ k matrix NW as defined in equation (8.47) with respect to W, is
a homeomorphism and (O,j) serves as a coordinate neighborhood for Gn(Rn+k).

In the general case all that we can assert is that some n columns of MB will be
linearly independent. In this case we can find a unique basis B so that these columns
will define an n ¥ n identity matrix and the remaining k columns form a unique n ¥
k matrix which we again denote by NV. There will be a corresponding coordinate
neighborhood (O,j). It is not hard to show that all these coordinate neighborhood
define a C• structure on Gn(Rn+k) and we are done with the proof of Theorem 8.14.1.

8.15 EXERCISES

Section 8.2

8.2.1. Prove that every regular differentiable map f :R Æ R is one-to-one and onto an open
interval. Show by example, that a regular differentiable map f :Rn Æ Rn, n > 1, need not
be one-to-one.

Section 8.4

8.4.1. Redo Example 8.4.5 but use the spherical coordinate parameterization

of the sphere, where (q,f) Œ [0,2p] ¥ [0,p].

Note: The spherical coordinates (r,q,f) of a point p in R3 are related to the Cartesian
coordinates (x,y,z) of p via the equations

where . See Figure 8.37. In other words, q is the polar coordinate angle 
of the point (x,y) in the plane and f is the angle between the z-axis and the vector p.
The angle q is sometimes called the azimuth of p and the angle f, the colatitude of p.
Unfortunately, the notation for spherical coordinates is not as standardized as that for
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polar coordinates. For example, some books, notably European texts and books on
mathematical physics, switch q and f.

8.4.2. Let M be the cylinder in R3 defined by the equation x2 + y2 = 1. Find the tangent plane
to M at the point in two ways:

(a) Using the cylindrical coordinate parameterization

(b) Using the gradient method like in Example 8.4.7.

Note: The cylindrical coordinates (r,q,z) of a point p in R3 are related to the Cartesian
coordinates (x,y,z) of p via the equations

where . In other words, (r,q) are just the polar coordinates of (x,y) in R2.

8.4.3. Let M be the cylinder in R3 defined by the equation x2 + y2 = 1. Define the function 
f :M Æ R by f(x,y,z) = x - y.

(a) Prove that f is a differentiable function on M.
(b) Find Df(p)((0,1,1)p), where p = (1,0,0).

8.4.4. Fill in the missing details in the proof of Theorem 8.4.9(1).

Section 8.5

8.5.1. Prove that an isomorphism T :V Æ W between two k-dimensional vector spaces V and
W, induces a natural one-to-one correspondence T* between orientations of V and W
defined by

where (v1,v2, . . . ,vk) is an ordered basis of V.

8.5.2. Prove that the concept of continuously varying orientations of the tangent space of a
manifold in Rn does not depend on the choice of parameterizations.
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8.5.3. This exercise describes an alternate approach to the orientability of a smooth manifold
Mk in Rn. Given any two local parameterizations Fp :Up Æ Vp and Fq :Uq Æ Vq for M
define

for r Œ Vp « Vq.

Definition. We say that M is orientable if one can choose local parameterizations Fp

for M in such a way that either dp,q(r) is positive for all p, q Œ M and r Œ Vp « Vq or
dp,q(r) is negative for all p, q Œ M and r Œ Vp « Vq.

Show that this definition of orientability agrees with the one in Section 8.5.

8.5.4. Prove that every simply connected manifold in Rn is orientable, where the definition of
orientable is based on the definition in Exericse 8.5.3.

Hint: Pick a point p0 in the manifold M. For any other point q Œ M let g : [0,1] Æ M
be a path from p0 to q. Choose a partition (t0 = 0,t1, . . . , tk = 1) of [0,1] so that, if pi =
g(ti), then we have local parameterizations

with the property that Vpi-1 « Vpi π f for i = 1, 2, . . . k. If any dpi-1,pi(r), r Œ Vpi-1 « Vpi,
is negative, then replace Fpi by Fpi a, where a :Upi Æ Upi is an orientation-reversing 
diffeomorphism. Show that these steps lead to a well-defined collection of local para-
meterizations. The fact that M is simply connected is needed to show that the choice
for Fp does not depend on g.

8.5.5. Consider the torus in R3 which is the surface obtained by rotating the circle in the x-z
plane of radius 1 and center (3,0,0) about the z-axis. Define a nonzero normal vector
field on this torus.

Section 8.6

8.6.1. Show that the definition of critical points, critical values, and nondegenerate critical
points for functions f :M Æ R in terms of local coordinates is independent of the choice
of local coordinates.

Section 8.8

8.8.1. (a) Show that the coordinate neighborhoods (Ui,ji) in Example 8.8.3 induce a C• struc-
tures on S1.

(b) Consider the coordinate neighborhoods {(U+,j+),(U-,j-)} for Sn that were defined
in Example 8.8.4. Show that
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See Figure 8.38. Use this to prove that these coordinate neighborhoods induce a
C• structures on Sn.

(c) Show that the C• structures on S1 defined in (a) and (b) are the same.

8.8.2. Prove the tangent vectors ei,U defined in the equivalence class of vectors approach to
tangent vectors are a basis for Tp(M).

8.8.3. Prove that the tangent vectors ∂/∂ui defined in equation (8.16) form a basis of the 
tangent space.

Section 8.9

8.9.1. Prove that a trivial n-plane bundles has n linearly independent cross-sections.

8.9.2. Show that the line bundle g defined in Example 8.9.2 is isomorphic to the open Moebius
strip line bundle described at the beginning of that example.

8.9.3. Prove the existence of the continuous map a in equation (8.27).

8.9.4. Show that a line bundle is orientable if and only if it is trivial.

8.9.5. Show that the orientation of a trivial vector bundle over a path-connected space is
uniquely determined once it is specified at one point.

8.9.6. Let B be a contractible space. Show that every vector bundle over B is orientable and
that the orientation is uniquely determined once it is specified at one point.

8.9.7. Let x = (E,p,B) be an n-plane bundle. Show that both x ¥ x and x ≈ x are orientable
vector bundles.

Hint: Show that if v1, v2, . . . , vn and w1, w2, . . . , wn are bases for the fiber p-1(b) over
some point b Œ B, then both v1, v2, . . . , vn, v1, v2, . . . , vn and w1, w2, . . . , wn, w1, w2,
. . . , wn determine the same orientation of p-1(b) ¥ p-1(b).

Section 8.10

8.10.1. (a) Show that the alternate description of the tangent bundle of a manifold defined by
equations (8.28) and (8.29) produces a vector bundle that is isomorphic to the orig-
inal definition.

(b) Show the same thing for equation (8.30).
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8.10.2. This exercise describes an alternate definition of the gradient of a function f :Mn Æ R.
Let p Œ M and let (U,j) be a coordinate neighborhood of p. If j(q) = (u1(q),u2(q),
. . . ,un(q)), q Œ U, then define

Show that this definition of the gradient of f agrees with the definition in Section 8.10.
Show further that this reduces to the standard definition of the gradient of f when 
M = Rn.

8.10.3. Prove that the function h in the proof of Theorem 8.10.11 is a diffeomorphism.

8.10.4. Prove that the differentiable manifold M ¥ M is orientable for any differentiable 
manifold M.

8.10.5. Prove that the total space of the tangent bundle of a differentiable manifold Mn is
always an orientable manifold, even if Mn is not.

Section 8.11

8.11.1. Use transversality to prove that no differentiable retraction r :Mn Æ ∂Mn exists. (Hint:
pick a regular value p Œ ∂M and analyze Nn-1 = r-1(p).)

8.11.2. Define f :S1 Æ S1 by f(z) = zn, z Œ C. Prove that deg (f,1) = n.

Section 8.12

8.12.1. Let f :Mn Æ R. If we use the equivalence class of vectors approach to defining 
tangent vectors show that the corresponding definition for the differential of f, df,
would be

for p Œ M, (U,j) a coordinate neighborhood for p, and a Œ Rn. In particular, show that
df is a well-defined element of the dual space of Tp(M).

8.12.2. Let (U,j) be a coordinate neighborhood for a manifold Mn. Let

where ui :U Æ R. Show that du1(p), du2(p) , . . . , dun(p) is the dual basis in Tp(M) for
the basis ∂/∂u1, ∂/∂u2, . . . , ∂/∂un of tangent vectors.

8.12.3. Prove Green’s Theorem, Theorem 8.12.16.

8.12.4. Prove the Divergence Theorem, Theorem 8.12.17.

Section 8.14

8.14.1. Prove that the Stiefel manifold Vn(Rn+k) is a C• manifold. What is its dimension?
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C H A P T E R  9

Differential Geometry

9.1 Introduction

This chapter basically continues the study of manifolds, but we now add a metric to
the differential structure that we used in the last chapter. We shall assume that we are
dealing with a Riemannian C• manifold throughout this chapter. Differential geome-
try is the study of geometry that deals with metric invariants of such spaces. The dif-
ferential geometer can tell a circle from an ellipse, the topologist cannot. Our goal in
this chapter is to discuss those aspects of differential geometry most relevant to com-
puter graphics. Of main concern are smooth curves (one-dimensional manifolds) and
surfaces (two-dimensional manifolds). An excellent general reference for someone
who wants to get an intuitive feel for the many beautiful geometric insights from
which differential geometry developed is [HilC99].

The first half of the chapter deals with metric properties of curves and the second
half with metric properties of surfaces. We start in Section 9.2 with the definition and
some properties of curve length. Sections 9.3 and 9.4 describe some well-known 
curvature-related geometric concepts for planar and space curves, respectively.
Although planar curves are obviously a special case of space curves, there are useful
concepts that make sense for them but not for general curves. Sections 9.6 and 9.7
finish the part on curves by describing some classical constructions. We discuss
envelopes of curves, involutes and evolutes, and parallel curves. Next, Section 9.8
begins the study of surfaces. Again, we start with the most basic metric aspect, namely,
area and volume. Section 9.9 describes some important curvature-related geometric
concepts associated to surfaces. This is a long section, but even so we are only able
to describe the most basic of those concepts. Geodesics, or curves of shortest length
in a surface, are defined in Section 9.10. Sections 9.11–9.15 discuss a few classical
special surfaces, namely, envelopes of surfaces, canal surfaces, involutes and evolutes,
parallel surfaces, and ruled surfaces. In Section 9.16 we describe what basically is the
modern approach to the material in the first fifteen sections. We finish this chapter
with a few comments about possible directions for further study in Section 9.17 and
then a summary of important formulas in Sections 9.18 and 9.19.



Note. Before we start we need to make something clear. Unless explicitly stated 
otherwise, we shall assume throughout this chapter that our curves, surfaces, or man-
ifolds are submanifolds of Rn for some n and that tangent vectors and tangent spaces
are defined as in Section 8.4. However, and this is very important to keep in mind,
the reader should think of the manifolds as spaces that exist on their own and inde-
pendent of the engulfing space Rn. The only reason for bringing Rn into the picture
is to simplify the definition of tangent vectors and certain formulas. Everything else
will rely on parameterizations, so that the theory would translate to abstract mani-
folds as defined in Section 8.8 with very little effort.

9.2 Curve Length

Chapter 8 already discussed a few facts about curves. Of interest in this chapter are
their metric properties and these will be studied by means of parameterizations. We
begin with curves in Rn. This will be a warm up for studying curves in manifolds.
Defining the length of a curve is the first order of business.

To understand the notion of length, one builds on the everyday meaning of this
term in simple cases. To begin with, everyone agrees that the length of a line segment
should be the distance between its end points. Next, one wants length to be additive.
That leads to defining the length of a polygonal curve as the the sum of the lengths
of its segments, which in turn suggests the definition for a general curve.

Let

be an arbitrary parametric curve. The standard approach to defining its length is 
to approximate the curve with a piecewise linear one and then use the length of the
piecewise linear version as an approximation for the length of the curve we are 
after. More precisely, let P = (t0,t1, . . . ,tk) be a partition of [a,b] and let pi = F(ti). See
Figure 9.1.

Definition. The length of the parametric curve F, denoted by la
b F, is defined by

F a b n: ,[ ] Æ R
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p0 = F(t0)

a = t0 t1 tk = b· · ·

F

pk–1

pk = F(tk)

p1 = F(t1)
Figure 9.1. Curve length is computed

from polygonal approxi-
mations.



provided that this limit exists. (|P| denotes the norm of the partition.) A parametric
curve that has a length is called a rectifiable curve.

Computing limits would be complicated. Fortunately, we can compute integrals
instead.

9.2.1. Proposition. If F is C1, then la
b F exists and

Proof. We shall only sketch a proof. For simplicity assume that n = 2. Let F(t) =
(x(t),y(t)) and pi = (xi,yi) = F(ti). The Proposition basically follows from the mean value
theorem, which implies that

for some a, b Œ [ti-1,ti]. In other words,

Summing these expressions gives something very much like a Riemann sum that con-
verges to the desired integral.

9.2.2. Example. To compute the lengths of

Solution. By Proposition 9.2.1

We should note that although we can now compute lengths using integration, it
is still not that easy. The fact that there is a square root under the integral sign means
that it is in general pretty much impossible to compute the integral in closed form.
However, one can get good approximations using numerical analysis. Another obser-
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vation we want to make now will have some important consequences later. The
formula in Proposition 9.2.1 shows that the length of a parametric curve is deter-
mined by the lengths of its tangent vectors. Tangent vectors lie in ordinary vector
spaces and so the essential ingredient in a definition of the length of a curve is a notion
of the length of vectors in vector spaces. We shall see in Sections 9.8 and 9.17 that
abstractly it is better not to think of length as a generalization of line segment length
but rather to think of it more generally as derived from an inner product on vector
spaces.

From Example 9.2.2 we see that three different parameterizations of the segment
from [0,0] to [1,1] produced the same length. This is of course what we want. We do
not want length to be something that depends on the parameterization of a set. To
what extent is this true? If we think of the parameter as time and the parametric curve
itself as describing a path along which one is walking, then two paths are going to
have different lengths if one of them backtracks and the other does not. But if we are
interested in the length of a set then we do not want to allow any backtracking anyway
and so it is not unreasonable to restrict ourselves to comparing two parametric curves
that are both, at least locally, one-to-one functions.

Let C be the underlying set of two C1 curves F : [a,b] Æ C and G: [c,d] Æ C. Let 
f : [c,d] Æ [a,b] be a function such that G(s) = F(f(s)), and let t = f(s). See Figure 9.2.
The map f can be thought of as a change in coordinates. We have the following chain
of equalities

This shows what we were trying to show, namely, that the length of a parametric curve
is basically an invariant of the underlying set. The next two facts allow us to define
the length of this set precisely.
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a t b f c s d

F G

G(s) = F(f(s)) = F(t)

Figure 9.2. Curve length is inde-
pendent of change of
parameters.



9.2.3. Lemma. Let F and G be C1 curves that parameterize the same set C. If G(s)
= F(f(s)) is a regular reparameterization of C, then F and G have the same length.

Proof. We leave it to the reader to flesh out the discussion above to a complete proof
that handles the case f¢ < 0. (We only know that f¢ π 0.)

9.2.4. Lemma. Any compact curve C admits a proper regular parameterization 
F : [a,b] Æ C.

Sketch of Proof. Since C is compact, there are a finite number of local 
parameterizations that cover C. The map F is gotten by piecing together these local
parameterizations.

We need compactness in Lemma 9.2.4 because F is supposed to have a compact
domain.

Definition. Let C be a compact curve in Rn. Define the length of C, denoted by
length(C), to be the length of a proper regular parameterization of C.

Compactness is needed here because, for example, the x-axis is a curve and it
clearly does not have finite length.

9.2.5. Theorem. The length of a compact curve C is well defined.

Sketch of Proof. There are two steps involved in the proof. First, one needs to know
that proper regular parameterizations F exist. This is Lemma 9.2.4. Next, one has to
show that the length does not depend on the choice of F. This is done by showing that
any other such map is a regular reparameterization of F and applying Lemma 9.2.3.

We have seen that sets do not have unique parameterizations. However, there is
one parameterization for curves that is particularly nice.

Definition. If a differentiable curve F : [a,b] Æ Rn (a π b), satisfies the property that

for all t Œ [a,b], then F is called the arc-length parameterization of the set C = F([a,b]).
(Arc-length parameterization is left undefined for single-point sets because it is unin-
teresting and is never used.)

Intuitively, arc-length parameterization has the property that at time t we are a dis-
tance t along the curve from the start point. This property also defines arc-length para-
meterizations of a path uniquely (given a starting point). Furthermore, a simple
consequence of the definition is that the lower bound a must be 0 since the integral from
a to a is 0. Also, since b is just the length L of the curve, one usually writes the domain of
the curve as [0,L]. Another convention is that the parameter s is used rather than t.

Note. In the future, using s as the parameter of a parametric curve will mean that
we are dealing with an arc-length parameterization.

F t
a

t
¢ =Ú
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9.2.6. Proposition. Let F : [0,L] Æ Rn be the arc-length parameterization of some
path. Then for all s Œ [0,L]

(1) |F¢(s)| = 1, and
(2) F¢(s)•F≤(s) = 0.

Proof. Property (1) follows from the Fundamental Theorem of Calculus by differ-
entiating the defining equation for arc-length parameterization. Next, we can restate
(1) in the form

Differentiating both sides of this equation gives (2).

What Proposition 9.2.6 says is that if we are dealing with an arc-length parame-
terization of a path, then the length of the tangent vector of that parameterization (or
its speed) is 1 and the tangent vector is orthogonal to its second derivative. As we go
along, we shall see that by using arc-length parameterization we can usually give much
cleaner definitions of geometric concepts associated to paths (sets that we are typi-
cally after and not some accidental parameterization of them) and proofs will be
easier. The practical downside is that paths are unfortunately not usually presented
via such parameterizations, and so the question arises as to how one might find the
arc-length parameterization of a path. We address this question next.

Suppose that F : [a,b] Æ Rn is a curve. The curve F may not be the arc-length para-
meterization for C = F([a,b]). To find the arc-length parameterization G(s) for C let us
look for a change in coordinate function such that G(s) = F(f(s)). See Figure 9.2 again.
Our earlier discussion then shows that

(9.1)

This means that we know f-1 and can therefore solve for the function f itself.

9.2.7. Theorem. Every regular parameterization of a compact curve can be repa-
rameterized into an arc-length parameterization for the curve with an orientation-
preserving change of coordinates. The resulting unique arc-length parameterization
is called the induced arc-length parameterization.

Proof. The theorem follows easily from the observations preceding it.

Equation (9.1) leads to two other useful observations, namely,

(9.2)

and the following shorthand relation between differential operators
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Equation (9.3) states an especially handy relationship because it allows us to replace
differentiation with respect to arc-length by a differentiation with respect to the actual
parameter at hand.

9.2.8. Example. To find the arc-length parameterization of the function

which parameterizes the segment 

Solution. We have

It follows that

Therefore,

It is easy to check that this G is an arc-length parameterization.

Example 9.2.8 and the discussion before it show that one can find arc-length 
parameterizations in a systematic way, although this may have more of a theoretical
value than a practical one. First, the square root in the integrand in the integral for
arc-length makes that integration difficult in all but the most trivial examples. Second,
finding the inverse of a function is rarely easy. Of course, numeric solutions are
another matter and quite feasible.

9.3 The Geometry of Plane Curves

A natural place at which to start if one wants to understand the geometry of curves
is to try to capture the concept of “curvedness.” We begin with planar curves. So what
exactly should we mean by the curvature of our curve at some point? Just as, for
example, in the case of length where one started by agreeing on what one meant by
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the length of a simple curve like a segment, we must agree on what curvature should
mean in “obvious” cases. It is natural to take the circle as a starting point for curva-
ture. The first assumption we make is that a circle should be said to have constant
curvature. Furthermore, small circles should be considered more “curved” than large
ones. We can capture these aspects of circles by having the curvature of a circle of
radius r be a number proportional to 1/r and nothing will be lost if we normalize
things and define the curvature to be 1/r. Next, however we finally define curvature
for arbitrary curves, if we apply it to a circle, the definition should agree with the one
we just gave. Before we present a specific general definition of curvature we look at
two possible geometric approaches to getting such a definition that will have the prop-
erties we want.

Let

be the parameterization of some curve in the plane. Consider a fixed point F(t1) on
the curve.

First geometric definition of curvature: The idea here is to define the curvature
at the point F(t1) to be the reciprocal of the radius of the best “matching” circle to the
curve at that point. To find this circle, let C(t1,t2,t3) denote the circle through the points
F(t1) and two neighboring points F(t2) and F(t3). See Figure 9.3. This circle will exist
and be unique as long as the points F(ti) are not collinear. We now let C be the limit
of these circles as t2 and t3 converge to t1. One can show that as long as F≤(t1) π 0,
then this limit C exists. Basically, C is determined by its center which is the limit of
the centers of the circles C(t1,t2,t3). The circle C, called the osculating circle for the
curve at F(t1), is the best matching circle we are seeking. Its center is called the center
of curvature and its radius is called the radius of curvature of the curve at F(t1).

Second geometric definition of curvature: Again consider the point F(t1) and let
F(t2) be a nearby point. The angle between the tangent vectors F¢(t1) and F¢(t2) can be
used as a measure of how curved the curve is at F(t1) when t2 is close to t1. See Figure
9.4. More precisely, define the curvature of the curve at F(t1) to be

(9.4)lim
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F(t3)

F(t1)F(t2)

F(t)

C(t1,t2,t3)
Figure 9.3. Curvature in terms of the best approximat-

ing circle.



Let c2 be the point that is the intersection of the normal lines to the curve at F(t1) and
F(t2). One can show that the points c2 converge to the center of curvature of the curve
at F(t1) and that the expression (9.4) is the reciprocal of the radius of curvature.

In the next part of the discussion it is convenient to switch to arc-length para-
meterization. Let F(s) be the arc-length parameterization of our curve and let T(s) =
F¢(s). There are precisely two unit vectors at F(s) that are normal to T(s) at F(s). Let
N(s) denote the one such that (T(s),N(s)) induces the standard orientation of R2. This
defines N(s) uniquely. In fact, since T(s) is a unit vector, if T(s) = (T1(s),T2(s)), then
N(s) = (-T2(s),T1(s)).

Now both T(s) and N(s) can be thought of as maps that map the point F(s) on the
curve into the unit circle S1. Thought of in this way, the map N(s) is a special case of
what is called the Gauss map whose generalization to surfaces plays a fundamental
role in the study of surfaces. See Figure 9.5. In our second geometric definition of
curvature we could have replace the angle between tangent vectors by the angle
between the corresponding normal vectors since they are the same. The Gauss map
shows that circles naturally come into the picture when studying curvature. Basically,
N(s) relates changes of angles on the curve with the corresponding changes for the
mapped curve in the circle.

With this intuitive introduction to curvature we are ready to give a rigorous def-
inition. The definition is surprisingly quite simple and determining the curvature of
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a curve is a straightforward computation. It is based on the idea that the rate of change
of the tangent is also a measure of curvature.

Recall Proposition 9.2.6, which showed that T¢(s) is orthogonal to T(s). It follows
that N(s) and T¢(s) are multiples of each other.

Definition. Given an arc-length parameterized curve F(s) with tangent vector func-
tion T(s) = F¢(s), the curvature vector K(s), the signed curvature kS(s), and the curva-
ture k(s) of F at s are defined by

The vector N(s) is called the principal normal of F at s.

Note that k(s) = |T¢(s)|, which means that it is easy to compute the size of the 
curvature.

9.3.1. Example. It is easy to check that

is the arc-length parameterization of the segment [p,q]. It follows that the curvature
of a straight line is zero since G≤(s) = 0.

9.3.2. Example. Consider the circle of radius r with center the origin for which the
function

is easily checked to be an arc-length parameterization. Clearly,

Therefore, kS(s) = 1/r, so that our definition also gives the correct answer for circles.

A more direct way to compute the signed curvature without determining the
normal vectors as was done in the definition is:

9.3.3. Proposition. With the notation as above

kS s
T s

T s
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( )
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Ë
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s
r r
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Proof. We can think of k(s), which is the length of the vector T¢(s), as the area of
the rectangle spanned by the orthogonal vectors T(s) and T¢(s), but such an area can
be computed from the cross product of the two vectors. Since the z-component of the
vectors is 0, the formula works out to the determinant as indicated. It is easy to check
that the signs are correct also.

Note 1. Our parameterizations will typically be assumed to be regular. Recall that
“regular” means that the derivative does not vanish and hence avoids various degen-
erate cases that a zero derivative would cause, such as it being in the denominator of
a formula as in the case of curvature.

Note 2. Because the arc-length parameterization G(s) of a path is unique given a tra-
versal direction, the values of functions defined in terms of it should really be thought
of as associated to the corresponding points on the path. Therefore, and this is another
reason for using regular parameterizations, if F(t) is a regular parameterization for the
same curve, then we can think of such values as functions of t because the change of
parameter function between t and s is a one-to-one correspondence. This means that
we may use expressions such as “the principal normal at t” or “the curvature at t” and
write N(t) or k(t), respectively. We must be a little careful though because, if signed
quantities are involved, such as the signed curvature, then the parameter t and the 
arc-length parameter s need to traverse the curve in the same direction.

Following up on Note 2, since curves are hardly ever presented via their arc-length
parameterization because that usually involves complicated formulas, functions
defined in terms of arc-length parameterization are not very useful from a computa-
tional point of view. It important therefore that one can compute them with respect
to arbitrary parameterizations.

To begin with, consider a regular parameterization F(t) for a curve and let 
G(s) = F(f(s)) be its arc-length parameterization, where t = f(s) and f¢(s) > 0. Now the
equation

(9.5)

together with the facts that T(s) is a unit vector and f¢(s) > 0 imply that

(9.6)

Next, let S(t) = T(f-1(t)). Then S¢(t) = T¢(f-1(t))f-1¢(t), implies that

(9.7)

Equations (9.5)-(9.7) lead to the following formulas:

(9.8)T s
F s
F s

F t
F t

( ) =
¢ ( )( )
¢ ( )( ) =

¢( )
¢( )

f
f

T s
S t
F t

¢( ) =
¢( )
¢( ) .

f
f

¢( ) =
¢ ( )( )s

F s
1

.

T s G s F s s( ) = ¢( ) = ¢ ( )( ) ¢( )f f
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(9.9)

We can also compute the signed curvature directly from a parameterization rather
than computing it via Proposition 9.3.3.

9.3.4. Proposition. If F(t) is any regular planar curve, then

Proof. Let

(9.10)

be the principal normal to the curve at F(t). Straightforward differentiation of equa-
tion (9.10) shows that

(9.11)

But if s = a(t) and F(t) = G(a(t)), where G(s) is arc-length parameterization, then 
n(t) = N(a(t)). It follows that F¢(t) = G¢(s)a¢(t) and n¢(t) = N¢(s)a¢(t). Equation (9.11)
and the definition of curvature now implies the result.

Using Proposition 9.3.4, we can rewrite equation (9.11) in the following interest-
ing form

(9.12)

This says that the vector that is the rate of change of the unit normal to a para-
metric curve is parallel to the tangent vector to the curve and also shows that the two
are related by the curvature. This is true whether the parameter is arc-length or not.

The next theorem, the fundamental theorem about curves in the plane, states that
the signed curvature function describes a curve completely.

9.3.5. Theorem. For any function kS(s) defined on an interval [s0,s1], there is a
unique (up to rigid motion) regular curve F(s) so that kS(s) is the signed curvature
function and s is the arc-length parameterization of F.

Proof. The proof amounts to simply writing down a solution, namely, if we define
a function q(s) by
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then

(9.14)

This determines F(s) up to a translation (a,b) and rotation through an angle f. See
[DoCa76] or [Gray98].

A corollary of Proposition 9.3.4 and Theorem 9.3.5 is

9.3.6. Corollary. The planar curve F(t) traces out a straight line if and only if 
F¢(t) ¥ F≤(t) = 0.

The function q(s) in the proof of Theorem 9.3.5 is worth another look because it
leads to another interpretation of curvature.

9.3.7. Theorem. Let F(t) be a regular curve with domain [a,b]. If

for some t0 Œ (a,b) and some fixed angle q0, then there is unique differentiable func-
tion q(t) on [a,b], so that

for all t Œ [a,b]. Furthermore,

Proof. See [Gray98].

Definition. The function q(t) in Theorem 9.3.7 is called the turning angle of the curve
F(t) determined by q0.

The function q(s) in the proof of Theorem 9.3.5 is just this same turning angle.

Third geometric definition of curvature: The signed curvature is the rate of
change of the turning angle for an arc-length parameterized curve.

Next, we consider some curvature related properties of planar curves.

Definition. A differentiable curve F(t) defined on [a,b] is said to be a simple closed
curve if

(1) F is one-to-one on (a,b), and
(2) F and all of its derivatives agree at a and b, that is, F(a) = F(b), F¢(a) = F¢(b),

F≤(a) = F≤(b), etc.

d
dt

F t tS
q

= ¢( ) ( )k .

F t
F t

t t
¢( )
¢( ) = ( ) ( )( )cos sinq q,

F t
F t

¢( )
¢( ) = ( )0

0
0 0cos sinq q,

F s s ds a s ds b( ) = ( ) + ( ) +( )ÚÚcos sinq q, .
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Definition. A curve is said to be convex if it lies entirely on one side of each tangent
line at every point on the curve.

9.3.8. Theorem. A simple closed curve is convex if and only if either kS(s) ≥ 0 for
all s or kS(s) £ 0 for all s.

Proof. See [DoCa76].

One can also show that a curve is convex if and only if it lies in the boundary of
its convex hull.

Definition. A vertex of a plane curve F(s) is a point where , that is, kS has
a local extremum. (Sometimes a vertex is defined to be a point where kS has a rela-
tive minimum or maximum.)

An ellipse that is not a circle has four vertices, namely those points where the axes
of the ellipse meet the ellipse. It turns out that no regular closed convex curve has less
than four vertices.

9.3.9. Theorem. (The Four Vertex Theorem) A simple closed convex curve has at
least four vertices.

Proof. See [DoCa76] or [Gray98]. For the polygonal analog of this theorem see
[Taba00].

The proof of the Four Vertex Theorem actually shows that the curvature function
has at least two local maxima and two local minima. Rephrased in those terms, the
theorem has a partial converse.

9.3.10. Theorem. Let k : [a,b] Æ R2, a < b, be any strictly positive function which,
along with all of its derivatives, takes on the same value at a and b. If k is either con-
stant or has at least two maxima and two minima, then there is a simple closed curve 
F : [a,b] Æ R2 whose curvature function is k.

Proof. See [Gluc71].

Given a simple closed curve in the plane, the Jordan curve theorem implies that
it divides the plane into two regions, a bounded and an unbounded part.

Definition. The bounded part of a simple closed curve in the plane is called the inte-
rior of the curve or the region bounded by the curve.

An old problem in geometry is the following:

The isoperimetric problem: Of all simple closed curves in the plane with a given length,
which one bounds the largest area?

The isoperimetric problem is solved by the next theorem, which says that the obvious
answer, namely the circle, is the correct answer.

d dsSk = 0
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9.3.11. Theorem. (The Isoperimetric Inequality) Let L be the length of a simple
closed curve and let A be the area of the region bounded by the curve. Then

and equality holds if and only if the curve is a circle.

Proof. See [DoCa76].

We finish this section with one last geometric definition of curvature.

Fourth geometric definition of curvature: If F(s) is the arc-length parameteriza-
tion for a curve defined on [0,L], then we know that the tangent vectors T(s) have unit
length. As indicated earlier, we can think of T as a mapping of [0,L] to the unit circle.
Tangent vectors are the more natural choice for what we are trying to do here rather
than the well-known Gauss map of normals, but we would accomplish the same thing
with either. Given a partition P = (s0,s1, . . . ,sn) of [0,s], let

denote the signed angle between T(si) and T(si+1). Define

(9.15)

where |P| is the norm of P. See Figure 9.5 again.

Definition. If the limit kT(s) exists, it is called the total curvature of the curve 
F|[0,s]. The value kT(L) will be called the total curvature of F and denoted simply 
by kT.

The next proposition relates the total curvature function to the signed curvature
function.

9.3.12. Proposition.

Proof. See [Stok69], [Spiv70b], or [Gray98].

The total curvature of a closed curve is closely related to a topological invariant,
namely the degree of an associated map. Given a simple closed curve F(s), then F¢(s)
= T(s) can be thought of as a map of the circle to itself in a natural way since the
interval [0,L] with the endpoints identified is just a circle. As such, we can talk about
the degree of F¢. See Section 7.5.1 or 8.11.

9.3.13. Theorem. If F(s) is the arc-length parameterization of a closed curve of
length L, then

d
ds
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Proof. See [Stok69], [Spiv70b], or [Gray98].

Theorem 9.3.13 can be thought of as a kind of integrality theorem because it states
that kT/2p is an integer.

9.3.14. Corollary. For a simple closed curve kT = 2p.

Closely related to the total curvature is the concept of the winding number of a
curve F(t) about a point p. This measures the angle that the vector F(t) - p sweeps
out around the origin. See [AgoM76].

This section described several ways to define the curvature of smooth planar
curves. In closing, we would like to indicate how one could define curvature for poly-
gonal curves. In some sense, one can think of the polygonal concept as a precursor
of the smooth one. Consider a polygonal curve defined by a sequence of points p0,p1,
. . . ,pn. Figure 9.6(a) shows an example. Any curvature for such a curve would be con-
centrated at the vertices and zero elsewhere. At a vertex pi it is natural to use the
signed angle

between the directed segments as a measure of how much the curve is turning. But
the lengths of the segments also play a role, so we need to normalize things. Define
the curvature Ki at pi by

If Ni is the “outward” unit normal to the segment [pi-1,pi], then ai is the length of the
arc from Ni-1 to Ni in the unit circle S1. See Figure 9.6(b). This curvature has some
interesting properties and is the one-dimensional analog of the Gauss curvature for
surfaces defined in Section 9.9. The reader should look back at these comments when

K
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reading that section. What we are doing here is comparing the length of arcs of the
curve with the length its Gauss map “traces out” in S1. If the polygonal curve were an
approximation of a smooth one, then one would be able to show that the polygonal
curvature approximated the smooth curvature defined earlier. See [Call86].

9.4 The Geometry of Space Curves

Next, we consider curves in R3. Such curves are also called space curves. Let

be a parameterization of one of these curves.

Definition. If F(s) is the arc-length parameterization and T(s) = F¢(s), then the cur-
vature vector K(s) and the curvature k(s) to the curve F at the point F(s) are defined
by

Note that there is no definition of a signed curvature for space curves. Space
curves are only assigned a nonnegative curvature function.

A geometric definition of the curvature of a space curve: The approach is again
via best matching circles, but there is more to show now. Given an arbitrary para-
meterization F(t), define circles C(t1,t2,t3) through F(ti) as before. These circles may
now lie in different planes. Fortunately, one can show that if F≤(t) π 0, then, as the ti
approach t, the planes determined by the F(ti) approach the plane generated by F(t)
and F≤(t) in the limit. Furthermore, the circles C(t1,t2,t3) approach a limiting circle C
that lies in this plane. The curvature at F(t) is then the reciprocal of the radius of this
circle. The C• parameterization F(t) in Figure 9.7 shows that the hypothesis F≤(t) π 0
is needed because otherwise there might not be any limiting plane or circle.

K s T s and K s( ) = ¢( ) ( ) = ( )k s .

F L: ,0 3[ ] Æ R
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Note: As we just indicated, to get a well-defined geometric definition of curvature
for a space curve F(t) we need to assume that F≤(t) does not vanish. For that reason
and the need for that assumption in other formulas related to geometric properties
of curves, the condition F≤(t) π 0 is often assumed implicitly in discussions about
curves, just like the condition of regularity. On a related point of terminology, given
a space curve F(t), a point p = F(t) with the property that F≤(t) = 0 is often referred
to as a point at which the curve is locally flat. The justification for this is that a curve
whose second derivative vanishes in a neighborhood of a point is in fact a straight
line in that neighborhood.

9.4.1. Proposition. For an arbitrary regular curve F(t) in R3

Proof. See [Spiv70b]. Compare this formula to the one for plane curves in Proposi-
tion 9.3.4.

Definition. A point of a curve where the curvature vanishes is called an inflection
point.

Definition. If F(s) is an arc-length parameterization and if T(s) = F¢(s), then the prin-
cipal normal of F at s, denoted by N(s), and the binormal of F at s, denoted by B(s),
are defined by

where k(s) is the curvature.

Clearly, both N(s) and B(s) are unit vectors and the orthonormal basis
(T(s),N(s),B(s)) determines the standard orientation of R3.

Definition. The tuple (T(s),N(s),B(s)) is called the Frenet frame or moving trihedron
to the curve F(s) at s or the point F(s). The Frenet frame or moving trihedron at a
point of an arbitrary regular parameterization is the Frenet frame or moving trihe-
dron at that point of the induced arc-length parameterization.

Definition. The osculating plane of F at s is the plane at F(s) generated by T(s) and
N(s). The normal plane of F at s is the plane at F(s) generated by N(s) and B(s). The
rectifying plane of F at s is the plane at F(s) generated by T(s) and B(s).

9.4.2. Proposition. B¢(s) = -t(s)N(s) for some function t(s).

Proof. First, B•B = 1 implies that

B B¢ ∑ = 0.

T s s N s and B s T s N s¢( ) = ( ) ( ) ( ) = ( ) ¥ ( )k ,

k t
F t F t

F t
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¢( ) ¥ ≤ ( )
¢( ) 3
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Second, B•T = 0 implies that

Therefore, B¢ is orthogonal to both B and N. Since (T,N,B) is an orthonormal basis,
it follows that B¢ must be some multiple of N.

Definition. The function t(s) in Proposition 9.4.2 is called the torsion of F 
at s.

The minus sign in Proposition 9.4.2 is there so that (T(s),N(s),F¢≤(s)) determines
the standard orientation whenever t(s) > 0. See equation 9.16 below.

9.4.3. Example. The curve in R3 parameterized by

where a and b are nonzero constants is called a helix. Let us compute the curvature
and torsion of this helix.

Solution. First, we find the arc-length parameterization G(s) of the helix using the
method described in Section 9.2. We get

It follows that

It is now easy to show that

and we are done.

Since B is orthogonal to the osculating plane, and |t(s)| = |B¢(s)|, we can think of
t(s) as measuring the rate at which the osculating plane is changing. In other words,
t(s) measures by how much the curve deviates from being planar.
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9.4.4. Theorem. t(s) = 0 if and only if the curve F(s) is a planar curve.

Proof. See [Lips69].

9.4.5. Proposition. If the curve F(s) is an arc-length parameterization, then

(9.16)

Proof. This is a straightforward computation using the various definitions and
vector identities, namely,

Next, we want to determine the well-known equations that relate the vector fields T¢,
N¢, and B¢ to the vector fields T, N, and B along the curve. We already know that T¢ = kN
and B¢ = -tN. Let

Since N•N = 1, it follows that N¢•N = 0, that is, N¢ is orthogonal to N. This means
that b = 0. But N•T = 0 implies that

and N•B = 0 implies that

Collecting these facts gives us the well-known theorem below due to Serret (1851) and
Frenet (1847):

9.4.6. Theorem. (The Serret-Frenet Formulas) The following equations hold for
arc-length parameterizations:
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The Serret-Frenet formulas are the key to proving the fundamental theorem for
space curves:

9.4.7. Theorem. Let k, t : [0,L] Æ R be continuous functions with k(s) > 0. Then
there is a unique (up to a rigid motion) curve F : [0,L] Æ R3 parameterized by arc-
length whose curvature and torsion functions are the functions k and t, respectively.

Proof. The existence part of this theorem involves solving differential equations
associated to the Serret-Frenet formulas. The uniqueness part is easier. See [Lips69]
or [Spiv70b].

Since one is rarely given arc-length parameterizations, it is convenient to have
formulas for the curvature and torsion of space curves with respect to other 
parameterizations.

Let F(t) be an arbitrary regular curve and assume that F(t) = G(a(t)), where G(s)
is the arc-length parameterization and s = a(t). Just like in the planar case, we shall
assume that the basic geometric properties defined by G(s), such as curvature and
torsion, can be assumed to be associated to points on the curve and hence to F(t). If
kG(s) and tG(s) and the curvature and torsion functions associated to G(s) and if
(TG(s),NG(s),BG(s)) is the Frenet frame for G(s), then define the corresponding func-
tions for F(t) by

(9.17)

9.4.8. Theorem. (The generalized Serret-Frenet Formulas) Given a regular curve
F(t), then the functions defined by Equations (9.17) satisfy

where v(t) = |F¢(t)| is the speed function of F(t).

Proof. This follows from the chain rule applied to the functions in equations (9.17)
and Theorem 9.4.6.

9.4.9. Theorem. If F(t) is an arbitrary regular curve with F≤(t) π 0 (equivalently,
nonzero curvature), then the functions defined by Equations (9.17) satisfy the 
following identities:

(1) T t
F t
F t

( ) =
¢( )
¢( )

T v N

N v T v B

B v N

¢ =
¢ = - +
¢ = -

k
k t

t

k k
t t

t t

t t

T t T t

N t N t and

B t B t

( ) = ( )( )
( ) = ( )( )
( ) = ( )( )
( ) = ( )( )
( ) = ( )( )

G

G

G

G

G

a
a
a
a
a

,

,

,

,

.
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(2)

(3) N(t) = B(t) ¥ T(t)

(4)

(5)

Proof. This is easy if one copies what we did for arc-length parameterizations above.
See [Gray98] or [Spiv70b].

An immediate corollary of Theorems 9.4.4 and 9.4.9 is

9.4.10. Theorem. The regular curve F(t) is a planar curve if and only if

Finally, we note that the Serret-Frenet formulas generalize to curves in Rn.

9.4.11. Theorem. Let F(s) be a curve in Rn, n ≥ 3, parameterized by arc-length. If
the vectors F¢(s), F≤(s), . . . ,F(n)(s) are linearly independent, then at each point F(s) on
the curve there is an orthonormal basis of vectors u1(s), u2(s), . . . ,un(s) with the func-
tion ui(s) satisfying the differential equations

Proof. See [Spiv75].

Definition. The functions u1,u2, . . . ,un in Theorem 9.4.11 are called a Frenet basis
and the functions ki are called generalized curvatures for the curve F(s).

If n = 3, then k1 is the ordinary curvature of a curve in 3-space and k2 is the 
torsion.

u u

u u u

u u u

u u u

u u
n n n n n

n n n

1 1 2

2 1 1 2 3

3 2 2 3 4

1 2 2 1

1 1
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¢ = - +

¢ = - +
¢ = -

- - - -

- -

k
k k
k k

k k
k

. . .

. . .

F t F t F t F t

F t

¢( ) ¥ ≤ ( )( ) ∑ ¢≤ ( ) =
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≤ ( )
¢≤ ( )

Ê
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Á

ˆ

¯
˜
˜

=det

F t
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t t
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F t

F t

F t

( ) =
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=
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Ê

Ë
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˜2 2

1
det .

k t
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( ) =

¢( ) ¥ ≤ ( )
¢( ) 3
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9.5 Envelopes of Curves

Envelopes of families of curves or surfaces were an important part of classical dif-
ferential geometry, especially in the development of the concept of a connection which
is fundamental to modern differential geometry. See [Spiv75]. They also appear in the
context of cyclides and developable surfaces. Even so, they have only been studied to
a limited degree, mainly envelopes of circles, planes, and spheres. An analysis can get
very tricky even in very simple sounding situations. We consider envelopes here
because of their relevance to CAGD.

This section looks at envelopes of planar curves. Section 9.11 considers envelopes
of surfaces.

Definition. Let at : [0,1] Æ R2 be a one-parameter family of curves in the plane
defined by at(u) = a(u,t) for some C• function a : [0,1] ¥ [0,1] Æ R2. An envelope of this
family is defined to be a curve p(u) that is not a member of this family but that is
tangent to some member of the family at every point.

See Figure 9.8(a). Unfortunately, the envelope can have bad singularities like cusps
even if a is a nice function. See Figure 9.8(b), which shows the envelope of normals
to an ellipse whose ends are the centers of the osculating circles.

The classical approach to studying the envelope p(u) is geometric. Basically, 
one defines p(u) to be the limit as e approaches 0 of the intersections of at(u) and 
at(u + e). Such a definition can have serious problems in general, but seems to work
in many cases of interest.

Let us start off with a special case that will not only make the argument clearer
but will also be used for the general case since that case will reduce to this one. Assume
that the curves at are graphs of functions ft, that is,

If the curve at intersects the curve at+h at the point (uh,f(uh,t)) = (uh,f(uh,t + h)),
then

a u t u v where v f u t f ut, , , , .( ) = ( ) = ( ) = ( )
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See Figure 9.9. If we assume that the numbers uh approach a limit u(t) as h approaches
0, then we must have

(9.18)

The envelope p(t) will be defined by

Next, consider the general case. The functions at may not be the graphs of func-
tions of u, but, locally, we can find a coordinate system so that they will be graphs of
functions with respect to one of the new coordinate variables (simply rotate the stan-
dard coordinate system appropriately). Therefore, if

we can find a function T(u,t) so that

(9.19)

Define

Note that the function b(u,t) = a(T(u,t),t) is then the graph of the function f because

Applying equation (9.18) to f(u,t) gives

b a a au t T u t t T u t t T u t t u f u t, , , , , , , , , , .( ) = ( )( ) = ( )( ) ( )( )( ) = ( )( )1 2

f u t T u t t, , , .( ) = ( )( )a2

a1 T u t t u, , .( )( ) =

a a au t u t u t, , , , ,( ) = ( ) ( )( )1 2

p t u t f u u t( ) = ( ) ( )( )( ), , .

D f u t t
f
t

u t t2 0( )( ) = ( )( ) =, , .
∂
∂

0 =
+( ) - ( )f u t h f u t

h
h h, ,

.
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(9.20)

On the other hand, differentiating equation (9.19) gives

that is,

After substituting into equation (9.20), we finally obtain

We conclude that the envelope in general should consist of the points a(u,t) where
(u,t) satisfies

(9.21)

Getting criterion (9.21) involved somewhat loose reasoning, but independent of
how we got equation (9.21), one can show that the envelope we want must be a subset
of the points defined by that equation.

9.5.1. Theorem. Equation (9.21) is a necessary condition that points of an envelope
defined by a family of curves a(u,t) must satisfy. Alternatively, the condition can be
expressed as

(9.22)

Proof. See [Spiv75] or [Stok69].

Note: Condition (9.21) is only a necessary condition for an envelope but not a 
sufficient condition! See [Stok69].

9.5.2. Example. To determine the envelope of circles of radius 1 centered on the
line y = x in the plane. See Figure 9.10.

Solution. If we parameterize the circles by angles, then we can apply Theorem 9.5.1
to the map a(u,t) defined by

Since

D D1 2 1 1 1 21 1a a a a= = = - =cosu, D sinu, and D2 2, ,

a u t t t, , .( ) = ( ) + ( )cosu, sinu

∂a
∂

∂a
∂u t

¥ = 0.

det Dia j u t, .( )( ) = 0

D D D D T u t t1 2 2 1 1 1 2 2 0a a a a-( ) ( )( ) =, , .

D T u t
D T u t t
D T u t t2

2 1

1 1
,

, ,
, ,

.( ) = -
( )( )
( )( )

a
a

D T u t t D T u t D T u t t1 1 2 2 1 0a a, , , , , ,( )( ) ( ) + ( )( ) =

0 1 2 2 2 2= ( )( ) ( ) + ( )( )D T u t t D T u t D T u t ta a, , , , , .
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Equation (9.21) implies the constraint

that is, u = -p/4 or 3p/4. The envelope therefore consists of a subset of the points

which corresponds to the lines y = x + and y = x - . This is clearly a correct
answer.

Finally, we look at the problem of finding the envelope of a family of curves in the
xy-plane defined implicitly in the form

(9.23)

Think of Equation (9.23) as defining an equation in x and y for each fixed t.

9.5.3. Theorem. If a family of curves is defined implicitly by equation (9.23), then
the envelope of that family is a subset of the set of points (x,y) satisfying (9.23) and

(9.24)

Proof. One can give an argument similar to the one for Theorem 9.5.1 by thinking
of y in equation (9.23) as a function of x and t (possibly after some change in coor-
dinates). Alternatively, one can look at the intersection of two of the curves f(x,y,t) and
f(x,y,t + h) and let h go to zero. See also [Brec92].

9.5.4. Example. We redo Example 9.5.2 by expressing the family of circles implic-
itly as

∂a
∂t

x y t, , .( ) = 0

a x y t, , .( ) = 0

22

t t t t t t, , , , ,( ) + -Ê
Ë

ˆ
¯ ŒÏÌÓ

¸̋
˛

» ( ) + -Ê
Ë

ˆ
¯ ŒÏÌÓ

¸̋
˛

1

2

1

2

1

2

1

2
R R

cosu sinu+ = 0,
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(9.25)

Solution. In this case, equation (9.24) reduces to

(9.26)

Eliminating t from (9.25) and (9.26) leads to

which gives the same answer as in Example 9.5.2.

9.6 Involutes and Evolutes of Curves

Definition. Given a curve C, the union of all tangent lines of C is called the tangent
surface of C. An involute of C is any curve that lies on the tangent surface of C and
that intersects all the tangent lines orthogonally.

See Figure 9.11. Let p(s) be the arc-length parameterization of a curve C and
(T(s),N(s),B(s)) its moving trihedron. Let C* be an involute of C. By definition, there
is a function a(s), so that

is a parameterization of C*. Furthermore, q¢(s) is orthogonal to T(s), that is,

This implies that a(s) = -s + c, for some constant c, proving

9.6.1. Theorem. The involutes of a curve p(s) are precisely those curves that admit
a parameterization of the form

(9.27)q s p s c s T s( ) = ( ) + -( ) ( ),

0 1= ¢( ) ∑ ( ) = ( ) + ¢( ) ( ) + ( ) ¢( )( ) ∑ ( ) = + ¢( )q s T s T s s T s s T s T s sa a a .

q s p s s T s( ) = ( ) + ( ) ( )a

x y-( ) =2
2,

x y t+ = 2 .

a x y t x t y t, , .( ) = -( ) + -( ) - =2 2
1 0
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where c is a constant.

The parameterization q(s) in Equation (9.27) is not regular at a point of inflection
of p(s) because the derivative

vanishes when k(s) = 0.

9.6.2. Theorem. The curvature k* of the involute C* is given by

Proof. See [Lips69].

There is a nice geometric description of the involute. Assume that p(s) is defined
on the interval [0,c] and that we have wrapped a string of length c along the curve C
starting at p(0) and ending at p(c). If we were to unwrap the string holding it taut,
then the end of the string generates the involute defined in equation (9.27). See Figure
9.12(a). Another fact that one can easily show is that the distance between two invo-
lutes is constant. See Figure 9.12(b).

Definition. If a curve C* is the involute of a curve C, then C is called an evolute of C*.

Again, let p(s) be the arc-length parameterization of a curve C and (T(s),N(s),B(s))
its moving trihedron. Let C* be an evolute of C. There exist functions a(s) and b(s),
so that

(9.28)

is a parameterization of C*. The reason that there is no T(s) term is that, by defini-
tion, q(s) - p(s) is orthogonal to T(s). See Figure 9.13.

q s p s s N s s B s( ) = ( ) + ( ) ( ) + ( ) ( )a b

k
k t

k
* .=

+

-( )

2 2

2 2c s

q s T s T s c s T s c s s N s¢( ) = ( ) - ( ) + -( ) ¢( ) = -( ) ( ) ( )k
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9.6.3. Theorem. The evolutes of a curve p(s) are precisely those curves that admit
a parameterization of the form

(9.29)

for some constant c.

Proof. Differentiate equation (9.28) and use the fact that q¢(s), being tangent to C*,
is a multiple of q(s) - p(s). See [Lips69].

9.6.4. Corollary. The evolutes of a planar curve p(s) are precisely those curves that
admit a parameterization of the form

for some constant c. The parameterization will be regular if k¢(s) is nonzero.

The case of an evolute of a planar curve for which the constant c is zero is espe-
cially interesting. That evolute actually lies in the same plane as the curve and is the
only evolute of the curve in that plane.

Definition. Assume that the planar curve p(s) has nonzero curvature. The evolute

(9.30)

is called the plane evolute of p(s).

The plane evolute is the locus of centers of curvature of p(t). Because it is unique,
the adjective “plane” is often dropped and one talks about “the” evolute of the curve
in that plane.

q s p s
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9.7 Parallel Curves

Parallel curves and surfaces are topics that, if discussed at all, are usually only men-
tioned briefly or are relegated to the exercises in books on differential geometry. They
are however important for CAGD where they are called offset curves and surfaces and
for that reason we shall devote more time to them here. This section will summarize
some of the relevant properties of planar parallel curves. Section 9.14 will consider
parallel surfaces.

Consider a planar regular parametric curve

and let n(t) be the principal normal to the curve at p(t).

Definition. A parallel curve to p(t) is a parameterized curve of the form

(9.31)

where d is any real number. In CAGD a parallel curve is called an offset curve.

Figure 9.14 shows some parallel curves. The figures also show some potential
problems. Parallel curves could have self-intersections even if the original does not.
They may intersect the original curve.

The tangent vector to pd(t) is parallel to the tangent vector to p(t). In fact,

(9.32)

where k(t) is the curvature function of p(t). This follows from equation (9.11). It is
easy to see from Proposition 9.3.3 and equation (9.32) that the curvature function
kd(t) for pd(t) is defined by

(9.33)k
k
kd t

t
t d

( ) =
( )

+ ( )1
.

p t p t t dd¢ ( ) = ¢( ) + ( )( )1 k ,

p t p t dn td ( ) = ( ) + ( ),

p t x t y t( ) = ( ) ( )( ), ,
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Note that even if the original curve p(t) is a regular curve, the parallel curve pd(t)
may not be. Therefore because of their importance in CAGD we shall analyze their
singularities and other special points. First of all, there may be cusps at those points
where

Definition. A point on the parallel curve pd(t), d π 0, is called a (ordinary) cusp if

and k¢(t) π 0. A parallel curve without cusps is called nondegenerate.

Definition. A point on the parallel curve pd(t) is called an extraordinary cusp if

and k ¢(t) = 0 and k≤(t) π 0.

One can show that the curvature of the parallel curve goes to infinity as we
approach an extraordinary cusp.

9.7.1. Theorem. The cusps of the parallel curve pd(t), d π 0, lie on the evolute of
p(t) and meet that curve orthogonally. The extraordinary cusps of the parallel curve
coincide with the cusps of the evolute.

Proof. See Figure 9.15. The first part is clear from the definition of the plane evolute.
See [FarN90a] for a proof of the second.

Now cusps and extraordinary cusps of a parallel curve correspond to differentia-
bility discontinuities that did not exist on the original curve. There are other special
points that do not correspond to discontinuities. One of these is an inflection point.
This is where the curvature vanishes. We can find such points for a parallel curve from
Equation (9.33). Another special point is a vertex of a curve. Recall that a vertex on
a curve is a place where the derivative of the curvature function vanishes. Therefore,

k t
d

( ) = -
1

k t
d

( ) = -
1

1 0+ ( ) =k t d .
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to find the vertices of a parallel curve we need a formula for the derivative of its cur-
vature function. Use equations (9.3) and (9.33) to get

This and (9.32) leads to the equation

(9.34)

For the final special point, let p(t) = (x(t),y(t)) be a regular curve in the plane.

Definition. A turning point for p(t) is a point where p¢(t) is either vertical or hori-
zontal, that is, either x¢(t) = 0, y¢(t) π 0, or x¢(t) π 0, y¢(t) = 0.

Turning points of a parallel curve are easily found from equation (9.32).

9.7.2. Theorem. The turning points, inflection points, and vertices of the parallel
curve pd(t) correspond to those of the original curve p(t) (except when k(t) = -1/d at
a turning point or vertex of p(t), in which case the corresponding point on pd(t) is
then a cusp or an extraordinary point).

Proof. The theorem follows from equations (9.32)–(9.34).

Turning points depend on the coordinate system. On the other hand, inflection
points and vertices are intrinsic properties of the curve. All three are invariant under
regular reparameterizations.

We finish this section by listing some facts about length and area for parallel
curves.

9.7.3. Theorem. If p(t), t Œ [0,1], is a regular plane curve of total length L, then the
total length Ld of the nondegenerate parallel curve pd(t) is given by

where Dq is the total angle of rotation of the principal normal n(t) of p(t). If the curve
corresponding to p(t) is closed and convex, then

Proof. See [FarN90a] for the first part.

9.7.4. Theorem. If p(t), t Œ [0,1], is a regular plane curve of total length L, then the
area A between p(t) and the nondegenerate parallel curve pd(t) is given by

A L L dd= +( )1
2

,

L L dd = + 2p .

L L dd = + Dq ,

d
ds d

d
ds

d

d

k
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where Ld is the length of pd(t). If the curve corresponding to p(t) is closed and convex,
then

Proof. See [FarN90a].

One can relate parallel curves and evolutes to the Gauss map. See [BaGM82].

9.8 Metric Properties of Surfaces

Now that we know a little about the metric properties of curves in Rn, we move on
to metric properties of Riemannian manifolds in general and surfaces in particular.
We need to generalize what we did in Rn, that is, our “local” view needs to be gener-
alized to a global one. Probably the most natural first use of the metric is to define
the length of curves in such manifolds and the notion of volume (area for surfaces).
We start with the length of a curve in a manifold.

Let g : [a,b] Æ Mn be a curve in an n-dimensional submanifold Mn of Rk. Recall
that, as a curve in Rk, the length of g, la

b g, is just the integral

The only thing new will be how we interpret this formula. Note how the length
depends on the length of the tangent vectors of the curve. However, as a curve in Mn,
we do not want to think of the tangent vectors as vectors in Rk, but as vectors in the
tangent spaces of Mn that are invariants associated to a manifold. Therefore, the
length of a curve in a manifold should be thought of as a function of the dot product
in each tangent space for the manifold, so that it is determined by the Riemannian
metric for the manifold. Of course, as submanifolds of Rk we shall always be using
the Riemannian metric induced by the standard dot product on Rk. However, this par-
ticular choice is irrelevant and the reader should be aware of the fact that anything
we write down involving dot products would be valid for any other Riemannian
metric. Recall our comments at the beginning of the chapter that one should think of
manifolds in an intrinsic way and forget the engulfing space Rk.

Once we have a notion of length of a curve in a manifold, we can define the dis-
tance between its points.

Definition. The distance between two points p and q in a connected Riemannian
manifold Mn, denoted by dist(p,q), is defined by

It is not hard to show that the function dist(p,q) is a metric on the manifold Mn.
Since this metric was derived from a Riemannian metric, it is the latter that is funda-
mental to the metric properties of a manifold. In differential geometry the Riemannian
metric is usually brought into the picture using the following older terminology:

dist a b np q M p q, : , .( ) = [ ] Æ{ }inf l  is a curve from  to a
bg g

g ¢Úa
b

.

A Ld d= + p 2 .
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Definition. The quadratic form QI defined on the tangent space Tp(Mn) of the 
manifold Mn with Riemannian metric • by

is called the first fundamental form of the manifold at p.

We conclude the following:

9.8.1. Theorem. The metric properties of a manifold are completely determined by
its first fundamental form.

Next, we want to bring parameterizations into our discussion, because this is how
manifolds are defined intrinsically, and we do not want to rely on them being con-
tained in some Rk. Locally, a manifold Mn looks like (can be identified with) Rn. For-
mally, such an identification corresponds to a parameterization. The question is, if we
do our work in Rn, how can one use the parameterization to translate the results back
to Mn? We begin by answering this question for lengths of curves.

Let U be an open set in Rn and let F(u1,u2, . . . ,un),

be a parameterization for a neighborhood V of a point p on the manifold Mn in Rk.
Assume that U contains the origin and that F(0) = p. It is easy to see that every curve
g(t) in V through p can be expressed in the form

where

See Figure 9.16. How does the length of m relate to the length of g?

m m: -( ) Æ ( ) =a a andn, .R 00

g mt t( ) = ( )( )F ,

F : U V MÆ Õ n,

QI v v v( ) = ∑
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We know that the length of the curve g is computed from the lengths of its tangent
vectors. If

then the chain rule implies that

(9.35)

Definition. The metric coefficients gij of the parameterization F and their deter-
minant g are the functions defined by

Using the notation of metric coefficients, it follows from Equation (9.35) that

(9.36)

In other words, the length of the curve g(t) in the manifold is just the length of the
corresponding ordinary curve m(t) in Rn modified by the metric coefficients that
depend on the parameterization and the Riemannian metric.

A vector v in the tangent plane at a point p of a manifold is just the tangent vector
to some curve in the manifold. Therefore, if v = g¢(0), then we can use equation (9.36)
to rephrase the definition of the fundamental form QI(v) at p as

(9.37)

Definition. The metric coefficients gij are also called the coefficients of the first 
fundamental form.

Clearly, the matrix (gij) of metric coefficients with respect to a parameterization
F is just the matrix of the symmetric bilinear map associated to the quadratic form
QI with respect to the basis consisting of the vectors and g is the discriminant
of QI with respect to that basis. Because we have a positive definite form, it follows
that g > 0 (Corollary 1.9.13).

In the case of a surface S the coefficients of the first fundamental form have his-
torically been given the names E, F, and G, that is,

(9.38)

so that, letting m(t) = (u(t),v(t)), equation (9.37) is often written as

(9.39)Q Eu Fu v G vI g ¢( ) = ¢ + ¢ ¢ + ¢2 22 .

E u v g u v F u v g u v and G u v g u v, , , , , , , , ,( ) = ( ) ( ) = ( ) ( ) = ( )11 12 22
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9.8.2. Example. To compute E, F, G for the parameterization F(u,v) = p0 + uw1
+ vw2, (u,v) Œ R2, of the plane through the point p0 with orthonormal basis w1 and
w2.

Solution. Now

implies that

Therefore, E = 1, F = 0, and G = 1.

9.8.3. Example. To compute E, F, G for the parameterization

of the cylinder x2 + y2 = 1.

Solution. This time

so that

Therefore, E = 1, F = 0, and G = 1. It may seem a little strange that the metric coeffi-
cients of the cyclinder are the same as those of a plane, but we shall see why this is
as it should be shortly.

9.8.4. Example. To compute E, F, G for the spherical coordinate parameterization

of the sphere of radius r about the origin.

Solution. We have

Therefore, E = r2 sin2 f, F = 0, G = r2.

∂
∂q

q f q f
∂
∂f

q f q f f
F F

= -( ) = -( )r and r ossin sin , rcos sin , 0 cos cos , rsin c , rsin .

F q f q f q f f q f p p, , , , , ,( ) = ( ) ( ) Œ[ ] ¥ [ ]rcos sin , rsin sin , rcos 0 2 0

g g g and g11 12 21 221 0 1= = = =, , .

∂
∂

∂
∂

F F
u

and
v

= -( ) = ( )sinu, cosu,0 0 0 1, , ,

F u v u v, , , , ,( ) = ( ) ( ) Œ[ ] ¥cosu, sinu,v 0 2p R

g g g and g11 12 21 221 0 1= = = =, , .

∂
∂

∂
∂

F F
u

and
v

= =w w1 2

592 9 Differential Geometry



Equation (9.39) looks rather messy. If we write g(t) = (u(t),v(t)), then Equation
(9.39) is usually written in “differential” form as

Contrast this equation with the one that would be written down for the ordinary
Euclidean plane:

One sees that what is new is the metric coefficients associated to the surface S.

Note. We are not dealing with the wedge product of differential forms here as
defined in Sections 4.9, 4.9.1, and 8.12. We are trying to specify a quadratic form, or
equivalently, a bilinear map. A bilinear map <,> for the tangent spaces of an n-
manifold corresponds to a tensor of type (0,2) and over a coordinate neighborhood
(U,j) it can be expressed in the form

See Section C.6. In other words, the expressions du2, dudv, etc., above are abbrevia-
tions for du�du, du�dv, etc., respectively. It is unfortunate that similar notation is
used but this is a historical legacy.

Summarizing our results for surfaces,

and

Furthermore, the angle a between the two curvilinear coordinate axes

is given by

cos =a
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Note that EG > 0 because g > 0.
Next, we show how to define and compute area for surfaces. Section 8.12 

already gave an intrinsic definition of volume for an abstract oriented Riemannian 
manifold based on the theory of differential forms. We could build on that but 
differential forms are rather abstract. This chapter has mostly been following the 
more classical approach and we shall continue that to get some well-known 
formulas. We shall stick with manifolds defined by parameterizations and only 
require the reader to be familiar with basic advanced calculus. When appropriate 
we shall make some comments to tie what we do here to what was done in Section
8.12.

We indulge in one bit of generalization. Rather than restricting ourselves to para-
meterized surfaces in R3 we shall consider parameterized n-dimensional manifolds
Mn in Rn+1. Let F :U Æ M be a regular parameterization. The parameterization F(u1,
u2, . . . ,un) induces an orientation of M. Assume that n(p) is the standard unit normal
vector field on M determined by this orientation of M. See Section 8.5.

Definition. The volume of the parameterization F, denoted by V(F), is defined 
by

When n = 1, volume is called length. When n = 2, volume is called area.

Note that V(F) is positive, since the normal vector was chosen in such a way as
to make the determinant positive. Also, the volume might be infinite.

It is not hard to show that if n = 1, then this definition agrees with the definition
of length of a curve given earlier. See Exercise 9.8.1 To justify this definition for arbi-
trary n, observe that the determinant is just the volume of the (n + 1)-dimensional
parallelotope spanned by the ∂F/∂ui and n (Corollary 4.8.9). Since the normal vector
n is orthogonal to the tangent plane and has length 1, the determinant is also the
volume of the n-dimensional base of this parallelotope, namely, the parallelotope in
the tangent plane spanned by the tangent vectors ∂F/∂ui. See Figure 9.17. Therefore,
to take the case of a surface as an example, the integral is just the limit of Riemann
sums of areas of parallelograms that approximate the manifold.

The definition of volume is not very satisfactory as it stands because the formula
also involves the normal vector n.

9.8.5. Theorem. Let F :U Æ Mn be a regular parameterization of manifold Mn in
Rn+1. Then

Proof. We have

V gF( ) = ( ) =Ú Údet gij
U U
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The second inequality followed from the fact that n is orthogonal to all the ∂F/∂ui and
has unit length.

Theorem 9.8.5 shows explicitly how the first fundamental form determines
another metric quantity, namely, volume. Keep in mind though that we do not yet
have a notion of the volume of a manifold, but only a notion of the volume of a para-
meterization. The next theorem shows that we are actually dealing with an invariant
of the manifold.

9.8.6. Lemma. If F1 and F2 are two regular one-to-one parameterizations of an n-
dimensional manifold Mn in Rn+1 that induce the same orientation on M, then

Proof. This is an easy consequence of the change of variable theorem for multiple
integrals and the fact that F2 is a reparameterization of F1. We need to assume that
the parameterizations induce the same orientations in order to be able to guarantee
that the reparameterization map has a positive determinant. Otherwise, the sign of
the volumes may change.
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Definition. Let Mn be an oriented compact n-dimensional submanifold of Rn+1 that
admits a regular one-to-one parameterization F that induces the same orientation.
Define the volume of M, denoted by volume (M), by

When n = 1 or 2, one uses the terms length and area, respectively, instead of the generic
term “volume.”

We need compactness in the definition to guarantee that the volume will be finite.
An immediate consequence of Lemma 9.8.6 is that the definition of volume of a man-
ifold does not depend on the parameterization.

9.8.7. Theorem. The volume of an oriented compact n-dimensional submanifold
Mn of Rn+1 that admits a regular one-to-one parameterization is well defined.

Compare Theorem 9.8.5, the formula for our current definition of volume, with
Theorem 8.12.19, which is the differential form version. Roughly speaking, Theorem
9.8.5 is Theorem 8.12.19 for one coordinate neighborhood (M,F-1). Volume, as defined
in Section 8.12, was by definition an intrinsic property of a manifold. Our current
approach needed Lemma 9.8.6 to get the same result. Exercise 9.8.2 asks the reader
to show that this new definition again agrees with the definition given in Section 9.2
when n = 1, that is, in the case of curves in the plane.

Specializing to surfaces in R3, we get

9.8.8. Theorem. Let F :U Æ S be a regular and one-to-one parameterization of a
surface S in R3. Then

Proof. This is an immediate consequence of Theorem 9.8.5 and the relation between
integrals over regions in the plane and double integrals.

Note the important identity

(9.40)

which follows from Proposition 1.10.4(3).

9.8.9. Example. To find the area of a region S in the plane R2.

Solution. If we use the identity map to parameterize S, then it is easy to check that
g = 1 and

which is the usual calculus definition of area.

The definitions above are inadequate for finding the area or volume of even simple
manifolds because the natural parameterizations are often neither regular nor one-

area S
S

( ) = ÚÚ 1,

F F F F F F F Fu v u u v v u v EG F¥ = ∑( ) ∑( ) - ∑( ) = -2 2 2,

area FS
U

( ) = -ÚÚ EG 2 .

volume M( ) = ( )V F .
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to-one. For example, natural parameterizations of a cylinder or sphere (see the exam-
ples below) are only regular and/or one-to-one on the interior of their domains.
However, the definition of volume and the formulas for computing it easily extend in
such special cases because they have the property that the boundary of the domain
is a set of measure 0 and the parameterization is regular and one-to-one on the inte-
rior of the domain. The proof would involve a straightforward limit process. We shall
use such extended formulas in the examples below. The reader who is uncomfortable
with this should compute areas for slightly smaller regions in the surface. Finally,
although we will not do this here, it should be pointed out that one can also define
the volume of an arbitrary n-dimensional submanifold of Rn+1. If there is no single
parameterizing function, then the definition is based on piecing together the volumes
defined for nice local parameterizations like in the case for length.

9.8.10. Example. To find the area of the bounded cylinder

Solution. Using the parameterization

and the computations made in Example 9.8.3, we see that g = 1 and by Theorem 9.8.8

9.8.11. Example. To find the area of the sphere S of radius r about the origin.

Solution. We again use a spherical coordinate parameterization

Now, Example 9.8.4 showed that E = r2 sin2 f, F = 0, G = r2. Therefore,

and

We finish this section with some comments on the extent to which the results
above are influenced by the parameterization that was chosen.

First of all, one could define the first fundamental form (or Riemannian metric)
by means of a parameterization and equation (9.37). It will be a good exercise in 
the use of the chain rule and the definition of tangent vectors to show directly that
such a definition would be independent of the parameterizations. Let U, V Õ Rn and
let

Y F: :V M U MÆ Æn nand
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be two parameterizations of an n-dimensional manifold Mn in Rk. Assume that F =
Y�s, where s :U Æ V, s(x1,x2, . . . , xn) = (u1,u2, . . . , un), is a change of coordinate trans-
formation. Let QI(Y) and QI(F) denote the first fundamental forms of Y and F, respec-
tively. Using the notation in equations (9.35–37), let l = s �m. Then the previous
equations and a generous use of the chain rule shows that

This is what we wanted to show.
Volume also was independent of parameterizations. The metric coefficients on the

other hand are not but the next theorem shows that they transform in a well-defined
way.

9.8.12. Theorem. In the case of surfaces the metric coefficients transform as
follows (using the notation above and writing (u,v) = s(x,y)):

Proof. One again simply uses the appropriate chain rule. See [Lips69].

9.9 The Geometry of Surfaces

Our overview of the geometry of surfaces in R3 will start with a sketch of the histori-
cal development of a few of the really fundamental invariants that are central to any
understanding of surfaces before we develop the results rigorously using modern 
terminology. It should not be surprising that the initial attempt to study the geome-
try of surfaces was by means of curves. The first such result was due to Euler and
dates from 1760.

Let S be a surface in R3 and p any point of S. Let np be a unit vector normal to
S at p. For each unit vector u in the tangent plane to S at p, let Xu be the plane through
p generated by the vectors u and np. Consider the curve that is the intersection of Xu
with S. Such a curve is called a normal section of S at p. Let ku denote the signed cur-
vature of this curve, where the plane Xu is given the orientation induced by the ordered
basis (u,np). See Figure 9.18.
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Euler’s Theorem. As u ranges over all unit vectors in the tangent plane to S at p,
the set of curvatures ku, called normal curvatures, forms a closed interval [k1,k2]. If
the ku are not all equal, then there is precisely one direction u1 for which the associ-
ated curve has the minimum curvature k1 and one direction u2 for which the associ-
ated curve has the maximum curvature k2. Furthermore, u1 and u2 are orthogonal
and if a unit vector u makes an angle q with u1, then

(9.41)

Definition. The curvatures k1 and k2 are called the principal normal curvatures of S
at p. and the radii of the associated osculating circles are the principal radii. The
vectors u1 and u2 are called the principal normal directions of S at p.

Note that if we change the direction of the normal np, then the sign of the cur-
vatures ku changes, but all the results remain valid. Another interesting fact is that
we really did not have to consider planar curves (curves that lie in Xu), but any para-
metric curve in S through p that has tangent vector equal to u would give rise to the
same curvature ku.

Let cu denote the center of curvature at the point p of the planar curve that was
used to define the normal curvature ku. The centers cu lie on the line normal to S at
p, so that cu = p + tunp for some tu Œ R. The set of these centers as u ranges over all
unit vectors in the tangent plane consists of one or two closed intervals. More pre-
cisely, there exist numbers

so that the set of centers is either

where cmin = p + tminnp and cmax = p + tmaxnp. The points cmin and cmax are the centers
of circles that define the principal normal curvatures k1 and k2, respectively. See Figure
9.19. The point p in Figure 9.19(a) is called an elliptic point of the surface because the
surface lies to one side of the tangent plane and meets the tangent plane in a single
point locally. The point p in Figure 9.19(b) is called a hyperbolic point because the

c c c cmin max min max, , , ,[ ] -•[ ] » •[ ]or

t t t tmin max min max, , and - • £ £ £ •

k k ku = +1
2

2
2cos sin .q q
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surface lies on both sides of the tangent plane. The point p in Figure 9.19(c) is called
a parabolic point because the surface lies to one side of the tangent plane and meets
the tangent plane in a line locally.

Definition. The points cmin and cmax are called the foci of the normal line at p or
the focal points of S at p. The set of focal points of S is called the surface of centers,
the focal surface, or the evolute of S.

See [HilC99] or [Gray98] for more about focal points. We shall have more to say
about the surface of centers and evolutes in Sections 9.12 and 9.13.

Euler’s theorem was soon generalized in 1776 by Meusnier. Keeping the same nota-
tion as above, let Xu(a), 0 £ a < p/2, be a plane through p that contains u and makes an
angle a with Xu. Consider the parametric curve g parameterized by arc-length that
parameterizes the intersection of Xu(a) and S in a neighborhood of p and which has
tangent vector u at p. Let ku(a) denote the curvature of that curve at p. See Figure 9.20.

Meusnier’s Theorem. ku(a)cosa = ku.

Both Euler’s and Meusnier’s theorem will be proved shortly. Although interesting,
these two theorems still deal with curves and are only indirectly about surfaces. It was
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Gauss who, in 1827, presented the first truly intrinsic surface invariants. Let S be an
oriented surface in R3. Recall that saying S is oriented is equivalent to saying that we
have made a consistent choice of unit normals at each point of S so that the map

where n(p) is the chosen unit normal at p in S, is a nice smooth map.

Definition. The map n is called the Gauss map for the oriented surface S.

See Figure 9.21. Compare this definition with what we called the Gauss map 
for plane curves in Section 9.3. The assumption that the surface is oriented is 
never a problem. First of all, we usually only need it for a small neighborhood of 
a point. Second of all, we will be dealing with parameterized surfaces in which 
case we can, and shall, always assume that the orientation is induced by the given
parameterization.

Following Gauss we can now define a fundamentally important intrinsic invari-
ant of surfaces.

A geometric definition of Gauss curvature. Let n be the Gauss map for some
surface S. Then the value K(p) defined by

(9.42)

where U is a neighborhood of p in S, is called the Gauss curvature of S at p. By the term
“signed area” in the numerator we mean that we set it to the positive or negative value
of area(n(U)) depending on whether the map n is orientation preserving or not.

This definition is not very rigorous, although it could be made so. We shall give a
better definition shortly, but it is a nice intuitive way to think about the concept.
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9.9.1. Example. The Gauss curvature of a sphere of radius r is 1/r2. To justify this
note that computing the area of a region on a sphere in spherical coordinates involves
a similar integral to the one used in Example 9.8.11. The only difference is the domain
of the integral, which would now be an arbitrary region in the q-f plane. This domain
would not change as we pass from of a region on a sphere of radius r to the projected
region on the sphere of radius 1. The only difference is the factor r2.

9.9.2. Example. The Gauss curvature of a plane is 0. The reason is that the normal
of a plane is constant so that the Gauss map maps any region to a point that has zero
area.

Here are some other intuitive observations about the Gauss curvature. If we look
at an elliptic point (see Figure 9.19(a)) we see that the Gauss curvature is positive. On
the other hand, at a hyperbolic point (see Figure 9.19(b)) the curvature is negative
because the Gauss map traces out an opposite oriented area on the sphere. We shall
see shortly that the Gauss curvature is the product of the principal curvatures
(Theorem 9.9.9) and so it vanishes at parabolic points.

9.9.3. Example. The Gauss curvature of a cylinder is 0. The justification for this
using only the definition of the Gauss map is that the normal is constant along the
generating lines for a cylinder that implies that all regions on the cylinder are mapped
into one-dimensional sets on the unit sphere and these clearly have zero area.

Does Example 9.9.3 mean that we have a wrong notion of curvature for a surface?
Not really, but we will have to explain the sense in which we are using the word “cur-
vature.” Gauss curvature is a fundamental invariant of a surface, but before we
analyze it further we digress briefly to describe an analogous notion for polygonal sur-
faces. This should help reinforce the geometric idea we are discussing.

Let S be a polygonal surface. It is convenient to assume in the discussion below
that all of its facets are triangles. Clearly, any “curvature” of such a surface is con-
centrated at vertices. One might be tempted to think of there being curvature along
an edge, but just as cylinders have zero Gauss curvature, so will points along edges
end up having zero curvature. We need a few definitions before we are ready to define
a concept of Gauss curvature in the polygonal case.

Definition. Let S be a surface in Rn. The surface S is said to be convex if it is con-
tained in the boundary of a convex polyhedron in Rn. If p Œ S, then S is convex at the
point p if a neighborhood of the point p in S is contained in the boundary of a convex
polyhedron in Rn.

Definition. A set X Õ S2 is said to be geodesically convex if for every two distinct
points p and q in X, one of the two arcs of the great circle in S2 through p and q that
connect p and q lies in X. The geodesic convex closure of X is defined to be the 
intersection of all geodesically convex sets in S2 that contain X (intuitively, it is the
“smallest” geodesically convex set containing X).

Geodesic convexity and geodesic convex closure are the smooth-surface analogs
of convex and convex closure for vector spaces. The reason for the term “geodesic” in
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the definition will become clear after we define geodesic curves in the next section,
since arcs of great circles are geodesic curves. Clearly, the sphere and any hemisphere
in it are geodesically convex.

Definition. Let p be a point of a polygonal surface S in R3. Assume that S is ori-
ented, so that we have a notion of “outward-pointing” normal vectors for its facets.
Let n1, n2, . . . , nk Œ S2 be the outward pointing unit normal vectors to the facets of
S that contain p. The normal neighborhood of p in S is defined to be the subset of S2

that is the geodesic convex closure of the set of points {n1,n2, . . . ,nk} in S2. The normal
angle of p is the area of the normal neighborhood of p.

Note. In classical solid geometry the area of a subset X of S2 is called the measure
of the solid angle subtended by X.

For example, the normal neighborhood of a vertex of a cube is a curved triangle
which fills an eighth of a sphere and has normal angle p/2. More generally, in Figure
9.22, nA, nB, nC, and nD are the normals to the triangles A, B, C, and D in Figure
9.22(a), respectively. The shaded region in Figure 9.22(c) is the normal neighborhood
of the vertex p in Figure 9.22(a) and is the geodesic convex hull of the normals nA,
nB, nC, and nD. In general, if ni is the normal to the facet fi, then the arc from ni to
ni+1 consists of the normals of the planes one gets by rotating the plane containing fi
to the one containing fi+1 about the common edge keeping both facets on the same
side of the planes. It is easy to see that such normals generate an arc of a great circle.
If the surface is convex at the vertex, then one can also show that the normal neigh-
borhood consists of all the normals of the support planes to the surface at that vertex.
(A support plane at a point p of a set X in Rn is a hyperplane containing p with the
property that X lies in one of the halfplanes defined by the hyperplane.)

We can now define the Gauss curvature at a point of S.

Definition. Let p be a point of a polygonal surface S in R3. Define the polygonal
Gauss curvature function Kp on S by

K
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p p
p S
U p S
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where U is chosen in some appropriate consistent manner as we move from point to
point. (For example, Calladine ([Call86]) choses U to have one third of the area of all
the facets adjacent to q.)

The validity of an earlier comment is now clear. The polygonal Gauss curvature
vanishes at nonvertex points. If the point lies in the interior of a facet, then the normal
neighborhood is just a point. If the point lies in the interior of an edge, then the normal
neighborhood is just an arc of a great circle. In both cases, the area of the neighbor-
hoods is zero.

Curvature is related to another important quantity in the polygonal context.

Definition. The angular defect at a point p in S is defined to be 0 if p is not a vertex
and if p is a vertex, then it is

See Figure 9.22 again. The angular defect at the vertex p in Figure 9.22(a) is the
angle a shown in Figure 9.22(b). The angular defect clearly has some relation to cur-
vature, because the larger it is, the more pointed the surface is at a vertex.

9.9.4. Theorem. Let p be a point of a polygonal surface S in R3. Then

Proof. The only case that has to be considered is where p is a vertex. See Figure
9.22. The angle a in Figure 9.22(b) is the angular defect at the vertex p in Figure
9.22(a). The area of the shaded region in Figure 9.22(c) is the normal angle of p. See
[Call86], [Crom97], or [HilC99] for a proof. A basic element is the classical Greek
theorem that states that the area of a region in a sphere that is bounded by arcs of
great circles depends only on sum of the exterior angles of the region.

A consequence of Theorem 9.9.4 is worth noting, namely, the normal angle at a
vertex is unchanged if the surface is “folded” arbitrarily at the vertex by deformations
that move the facets rigidly changing the “creases” (the angles between the faces along
a common edge coming out of the vertex). This is because the angular defect does not
change. When facets are triangles and there are more than three at the vertex, then
many different folds are possible. [Call86] describes some applications of this result.

The discussion up to this point in this section was intended to motivate some
important concepts about surfaces and was not entirely rigorous. We shall now con-
sider smooth surfaces again and redo some of what we have covered but will use 
definitions that permit a more rigorous development. First of all, returning to the
Gauss map n(p), note that its derivative Dn(p) at a point p of S maps the tangent
space Tp(S) to the tangent space to S2 at n(p). Since the two tangent spaces are the
same (the tangent planes are parallel), we consider Dn(p) to be a linear map

Definition. The map Dn(p) is called the Weingarten map.

Note. We have given different definitions of surfaces and manifolds and their
tangent spaces. Therefore, to avoid any confusion on the part of the reader when it

D T Tn p S Sp p( ) ( ) Æ ( ): .

angular defect at  in normal angle of  in .p S p S=

2p - ( )sum of the interior angles at  of the facets of  that meet at the p S p .
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comes to computations, we again restate our assumption that in this chapter we are
following the definitions in Section 8.4. Tangent spaces are considered to be defined
in terms of tangent vectors to curves and derivatives map tangent vectors to tangent
vectors of the composite curves. For example, in case of the Gauss map, if v is a vector
in Tp(S) and g(t) is a curve in S with g(0) = p and g ¢(0) = v, then

(9.43)

9.9.5. Lemma. The Weingarten map Dn(p) is a self-adjoint linear map.

Proof. One needs to show that

for an arbitrary basis (v1,v2) of Tp(S). This involves fairly straightforward computa-
tions using the definitions. See [DoCa76].

Lemma 9.9.5 is a technical fact, which, along with the next two definitions, will
lead to some geometric results.

Definition. The quadratic form QII on Tp(S) defined by

is called the second fundamental form of S at p.

The minus sign is used to reduce number of minus signs elsewhere. The second
fundamental form is really a directional derivative. It measures the turning of the
tangent plane in the direction defined by a tangent vector.

Definition. The map

is called the shape operator for the surface S.

Some authors (see [ONei66]) make the latter the basis of the study of surfaces. It
clearly contains the same information as the second fundamental form. If the point
p is arbitrary, we shall drop the subscript p in the notation for the shape operator and
simply write S (in the same sense that one could simply write Dn). For example, the
notation S(v)•v is an abbreviation for the statements Sp(v)•v for p Œ S with v the
appropriate vector in Tp(S).

Definition. Let g(t) be a regular curve in S passing through p. Let N be the princi-
pal normal and the k curvature of g at p. Let q be the angle between N and n at p.
The number

is called the normal curvature of g at p in S.

We analyze this definition of normal curvature further. Let g(s) be a (regular) curve
lying in the surface S parameterized by arc-length and let N(s) be its principal normal.

k k kn, cosg qp N n p( ) = = ∑ ( )

S D T Tp p pn p S S= - ( ) ( ) Æ ( ):

Q DII v n p v v( ) = - ( )( ) ∑

D Dn p v v v n p v( )( ) ∑ = ∑ ( )( )1 2 1 2

Dn p v n( )( ) = ( )¢( )o g 0 .
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Assume that g(0) = p Œ S. First of all, since g≤ = kN, the normal curvature kn,g(p) is
now also defined by the formula

Next, to simplify the notation, let n(s) be shorthand for n(g(s)). Then n(s)• g ¢(s) = 0
and differentiating both sides of this identity gives

(9.44)

It follows that

and we have shown

9.9.6. Theorem. The value of the second fundamental form at a vector v in the
tangent space to a surface at some point p is the normal curvature of any regular
curve in the surface through p with tangent vector v there.

Theorem 9.9.6 proves Meusnier’s theorem, which we restate now in the following
way:

9.9.7. Theorem. (Meusnier) All regular curves lying in a surface S passing through
a point p and having the same tangent vector at p have the same normal curvatures
there.

Note that by definition

Therefore, the normal curvature of a curve can be derived from the shape operator.
In fact, by normalizing vectors, we get information about the curvature of the surface.

Definition. Let u be a unit vector in the tangent space to S at p. Then the quantity

is called the normal curvature of S in the direction u.

Note: There will never be any confusion when using the term “normal curvature” at
a point p of a surface S. Although we have two variants, one, the normal curvature
kn,g of a curve g, and the other, the normal curvature kn(u) in a direction defined by a

kn Su u up( ) = ( )∑

Q SII g g g¢( )( ) = ¢( )( ) ∑ ¢( )0 0 0p .

Q D

by Equation

II

n

g g g
g

g

g

¢( )( ) = - ( ) ¢( )( ) ∑ ¢( )
= - ¢( ) ∑ ¢( )
= ( ) ∑ ≤ ( ) ( )( )
= ( ) ∑ ( ) ( )
= ( )

0 0 0

0 0

0 0 9 44

0 0 0

n p

n

n

n N

p

.

,,

k
k

¢( ) ∑ ¢( ) = - ( ) ∑ ≤ ( )n ns s s sg g .

kn t, .g gp n p( ) = ≤ ( ) ∑ ( )
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unit tangent vector u, they have the same value when u is the tangent vector to g at
p. The only difference is that, as we have shown, kn,g is completely defined by the
tangent vector to g at p and thus basically a function defined on all tangent vectors,
whereas kn is only defined on unit tangent vectors. For that reason one can use the
symbols kn,g and kn interchangeably when unit tangent vectors are involved.

Using Lemma 9.9.5 and Theorem 1.8.10 one can show that Tp(S) has an ortho-
normal basis (u1,u2) so that

(9.45)

Furthermore, if we assume that k1 ≥ k2, then k1 and k2 are the maximum and minimum
of the second fundamental form QII, respectively, when restricted to the unit circle of
the tangent space at p. The numbers k1 and k2 are also the maximum and minimum,
respectively, of the values of the normal curvatures kn at p.

Definition. The numbers k1 and k2 are called the principal normal curvatures to S
at p. The unit vectors u1 and u2 are called the principal normal directions for S at p.

The principal normal directions will be unique at those places where Dn is non-
singular. These definitions agree with those that were given at the beginning of this
section. Furthermore, we can now easily prove Euler’s formula (9.41) for the normal
curvature in any direction. Let u be a unit vector in Tp(S). Then using the orthonor-
mal basis (u1,u2) used in Equation (9.45) we can express u in the form

for some angle q. It follows that

Definition. Let S be a surface and let Dn(p) :Tp(S) Æ Tp(S) be the Weingarten 
map at a point p in S. The determinant of Dn(p) is called the Gauss curvature of
S at p and is denoted by K(p). The mean curvature of S at p, denoted by H(p), is
derived from the trace of Dn(p) and defined by

9.9.8. Theorem. The two definitions of Gauss curvature agree.

Proof. See [DoCa76] or [Spiv70b].

H Dp n p( ) = -( ) ( )( )1 2  tr .

k

k k
k k

n IIQ

D

D

= ( )
= - ( )( ) ∑
= - ( ) ( ) + ( )( ) ∑ ( ) + ( )( )
= ( ) + ( )( ) ∑ ( ) + ( )( )
= +

u

n p u u

n p u u u u

u u u u

cos sin cos sin

cos sin cos sin

cos sin .

q q q q
q q q q
q q

1 2 1 2
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2

u u u= ( ) + ( )cos sinq q1 2

Dn p u u( )( ) = -2 2 2k .

Dn p u u( )( ) = -1 1 1k
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9.9.9. Theorem.

(1) K(p) = k1 k2.
(2) H(p) = (k1 + k2)/2.

Proof. Part (1) follows from equations (9.45) and the fact that the determinant of 
a linear transformation is independent of a basis. Part (2) follows from a similar prop-
erty for the trace function.

To get a little feel for this new definition of Gauss curvature, we rework Examples
9.9.1–9.9.3.

9.9.10. Example. Let S be a sphere of radius r about a point c. Then the Gauss map
is defined by

and

Therefore, a matrix for Dn(p) is

so that K = 1/r2 and H = -1/r. We can also see that k1 = k2 = -1/r.

9.9.11. Example. If S is a plane, then the Gauss map is constant, so that Dn(p) =
0 and the matrix for Dn(p) is zero. It follows that K = H = 0.

9.9.12. Example. Let S be the cylinder of radius r about the z-axis defined by

The Gauss map is defined by

and

D
r

n p n e( ) ¢( )( ) = ( )¢( ) = ¢( ) - ∑ ¢( )( )g g g g0 0
1

0 03o .

n p p p e( ) = - ∑( )1
3r

x y r2 2 2+ = .

1
0

0
1

r

r

Ê

Ë

Á
ÁÁ

ˆ

¯

˜
˜̃ ,

D
r

n p n( ) ¢( )( ) = ( )¢( ) = ¢( )g g g0 0
1

0o .

n p
p c
p c

p c( ) =
-
-

= -( )1
r
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We would like to find an orthonormal basis (u1,u2) of eigenvectors of Dn(p). If

then let u1 = (-sinq0,cosq0,0) and let u2 = e3. Note that the curve

has the property that g(0) = p and g¢(0) = u1. It is now easy to check from the formula
for Dn(p) above that

This shows that K = 0 and H = -1/2r.

Although we do not have time to discuss mean curvature here, it certainly has
geometrical significance. Here are two facts:

(1) The mean curvature at a point is the average of the normal curvatures there.
See [MilP77] or [DoCa76].

(2) The mean curvature plays an important role in the study of surfaces that have
minimum area for a fixed boundary.

Plateau’s Problem: Given a closed curve C, to find the surface of minimum area that
has C for its boundary.

Plateau’s problem is an old one and solving it has motivated a lot of research
over the years. It is well known that soap films spanning wireframe bound-
aries create minimum area surfaces. It can be shown that a necessary condi-
tion for a surface to minimizes area is that its mean curvature vanish.
Therefore another active research area is the study of minimal surfaces.

Definition. A minimal surface is a surface for which the mean curvature van-
ishes everywhere.

Minimal surfaces arise in other contexts, not just where one is minimizing
area. See [Osse69] or [Gray98]. There are lots of questions here about their
existence, uniqueness, construction, and characterization.

Definition. The Dupin indicatrix at a point p of the surface S is the subset X of Tp(S)
defined by

9.9.13. Theorem. Let p be a point on a surface S with Gauss curvature K. Then

(1) If K > 0, then the Dupin indicatrix is an ellipse.
(2) If K < 0, then the Dupin indicatrix consists of two pairs of hyperbolas.

X u S up= Œ ( ) ( ) = ±{ }T QII 1 .

D r

D

n p u u

n p u

( )( ) = ( )
( )( ) =

1 1

2

1
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g q
q

q
q

q( ) = +Ê
Ë

ˆ
¯ +Ê

Ë
ˆ
¯

Ê
Ë

ˆ
¯r

r
r

r
pcos , sin ,0 0 3

p = ( )r cos 0q q, sin , ,r p0 3
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(3) If K = 0, then the Dupin indicatrix consists of either two parallel lines if one
principal curvature is not zero or is empty if both principal curvatures are zero.

Proof. This is an immediate consequence of Euler’s theorem and Theorem 9.9.9(1).

Theorem 9.9.13 motivates the following definition of an elliptic, hyperbolic, or
parabolic point on a surface. Another common definition of these terms can be found
in Exercise 9.9.6.

Definition. Let p be a point of a surface S and let K be the Gauss curvature at p.
The point p is called

(1) elliptic if K > 0,
(2) hyperbolic if K < 0,
(3) parabolic if K = 0 but Dn(p) π 0 (only one principal curvature vanishes), and
(4) planar or flat if Dn(p) = 0 (both principal curvatures vanish).

Using Theorem 9.9.9 one can make the following observations. See Figure 9.19
again. At an elliptic point both principal curvatures have the same sign. This 
means that all curves through that point must have their normal vector point to the 
same side of tangent plane. Spheres and ellipsoids are examples of such surfaces (see
Figure 9.19(a)). At a hyperbolic point p, the principal curvatures have opposite 
signs and so one can find two curves through p whose normals at p point to opposite
sides of the tangent plane. A saddle surface, such as the hyperbolic paraboloid

(see Figure 9.19(b)) and the point (0,0,0), is an example. The cylinder (Figure 9.19(c))
is an example of a parabolic point. One of the principal curvatures is zero, but 
the other is not. Points of a plane are example of planar points, but nonplanar sur-
faces can have such points. For example, (0,0,0) is a planar point of the surface of
revolution where the curve z = x4 is revolved about the z-axis (Exercise 9.9.1). Finally,
we should mention the classical interpretation of the Dupin indicatrix, namely, if we
take the tangent plane at a point p and intersect it with the surface S after moving it
slightly in the normal direction, then the intersection curve will be the same sort of
curve as the Dupin indicatrix. Figure 9.23(a) and (b) shows the intersection with the
moved plane X at an elliptic and parabolic point p, respectively. See [DoCa76] or
[MilP77].

Definition. A point on a surface where the principal normal curvatures are equal
(k1 = k2) is called an umbilical point.

Planar points are umbilical points.

9.9.14. Theorem. If every point of a connected surface S is an umbilical points,
then S is either contained in a sphere or in a plane.

Proof. See [DoCa76].

z x y= -2 2
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Definition. An asymptotic direction at a point p of a surface S is a nonzero vector 
v Œ Tp(S) so that QII (v) = 0. A curve in S with the property that its tangent vector 
at every point is an asymptotic direction at that point is called an asymptotic
line.

An elliptic point has no asymptotic directions. At a hyperbolic point there are two
linearly independent asymptotic directions corresponding to two lines through the
origin of the tangent plane. This matches the terminology with regard to ordinary
hyperbolas in the plane. Parabolic points have a single line of asymptotic directions.
The silhouette line along the top of the surface in Figure 9.23(b) defines an asymp-
totic line.

Next, we want to express the second fundamental form in local coordinates similar
to what we did for the first fundamental form. Let U be an open set in the uv-plane
and let

be a regular parameterization of a neighborhood V of a point p in the surface S in
R3. Let n(p) denote the unit normal vector to S as before. Assume U contains the
origin and that F(0) = p. Let v be a tangent vector in the tangent space of S at p.
Choose a curve

in S with g(0) = p and v = g¢(0). Express g in the form g(t) = F(m(t)), where

and m(0) = 0. See Figure 9.16 again. Let m(t) = (u(t),v(t)).
To simplify the notation, we define

F
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F

F
F

u v uuu v u
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∂
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Further, we abbreviate n(F(u,v)) to n(u,v) and define

The chain rule implies that

(9.46)

It follows from equations (9.46) and (9.35) that

(9.47)

where, using the identities that one gets when the known equations n•Fu = 0 = n•Fv
are differentiated,

Definition. The functions L, M, and N are called the coefficients of the second 
fundamental form.

Note that the matrix

is just the matrix of the symmetric bilinear map associated to the quadratic form QII
with respect to the basis consisting of the vectors Fu and Fv and LN - M2 is the dis-
criminant of QII with respect to that basis. In terms of the shape operator S we have

Note also that equation (9.47) expresses the Dupin indicatrix in terms of the functions
L, M, and N. Asymptotic lines are defined by the equation

Next, compare Equation (9.47) for the second fundamental form with Equation
(9.39) for the first fundamental form. The functions L, M, and N play just as impor-
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tant a role as the functions E, F, and G. In particular, let us show that the derivative
of the Gauss map can be described in terms of these functions. First of all, since
nu(u,v) and nv(u,v) lie in the tangent space at F(u,v) (n•n = 1 implies nu •n = nv •n
= 0), we can express the vectors in terms of the local basis, namely,

(9.48)

for some constants cij. Equations (9.46) and (9.48) imply that

(9.49)

and that the matrix for Dn with respect to the basis (Fu,Fv) is

(9.50)

But from equation (9.48) and the definition of the coefficients of the first fundamen-
tal form we get

(9.51)

We can express equations (9.51) in matrix form as

(9.52)

This is easily solved for the matrix (cij) to establish that
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Equations (9.53) complete our analysis of Dn and we are ready to draw some
important consequences. Incidentally, equations (9.48) with the values of cij as shown
in (9.53) are called the Weingarten equations.

9.9.15. Theorem. The Gauss curvature K satisfies

Proof. The theorem follows from equation (9.52) and the definition of Gauss 
curvature as the determinant of matrix (9.50). We see that K is just the quotient 
of the discriminants of the first and second fundamental forms.

9.9.16. Theorem. The mean curvature H satisfies

Proof. The theorem follows from the definition of H and the values in (9.53) from
which we can immediately compute the trace of the matrix (9.50) for Dn.

Finally, we relate the Gauss and mean curvatures to the principal normal curva-
tures k1 and k2. Since the -k1 and -k2 are eigenvalues of Dn, the linear map Dn + kI
is not invertible when k = k1 or k2. Therefore, its matrix has zero determinant, that is,

This expands to

or

(9.54)

for k = k1 or k2. In other words, we have proved

9.9.17. Theorem. The principal normal curvatures satisfy Equation (9.54) and are
given by the formula

(9.55)

It is again time for an example. Analyzing the geometry invariably involves com-
puting the functions that are the coefficients of the first and second fundamental
forms. The functions L, M, and N are the more complicated. They were defined in the
derivation of equation (9.47). Each had basically two definitions. However, given the
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fact that the formula for the derivative of the function n(F(u,v)) may be complicated,
one usually prefers to use the following formulas:

(9.56)

9.9.18. Example. Consider the torus that is obtained by rotating the circle of radius
r with center (0,R,0), r < R, in the xy-plane about the x-axis. See Figure 9.24. It can
be parameterized by

One can check that
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Therefore,

These formulas and the preceding Theorems allow us to conclude that

and

Since the sign of K is determined by LN - M2, we get elliptic points when 0 < f < p,
hyperbolic points when p < f < 2p, and parabolic points (K = 0) when f = 0 or p. Next,
Equation (9.24) implies that

The maximum normal curvature k1 is the same everywhere and is the curvature of
the circle that generates the torus. The minimum normal curvature k2 varies with the
meridians specified by f. It has its maximum on the outside where f = p/2, its
minimum on the inside where f = -p/2, and is zero when f = 0 or p.

We pause for a moment to investigate the degree to which what we have done so
far depends on the choice of local coordinates. The definition of the second funda-
mental form is certainly independent of the coordinates. On the other hand, had we
chosen to base the definition on equation (9.47), as is done sometimes, there would
have been a question. Exercise 9.9.5 asks the reader to show the independence of local
coordinates of the definition in (9.47). The proof involves the chain rule similar to
what we did in showing the independence of equation (9.37) for the first fundamen-
tal form. The coefficients of the second fundamental form do depend on the coordi-
nate system but behave like the coefficients of the first fundamental form.

9.9.19. Theorem. In the case of surfaces the coefficients of the second fundamen-
tal form transform as follows (using the notation in Theorem 9.8.12):
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Proof. Use the appropriate chain rule.

We have not paid much attention to the local parameterizations that we used. By
choosing these more carefully we can make formulas simpler (as in the case of curves
where arc-length parameterization was superior to other ones).

Definition. A line of curvature on a surface is a curve whose tangent at every point
is parallel to a principal direction.

9.9.20. Theorem. (Rodrigues) Let F(u,v) be any regular parameterization of a
surface S. Then a curve g(t) in S defines a line of curvature if and only if

(9.57)

where n(t) = n(g(t)) and k(t) is the principal curvature of the curve at g(t).

Proof. If g(t) is a line of curvature, then g ¢(t) must be an eigenvector of Dn.

Equation (9.57) is called the Rodrigues formula.

9.9.21. Theorem. Every nonumbilical point on a C3 surface has a neighborhood on
which there exist two orthogonal families of lines of curvature.

Proof. Proving this theorem amounts to solving the differential equations defined
by (9.57). Standard results about differential equations imply the existence and
uniqueness of local solutions.

Often the following weaker form of Theorem 9.9.21 is sufficient. It is much easier
to prove.

9.9.22. Theorem. Given a point p on a C2 surface we can always find a regular 
parameterization F(u,v) of a neighborhood of p so that Fu and Fv at p are principal
directions.

Proof. Choose any regular parameterization F(u,v) for a neighborhood of p. Assume
that F(0,0) = p. If Fu and Fv are not already principal directions, we shall simply
“rotate” the coordinate patch to achieve this. Let u1 and u2 be linearly independent
vectors in R2 with the property that DF(ui) are principal directions and let T be 
the linear transformation of R2 so that T(ei) = ui. Then j = F-1T is the desired 
parameterization.

9.9.23. Theorem. Given a regular parameterization F(u,v) of a surface, the vectors
Fu and Fv at a nonumbilical point are in the direction of the principal directions if
and only if F = M = 0 at that point.
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Proof. At a nonumbilical point the principal directions are orthogonal and by defi-
nition F = 0 if and only if Fu and Fv are orthogonal. If F = 0, then M = 0 if and only
if the matrix in (9.50) is diagonal, which is equivalent to Fu and Fv being principal
directions and Rodrigues’s formula holding.

From this we get immediately

9.9.24. Corollary. Given a regular parameterization F(u,v) of a surface with no
umbilical points, then the u- and v-parameter curves on the patch are lines of curva-
ture if and only if F = M = 0.

9.9.25. Theorem. If the vectors Fu and Fv of a regular parameterization F(u,v) of
a surface are the principal directions at a point, then the principal normal curvatures
at that point are given by

Proof. Given the hypothesis, Theorem 9.9.23 implies that F = M = 0. Substituting
into the formulas for the Gauss curvature and mean curvature given in Theorems
9.9.15 and 9.9.16 and solving Equation (9.55) for this special case gives the desired
two roots.

9.9.26. Corollary. If the u- and v-parameter curves of a regular parameterization
F(u,v) of a surface are lines of curvature, then the principal curvatures at that point
are given by

We are almost done with our foray into the geometry of surfaces, but it 
seems appropriate to take it a little further and finish with the so-called fundamental
theorem of surfaces (Theorem 9.9.28 below) that is the analog of Theorem 9.4.7 
for curves. Even though most of the results in the rest of this section are stated 
without proofs (they are actually not that hard), the reader will at least get an 
overview of what needs to be done. For details see [DoCa76], [Lips69], [Spiv70b], or
[Spiv75].

The main missing ingredient in what we have done so far is to express the second
derivatives Fuu, Fuv, and Fvv in terms of the first derivatives and n. This can be done
because the three vectors form a basis for R3. Suppose we write

(9.58)
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where Gs
ij and aij are some constants. One can show (by taking the dot product of 

equations (9.28) with Fu and Fv) that these constants are given by the following 
formulas:

(9.59)

Definition. The quantities Gs
ij are called the Christoffel symbols of the surface S for

the parameterization F(u,v).

Not only do we have the formulas above for the Christoffel symbols, but since
they are functions of E, F, and G and their derivatives, it follows that any quantity
defined in terms of these symbols will be invariant under isometries!

We get some additional constraints on the Christoffel symbols if we use the fact
that C3 functions have mixed partials that can be obtained by differentiating in any
order. In particular,

(9.60)

One can show that equations (9.60) hold if and only if

(9.61)

and

(9.62)

Equations (9.61) are called the Mainardi-Codazzi equations. Equation (9.62) is called
the Gauss equation. Equations (9.61) and (9.62) together are called the compatibility
equations.

The Gauss equation has an important consequence. Since the Christoffel symbols
Gs

ij depend only on E, F, G, and their derivatives, the quantity LN - M2 depends only
on the coefficients of the first fundamental form and their derivatives. It follows from
Theorem 9.9.15 that the Gauss curvature depends only on the coefficients of the first
fundamental form (even though it was defined from the second fundamental form).
Therefore we have proved one of the most fundamental results in the theory of sur-
faces, namely,

9.9.27. Theorem. (Theorema Egregrium) The Gauss curvature K(p) of a surface of
class C2 is an isometric invariant.
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Theorem 9.9.27 is the reason that mapmakers had so much trouble making a good
map of the world. The converse of Theorem 9.9.27 is false in general, namely, a Gauss
curvature-preserving map between surfaces is not necessarily an isometry. The 
converse is true in one special case, namely, the constant curvature case.

9.9.28. Theorem. Any two surfaces having the same constant Gauss curvature are 
isometric.

Proof. See [Stok69].

We finally come to our main result, namely, that knowledge of the first and second
fundamental forms of a surface determine it completely locally.

9.9.29. Theorem. (The Fundamental Theorem of Surfaces) Let E, F, G, L, M, and
N be differentiable functions defined on an open set U in R2 with E, G > 0. Assume

(1) EG - F2 > 0 and
(2) E, F, G, L, M, and N satisfy the compatibility Equations (9.61) and (9.62).

Then, for each p in U there exists an open neighborhood V of p in U, a surface S in
R3, and a diffeomorphism

so that E, F, G, and L, M, N are the coefficients of the first and second fundamental
form of S, respectively. Furthermore, the surface S is unique up to rigid motion.

Proof. See [DoCa76], [Lips69], or [Spiv75]. The functions E, F, and G need only be
C2 and the functions L, M, and N, only C1.

9.10 Geodesics

This section takes a look at how we might generalize the concept of a “straight” line
that we have in Rn. The generalization will be called a geodesic. We shall discuss geo-
desics in a surface in R3. The reason for concentrating on this special case is that it
allows us to introduce the subject of geodesics in a geometrically intuitive way. The
generalization to higher-dimensional manifolds with a Riemannian metric involves
more advanced concepts from differential geometry that we shall only briefly get to
in Section 9.17. We shall present four definitions for a geodesic. Although geodesics
depend only on intrinsic properties of a surface, not all the definitions will have that
property and will seem to rely on a surface’s imbedding in R3. In practice this will not
be a problem. In fact, it will facilitate certain computations.

Since a manifold is not a vector space, generalizing the simple definition of a
straight line in terms of a point and direction vector will clearly not work. To gener-
alize, one must understand what one is generalizing. What are some intuitive prop-
erties that one usually associates to a straight line? Here are several:

F : ,V SÆ
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(1) Straight lines are not “curved”, that is, they have zero curvature.
(2) Straight lines define paths of shortest lengths between two points.
(3) Between any two points in Rn there is a unique straight line from one to the other.
(4) The tangent vectors along the straight line are all parallel.

The different ways of looking at a straight line have a close connection to principles
in physics, specifically, the mechanics of particles. It follows from basic principles of
classical mechanics that a particle that is not under the influence of any external forces
and that is moving in a surface will move along a geodesic in the surface. For example,
the shortest path property reflects Jacobi’s form of the principle of least action. The
straightness of lines reflects the Hertz principle of least curvature. The shortest path
property is probably one of the most common ways of thinking of a straight line. A
nice elementary book that investigates shortest paths (and other variational problems)
at great length is [Lyus64].

Before we get started generalizing the just-mentioned properties of straight lines,
we want to clarify a point that might otherwise cause some confusion in the reader’s
mind later on. Basically, we again run into the problem that although we are really
interested in characterizing certain sets (reading the just-mentioned properties cer-
tainly suggests that we are talking about paths or sets), the analysis will proceed by
studying functions, namely, parameterizations of those sets. The term “geodesic” is
applied to both paths, where there will be no confusion, and functions, where the 
confusion may arise with respect to the multiple definitions since there is no unique
parameterization of a path. Of course, we could restrict ourselves to arc-length para-
meterizations. This is a good approach from a theoretical point of view, and will be
our first one, because it would not only give us a unique parameterization for each
path but also greatly simplify the analysis. The problem with only using arc-length
parameterizations when dealing with geodesics is that one rarely sees these parame-
terizations in practice. Defining arc-length parameterizations is usually extremely
complicated. For practical reasons therefore one want to study geodesics in the
context of a class of functions that is at least broad enough to cover the kind of para-
meterizations one finds in the real world. The potential confusion to which we are
referring here, and which is what we want to bring out into the open, arises from the
fact that the classes of parameterizations, to which the different definitions for when
a parameterization is a geodesic apply, are often different. This difference alone would
therefore make the definitions different. For example, some definitions in the litera-
ture apply only to arc-length parameterizations, some to arbitrary regular parame-
terizations, and others to constant speed regular parameterizations. When using one
of these definitions one must then of course be careful to apply it to a parameteriza-
tion of the correct type. As long as the reader does that and understands what is going
on, a question such as “is this definition the same as that one?” may be interesting
from a technical point of view but is unimportant practically speaking. All definitions
agree on arc-length parameterizations. They all lead to the same geodesic paths.

We start the discussion of geodesics by introducing a new aspect of the curvature
of a space curve if it lies in a surface. Let

be a regular one-to-one parameterization of a surface S in R3 and let n(p) be the 
unit normal vector to the surface S at the point p = F(u,v). Let g : [a,b] Æ S be a curve

F : U SÆ
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parameterized by arc-length. See Figure 9.25. As a curve in R3 we know that g(s) can
be described in terms of its Frenet frame (T(s),N(s),B(s)), its curvature k(s), and 
its torsion t(s). Define a unit vector nS(s) so that (T(s),nS(s),n(g(s))) is a frame that
defines the standard orientation in R3. The vector nS(s) will be tangent to S at g(s)
and is defined by the equation

(9.63)

Recall that the second derivative g≤(s) is closely related to the curvature of the space
curve g(s). Since the tangent space to R3 at g(s) is the direct sum of the tangent space
of S at g(s) and the one-dimensional orthogonal subspace with basis n(g(s)), we can
write any vector, in particular g≤(s), in the form

(9.64)

where V(s) lies in the tangent space of S at g(s) and W(s) is a multiple of n(g(s)). The
vector V(s) can also be described more explicitly. Since T(s) is tangent to S, W(s)•T(s)
= 0. But g(s) is arc-length parameterization, so that g≤(s)•T(s) = 0. It follows from this
and equation (9.64) that V(s)•T(s) = 0, that is, V(s) is orthogonal to T(s). In other
words, the vector V(s) is orthogonal to both n(g(s)) and T(s). Equation (9.63) now
implies that V(s) is a multiple of nS(s). Putting all these facts together implies that
there are unique functions kn(s) and kg(s), so that

(9.65)

The value kn(s) = g≤(s)•n(g(s)) is of course just the normal curvature of the curve g(s)
at s.

Definition. The value kg(s) is called the geodesic curvature of the arc-length para-
meterized curve g(s) at s.

The geodesic curvature function was introduced by F. Minding in 1830. Because
we have orthonormal vectors, the following relation holds between k, kn, and kg:

(9.66)k k k2 2 2= +n g.

g g≤ ( ) = ( ) ( ) = ( ) ( )( ) + ( ) ( )s s N s s s n sn gk k kn s S .

g≤ ( ) = ( ) + ( )s W s V s

n s s T sS n( ) = ( )( ) ¥ ( )g .

622 9 Differential Geometry

T(s)

nS(s)
Tp(S)

n(g(s))

p = g(s)

g ¢¢(s)

S

Figure 9.25. Defining geodesic curvature.



Note also that, although k is always nonnegative by definition, no such condition holds
for kn or kg. In fact, changing the direction of n(g(s)) changes the sign of both of these
values. We already discussed the normal curvature of a curve in the last section. In
this section it is the geodesic curvature that is interesting because that is what is
needed to define geodesics.

Here are some facts that describe the geometry behind the function kg a little more.

9.10.1. Theorem. Let g(s) be a curve in a surface S in R3 parameterized by 
arc-length.

(1) If the surface S is a plane, then the geodesic curvature function kg(s) of the
planar curve g(s) is just the ordinary planar signed curvature function of the
curve g(s).

(2) kg(s) = k(s)cosa(s), where a(s) is the angle between the unit normal n(g(s))
and the binormal B(s).

(3) kg(s) is the signed curvature at g(s) of the planar curve that is the orthogonal
projection of g(s) onto the tangent plane of S at g(s).

Proof. In the case where S is the xy-plane, part (1) is an easy consequence of the
definition of nS(s) and the definition of curvature in a plane. Part (2) follows from the
following string of equalities:

Part (3) generalizes part (1) and its truth follows intuitively from the formula in Part
(2). The proof is left as Exercise 9.10.1.

We have considered the arc-length parameterization of curves in the discussion
above because the formulas are simpler in that case; however, as usual, we are inter-
ested in geometric concepts associated to paths rather than their parameterizations.
First, we extend the definitions to regular curves in the obvious way.

Definition. If h(t) is a regular curve for which g(s) = h(s(s)) is the arc-length para-
meterization after an orientation-preserving change of parameters t = s(s), then the
normal curvature kn(t) and the geodesic curvature kg(t) of h(t) at t are defined to be the
normal and geodesic curvatures, respectively, of the curve g(s) at the point s = s-1(t).

Fortunately, we have a formula for computing the geodesic curvature for an arbi-
trary regular curve.

9.10.2. Theorem. If h(t) be a regular curve in a surface S in R3, then
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Proof. Assume that h(t) = g(a(t)), where g(s) is the arc-length parameterization of
the curve. Differentiating we get

Therefore, |h¢(t)| = |a¢(t)|, (using the fact that |g ¢(s)| = 1), and

(using the fact that g ¢ ¥ g¢ = 0). We now have the following string of equalities:

The theorem is proved.

We are ready to look at the problem of generalizing straight lines. We first gener-
alize property (1) of a straight line, namely, that it is not curved. The tangent plane
at a point of a surface is a good approximation to the surface. This suggests that we
would like the projection of a geodesic onto the tangent plane to be a straight line,
and so we take our cue from Theorem 9.10.1(3).

First definition of a geodesic: A geodesic in a surface S in R3 is a regular curve in
S whose geodesic curvature is zero everywhere.

According to the definition, a geodesic is a function, but, as usual, we are really
interested in properties of paths.

Definition. Let S be a surface in R3. A subset X in S is called a geodesic path, or
simply a geodesic, if there is a geodesic s : [a,b] Æ S with X = s([a,b]). A curve 
g : [c,d] Æ S is said to generate a geodesic path if g([c,d]) is a geodesic path.

The next theorem contains some useful criteria for when regular curves are 
geodesics.

9.10.3. Theorem. Let S be a surface in R3.

(1) If h : [a,b] Æ S is a regular curve with the property that h≤(t) is orthogonal to
S at h(t) for all t, then h(t) is a geodesic.

(2) A constant speed regular curve h : [a,b] Æ S is a geodesic if and only if h≤(t)
is orthogonal to S at h(t) for all t.

Proof. If we have arc-length parameterization, then both parts of the theorem are
obvious from Equation (9.65). Assume that h(t) is a regular curve but not necessarily
the arc-length parameterization.
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If h≤(t) is orthogonal to S, then Theorem 9.10.2 easily implies that the geodesic
curvature vanishes. This proves part (1) of the theorem and the “if” part for (2). To
prove the “only if” part in (2), assume that h(t) is a constant speed geodesic. Since the
geodesic curvature of h(t) vanishes, h≤(t) is a linear combination of the orthogonal
vectors h¢(t) and n(h(t)). This is all that we would be able to say in general, but h(t)
has constant speed, so that h¢(t)•h¢(t) = c for some constant c. Differentiating this
equation shows that h≤(t) is orthogonal to h¢(t) and hence must be parallel to n(h(t)),
which is what we had to prove.

Note that the converse to Theorem 9.10.3(1) is false. Consider the (nonconstant
speed) planar curve h(t) = (t2,t2), t Œ [1,2]. Since h≤(t) = (2,2), h≤(t) is not orthogonal
to the plane even though its path, a straight line segment, is obviously a geodesic. This
example shows that all we can say about h≤(t) for a regular curve h(t) that is a geo-
desic is that h≤(t) is a linear combination of the vectors h¢(t) and n(h(t)). Even so,
because checking whether h≤ is orthogonal to the surface is such a simple test, some
texts turn the property into a definition.

Second definition of a geodesic: A geodesic in a surface S in R3 is a regular curve
h(t) in S with the property that h≤(t) is orthogonal to the surface at h(t) for all t.

As we just saw, this is actually a stronger condition than necessary since it forces
a geodesic to be a constant speed regular curve. It is therefore technically not equiv-
alent to our first definition.

Because constant speed regular curves will appear frequently in this section, we
collect two of their important properties in a theorem.

9.10.4. Theorem. Let h(t) be a regular curve in a surface S in R3.

(1) If h≤(t) is orthogonal to the surface, then h(t) is a constant speed curve.
(2) If h(t) has constant speed, then the parameter t is proportional to the arc-

length parameter s.

Proof. To prove (1), note that

implies that h¢•h¢ is a constant function. To prove (2), assume that |h¢(t)| is equal to
a constant c π 0, and check that g(s) = h(s/c) is the arc-length parameterization, that
is, s = ct.

Here is a criterion that is more directed at the question of when a path is a geo-
desic by telling us what kind of parameterization we should seek.

9.10.5. Theorem. Let S be surface in R3. If h : [a,b] Æ S is a regular curve with the
property that the vector h≤(t) lies in the plane spanned by h¢(t) and n(h(t)) for all t,
then the arc-length parameterization of the curve h(t) is a geodesic in S.

Proof. Let a : [0,L] Æ [a,b] be the reparameterization of h(t), so that g(s) = h(a(s)) is
the arc-length parameterization. We have that

h h h h¢ ∑ ¢( )¢ = ¢ ∑ ≤ =2 0
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from which it follows that the vector g≤(s) lies in plane spanned by h¢(a(s)) and
h≤(a(s)). Our hypothesis about h≤ now implies that the vector g≤(s) lies in plane
spanned by g ¢(s) and n(g(s)). But g ¢(s) and n(g(s)) are orthogonal vectors and so are
g ¢(s) and g≤(s) since g(s) is arc-length parameterization. It follows that g≤(s) is a mul-
tiple of n(g(s)), that is, g≤(s) is orthogonal to S at g(s). The theorem is proved.

9.10.6. Example. Lines in R2 are geodesics. Simply use a parameterization of the
form g(t) = p0 + tv for which g≤(t) = 0. More generally, a similar argument shows that
if a surface S contains a segment, then that segment is a geodesic in S.

9.10.7. Example. The curve

(9.67)

where a, b, c, and d are constants, is a geodesic in the cylinder x2 + y2 = 1. Conversely,
every geodesic of this cylinder has a parameterization of the form shown in Equation
(9.67). See Figure 9.26.

Proof. By inspection

is orthogonal to the cylinder at g(t). To prove this directly, let

The cylinder is just the zero set of the function f(x,y,z) and we know that the gradient
—f = (2x,2y,0) is a normal vector to the surface at (x,y,z). This vector is parallel to 
g≤(t).

To show the converse, let g(s) be an arc-length parameterized curve that is a geo-
desic and use equation (9.65) to deduce that

f x y z x y, , .( ) = + -2 2 1

g≤ ( ) = - +( ) - +( )( )t a at b a at b2 2 0cos , sin ,

g t at b at b ct d( ) = +( ) +( ) +( )cos ,sin , ,

g a h a g a h a a h a¢( ) = ¢( ) ¢ ( )( ) ≤ ( ) = ≤( ) ¢ ( )( ) + ¢( ) ≤ ( )( )s s s and s s s s s
2

,
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Therefore, integration implies that T(s)•e3 = c, for some constant c. Integrating again
implies that g(s)•e3 = cs + d, for another constant d. It follows that

for some function u(s). It is easy to check by differentiating that the condition g ¢(s)•
g ≤(s) = 0 implies that

Two more integrations then imply that u(s) = as + b, for constants a and b. A more
elegant way to solve the problem is to observe that

defines a local isometry of the plane with the cylinder. See Example 9.8.3 and Figure
9.26 again. Any geodesic on the cylinder must pull back to a straight line in the plane
via this map since those are the only geodesics in the plane. We leave the reader to
fill in the details.

9.10.8. Example. The great circles

(9.68)

where a and b are constants and u1 and u2 are orthonormal vectors, are geodesics in
the sphere S2. Conversely, every geodesic of S2 has a parameterization of the form
shown in equation (9.68).

Proof. To prove the first part, we again simply have to observe that

is a vector orthogonal to the sphere at g(t).
To show the converse, let g(s) be the arc-length parameterization of a geodesic.

Claim 1. The curve g(s) has constant curvature. In fact, k = 1.

First of all, g ¢• g = 0 implies that g ≤• g + g ¢• g ¢ = g ≤• g + 1 = 0, so that g ≤ π 0 and g
has a well-defined Frenet frame (T(s),N(s),B(s)). Since N(s) is also a unit normal to
S2, the definition of the shape operator Sp for the sphere with respect to that normal
vector field of S2 implies that

S T s DN s T s N s s T s s B ssg g( ) ( )( ) = - ( )( ) ( )( ) = - ¢( ) = ( ) ( ) - ( ) ( )k t .

g g≤ ( ) = -( ) + -( ) = - ( )t a at a at a t2
1

2
2

2cos sinu u

g t at at( ) = ( ) + ( )cos sin ,u u1 2

F u v u u v, cos ,sin ,( ) = ( )

u s u s u s¢( ) ≤ ( ) = ¢ ( )Ê
Ë

ˆ
¯ ¢ =

1
2

02 .

g s u s u s cs d( ) = ( ) ( ) +( )cos ,sin ,

T s s s sn¢( ) ∑ = ≤( ) ∑ = ( ) ( )( ) ∑ =e e n e3 3 3 0g gk .
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But we also know that

for all tangent vectors v of S2 at g(s) and some constant c because every point of the
sphere S2 is an umbilical point. In our case of a unit sphere, c = 1. These two equa-
tions imply that k = 1 and t = 0. Claim 1 is proved.

Let p0 = g(s0) be a point on the curve.

Claim 2. The curve g(s) lies in the plane X through the origin with basis g ¢(s0)
and g ≤(s0) (= p0).

To prove Claim 2, note that g(s) is a unit normal to S2 at g(s), so that

Therefore, g ¢(s) ¥ g ≤(s) is a constant vector. If b = g ¢(s0) ¥ g ≤(s0), then

which shows that g(s) lies in plane through p0 that has normal vector b. Given the
definition of b, this proves Claim 2 and also shows that the curve lies in the great
circle that is the intersection of the plane X and S2.

To finish the proof of the converse, pick an orthonormal basis u1 and u2 for the
plane X, express g(s) in the form

and show that u(s) has the right form with an argument like in Example 9.10.7.

9.10.9. Example. We find some geodesics on surfaces of revolution. Assume that
we are given a surface of revolution in R3 and that the curve being revolved does not
intersect the axis about which it is being revolved (something that typically would
cause singularities in the surface). What we want show is that all the meridians of
this surface are geodesics and a circle of latitude is a geodesics if and only if all the
tangent planes at points of the circle are parallel to the axis of revolution.

Solution. We shall only consider the case where a regular curve h(t) = (x(t),y(t)),
t Œ [a,b], in the plane is revolved about the x-axis and the surface has a parameteri-
zation of the form

See Figure 9.27. We assume that F(t,q) is a regular parameterization. The proof will
rely on Theorem 9.10.2 and Theorem 9.10.3(1). Now

F
F
t t x t y t y t

t y t y t

, , cos , sin

, , sin , cos

q q q
q q qq

( ) = ¢( ) ¢( ) ¢( )( )
( ) = - ( ) ( )( )0

F t x t y t y t, , cos , sin .q q q( ) = ( ) ( ) ( )( )

g s u s u s( ) = ( )( ) + ( )( )cos sin ,u u1 2

g s( ) -( ) ∑ =p b0 0,

g g g g g g g g g¢ ¥ ≤( )¢ = ¢ ¥( )¢ = ≤ ¥ + ¢ ¥ ¢ + ¢( ) =k k k k 0.

S csg( ) ( ) =v v
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and

The vector Ft ¥ Fq is a surface normal. Although it may not have unit length, using
it in formulas, as we shall do, rather than a normalized version will simplify expres-
sions but not change the validity of when certain dot products are zero.

Consider the meridian

and its derivatives

It is easy to check that

and so a(t) is a geodesic by the theorems mentioned.
Next, consider the circle of latitude

and its derivatives

This time

b bq≤∑ ¥( ) ¥ ¢( ) = ¢F Ft y y3 .

b q q q
b q q q

¢( ) = - ( ) ( )( )
≤ ( ) = - ( ) - ( )( )

0

0

, sin , cos

, cos , sin .

y t y t

y t y t

b q q( ) = ( )F t,

a aq≤∑ ¥( ) ¥ ¢( ) =F Ft 0,

a q q
a q q

¢( ) = ¢( ) ¢( ) ¢( )( )
≤ ( ) = ≤( ) ≤ ( ) ≤ ( )( )

t x t y t y t

t x t y t y t

, cos , sin

, cos , sin

a qt t( ) = ( )F ,

F Ft t t y t y t x t x t, , , cos , sin .q q q qq( ) ¥ ( ) = ( ) ¢( ) - ¢( ) - ¢( )( )
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But y π 0 because the curve h(t) does not cross the x-axis, and so this expression will
vanish if and only if y¢ = 0. This is equivalent to saying that Ft(t,q) = (x¢(t),0,0), which
is what we were trying to show.

As an application, consider the torus and its parameterization as defined in
Example 9.9.18. We can think of this torus as a surface of revolution where the curve

gets revolved about the x-axis. It is clear that the meridians, which are circles in this
case, are geodesics. On the other hand, y¢(t) = cost = 0 implies that t = p/2 or 3p/2. In
other words, the only circles of latitude that are geodesics are the inner circle with
radius R - r and the outer circle with radius R + r.

Our definition of geodesic applied only to surfaces in R3 because we made use 
of the normal vectors to the surface. Obviously, the normal curvature of a curve
depends on having a normal vector, but it turns out that its geodesic curvature does
not.

9.10.10. Theorem. (Minding) The geodesic curvature of a curve in a surface is a
metric invariant.

Proof. Specifically, what we want to show is that the geodesic curvature depends
only on the curve and the metric coefficients of the surface. How the surface is 
imbedded in R3 plays no role.

Let

be a regular one-to-one parameterization of a surface S in R3 and let n(p) be the unit
normal vector to the surface S at the point p. Let

be a curve parameterized by arc-length. Express g in the form g(s) = F(m(s)),
where

Now

(9.69)

and

(9.70)

Substituting the right-hand side of equations (9.58) for the Fuu, Fuv, and Fvv in equa-
tion (9.70) gives

g≤ = ¢ + ¢ ¢ + ¢ + ≤ + ≤F F F F Fuu uv vv u vu u v v u v2 22 .

g ¢ = ¢ + ¢F Fu vu v

m m: , , .a b and s u s v s[ ] Æ ( ) = ( ) ( )( )R2

g : ,a b[ ] Æ S

F : U SÆ

h t R r t r t r t R r t x t y t( ) = ( ) + ( ) = +( ) = ( ) ( )( )0, cos , sin cos , sin ,
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so that equation (9.65) clearly implies that

To make the pattern more apparent, we change our notation slightly and rename our
parameters u and v to x1 and x2, respectively, so that we can rewrite the last equation
using summation notation as

(9.71)

(F1 and F2 are the partials Fu and Fv, respectively.) But, using Equation (9.69),

Therefore, if we let ckm = n•(Fk ¥ Fm), then

Finally, since

we have shown that kg depends only on the Christoffel symbols, which are metric
invariants by equation (9.59), and g. The theorem is proved.

Moving on to property (2) of straight lines, we can see from Example 9.10.8 that
a geodesic in S2, as we have defined one, can start at a point, go round and round a
great circle, and finally end up at that point again, so that it is not necessarily the
shortest curve between any two points. On the other hand, they do satisfy property
(2) locally. One can prove the following:

9.10.11. Theorem. Let S be a surface in R3. Let h : [a,b] Æ S be a regular curve.

(1) If h(t) is a geodesic, then there is an e > 0 with the property that if |s1 - s2|
< e then g |[s1,s2] is a curve of shortest length from g(s1) to g(s2).

(2) If h(t) is a curve of shortest length from h(a) to h(b), then h(t) is a geodesic.

c c and c c g11 22 12 210= = = - = ,

k kg g k ij
k

i
i j

j k
k

k ij
k

i j
i jk m

k km

n n x x x n

x x x x c

= ( ) ∑ = ¢¢ + ¢ ¢
È

Î
Í

˘

˚
˙

Ê
ËÁ

ˆ
¯̃

∑

= ¢¢ + ¢ ¢
È

Î
Í

˘

˚
˙ ¢

Ê
ËÁ

ˆ
¯̃

==

==

ÂÂ

ÂÂ

S S SG F

G

,

,,

.

1

2

1

2

1

2

1

2

n xm
m

mS n n= ¥ ¢ = ¢ ¥
=

Âg
1

2

F .

kg k ij
k

i j
i jk

kn x x xS = ¢¢ + ¢ ¢
È

Î
Í

˘

˚
˙

==
ÂÂ G F
,

.
1

2

1

2

kg u vn u u u v v v u u v vS = ≤ + ¢ + ¢ ¢ + ¢[ ] + ≤ + ¢ + ¢ ¢ + ¢[ ]G G G F G G G F11
1 2

12
1

22
1 2

11
2 2

12
2

22
2 22 2 .

g≤ = ¢ + ¢ ¢ + ¢[ ]
+ ≤ + ¢ + ¢ ¢ + ¢[ ] + ≤ + ¢ + ¢ ¢ + ¢[ ]
Lu Mu v Nv

u u u v v v u u v vu v

2 2

11
1 2

12
1

22
1 2

11
2 2

12
2

22
2 2

2

2 2

n

G G G F G G G F ,

9.10 Geodesics 631



Proof. For a proof of (1) using the exponential map which is defined later in this
section see [Thor79]. For (2) see [MilP77].

Theorem 9.10.11 implies that the first definition of a geodesic is equivalent to the
following one:

Third definition of a geodesic: A geodesic on a surface S in R3 is just a regular
curve in S that has the property that locally it defines a curve of shortest length.

Moving on to property (3) of straight lines, it is easy to give examples that show
geodesics are neither unique nor exist in general. For example, there are an infinite
number of (in fact, minimal-length) geodesics between antipodal points on a sphere
and the surface R2-0 (a punctured plane) has no geodesic from (-1,0) to (1,0) (there
exist curves between the two points with length arbitrarily close to 2 but none of length
exactly 2). Although there may not be a geodesic between an arbitrary pair of points,
geodesics do exist if the points are not too far apart. The proof of this fact will also
show that finding geodesics is simply a matter of solving second order differential
equations.

9.10.12. Theorem. Let S be a surface in R3. Let p Œ S and v Œ Tp(S), v π 0. Then
there is an e > 0 and a unique constant speed geodesic g : (-e,e) Æ S with g(0) = p and
g ¢(0) = v. (For v = 0, the unique “geodesic” would be the constant curve g(t) = p.)

Sketch of two proofs. For the first proof, we use a regular parameterization F of
a neighborhood of p in S and equation (9.71). Since we are looking for a geodesic,
the left-hand side of the equation vanishes. But the partials F1 and F2 are linearly
independent, being a basis of the tangent space. It follows that any solution g must
satisfy the equations

(9.72)

Conversely, one can show that any such solution satisfying our initial conditions will
solve our problem, namely, it must be a constant speed curve. One only has to appeal
to theorems about the existence and uniqueness of solutions to differential equations
to finish the proof. See [MilP77].

The proof we just sketched shows that the existence of geodesics is an intrinsic
property of surfaces that does not depend on any imbedding in R3. The second proof
does use the imbedding and normals to the surface. Its advantage is that it is more
direct and useful computationally. In practice, surfaces are presented via parameter-
izations anyway, so computing normals is not a problem.

Near p one can represent the surface S as the zero set of some function, that is,
we may assume that

for some function f :U Æ R, where U is a subset of R3 and the gradient of f does not
vanish on U. In this case, the Gauss map for S is given by

S = ( )-f 1 0

¢¢ + ¢ ¢ = =
=

Âx x x kk ij
k

i
i j

jG
,

, , .
1

2

0 1 2
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Now, by Theorem 9.10.3(2), g is a geodesic if and only if

for some function a. It follows that

because g¢•(n � g) = 0. In other words, g is a geodesic if and only if

(9.73)

If n(p) = (n1(p),n2(p),n3(p)) and g(t) = (x1(t),x2(t),x3(t)), then solving equation (9.73)
reduces to solving the three second-order differential equations

(9.74)

The theorem now follows from theorems about solutions to such equations. See
[Thor79] for more details. In fact it is shown there that there is a maximal open inter-
val containing 0 over which the unique geodesic g(t) is defined.

The form of the result in Theorem 9.10.12 leads to a natural question. Can one
extend the domain of the geodesic g in the theorem from (-e,e) to all of R?

Definition. A surface S is said to be geodesically complete if every geodesic g : (a,b)
Æ S extends to a geodesic :R Æ S.

9.10.13. Example. Neither the open unit disk nor R2 - 0 is geodesically complete.

9.10.14. Theorem. (The Hopf-Rinow Theorem)

(1) A surface is geodesically complete if and only if it is complete in the topolog-
ical sense.

(2) If a surface is geodesically complete, then any two points can be joined by
minimal-length geodesics.

(3) In a closed and compact surface there is a minimal-length geodesic between
any two points.

Proof. See [Hick65] or [McCl97]. Part (2) implies part (3) because by Theorem 5.5.7
every compact metrizable space is complete.

Moving on to property (4) of straight lines, we first need to define what it means
for a vector field along a curve to consist of parallel lines. Let S be a surface in R3

and let

g̃
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n x x x
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be a curve.

Definition. A vector field along the curve h is a function X : [a,b] Æ R3 with the prop-
erty that X(t) is a vector tangent to S at h(t) for all t, that is, X(t) Œ Th(t)(S) for all t.
The vector field X is said to differentiable if X(t) is a differentiable function.

Since the tangent space at a point of a surface is a vector space, it is easy to see
that the set of vector fields along a curve is a vector space. Let X(t) be a differentiable
vector field along h(t). Although the vector X¢(t) is not necessarily tangent to the
surface at h(t), its orthogonal projection onto the tangent space obviously will be.

Definition. The covariant derivative of X(t), denoted by DX/dt, is the vector field
along h which sends t Œ [a,b] to the vector that is the orthogonal projection of X¢(t)
on the tangent space of S at h(t). More precisely,

where n(h(t)) is a unit normal vector to S at h(t).

The definition of the covariant derivative does not depend on the choice of n(h(t)).

9.10.15. Theorem. Let X(t) and Y(t) be differentiable vector fields along h(t) and
let f : [a,b] Æ R be a differentiable function.

(1)

(2)

(3)

Proof. This is a straightforward computation of derivatives (Exercise 9.10.4).

Note that if S is a plane, then the covariant derivative is just the ordinary deriva-
tive of the vector field. Intuitively, the covariant derivative of a vector field just meas-
ures the rate of change of the vector field as seen from “inside” the surface where one
does not have any notion of a normal.

Definition. We say that the vector field X(t) on h(t) is parallel along h if dX/dt = 0,
that is, its covariant derivative vanishes.

One can easily show that if S is a plane, then the vector field X(t) is parallel along
h if and only if X(t) is constant. We see that we seem to have found a generalization
of what it means for vectors to be parallel. It was Levi-Civita who introduced the
covariant derivative as a means of describing parallelism. As is pointed out in

d
dt

D
dt

D
dt

X Y
X

Y X
Y
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D
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f f f
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X X
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X Y
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[Stok69], the origin of the definition of parallel vector fields is closely related to devel-
opable surfaces, which are defined in Section 9.15. The relevant property of these sur-
faces is that they can be isometrically embedded in the plane and Levi-Civita originally
defined a vector field to be parallel if it mapped to a parallel vector field on the plane
under such a mapping. Of course not all surfaces are developable and Levi-Civita
reduced the general case to the developable case by constructing a developable surface
that was tangent to the given surface along the curve h.

Here are the important properties of parallel vector fields.

9.10.16. Theorem. Let S be a surface in R3 and let h : [a,b] Æ S be a curve. Let X
and Y be differentiable vector fields along h.

(1) If X is parallel along h, then the vectors of X have constant length.
(2) If X and Y are parallel along h, then X•Y is constant along h.
(3) If X and Y are parallel along h, then the angle between the vectors of X and

Y is constant.
(4) If X and Y are parallel along h, then so are the vector fields X + Y and cX, for

all c Œ R.

Proof. Part (1) follows from Theorem 9.10.15(3) and the identities

Part (2) also follows from Theorem 9.10.15(3), which implies that the derivative of 
X•Y vanishes since the covariant derivatives vanish. Part (3) follows from parts (1) 
and (2) and the definition of angle between vectors. Part (4) is left as an easy exercise.

9.10.17. Theorem. Let S be a surface in R3. A constant speed regular curve h : [a,b]
Æ S is a geodesic according to our first definition of a geodesic if and only if the
tangent vector field h¢(t) is parallel along the curve.

Proof. A constant speed curve h has the property that h¢ and h≤ are orthogonal. In
this case the covariant derivative is just the geodesic curvature.

Theorem 9.10.17 leads to the next definition of a geodesic.

Fourth definition of a geodesic: A geodesic on a surface S in R3 is just a regular
curve in S whose tangent vectors form a parallel vector field along the curve.

Note that the new definition is equivalent to the second definition, but since it
applies (by Theorem 9.10.16(1)) only to constant speed curves it is technically not
equivalent to the first and third definitions, which applied to arbitrary regular curves.
Overlooking this technicality, the reader may wonder why one bothers with a defini-
tion of covariant derivative and parallel vector fields when in the end the new defini-
tion of geodesic is basically the same as the one that is phrased in terms of geodesic
curvature. Well, the problem is that although geodesic curvature may seem like a rea-
sonable intuitive geometric concept, as we defined it, it is not an intrinsic invariant

d
dt

t
d
dt

t t
D
dt

tX X X
X

X( ) = ( ) ∑ ( )( ) = ∑ ( ) =2
2 0.
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of the surface but seems to depend on the surface being imbedded in R3 because we
used a normal vector to the surface. We shall see later in Section 9.16 that geodesics
really do not depend on any imbedding. In fact, they can be defined for any manifold,
not just a surface, and depend only on the metric coefficients. It is at that point of
abstraction that one sees why the preferred development of geodesics is via a global
notion of parallel vector fields and why the geodesic curvature is the secondary notion.
Of course, one will have to give a more intrinsic definition of parallel vector fields
since the definitions for the covariant derivative and parallel vector fields in this
section also depended on a normal vector.

As one final point about parallel vector fields, we address the question of their
existence and uniqueness.

9.10.18. Theorem. Let S be a surface in R3 and let h : [a,b] Æ S be a curve. 
Let v Œ Th(a)(S). Then there exists a unique parallel vector field X(t) along h with
X(a) = v.

Proof. The proof simply consists of analyzing the condition for a vector field to be
parallel. The condition is equivalent to finding a solution to first order differential
equations with initial condition v. See [Thor79].

An interesting consequence of the last theorem is

9.10.19. Corollary. Let S be a surface in R3 and let g(s) be a geodesic in S. Then a
vector field X along g is parallel along g if and only if both the length of all the vectors
of X and the angle between them and g ¢(s) is constant.

Proof. See [Thor79].

Furthermore, since parallel vector fields are completely defined by their initial
vector, one introduces the following useful terminology.

Definition. Let S be a surface in R3 and let h : [a,b] Æ S be a curve. Let v Œ Th(a)(S).
Let X be the unique vector field along h that satisfies X(a) = v. If c Œ [a,b], then X(c)
is called the parallel translate of v to h(c) along h.

We finish our introduction to geodesics on surfaces by defining one more impor-
tant map. It turns out that one can rephrase the result in Theorem 9.10.12 as follows:

9.10.20. Theorem. Let S be a surface in R3. If p Œ S, then there is an ep > 0 so that
for all v Œ Tp(S) with |v| < e p there is a unique geodesic g : (-2,2) Æ S with g(0) = p
and g ¢(0) = v.

Proof. Exercise 9.10.5.

Using the notation in Theorem 9.10.20 let

U p v S v Sp p p( ) = Œ ( ) <{ } Õ ( )T Te
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and define a map

See Figure 9.28.

Definition. The map expp is called the exponential map of the surface S at p.

The exponential map is defined in a neighborhood of the origin of each tangent
space. If the surface is geodesically complete, then the exponential map is defined on
all of Tp(S). The exponential maps expp at points p define a map

that is also called the exponential map.

9.10.21. Theorem.

(1) Both expp and exp are differentiable maps.
(2) The map expp is a diffeomorphism of a neighborhood of the origin in Tp(S)

onto a neighborhood of p in S.
(3) For each p Œ S and v Œ U(p), the unique geodesic g from p to q = expp(v) is

defined by

Proof. See [Thor79].

We see from Theorem 9.10.21 that the exponential map essentially formalizes the
concept of an “orthogonal projection” of a neighborhood of the origin in the tangent
space Tp(S) to S.

g t t( ) = ( )exp .p v

exp:
open neighborhood of zero cross – section

in total space of tangent bundle tS
SÊ

Ë
ˆ
¯ Æ

exp expp pU p S v: .( ) Æ ( ) = ( )by g 1
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9.11 Envelopes of Surfaces

Although the concept of envelopes of surfaces was often used by geometers it is 
actually tricky to define carefully. We shall simply extend the definition given in the
case of curves.

Definition. Let at : [0,1] Æ R3 be a one-parameter family of surfaces defined by

for some C• function

An envelope of this family is defined to be a surface p(u,v) that is not a member of
this family but that is tangent to some member of the family at every point.

Spivak ([Spiv75]) discusses the envelope of a family of planes. He shows that “in
general” a one-parameter family of planes has an envelope that is either a generalized
cylinder, a generalized cone, or the tangent surface of a curve. He also explains how
this led to a definition of parallel translation along a Riemannian manifold.

9.12 Canal Surfaces

This section is on a special type of envelope surface that is relevant to CAGD.

Definition. A canal surface is the envelope of a one-parameter family of spheres S(t).
If g(t) is the center of the sphere S(t), then the curve g(t) is called the center curve of
the canal surface. The function r(t), where r(t) is the radius of the sphere S(t), is called
the radius function of the canal surface. A canal surface whose radius function is con-
stant is called a tube surface.

Canal surfaces were first defined and studied by Gaspard Monge. If the center
curve for a canal surface is a straight line, then we get a surface of revolution. In
general, canal surfaces are a type of “sweep” surface. They are the boundary of the
solid that one gets by sweeping a sphere along a curve.

9.12.1. Lemma. If S(t) is the one-parameter family of spheres that defines a canal
surface S, then S(t) « S is a circle for every t.

Proof. This follows from the fact that S(t) « S is the limit of the intersections 
S(t - d) « S(t + d) as d approaches 0.

Definition. The circles S(t) « S in Lemma 9.12.1 are called the characteristic circles
of the canal surface.

a : , , , .0 1 0 1 0 1 3[ ] ¥ [ ] ¥ [ ] Æ R

a at u v u v t, , ,( ) = ( )
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It follows from Lemma 9.12.1 that canal surfaces can also be thought of as a union
of circles with centers on a curve. Note that since both S(t) and S are tangent on 
S(t) « S, they have the same normals along their intersection. Therefore in the special
case of a tube surface, a characteristic circle is the boundary of a disk that intersects
the surface orthogonally. This leads to yet another view of tube surfaces, namely, as
the boundary of a solid that is obtained by sweeping a disk of constant radius orthog-
onally along a curve C. See Figure 9.29.

Before we state the next theorem, recall from Section 9.9 that the centers of cur-
vatures at a point p of a surface S lie along the normal line to the surface at that point.
These centers lie on segments in the normal line whose endpoints were called the
focal points of the surface S, and the set of these was called the surface of centers (or
the evolute).

9.12.2. Theorem.

(1) The characteristic circles of a canal surface are lines of curvature for the
surface.

(2) The center curve for a canal surface consists of centers of curvature for the
surface, so that one component of its surface of centers is a curve.

(3) Every surface with the property that one component of its surface of centers
is a curve is a canal surface.

Proof. See [Gray98].

9.12.3. Theorem. Let S be a canal surface with radius function r(t) and center curve
g : [a,b] Æ R3 whose tangent vectors g ¢(t) have unit length and whose curvature is
nonzero. Then S admits a parameterization of the form

where (T(t),N(t),B(t)) is the Frenet frame of the curve g(t).

Proof. See [Gray98].

If the radius of the spheres or disks for a tube surface is small enough we get an
immersed surface. We can relate the curvature of the center curve and the Gauss cur-
vature of the surface.

f q g q qt t r t r t T t r t N t B t, cos sin ,( ) = ( ) + ( ) - ¢( ) ( ) ± - ¢( ) - ( ) + ( )( )[ ]1
2
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9.12.4. Theorem. Let k(s) be the curvature function of a space curve g : [a,b] Æ R3.
If K is the Gauss curvature of a canal surface S that has constant radius function and
center curve g, then

Proof. See [Spiv75].

9.13 Involutes and Evolutes of Surfaces

The discussion of involutes and evolutes of curves extends to surfaces in interesting
ways. We already defined the evolute (or surface of centers) of a surface in Section
9.9. It also played a role in Theorem 9.12.3. The evolute consists of the set of foci on
the normal lines at the points of the surface. The foci will be the same point if and
only if p is an umbilic point. Furthermore, Theorem 9.10.10 implies that one of those
points will be at infinity if and only if the Gauss curvature vanishes at p. The common
name, “surface of centers,” for the evolute suggests that it is a surface, but that is not
necessarily the case. For a sphere, the evolute is just the center of the sphere, but one
can show that the sphere is the only surface for which the evolute is a point. Theorem
9.12.3 shows that some surfaces have evolutes that consist of curves, but one can
describe all such surfaces. The only surfaces with this property were discovered by
the French mathematician Dupin in 1822 ([Dupi22]).

Definition. A Dupin cyclide or simply cyclide is a surface whose evolute consists of
two curves. The two curves are called the spines of the cyclide.

Figure 9.30 shows a “ring” cyclide which is a kind of torus, but rather than rotat-
ing a circle of fixed radius about another circle the radius of the rotating circle varies.
A cyclide is a special case of a canal surface where only one sheet of the evolute was
required to be a curve. Cyclides are very interesting surfaces and can be defined in a
number of different ways ranging from very geometric constructions to explicit for-
mulas. We shall discuss a few of their major geometric properties. Good references
for more details are [ChDH89], and [Prat90], [Boeh90], and [HilC99].

First of all, the definition of a cyclide we have given is due to Maxwell ([Maxw68])
and is not Dupin’s original definition.

k s ds K dA
a

b
( ) =Ú Ú

1
4 S

.
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Dupin’s definition ([Dupi22]): A cyclide is the envelope of spheres that touch three
fixed spheres.

The example in Figure 9.31 captures Dupin’s basic idea. Figure 9.31(a) shows four
spheres S1, S2, S3, and S with centers in the x-y plane. The sphere S touches the other
three. Imagine raising the center of the sphere S in the z-direction while at the same
time letting its radius expand so that we maintain contact with the other three spheres.
We keep raising the center in this way until the radius becomes “infinity.” At that point,
we wrap around to “minus infinity” and let the radius decrease so that the z-coordi-
nate of the center now moves from minus infinity to zero. Note that in the first stage
the spheres Si were outside of S but now they are inside. See Figure 9.31(b). The enve-
lope of the moving sphere S is our cyclide. See [ChDH89] for a more thorough dis-
cussion of this process and why Maxwell’s and Dupin’s definition of a cyclide are
equivalent.

Definition. A pair of conics is said to be an anticonic pair or anticonics if they lie in
orthogonal planes and the vertices of one are the foci of the other and vice versa.

9.13.1. Theorem. The two spines of a cyclide are conics. In fact, they are an anti-
conic pair.

Proof. See [ChDH89].

There is a nice geometric construction using a string on which Maxwell’s defini-
tion is based. Figure 9.32(a) shows the construction in the special case of a torus. We
tie a string of fixed length to the center A of a planar circle and then wrap the string
around the circle. The torus will consist of all points swept out by the endpoint B of
the string assuming that we keep it taut and there are no lateral forces at the point P
where the string touches the circle. It is easy to see that the normal lines to the surface
through P and B will either intersect the vertical axis L or be parallel to it. Figure
9.32(b) shows the construction for a general cyclide. Consider an ellipse E in the x-y
plane with foci at (±c,0,0) and vertices at (±a,0,0) and (0,±b,0). Let H1 and H2 be
branches of the hyperbola H in the x-z plane whose foci and vertices are the vertices
and foci of the ellipse E, respectively. Tie a string to the focus A = (-c,0,0) of E and
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wrap it around E. The cyclide is the locus of points swept out by the end point B of
the string as we keep it taut and ensure that there are no lateral forces at the point P
where it touches E. The line L through P and B will intersects H.

9.13.2. Theorem. Cyclides are the only surfaces all of whose lines of curvature are
circles.

Proof. See [HilC99].

It is useful to divide the cyclides into different types. Recall that the spines of
cyclides are anticonics.

Definition. A central, parabolic, or revolute cyclide is a cyclide whose spines are an
ellipse/hyperbola, parabola/parabola, or circle/straight line pair, respectively. A degen-
erate cyclide is a cyclide at least one of whose spines is a degenerate conic.

For a finer subdivision of each cyclide type into “horned,” “ring,” and “spindle”
cyclides see [ChDH89].

Now, in general, the evolute of a surface S consists of two sheets of surface. One
can show that the normals to S are tangent to the evolute at the foci. Therefore the
normals to S are the common tangents to the two sheets of the evolute. One can turn
this around.

Definition. Given two arbitrary surfaces S1 and S2, a surface S whose normals define
a family of lines that are tangent to both of the given surfaces is called the involute
of the surfaces.

The involute S has the property that the two surfaces S1 and S2 are the evolute 
of it. One can show that a necessary and sufficient condition for this to happen is 
that the tangent planes at the points where a normal of S touches S1 and S2 must
be orthogonal. A pair of confocal quadrics of unlike type is an example of this. See
[HilC99].
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9.14 Parallel Surfaces

The main reason for this section on parallel surfaces is that, like parallel curves, the
topic is important for CAGD.

Let p(u,v) be a regular parameterization for a surface S in R3. Let

(9.75)

Since we have a regular parameterization, N(u,v) is nonzero and we can normalize it
to be of unit length. If

(9.76)

then n(u,v) is a unit normal vector to S at p(u,v).

Definition. A parallel surface to p(u,v) is a surface Sd with a parameterization pd(u,v)
of the form

(9.77)

where d is any nonzero real number. In CAGD a parallel surface is called an offset
surface.

It follows from equation (9.77) that

(9.78)

Assumption: In the rest of this section we shall assume that pu and pv are principal
directions!

There is no loss of generality with this assumption because the quantities we shall
want to compute are independent of parameterizations and by Theorem 9.9.22 such
parameterizations always exist. The assumption will greatly simplify our computa-
tions because F = M = 0 in this case by Theorem 9.9.23.

Substituting nu and nv from the Weingarten equations with F = M = 0 into equa-
tions (9.78) and using Theorem 9.9.25 gives

(9.79a)p p d
L
E

p dd u u u( ) = -Ê
Ë

ˆ
¯ = -( )1 1 1k

p p d and p p dd u u u d v v v( ) = + ( ) = +n n .

p u v p u v d u vd , , ,( ) = ( ) + ( )n

n u v
N u v
N u v

,
,
,

,( ) =
( )
( )

N u v
p
u

u v
p
v

u v, , , .( ) = ( ) ¥ ( )∂
∂

∂
∂
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and

(9.79b)

where ki are the principal normal curvatures of S. Let Ed, Fd, and Gd be the coeffi-
cients of the first fundamental form for Sd. Their definition and equations (9.79) 
imply that

(9.80)

Next, let Nd(u,v) be the normal vector to the surface Sd at pd(u,v) and

(9.81)

Then again using equations (9.79),

that is,

9.14.1. Theorem.

(9.82)

where K and H are the Gauss and mean curvatures of the surface S at p(u,v), respec-
tively.

Since the expression 1 - 2Hd + Kd2 in equation (9.82) factors into (1 - dk1)(1 - dk2),
we always need to choose a d so that neither of these factors is zero. In fact, the map

is then one-to-one in a neighborhood of p(u,v). Furthermore, note that the parallel
surface could be oriented in the opposite direction from the original surface. That
happens when

Define s to be the sign of that expression, that is,

(9.83)

Next, the definition of the coefficients Ld, Md, and Nd of the second fundamental
form of Sd and the formulas above imply that

n nd = s .

1 2 02- + <Hd Kd .

S S
n

Æ
( ) Æ ( ) + ( )

d

p u v p u v d u v, , ,

N u v Hd Kd N u vd , , ,( ) = - +( ) ( )1 2 2

N u v p u v p u v d d N u vd d u d v, , , ,( ) = ( ) ( ) ¥ ( ) ( ) = - +( ) +( ) ( )1 1 2 1 2
2k k k k
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d
u v
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(9.84)

It follows from Theorem 9.9.23 that Fd = Md = 0 and (pd)u and (pd)v are the principal
directions for Sd. These values and Theorems 9.9.15, 9.9.16, and 9.9.25 prove

9.14.2. Theorem.

(1) The principal normal curvatures of Sd are

(2) The Gauss and mean curvatures of Sd are

respectively.

9.15 Ruled Surfaces

An interesting special class of surfaces is the class of ruled surfaces. These are the sur-
faces obtained by sweeping a straight line along a curve.

Definition. A ruled surface is a surface S that admits a parameterization of the form

(9.85)

where q(u) and a(u) are curves called the base curve and directrix of S, respectively,
with |a(u)| = 1. If u is fixed, then p(u,v) generates a line Lu that passes through q(u)
and has unit direction vector a(u). These lines are called the rulings of S. If a(u) is
constant, then S is called a cylinder. If a¢(u) never vanishes, then S is called a non-
cylindrical surface. A ruled surface that admits two distinct rulings is called a doubly
ruled surface.

9.15.1. Example. Ordinary cylinders are ruled surfaces. For example, the cylinder
of radius 1 centered on the z-axis can be parameterized by

More generally, if we sweep a vertical line along a curve C in the plane, we get what
are called generalized cylinders. See Figure 9.33(a). Cones are also ruled surfaces
because they are obtained by sweeping lines that all intersect in a fixed point p along
some curve. See Figure 9.33(b).

9.15.2. Example. Consider the surface obtained by sweeping rotating lines along
the z-axis that remain parallel to the xy-plane and that is parameterized by

p u v u u v, cos ,sin , , , .( ) = ( ) + ( )0 0 0 1

p u v q u v u, ,( ) = ( ) + ( )a

K
K

Hd Kd
and H

H Kd
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-
- +1 2 1 22 2
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s sk
k

k
k

1

1

2

21 1- -d
and

d
.

L d L M N d Nd d d= -( ) = = -( )s s1 0 11 2k k, , .
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This surface is called a helicoid. See Figure 9.34.

Note that, in a sense, there is nothing special about the base curve q(u) of a ruled
surface. We could choose any curve that meets each line in the ruling in precisely one
point as base curve and the resulting ruled surface would be the same. See Figure 9.35.

p u v v u v u bu b, cos , sin , , .( ) = ( ) π 0
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Our next goal is to compute the Gauss curvature of a ruled surface. By Theorem
9.9.15 we need merely compute the functions E, F, G, L, M, and N. Now

(9.86a)

(9.86b)

If

(9.87)

is the unit normal to S at p(u,v), then

Since N is zero, LN - M2 = -M2, and so we do not need to compute L. To make the
rest of the computations easier, we replace q(u) with another base curve.

If a¢(u) π 0, then for small e the ruling Lu+e will not be parallel to the ruling Lu
and so there will be a unique point m(u,e) on Lu that is closest to Lu+e. Let

Definition. The curve m(u) is called the striction curve or line of striction for the ruled
surface S. Its points are called the central points of the ruled surface.

The striction curve clearly does not depend on the parameterization of the 
surface.

9.15.3. Lemma. The curve m(u) is well defined and satisfies m¢•a¢ = 0.

Proof. Exercise 9.15.1.

From now on we assume that our original base curve was the striction curve for
the surface.

Next, notice that a•a = 1 implies

(9.88)

Equation (9.88) and Lemma 9.15.3 imply that q¢ ¥ a is parallel to a¢, that is,

for some function l. Dotting both sides with a¢ gives that

(9.89)l
a a

a a
=

¢ ¥( ) ∑ ¢
¢ ∑ ¢

q
.
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Definition. The function l(u) is called the distribution parameter of the ruled surface.

Note that the distribution parameter is constant along each ruling.
If we use Lemma 9.15.3 again and also equation (9.88) we have that

From this, the vector identity in Proposition 1.10.4(4), and the definition of l we get

Furthermore, equations (9.86), (9.87), and the fact that (a¢ ¥ a)•a¢ = 0 implies

We collect all these facts together in the theorem we were after.

9.15.4. Theorem. The Gauss curvature of the ruled surface defined by equation
(9.85) with a¢ π 0 is given by

where l is defined by equation (9.89).

It follows from the theorem that the Gauss curvature of a ruled surface is £ 0.

Definition. A ruled surface is called a developable surface if the tangent plane is 
constant along each ruling.

Developable surfaces have also been defined as the envelope of a one-parameter
family of planes. What this means is that the points p(u,v) of the surface satisfy an
equation of the form

(9.90)

for a nonzero vector-values function N(t) and a real function q(t).

9.15.5. Theorem. If S is a surface in R3, then the following statements about S are
equivalent:
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(1) S is developable.
(2) S is an envelope of a one-parameter family of planes, that is, the points of S

satisfy an equation of the form (9.90).
(3) S is a ruled surface described by an equation of the form (9.85) for which 

(q¢ ¥ a)•a¢ = 0. (If a¢ π 0, then the last condition is equivalent to saying that
the distribution parameter vanishes.)

(4) The Gauss curvature of S is zero.
(5) S can be isometrically imbedded in the plane.

Proof. See [Laug65], [Lips69], [Spiv75], or [Stok69]. Note that Theorem 9.10.24 and
(4) implies (5).

Theorem 9.15.5 explains the terminology “developable” because historically these
surfaces are the ones one said could be “developed” or “rolled out” on (that is, iso-
metrically imbedded in) the plane.

9.15.6. Theorem. A necessary and sufficient condition that a curve on a surface is
a line of curvature is that the surface normals along this curve form a developable
surface.

Proof. This is a theorem of Monge. See [Will59].

9.16 The Cartan Approach: Moving Frames

Our development of differential geometry has so far basically followed the classical
approach based on local coordinates and parameterizations. In this section we would
like to sketch what a modern development would look like and discuss Cartan’s theory
of moving frames.

Looking back at curves in R3, it turns out that a key element behind the Serret-
Frenet formulas, which is more fundamental than the actual formulas that one gets,
is the realization that relating the derivative of the Frenet frame (which measures how
it changes) to the Frenet frame uncovers a lot of geometric invariants. In the case of
surfaces, its geometry was captured by the way that the basis (Fu,Fv,n) changed for
a parameterization F, where n was the normal vector Fu ¥ Fv normalized to unit
length. This suggests it might be useful to look at frame fields (defined below) and
how they change in general. To keep the discussion as simple as possible we shall
restrict our definitions to orthonormal bases right from the start. There is no loss in
generality because the Gram-Schmidt algorithm would let us replace arbitrary bases
with orthonormal ones anyway. Furthermore, one would move to those eventually in
any case because one needs the normalization inherent in orthonormal bases if one
wants to get geometric invariants. (Every basis of a vector space is an orthonormal
basis with respect to some inner product on that vector space and we are interested
in geometric properties with respect to a given metric.) We start with definitions for
Euclidean space.

We shall be talking a lot about vector fields in this section. Although we mostly
deal with curves and surfaces in R3, we again want to do things in such a way so that 
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generalizations to n-dimensional submanifolds Mn of Rk are clear. Up to now we have
used the definition of tangent vectors and tangent planes as presented in Section 8.4.
In this section it will be convenient to use a variant of those definitions, one that is
implicit in equation (8.30) in Section 8.10. Tangent vectors will now be associated to
points. The formal way to do this was to define the tangent space Tp(Mn) at p Œ Mn

by

There is one caveat, however. If we were to always use this pair (p,v) notation for a
tangent vector, even if we were to abbreviate it somewhat to vp as we shall do at times,
the readability of many of expressions and equations in the rest of this section would
suffer greatly unfortunately. Things would look much more complicated than they
really are. Therefore, we shall be sloppy and use “v” to denote either the pair (p,v) or
v itself whenever it is convenient. Sometimes an expression may contain two instances
of “v” where each has a different meaning. The reader will know which is being meant
at any given time because there will only be one obvious correct meaning. To help out
making the distinction, we shall, when possible, refer to the “tangent vector v” or the
“tangent vector v at p” when we mean (p,v) and simply the “vector v” if we do mean
just v. By the way, the only reason that we run into this notational problem is so that
the reader can see the close connection between abstract concepts, such as tangent
vectors, with “ordinary” functions and derivatives for Euclidean space.

Specializing to the case M = Rk, let X be a vector field of Rk defined over some
open subset A. We can write X in the form

for some function g :A Æ Rk. Given a curve g : [a,b] Æ A, define

(9.91)

This definition of course only makes sense when g is one-to-one but everything in this
section involves local properties and so assuming that parametric curves are locally
one-to-one is not a problem.

Definition. The vector field X¢g is called the derivative of X along the curve g.

Now let X be a vector field of R3 defined in a neighborhood of p and let v Œ Tp(R3).

Definition. The covariant derivative, of X at p with respect to v, denoted by —v X(p),
is the tangent vector of R3 at p defined by

where g is the curve g(t) = p + tv.
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.

 is a tangent vector in the sense of Section 8.4  to 
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The covariant derivative is a kind of directional derivative and the reader may
wonder why we do not call it just that. The reason is that this is a special case of a
concept that is defined for abstract manifolds. It is the classical terminology that was
motivated by the same reason that covariant tensors are called what they are.

The next lemma shows that the covariant derivative can be computed from any
curve g through p having tangent vector v at p, not just the special curve in the definition.

9.16.1. Lemma. Let p Œ R3 and g : [a,b] Æ R3 be any curve with g(c) = p and g ¢(c) =
v. If X is a vector field of R3 defined in a neighborhood of p, then

Proof. Using the notation of Equation (9.91), if

then

In other words,

(9.92)

Since the right-hand side of equation (9.92) does not use the curve g but only its
tangent vector v at p, we are done.

We can use equation (9.92) to relate the covariant derivative to ordinary direc-
tional derivatives in a cleaner way, but first another definition.

Definition. A frame field on a set A Õ R3 is a triple of vector fields (U1,U2,U3) defined
over A with the property that, for every p Œ A, U1(p), U2(p), and U3(p) are an ortho-
normal basis of the tangent space Tp(R3). The frame field (E1,E2,E3) on R3, where
Ei(p) = (p,ei), is called the standard frame field of R3.

9.16.2. Theorem. Let X be an arbitrary vector field on R3 and suppose that

expresses the vector field X in terms of the standard frame field. If v Œ Tp(R3), then
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Proof. This is clearly just a rewritten Equation (9.92). (Dv is just the ordinary direc-
tional derivative.)

The properties of the ordinary directional derivative carry over to the covariant
derivative.

9.16.3. Theorem. Let X and Y be vector fields on R3 and let v, w Œ Tp(R3).

(1) —av+bwX(p) = a—vX(p) + b—wX(p) for all a, b Œ R.
(2) —v(aX + bY) (p) = a—vX(p) + b—vY(p) for all a, b Œ R.
(3) —v(fX)(p) = Dvf(p)X(p) + f(p)—vX(p) for all differentiable functions 

f :R3 Æ R.
(4) Dv(X•Y)(p) = —vX(p)•Y(p) + X(p)•—vY(p).

Proof. This is easy to prove directly but one can also use Theorem 9.16.2 and Propo-
sition 4.3.18.

In the definitions above we defined the covariant derivative for vectors in a single
fixed tangent space Tp(R3). It is easy to extend this definition.

Definition. Let X and Y be vector fields on R3. The covariant derivative of X with
respect to Y, denoted by —YX, is the vector field defined by

We can consider —YX as a map

(9.93)

that sends a pair of vector fields to another.

9.16.4. Theorem. Let X, Y, U, and V be vector fields on R3.

(1) —fU+gVX = f—UX + g—VX for all differentiable functions f, g :R3 Æ R.
(2) —U(aX + bY) = a—UX + b—UY for all a, b Œ R.
(3) —U(fX) = (DUf)X + f—UX for all differentiable functions f :R3 Æ R.
(4) DU(X•Y) = —UX•Y + X•—UY.

Proof. The proof is straightforward. One bit of notation needs explaining. The func-
tion DUf :R3 Æ R in (3) is a vector field version of the directional derivative defined
as follows: If U(p) = (p,u), then

So far we have just given lots of definitions with a few simple consequences, but
we needed the terminology. As mentioned at the beginning of this section, we are

D f D fU up p( ) = ( )( ).

Vect Vect VectR R R

X Y XY

3 3 3( ) ¥ ( ) Æ ( )
( ) Æ —,

— ( ) = — ( ) Œ( )Y Y pX p X p p R, .for 3
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interested is the derivative of a vector field and its relation to the vector field. Let
(U1,U2,U3) be a frame field on R3. Let v Œ Tp(R3). Since the Ui define a basis at every
point,

for some cij Œ R. It follows that

Instead of a fixed vector v and a varying point p, let us consider p fixed and v as
varying. Define functions

by

Definition. The function wij are called the connection forms for the frame field
(U1,U2,U3).

The forms wij have the following interpretation: If v = X(p), then wij(p)(v) describes
the rate at which the vector field Ui rotates toward the vector Uj(p) as we move along
a curve through p with tangent vector v at p.

9.16.5. Theorem. The connection forms are differentiable 1-forms for the manifold
R3 and satisfy wij = -wji.

Proof. To show that the wij(p) are 1-forms one only needs to show that they are linear
on each Tp(R3) and that is easy. For the second part, note that Ui •Uj = dij, so that,
using Theorem 9.16.3(4),

The next theorem restates what we just showed.

9.16.6. Theorem. Let (U1,U2,U3) be a frame field on R3 and wij its connection forms.
If X is a vector field on R3, then

(9.94)— ( ) = ( ) ( )( ) ( )
=
ÂXU p p X p U pi ij
j

jw
1

3

.

0 = ( )( ) = ∑( )( )
= —( )( ) ∑ ( ) + ( ) ∑ —( )( )
= ( )( ) + ( )( )

D Dij i j

i j i j

ij ij

v v

v v

p U U p
U p U p U p U p
p v p v

d

w w .

wij i jp v U p U pv( )( ) = — ( ) ∑ ( ).

wij T i jp R Rp( ) ( ) Æ £ £: , , ,3 1 3

cij i j= — ( ) ∑ ( )vU p U p .

— ( ) = ( ) =
=
ÂvU p U pi ij j
j

c i
1

3

1 2 3, , , ,

9.16 The Cartan Approach: Moving Frames 653



In fact, in expanded form we have

where wij (X)(p) is an abbreviation for wij(p)(X(p)).

Proof. The fact that the equations can be expressed as shown using only the forms
w12, w13, and w23 follows from the fact that wij = -wji for all i and j, which also implies
that wii = 0.

Looking at the equations in Theorem 9.16.6 should remind the reader of the
Serret-Frenet formulas. In fact, Exercise 9.16.1 shows that Theorem 9.16.6 is a gen-
eralization of these formulas. The Serret-Frenet formulas have no w13 terms because
of the special nature of the Frenet frames. Of course, the comparison might seem
problematic because the Frenet frames are only defined along a curve and our con-
nection forms in equations (9.94) were assumed to be defined at all points of R3.
However, one can show that any frame field on a curve can always be extended to a
tubular neighborhood of the curve so that equations (9.94) would have to hold as 
long as the vector field X is tangent to the curve because of the way that the direc-
tional derivative is defined (Lemma 9.16.1). Note that the derivatives in the Serret-
Frenet formulas involve differentiating in a tangential direction.

9.16.7. Example. Let g(s) be a curve in R2 parameterized by arc-length. As usual,
let T(s) = g¢(s) and let N(s) be the unit normal vector at g(s) so that (T(s),N(s)) induces
the standard orientation on R2. Consider a frame field (U1,U2,E3) defined in a neigh-
borhood of the curve so that

Let X = U1. Using the definition of the wij and the notation of Theorem 9.16.6

Furthermore, since the covariant derivative of U1 with respect to S(s) lies in R2, we have

The form w23 is zero for a similar reason. We see that using our special frame field
and vector field X the covariant derivative equations (9.94) capture all of the 
geometry of the curve, namely, its curvature. In Exercise 9.16.1 you are asked to show
an analogous fact for space curves.

It should be noted that all of our results above are local and rather than talking
about vector fields and frame fields on R3 we could have developed the same results

w g g g13 1 3 0s T s s sT s( )( ) ( )( ) = — ( )( ) ∑ ( )( ) =( )U U .

w g g g12 1 2s T s s s
d
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with respect to some open subset (submanifold) of R3. In fact, any set for which one
can make sense of the differentiability of functions would be adequate.

9.16.8. Example. To compute the connection forms for the cylindrical frame field
(U1,U2,U3) on R3 defined by

where points are expressed in cylindrical coordinates (r,q,z). See Figure 9.36.

Solution. Note that this field is not defined along the z-axis, but as long as we stay
away from that axis everything that we did applies. Let v be a tangent vector at the
point p. By definition

All that is left to do is to substitute into the formulas

For example,

Using the relationships

D d

D d
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between directional derivatives and differentials (equation (4.31b) in Chapter 4), it
follows that w12 = dq. This implies that w21 = -dq. It is easy to see that all other w‘s
are zero.

To understand the motion of frame fields better, one introduces dual forms.

Definition. Given a frame field (U1,U2,U3) on R3, define the dual forms qi(p) Œ
Tp(R3)* by

As usual, qi(p) will be abbreviated to qi unless the point p needs to be specified 
explicitly.

9.16.9. Theorem. (The Cartan structural equations) Let (U1,U2,U3) be a frame field
on R3. Let wij and qi be the connection and dual forms, respectively, of this frame field.
Then

(1) (The first structural equations)

(2) (The second structural equations)

Proof. See [ONei66].

Next, we move on to surfaces. Just like in the case of curves in R3, the geometry
of a surface can be deduced by analyzing special frame fields on them.

Let S be a surface in R3.

Definition. A frame field (U1,U2,U3) on S is called an adapted frame field on S if U3
is a normal vector field for S.

Again, everything we do will be local in nature, so that we do not need adapted
frame fields to be defined on all of S, only on an open subset that is relevant at the
time. Because adapted frame fields are somewhat special, it is useful to make clear
when they exist.

9.16.10. Proposition. A surface S admits an adapted frame field if and only if it is
orientable and has a nonzero (tangent) vector field.

Proof. Easy.

9.16.11. Example. The cylinder defined by the equation

admits the adapted frame field (U1,U2,U3) defined by
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9.16.12. Example. Consider the sphere defined by the equation

Because the sphere does not have any nonzero vector field (Corollary 8.5.6) there is
no adapted frame field defined over all of it. On the other hand we can, for example,
define an adapted frame field (U1,U2,U3) over the sphere minus the north and south
pole by defining

If the sphere were the earth, then the vector U1 would point due “east.” See Figure 9.37.

Next, assume that (U1,U2,U3) is an adapted frame field on a surface S. Although
the frame field is only defined at points p in the surface S, as long as we stick to vectors
v in Tp(S), the connection equation

will still be defined. This follows again because of the way that the directional deriv-
ative is defined—we differentiate in the tangent direction of a curve in the surface
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through the point. We can relate the frame field to the shape operator for S since U3
is a normal vector.

9.16.13. Theorem. Let (U1,U2,U3) be an adapted frame field for a surface S. If S is
the shape operator for S with respect to the normal vector field U3, then for every 
v Œ Tp(S) we have

Proof. This follows easily from the definition of S, namely, S(v) = -—vU3.

Define the dual forms qi as before. The form q3 will be zero, so that we shall ignore
it.

9.16.14. Theorem. (The Cartan structural equations) Let (U1,U2,U3) be an adapted
frame field for a surface S. Let wij and qi be the connection and dual forms, respec-
tively, of this frame field. Then

(1) (The first structural equations) dq1 = w12 Ÿ q2
dq2 = w21 Ÿ q1

(2) (The symmetry equation) w31 Ÿ q1 + w32 Ÿ q2 = 0
(3) (The Gauss equation) dw12 = w13 Ÿ w32
(4) (The Codazzi equations) dw13 = w12 Ÿ w23

dw23 = w21 Ÿ w13

Proof. See [ONei66].

All the geometric invariants of surfaces can be deduced from Theorem 9.16.14.
There is no space to prove anything here, but it is instructive to indicate how Gauss
curvature K and the mean curvature H come into the picture.

9.16.15. Lemma.

(1) w13 Ÿ w23 = K q1 Ÿ q2.
(2) w13 Ÿ q2 + q1 Ÿ w23 = 2H q1 Ÿ q2.

Proof. See [ONei66].

9.16.16. Corollary. (The second structural equation) dw12 = -K q1 Ÿ q2.

Proof. This follows from Theorem 9.16.14(3) and Lemma 9.16.15(1).

Finally, frame fields can also be defined for abstract surfaces (manifolds). There
will not be any normal vector because that would not make sense, but one can talk
about frame fields (U1,U2), where U1 and U2 form an orthonormal basis in each
tangent space. There is no problem about defining the corresponding differential
forms wij and qi. The first structural equations would again hold. Since one has no

S v v U p v U p( ) = ( ) ( ) + ( ) ( )w w13 1 23 2 .
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normal vector, one cannot talk about any Gauss map nor define the Gauss curvature
directly as before, but now one would be able to prove that the second structural equa-
tion holds for some function K and this function would then be defined to be the
Gauss curvature. Now, the forms wij and qi depend on the frame field, but the func-
tion K turns out to be independent of it. In the end, one would therefore again have
the first and second structural equations hold. Hence one would get the same geo-
metric consequences as before. The Christoffel symbols are also embedded in all this.
See [Spiv70b].

9.17 Where to Next?

In this chapter we have taken the first steps in learning about some of the beautiful
geometric results as seen through the eyes of a differential geometer. From a histori-
cal perspective, our presentation may have been more modern but we did not learn
much more than what was already known at the time of Gauss. We have basically
looked at results that can be deduced from the first and second fundamental forms.
We have seen how a “simple” map like the Gauss map can contain within it a wealth
of information.

Euler’s formula about the Euler characteristic showed that some properties of
spaces did not depend on their metric. Gauss showed that Gauss curvature depended
only on arc-length in the surface. Another important early result is the Gauss-Bonnet
theorem below, which generalizes the theorem in the plane that the sum of angles of
a triangle is p. It shows a connection between the metric invariant, Gauss curvature,
and a topological invariant, the Euler characteristic, and generalizes the relationship
between the total curvature of a closed curve and its degree (Theorem 9.3.13 and
Corollary 9.3.14).

9.17.1. Theorem. (Gauss-Bonnet) Let S be a compact, closed, orientable surface.
Then

(9.95)

where K is the Gauss curvature function on S and c(S) is the Euler characteristic of
S. (The integral in this equation is called the total Gauss curvature of S.)

Proof. See one of the references for differential geometry.

One of the interesting consequences of this theorem is what it says about the
Gauss curvature function. Since the right-hand side of Equation (9.95) is a topologi-
cal invariant, no matter how we deform a surface, there are constraints as to how the
Gauss curvature distributes itself. It is not a totally arbitrary function. Here is an appli-
cation of the Gauss-Bonnet theorem.

9.17.2. Corollary. A compact, closed, orientable surface whose Gauss curvature is
positive everywhere must be homeomorphic to a sphere.

K
SÚÚ = ( )2pc S ,
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Proof. Equation (9.95) implies that the Euler characteristic of the surface is posi-
tive and the classification theorem for surface tells us that the sphere is only such
surface.

There are many other beautiful theorems showing that the topology of a surface
is influenced by its curvature.

It was Riemann who took differential geometry to the next plateau. His inaugu-
ral lecture at Göttingen in 1854 has been considered to be one of the most influential
in the field. See [Spiv70b] for an excellent discussion of what Riemann said. He moved
differential geometry from surfaces in R3 to n-dimensional manifolds that are
endowed with an intrinsic metric (now called a Riemannian metric), which is defined
independent of approximations by straight lines (lengths of curves in calculus were
traditionally defined in terms approximating polygonal lines with the length of a
straight line segment as basis). Starting with an arbitrary metric

(9.96)

Riemann asked the question “when is this metric isometric to a given one?” For
example, perhaps a change of coordinates would turn the metric into

that is, we have a “flat” space, one that is isometric to Rn. Now, using the Taylor expan-
sion for gij(x) we can rewrite equation (9.96) in the form

(9.97)

By analyzing the dominating expression of second partials, Riemann was led to the
curvature tensor, which is an appropriate function of these partials. The modern way
to approach this subject is by means of what is called a connection. This is where
Section 9.16 was leading. Although it will take a string of definitions and we will give
no proofs, we feel that it is worthwhile to give the reader an inkling of what one has
to do.

Let Mn be an arbitrary Riemannian manifold. To keep things concrete, the user
may assume that the manifold is a submanifold of some Rm and a vector field simply
assigns to every point of M a vector in Rm that is tangent to the manifold.

Notation. If h(t) is a curve in M, then Vect(M,h) will denote the set of vector fields
X(t) defined along h. The zero vector field in Vect(M) or Vect(M,h) will be denoted 
by 0.

We want a general notion of a covariant derivative of one vector field with respect
to another one. It should be something that generalizes the covariant derivative of a
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vector field along a curve that was defined in Section 9.10 and at the same time 
specialize to that one.

Definition. A map

is called a connection or covariant derivative on M if it satisfies the following proper-
ties. Let f Œ C•(M).

(1) —XY is a bilinear function over R in X and Y.
(2) —fXY = f—XY.
(3) —XfY = (Xf)Y + f—XY, where Xf(p) is the directional derivative of f in the direc-

tion X at p.

The vector field —XY is called the covariant derivative of the vector field Y with respect
to the vector field X.

Let

define a coordinate neighborhood for a point p Œ M. We shall use ∂/∂ui (same as Fi)
to denote the standard basis vectors of the tangent spaces. Therefore in terms of this
basis,

The functions Gk
ij determine the connection completely and are called the Christoffel

symbols of the connection. In general, they are not the same functions that we defined
in Section 9.9 without some additional hypotheses. Given a connection on the mani-
fold M and a curve h(t) in M we can define a covariant derivative along curves.

Definition. Given a connection —XY on M, a compatible covariant derivative along a
curve h: [a,b] Æ M is a map

that sends a vector field X(t) along h into a new vector field (DX/dt)(t) along h satis-
fying the following properties. Assume that X(t), Y(t) Œ Vect(M,h) and that f : [a,b] Æ
R is a differentiable function.

(1)

(2)
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(3) Given any Z Œ Vect(M) that agrees with X on h and any T Œ Vect(M) that
agrees with h¢(t) on h, then

(A vector field A Œ Vect(M) agrees with a vector field B Œ Vect(M,h) on h if
A(h(t)) = B(t).)

One can show that every connection defines a unique covariant derivative along
curves. This is an easy consequence of the axioms. Specifically, let

where ai : [a,b] Æ R. Then

Definition. A vector field X(t) along a curve h is called a parallel vector field along h
if DX/dt = 0.

One can show just like in Section 9.10 that a vector at the start point of a curve
defines a unique parallel vector field along the curve.

Definition. A connection on M is said to be compatible with the metric on M
if any pair of parallel vector fields along a curve h(t) have a constant inner 
product, that is, if X(t) and Y(t) are parallel vector fields along h, then <X(t),Y(t)> is
constant.

If one has a connection compatible with the metric, then the covariant derivative
along a curve satisfies

Definition. A connection —XY on M is said to be symmetric or torsion-free if it satisfies

where [X,Y] is the vector field defined by

for p Œ M and f Œ C•(M) called the Lie bracket of X and Y.
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9.17.3. Theorem. (The Fundamental Lemma of Riemannian Geometry) A 
Riemannian manifold Mn possesses a unique symmetric connection that is com-
patible with its metric. This connection is called the Levi-Civita connection for the
metric.

Proof. See [Spiv75] or [MilP77]. The Christoffel symbols defined above are the same
as the Christoffel symbols defined in Section 9.9 for this connection.

Definition. Let X, Y, Z Œ Vect(M). The vector field R(X,Y)Z defined by

is called the curvature tensor of the connection.

The key to Riemannian geometry is an analysis of the curvature tensor. (Tensors
were briefly alluded to in Section 4.9 and are a whole other large topic in differential
geometry and physics.) For example,

9.17.4. Theorem. If Mn is a Riemannian manifold, then the curvature tensor R for
the Levi-Civita connection on Mn is 0 if and only if Mn is locally isometric to Rn with
its usual Riemannian metric.

Proof. See [Spiv75].

It must be pointed out that Theorem 9.17.4 is a local theorem because there are
manifolds that are locally isometric to Rn but are not homeomorphic to Rn. See
[Spiv75].

Here is another way that one can see the geometry that is embedded in the concept
of the curvature tensor. The latter is really defined by lower-dimensional concepts that
are easier to understand. Let Mn be a Riemannian manifold with curvature tensor R.
Let p Œ M and let V be a two-dimensional subspace of the tangent space Tp(M). It turns
out that the geodesics in a neighborhood of p that pass through p and are tangent 
to V at p actually define a piece of a surface S through p that is uniquely defined by V.
The surface S has a Riemannian structure induced by the structure on M.

Definition. The Gauss curvature of S at p is called the sectional curvature of M at
p along V and is denoted by K(p,V).

9.17.5. Theorem. With the notation and hypotheses leading up to the definition of
sectional curvature, let X and Y be vectors in Tp(M) that span V. Then

where A is the area of the parallelogram spanned by X and Y.

Proof. See [Spiv75].
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Theorem 9.17.5 says that the curvature tensor at a point is defined by the Gauss
curvatures of the surfaces through the point.

Returning to the subject of geodesics, we now have all the tools needed to define
this concept for arbitrary Riemannian manifolds. Of course, there never was a
problem with a generalization if we base a definition on the property that the curve
is locally of shortest length. Let us quickly look over the definitions we gave in Section
9.10. The first definition we gave for geodesics in surfaces does not easily generalize.
The second definition does easily generalize to curves in an n-dimensional manifold
Mn in Rn+1 because we again have a normal vector. The fourth does also, because 
generalizing the definition of parallel vector fields is no problem in that case. See
[Thor79]. For arbitrary manifolds, where we have no normal vector, it is the defini-
tion of a geodesic based on parallel vector fields, which is generalized. The key to this
generalization is a definition of the covariant derivative of a vector field along a curve
that we have now.

Definition. A curve h(t) in a Riemannian manifold Mn is called a geodesic if the
covariant derivative of its tangent vector field vanishes, that is, (D/dt)h¢ = 0.

With this definition, it is then straighforward to show that geodesics have the same
properties that they had for surfaces. In particular, they are defined by second order
differential equations and there is a unique geodesic that starts at a point with a given
tangent vector there. There is also an exponential map that maps a neighborhood of
0 in the tangent space at a point diffeomorphically onto a neighborhood of the point
in the manifold.

Finally, it is interesting to point out that the geometric invariants for curves and
surfaces that were discussed here can also be derived from a more analytical point of
view. Look back to Equation (9.97) and the comments following it. As a simpler
example, suppose that we want to study a curve C at a point p. There is no loss of
generality (by moving the curve with a rigid motion) in assuming the p is the origin
and the tangent line is just the x-axis. We may also assume that the curve is a graph
of a function f(x) in a neighborhood of p. In that case, the Taylor expansion for f at
the origin is

It turns out that the constant c is just the curvature of the curve. A similar analysis
can be made for a surface S. In that case we may also assume that the point of 
interest on the surface is the origin, the tangent plane is just the xy-plane, and the
surface is the graph of a function f(x,y). The two-dimensional Taylor expansion for f
is now

where a = fxx (0,0), etc. The principal normal curvatures are just the eigenvalues of the
quadratic form ax2 + 2bxy + cy2, and so on.

f x y ax bxy cy, . . . ,( ) = ( ) + +( ) +1 2 22 2

f x cx( ) = ( ) +1 2 2 . . . .
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9.18 Summary of Curve Formulas

Length of a curve g : [a,b] Æ Rn:

Arc-length parameterization g(s): |g ¢(s)| = 1 (this equation defines it)
g ¢(s)• g≤ (s) = 0

In general:

T(s) = g¢(s)

Curve g in R2:

Principal normal N(s): |N(s)| = 1
(T(s),N(s)) determines the standard 
orientation of R2

N(s) = (-T2(s),T1(s))

Signed curvature kS(s): T¢(s) = kS(s)N(s)

Curvature k(s): k(s) = |kS(s)| = |T¢(s)|

Total curvature kT of g:

Curve g in R3:

Curvature vector: K(s) = g≤(s)

Curvature: k(s) = |K(s)|

Inflection point: Point on curve where curvature is zero.

Principal normal N(s): T¢(s) = k(s)N(s)

Binormal B(s): B(s) = T(s) ¥ N(s)

k t
t t

t
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g g
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d
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Torsion t(s): B¢ (s) = -t(s)N(s)

The Serret-Frenet Formulas: T¢ = kN

N¢ = -kT + tB
B¢ = -tN

Curve g in Rn:

Involute of curve p(s): p*(s) = p(s) + (c - s)T(s), where c is a constant

Curvature of involute p*(s):

Evolute of curve p(s):

for some constant c.

Evolute of planar curve p(s):

for some constant c

Plane evolute of planar curve p(s):

Parallel or offset curves: pd(t) = p(t) + dn(t)

pd¢(t) = p¢(t) (1 + k(t)d)

k
k
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t
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9.19 Summary of Surface Formulas

In the formulas below F(u,v) is a parameterization of a surface S in R3 and

g(t) will be a regular curve on S and assumed to be expressed in the form g(t) = F(m(t)),
where m(t) = (u(t),v(t)) is a curve in R2.

First fundamental form: A quadratic form QI defined on the tangent 
space Tp(S) by

QI(v) = v•v

Metric coefficients:

For first fundamental form: QI(g ¢) = E(u¢)2 + 2F(u¢)(v¢) + G(v¢)2

E = Fu •Fu, F = Fu •Fv, G = Fv •Fv

|Fu ¥ Fv|2 = EG - F2

For a general parameterization F(u1,u2, . . . ,un):

Length:

Angle a between Fu and Fv:

Area of S with U the domain of F:

Volume of a parameterization F with domain U(u1,ui, . . . ,un) for a manifold Mn in Rn+1:

Gauss map: n:S Æ S2, where n(p) is the unit normal at p
for the oriented surface S

Second fundamental form: A quadratic form QII defined on the tangent 
space Tp(S) by

QII(v) = -Dn(p)(v)•v

Coefficients of second fundamental form: QII(v) = L(u¢)2 + 2M(u¢)(v¢) + N(v¢)2

L = -nu •Fu = n•Fuu,
M = -nv •Fu = n•Fuv = n•Fvu = -nu •Fv
N = -nv •Fv = n•Fvv.

V
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Shape operator: Sp = -Dn(p) : Tp(S) Æ Tp(S)

Normal curvature of g at p in S: kn,g(p) = kN•n(p),
where N is the principal normal and k is the
curvature to g at p.

Choose orthonormal basis (u1,u2) for Tp(S) so that

Dn(p)(u1) = -k1u1 (Sp(u1) = k1u1)
Dn(p)(u2) = -k2u2 (Sp(u2) = k2u2).

and assume that k1 ≥ k2.

Principal normal curvatures: k1, k2 (The maximum and minimum of QII
on the unit circle of Tp(S))

Principal normal directions: u1, u2

Gauss curvature: K(p) = determinant of Dn(p)

K = k1k2

Mean curvature:

Weingarten equations:

Principal normal curvatures are roots of: k2 - 2Hk + K = 0

Christoffel symbols: Gk
ij

G G G G

G G G G

11
1

2 12
1

21
1

2 22
1

2

11
2

2 12
2

21
2

2 22
2

2

2 2

2

2
2

2 2

2

=
- +

-( ) = =
-
-( ) =

- -
-( )

=
- +

-( ) = =
-
-( ) =

- +

GE FF FE

EG F

GE FG

EG F

GF GG FG

EG F
EF EE FE

EG F

EG FE

EG F

EG FF

u u v v u v u v

u v u u v v v

, , ,

, ,
FGFG

EG F
u

2 2-( ) .

k k1
2

2
2= + - = - -H H K H H K,

nv u v
NF MG

EG F

MF NE

EG F
=

-
-

+
-
-2 2

F F

nu u v
MF LG

EG F

LF ME

EG F
=

-
-

+
-
-2 2

F F

H
EN GL FM

EG F
=

+
=

+ -
-( )

k k1 2
22
2

2

H Trace dp n p( ) = - ( )( )1
2

=
-
-

LN M

EG F

2

2

668 9 Differential Geometry



Geodesics: Assume that h(t) is a regular curve in S and g(s) is its arc-length
parameterization with Frenet frame (T(s),N(s),B(s)). If

nS(s) = n(g(s)) ¥ T(s),

then
g ≤(s) = k(s)N(s) = kn(s)n(g(s)) + kg(s)nS(s)

k2 = kn
2 + kg

2

kg(s) = k(s)n(g(s))•B(s) = k(s)cosa(s)

Covariant derivative:

Exponential map: expp :U(p) Æ S, where expp(v) = g(1)

Parallel or offset surface:     pd(u,v) = p(u,v) + dn(u,v)

(pd)v = pv + dnv and (pd)u = pu + dnu

Nd(u,v) = (1 - 2Hd + Kd2)N(u,v)

Define s by nd = s n.

Ruled surface: p(u,v) = q(u) + va(u)

9.20 EXERCISES

Section 9.2

9.2.1. Find the length of the helix p(t) = (acost,asint,bt), t Œ [0,p].

9.2.2. Find the arc-length parameterization of the curve p(t) = (cosht,sinht,t), t Œ [0,3].

9.2.3. Find the arc-length parameterization of the curve p(t) = (et cos t,et sint,et), t Œ [0,2].

If
q

then

K K u v
M

EG F v

l
a a

a a
l

l

=
¢ ¥( )∑ ¢

¢ ∑ ¢

= ( ) =
-

-
= -

+( )

,

,
2

2

2

2 2 2

K
K

Hd Kd
H

H Kd

Hd Kd
d d=

+ +
=

+
+ +1 2 1 22 2

, s

k
k
k

k
k
k1

1

1
2

2

21 1
( ) =

+
( ) =

+d dd d
s s

,

D
dt

t t t t
X

X X n n t( ) = ¢( ) - ¢( ) ∑ ( )( )( ) ( )( )h h

kg t
t t

t
( ) =

≤ ( ) ∑ ( )( ) ¥ ¢( )( )
¢( )

h h h

h

n t
3

.

9.20 Exercises 669



Section 9.3

9.3.1. Find the principal normal, the signed curvature, and the center of curvature for the 
following curves p(t):

(a) (parabola) p(t) = (t,t2)
(a) (cycloid) p(t) = (t - sint,1 - cost)
(b) (catenary) p(t) = (t,cosht)

9.3.2. Show that a noncircular ellipse has four vertices.

Section 9.4

9.4.1. Prove that the length of a curve, its curvature, and its torsion are invariant under a rigid
motion.

9.4.2. Find the curvature, torsion, Frenet frame, and the equations for the osculating, normal,
and rectifying plane for the twisted cubic p(t) = (t,t2,t3) at the origin.

9.4.3. Consider the curve p(t) = (t - sint,1 - cost,t). Show that its curvature and torsion is
defined by the following formulas:

9.4.3. Define a curve in R3 to be a generalized helix if it admits a regular parameterization F(t)
with the property that the tangent vector F¢(t) makes a constant angle q with a fixed
unit vector u, where 0 < q < p/2. Prove that a curve is a generalized helix if and only if
the ratio t/k is a nonzero constant (see [Wein00] or [Lips69]).

9.4.4. Let g(t) be a curve. Show that if g ¢(t) and g ≤(t) are linearly dependent for all t, then g(t)
is a straight line.

Section 9.6

9.6.1. Show that the equation of the involute of the circle p(t) = (acost,asint), a > 0, is

9.6.2. Show that the equation of the involute of the catenary p(t) = (t, cosht), is

Section 9.7

9.7.1. Let p(t) be a closed convex plane curve. Let

p t p t dn t dd( ) = ( ) + ( ) >, ,0

q t t t t t( ) = -( )sinh cosh , cosh .2

q t a t t t a t t t( ) = +( ) -( )( )cos sin , sin cos .
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be a curve parallel to p(t), where n(t) are the unit vectors pointing out of the region
enclosed by p(t). Show that

Section 9.8

9.8.1. Let F : [a,b] Æ C be a regular parameterization of a curve C in R2. Show that the volume
V(F) of the parameterization F as defined in this section agrees with the definition of
the length of a curve given in Section 9.2.

9.8.2. Show by direct computation that Theorem 9.8.5 computes the same length of a curve
in the plane as the definition in Section 9.2.

9.8.3. Find the coefficients of the first fundamental form for the surface of revolution that is
parameterized by F(x,q) = (f(x)cosq,f(x)sinq,g(x)).

9.8.4. Consider the parameterization

defined by

which is the composite of the spherical coordinate parameterization of S2 in Example
9.8.4 and the stereographic projection. Compute the coefficients E, F, and G with respect
to Y. Deduce from this and the computations in Example 9.8.4 that the stereographic
projection does not preserve area.

Section 9.9

9.9.1. Show that (0,0,0) is a planar point of the surface of revolution where the curve z = x4

is revolved about the z-axis.

9.9.2. Prove that a curve in a surface is an asymptotic line if and only if every point of 
the curve is an inflection point or the osculating plane at the point is tangent to the
surface.

9.9.3. Let F(u,v) be a regular parameterization of a neighborhood of a point p in a surface 
S. Prove that the u- and v-parameter curves of the patch, that is, F(u,0) and F(0,v),
respectively, are asymptotic lines for the surface if and only if L = N = 0 at each 
point.

9.9.4. Let S be the surface of revolution obtained by revolving a curve

about the x-axis. Assume that y(t) > 0. Let

j p j q q q: , , , , , cos , sin ,0 1 0 2 3[ ] ¥ [ ] Æ ( ) = ( ) ( ) ( )( )R t x t y t y t
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Length p t p t ddof Length of ( ) = ( ) + 2p .
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be the standard parameterization of S. Show that

(a)

(b) If g(t) is the arc-length parameterization, then K = -y≤/y.
(c) Assume that x(t) = t. Show that every point of S is a parabolic point if and only if

S is a cylinder (y(t) = c) or a cone (y(t) = at + b, a π 0).

9.9.5. Show that a definition of the second fundamental form based on Equation (9.47) is inde-
pendent of the choice of local coordinates.

9.9.6. Let p be a point of a surface S. Let L, M, and N be the coefficients of the second fun-
damental form of S. Show that the point p is

(1) elliptic if LN - M2 > 0,
(2) hyperbolic if LN - M2 < 0,
(3) parabolic if LN - M2 = 0 but not all of the L, M, and N are zero, and
(4) planar or flat if L = M = N = 0.

These characterizations of elliptic, hyperbolic, parabolic, and planar or flat are some-
times used as the definition.

9.9.7. Find the Gauss and mean curvatures of the surface F(u,v) = (u + v,u - v,uv) at (1,1).

Section 9.10

9.10.1. Prove Theorem 9.10.1(3). See [Stok69].

9.10.2. Show that the curve g(t) = (t,0,t2) is a geodesic in the surface F(u,v) = (u,v,u2 - v2).

9.10.3. Let S be a surface in R3.

Definition. Let X be a plane in R3 and let r be the reflection about X. We say that X is
a plane of symmetry for S if for all points p in S the reflected point r(p) belongs to S.

Prove that if X is a plane of symmetry for S, then the intersection of X and S defines
a geodesic curve. Use this fact to find some geodesics on the surface defined by x2 +
y2 - z2 = 1.

9.10.4. Prove Theorem 9.10.15.

9.10.5. Prove Theorem 9.10.20.

Section 9.12

9.12.1. Let g(s) be a space curve parameterized by arc-length. Let (T(s),N(s),B(s)) be its 
moving trihedron. Consider the canal surface S with constant radius function and
parameterization

Let k be the curvature of g and K the Gauss curvature of S. Prove that

(a) g = r2(1 - krcosq)2

(b) K
g

= -
k cos q

F s s r N s r B s, cos sin .q g q q( ) = ( ) + ( ) ( ) + ( ) ( )

K
x x y x y

y x y
=

¢ ≤ ¢ - ¢ ≤( )
¢ + ¢( )2 2
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Section 9.14

9.14.1. Show that if S is a surface of constant mean curvature h π 0, then the parallel surface
S1/2h has constant Gauss curvature 4h2. (This is a theorem of Bonnet.)

Section 9.15

9.15.1. (a) Prove Lemma 9.15.3.
(b) Consider a curve

Show that the condition m¢ • a¢ = 0 defines a unique such curve if a¢ π 0 and that
this is the line of striction.

9.15.2. Find the line of striction for the Moebius strip

9.15.3. Show that every singular point of a noncylindrical ruled surface lies on its line of 
striction.

9.15.4. Show that the surface obtained by revolving a segment about a line is developable.

9.15.5. Let g(s) be a space curve parameterized by arc-length. Let (T(s),N(s),B(s)) be its moving
trihedron. Find conditions under which the following surfaces are developable:

(a) F(s,t) = g(s) + tN(s)
(b) F(s,t) = g(s) + tB(s)

9.15.4. Show that the hyperbolic paraboloid z = x2 - y2 is a doubly ruled surface.

Section 9.16

9.16.1. Let g(s) be a curve in R3 parameterized by arc-length. Assume that k(s) > 0. Let
(U1,U2,U3) be a frame field that extends the Serret frame (T,N,B) in a neighborhood of
the curve. Let X = U1. Show that the Equations (9.94) in Theorem 9.16.6 reduce to the
Serret-Frenet equations.
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C H A P T E R  1 0

Algebraic Geometry

Prerequisites: Chapter 3, 4, Sections 8.3–8.5, 8.11, 8.14, and basic abstract algebra

10.1 Introduction

Smooth manifold-like spaces are typically presented in one of two ways: either via an
explicit parameterization or as the set of zeros of some function. The definition of a
manifold was based on a parameterization, but special cases of manifolds, most
notably the conic sections, are described most easily by equations. The functions
involved are usually polynomials or at worst rational functions, which are quotients
of polynomials. Polynomials define ideals in polynomial rings and so algebraic struc-
tures become associated to implicitly defined spaces. The question then arises as to
whether there is any connection between purely algebraic properties of substructures
of polynomial rings (a subject that belongs to the field of commutative algebra) and
geometric properties of associated spaces. This is what algebraic geometry is all about.
Algebraic geometry can be thought of as the study of commutative algebra (the “alge-
braic” part of the name) as seen through the eyes of a geometer (the “geometry” part).
It is another attempt to study geometric properties using algebra, just like algebraic
topology.

The definitions below introduce the sets and the associated terminology that is
basic to algebraic geometry. These definitions and others along with various results
in this chapter are naturally expressed in the context of arbitrary fields k and subsets
of kn. However, it turns out that the best way to understand what is going on is to
analyze what happens in the case of algebraically closed fields first. What sets these
fields apart from others is that every polynomial of degree n over such a field has n
roots, so that sets defined as zeros of polynomials will always have the “right” number
of points. This explains why most theorems in algebraic geometry deal with alge-
braically closed fields. Drawing the desired conclusions back down at the original field
level is an additional and usually nontrivial step. Although we shall phrase much of
the discussion in this chapter in terms a general “field k” or “algebraically closed field
k,” to keep things concrete, the reader can always interpret this to mean either R or



10.1 Introduction 675

its algebraic closure, the complex numbers C, respectively. On a practical level we are
of course most interested in the field R and subsets of Rn.

Definition. Let k be any field and let f(X1,X2, . . . ,Xn), fi(X1,X2, . . . ,Xn) Œ k[X1,X2,
. . . ,Xn]. A set of points in kn of the form

is called a hypersurface in kn. If n = 2, then we call V(f) an algebraic plane curve (often
abbreviated to plane curve in this chapter). A set of points in kn of the form

is called an affine algebraic variety, or simply variety, in kn defined by the set of 
polynomials {fi}. If the field k has to be made explicit, we shall use the terms “k-
hypersurface” and “k-variety” and use the notation Vk(f ) and Vk({fi}). A real or complex
variety will mean a k-variety where k is R or C, respectively.

The justification for the term “hypersurface” will be found later in Theorem 10.16.8,
which shows that these sets are typically (n - 1)-dimensional subsets of kn.

Algebraic geometry is the study of varieties, but we shall see that thorough
answers to many of the questions we want to ask all involve projective space. In fact,
the natural setting for most of the topics in this chapter is projective space. Even
though we may be motivated by problems about algebraic curves in affine space, the
general approach is to study the curves in projective space first and then translate the
appropriate answers back to the affine context. Affine space, namely, kn, should be
thought of as dealing with local properties of curves, whereas projective space deals
with their intrinsic properties that are both local and global. We need to extend the
definitions above to that setting. In fact, we need to generalize our earlier definition
of projective space (as given in Section 3.4).

Definition. Define n-dimensional projective space Pn(k) over a field k to be the 
quotient space

where ~ is the equivalence relation on kn+1 - 0 defined by

for all ci, d Œ k, and d π 0. The equivalence class of an n-tuple c = (c1,c2, . . . ,cn+1) will
be denoted by [c] or [c1,c2, . . . ,cn+1].

Note that the space Pn, as defined in Section 3.4, is just Pn(R), the important
special case of n-dimensional projective space over the reals.

To define a concept of an algebraic variety in Pn(k), meaning the zeros of poly-
nomials, one has to be careful. The problem is that if f(X1,X2, . . . ,Xn+1) is a polyno-
mial in k[X1,X2, . . . ,Xn+1], then the obvious definition of the value of f at a point p in
Pn(k), namely,

c c c dc dc dcn n1 2 1 1 2 1, , . . . , ~ , , . . . ,+ +( ) ( )

P 0n nk k( ) = -( )+1 ~,

V f k f for all ii
n

i{ }( ) = Œ ( ) ={ }c c 0

V f k fn( ) = Œ ( ) ={ }c c 0
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is not well defined in general because it depends on the representative tuple chosen
for p. On the other hand, that definition is well defined (and we shall use it) with
respect to the statements

provided that we restrict ourselves to homogeneous polynomials. This follows from
the fact that if f is a homogeneous polynomial of degree d, then

so that if f is zero or nonzero on one representative c of p, then it will be zero or
nonzero on all of them.

Definition. Let f(X1,X2, . . . ,Xn+1) be a homogeneous polynomial in k[X1,X2,
. . . ,Xn+1]. Define the hypersurface V(f) in Pn(k) by

If n = 2, then we shall call V(f) a projective algebraic plane curve (again often abbrevi-
ated to plane curve). If f is a linear homogeneous polynomial, then V(f) will be called
a hyperplane. If n = 2, then such a set will also be called a line. Given a finite collec-
tion of homogeneous polynomials fi(X1,X2, . . . ,Xn+1) in k[X1,X2, . . . ,Xn+1], the (pro-
jective) algebraic variety, or simply variety, in Pn(k) defined by the set of polynomials
fi is the set

Again, if the field k has to be made explicit, we shall refer to “k-hypersurfaces” and
“k-varieties” and use the notation Vk(f) and Vk({fi}).

(We note that another common approach to projective varieties is described later
in Exercise 10.8.5.)

This chapter attempts to give a brief overview of some central results about the
structure of varieties. As with some of the other topics covered in previous chapters,
we shall only barely scratch the surface of the field of algebraic geometry. Our empha-
sis will be on plane curves, but even for this special case much will be left out. There-
fore, the main goal will be to motivate and organize various important topics for the
reader. By and large proofs are only sketched and many are omitted, but at least he/she
will at least see some of what is known. The problem is that to do more would require
a much more in-depth knowledge of commutative algebra than we assume here. The
field of algebraic geometry has much more advanced mathematics as a prerequisite
than any of the other topics discussed in this book. It is hoped, however, that the reader
will get a feel for the subject and will be motivated to refer to some of the references to
learn more. Certainly, by the time the chapter ends, he/she should have a better under-
standing of the following problems that are of particular relevance to CAGD:

V f k f for all ii
n

i{ }( ) = Œ ( ) ( ) ={ }p P p 0 .

V f k fn( ) = Œ ( ) ( ) ={ }p P p 0 .

f t t fdc c( ) = ( ),

f or fp p( ) = ( ) π0 0

f f c c c if c c cn np p( ) = ( ) = [ ]+ +1 2 1 1 2 1, , . . . , , . . . , ,
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(1) (The Implicitization Problem) Given a polynomial parameterization p(t) of a
space X, can one find an implicit equation which defines X?

(2) (The Parameterization Problem) If a space X is defined implicitly by means of
a polynomial equation f(p) = 0, can one parameterize X using polynomials?

(3) (The Intersection Problem) Given implicit or parametric definitions for spaces
X and Y, what can be said about their intersection X « Y?

Here is a look at what is to come in this chapter. After Section 10.2 gets us started
with some examples of plane curves that show why affine space is inadequate for a
thorough analysis of varieties, Sections 10.3–10.5 back up to fill in some needed alge-
braic background. Section 10.3 describes some analytic properties of the parameter-
ization of projective space and useful facts about how to pass back and forth between
affine and projective space. Section 10.4 defines the resultant of two polynomials and
shows how it can be used to find common factors. Section 10.5 describes some basic
algebraic properties of polynomials and their influence on the structure of varieties.
Sections 10.6 and 10.7 define intersection multiplicities, singularities, and tangents of
plane curves and use this to analyze their intersections. Next, as preparation for study-
ing higher-dimensional varieties, we develop some simple aspects of commutative
algebra in Section 10.8. Section 10.9 looks at the problem of finding implicit repre-
sentations of parametrically presented curves. Difficulties with using the resultant lead
to a discussion of Gröbner bases in Section 10.10 and elimination theory in Section
10.11. Section 10.12 starts the analysis of the singularities of a curve and defines the
place of a curve. This is a long section because in order to understand what is going
on we have to bring complex analysis into the picture, in particular, the topics of 
analytic continuation, the uniformization problem, and Riemann surfaces. Section
10.13 is on rational and birational maps. We move on to higher dimensions and space
curves in Section 10.14. The parameterization problem for implicitly defined curves
is discussed in Section 10.15. We finish the chapter with an overview of some higher-
dimensional topics in Sections 10.16–10.18. We define the dimension of a variety,
describe the Grassmann manifolds as varieties, and sketch some important theorems.

A final note. At various times in this chapter we will be taking derivatives or partial
derivatives of polynomials. Let us clarify this right now, so that the reader will not be
puzzled by what that might mean in the case of, say, polynomials over the complex
numbers or other fields. In the case of polynomials there is a formal notion of deriv-
ative that is computed like the usual derivative but is well defined for polynomials
over any ring and does not involve having to take limits. See Section B.7. This is what
we shall be using.

10.2 Plane Curves: There Is More than Meets the Eye

We begin our tour of algebraic geometry with a closer look at plane curves. Even
though the reader’s initial reaction might be that their low dimensionality would not
lead to anything interesting, this is not at all the case. In fact, in contrast to algebraic
topology where things tend to get interesting only in higher dimensions, an analysis
of plane curves will already lead to some of the most fundamental ideas in algebraic
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geometry. The only thing simple about the two-dimensional case is the fact that it is
somewhat easier to draw pictures here and so the reader will have an easier time
understanding what some of the relevant issues are. This section will show the poten-
tial richness of a theory of plane curves by attempting to answer the simple sounding
question: what do plane curves and their intersections “really” look like?

The most well-known plane curves are probably the conics, namely, the ellipse,
parabola, and hyperbola, which are defined by simple quadratic equations. As we look
at such curves let us do it in the context of the following question:

What is the relation between the dimension of a variety and the number and type of equa-
tions that define it?

A natural intuition would be that each equation takes away one degree of freedom.
Certainly, in the case of linear equations, k “independent” linear equations in n vari-
ables will define an (n - k)-dimensional plane in Rn, or, to put it another way, a plane
of codimension k. This uniformity does not seem to be the case when dealing with
polynomial equations. Consider, for example, the three polynomials:

(10.1)

(10.2)

(10.3)

The curves in R2 associated to the zeros of these polynomials are the circle, the point
0, and the empty set, respectively. Although the circle is a codimension 1 subset, the
other two spaces are not. One might be tempted to give up on the general principle
that one equation should define a codimension 1 subset, but that would be prema-
ture. One can restore a uniformity into this picture by doing what is often done in
mathematics – extending the universe in which one is searching for solutions. In this
case, the problem is that the reals are not algebraically closed. We should consider
our polynomials as polynomials over the complex numbers C. This will guarantee that
there will always be the “right” number of solutions. In fact, one should go one step
further and move to homogeneous coordinates and complex projective space P2(C).
This will restore some additional “missing” points “at infinity” and unify connectivity
properties of varieties. For example, we showed in Chapter 3 that all the conics look
essentially the same and the differences between ellipses, parabolas, and hyperbolas
that exist in the affine world when it comes to their number of branches is eliminated.
So let us show how using complex numbers and projective space does bring back
harmony and uniformity to our world. Of course, the reader should note that the term
“plane curve” has now taken on a new meaning. The curve, as the set of zeros of a
polynomial in two variables whose coefficients might be all real, can mean the “real
part” in R2 or the “complex part” in C2 or the entire curve in P2(C). We shall switch
back and forth between these meanings. The context should make clear which we
have in mind at any given time.

What happens when X and Y are complex variables rather than real ones? We
look at several examples starting with the polynomials in equations (10.1–3). See
[Kend77] for more details about the examples below.

X Y2 2 1+ +

X Y2 2+

X Y2 2 1+ -
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10.2.1. Example. V (X2 + Y2 - 1) (The complex “circle”)

Analysis. Replacing X by u + iv and Y by z + iw gives the equation

Setting the real and complex parts of both sides of the equation equal gives

(10.4)

and

(10.5)

We shall try to analyze the space V(X2 + Y2 - 1) by thinking of it as the set of
(u,v,z,w)-tuples in R4 defined by equations (10.4) and (10.5) and look at various sec-
tions of it. First, let us look at the three-dimensional slice w = 0. We get two equations

(10.6)

and

(10.7)

Let Ca(e) denote the circle in the plane v = a defined by

and let Ca = Ca(0). Let H be the hyperbola in the z-v plane defined by

Then it is easy to see that the surface defined by equation (10.6) is just the union of
the circles Ca or, alternatively, the surface obtained by revolving the hyperbola H about
the v axis. See Figure 10.1(a).

Equation (10.7) defines two planes (u = 0 and v = 0). The intersection in P2(C) of
the hyperboloid defined by (10.6) and these two planes is shown in Figure 10.1(b),
where p• = [1,-1,0] and p¢• = [1,1,0] denote the two points “at infinity” associated to
H. Geometrically, the points p• and p¢• come from the two asymptotes of the hyper-
bola defined by the lines x = y and x = -y.

Next, consider the three-dimensional slice w = e. The two equations we have to
look at now are

(10.8)

and

(10.9)z
v
e

u= -Ê
Ë

ˆ
¯ .

u v z e2 2 2 21- + = +

z v2 2 1- = .

Ca e u a z u z a e( ) = ( ) + = + +{ }, , ,2 2 2 21

uv = 0.

u v z2 2 2 1- + =

uv zw+ = 0.

u v z w2 2 2 2 1- + - = .

u v z w+( ) + +( ) =i i
2 2

1.
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Equation (10.8) by itself defines hyperboloids He, which are the union of the circles
Cv(e), of which H in Figure 10.1(a) is a special case. Equation (10.9) defines a twisted
plane. For fixed v it defines a line. These lines start with slope 0 and then rotate to
almost vertical lines as v gets much bigger than 1. Figure 10.2(a) shows the circles
Cv(e) and hyperbolas He defined by equations (10.8) and (10.9) projected to the u-z
plane. One can show that the curves defined by the intersection of the hyperboloids
and twisted planes (the simultaneous solutions to equations (10.8) and (10.9)) “fill
out” the skeleton of the sphere shown in Figure 10.1(b). See Figure 10.2(b). In other
words, thought of as living in P2(C) the space V(X2 + Y2 - 1) is topologically a sphere.

10.2.2. Example. V (X2 + Y2)

Analysis. Again replacing X and Y by u + iv and z + iw, respectively, leads to the
equations

z
z2 – v2 = 1

+1

+1

–1

–1

H

H

(a) (b)

C

H

u
C0

v

z = –v

v = 0 u = 0

z = v

p¢• p•

Figure 10.1. Example 10.2.1.

He

He

v ≥ e

v ≤ e Cv(e)
C0

z

u2 + z2 = 1 + e2 + v2

1
u

z = –(v/e)u

p•

(a) (b)

p¢•

Figure 10.2. Example 10.2.1 continued.
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(10.10)

and

(10.11)

The three-dimensional slice w = 0 is defined by

(10.12)

and

(10.13)

Equation (10.12) defines a cone. Equation (10.13) defines two planes as before. See
Figure 10.3(a). What basically is happening is that if we were to consider the family
of hypersurfaces V(X2 + Y2 - c), c Œ [0,1], and let c approach 0, then we would get
pictures like in Figure 10.1 except that the circle C0 would shrink to 0 and the lines
H would “straighten” out. The final analog of Figure 10.2(b) would be Figure 10.3(b).
In other words, thought of as living in P2(C) the space V(X2 + Y2) is topologically the
union of two spheres which meet at a point.

10.2.3. Example. V (X2 + Y2 + c), 0 π c Œ C

Analysis. One can show that the closure of this space in P2(C) is topologically a
sphere (Exercise 10.2.1).

10.2.4. Example. V (Y2 - X (X2 - 1))

Analysis. This time, replacing X by u + iv and Y by z + iw leads to the equations

uv = 0.

u v z2 2 2 0- + =

uv zw+ = 0.

u v z w2 2 2 2 0- + - =

p•

(a) (b)

p¢•

z

u

v

Figure 10.3. Example 10.2.2.
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(10.14)

and

(10.15)

When v = 0, this reduces to

(10.16)

and

(10.17)

If w = 0, then we get the equation

The graph of this equation is shown in Figure 10.4(a). If z is set to zero instead of w,
then we get a mirror image of this graph and so the complete picture for the case 
v = 0, as specified by equations (10.16) and (10.17), is as shown in Figure 10.4(b).
Because the tangent lines of the two branches approach the z and w axis, respectively,
and since the z-w plane corresponds to a unique point p• in P2(C), the graphs look
topologically as shown in Figure 10.5(a). By next considering the three-dimensional
slices v = e, one can show that they fill a torus. See Figure 10.5(b). Therefore, thought
of as living in P2(C) the space V(Y2 - X(X2 - 1)) is topologically a torus.

After these examples of projective complex plane curves, is there an underlying
general result? Yes!

10.2.5. Theorem. Let f(X,Y) be a nonconstant polynomial in C[X,Y]. If f is irre-
ducible, then the closure of V(f) in P2(C) is a compact connected orientable surface

z u u2 3= - .

zw = 0.

z w u u2 2 3- = -

2 3 2 3zw u v v v= - - .

z w u uv u2 2 3 23- = - -

z
w

z

u

z2 = u3 – u

w2 = u – u3

z2 = u3 – u

u
1–1

(a) (b)

Figure 10.4. Example 10.2.4.
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in which possibly a finite number of pairs of points have been identified. In general,
the closure of V(f) is a finite union of such spaces where each is attached to every
other along a finite set of points.

Proof. See [Kend77].

Theorem 10.2.5 tells us what an arbitrary algebraic curve in P2(C) looks like topo-
logically, but it does not say that every surface of the type described in the theorem
is an algebraic curve, only some are. However, one can use the polynomial

to generate a space of genus g with 2-to-1 identifications. Constructing spaces with
more complicated identifications gets more complicated.

We have just seen that if we want to understand plane curves there is more 
than what meets the eye at first glance. A similar revelation can be had with respect
to the problem of plane curve intersections. Two distinct lines (degree 1 curves) 
can intersect in a single point or none at all. A line and a conic can intersect in 2, 1,
or 0 points. Figure 10.6 shows some possible intersections of two distinct conics
(degree 2 curves). One can have anywhere from 0 to 4 points in the intersection. 
At first glance it would appear that there is no connection between the degree of 
the curves and the number of points in their intersection. However, there is a
connection. The problem again is that the reals are not algebraically closed. If we
think of the curves as lying in P2(C), Bézout’s theorem (Theorem 10.7.4) will tell us
that there are as many points in the intersection, if counted with their multiplicities,
as the product of the degrees of the curves. For example, in P2 all distinct lines 
intersect in a point. Also, in P2, the line that corresponds to the y-axis in R2 and
the conic that corresponds to the parabola y = x intersect at the origin and the ideal
point [0,1,0].

These preliminary observations should be an indication of the rich theory await-
ing us and we now proceed to a more rigorous analysis. Hopefully, the examples in
this section have justified our earlier comments about the need to understand things
at the complex number and projective space level. Life is easier there and there is

Y X X X g2 2 2 21- -( ) -( ). . .

p• p•+1 +1–1 –10 0

(a) (b)

Figure 10.5. Example 10.2.4.
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more uniformity. Of course, in practice one probably wants answers with real
numbers, but we shall see over and over again in this chapter that, in so far as it is
possible to give such answers, they are obtained by first dealing with the problems
over the complex numbers. Before we get down to business though, we need to clarify
the connection between affine and projective algebraic geometry and also cover some
algebraic preliminaries.

10.3 More on Projective Space

This section discusses some important aspects of projective space that were not
addressed before because they were not needed until now. We also show how to pass
back and forth between projective and affine space.

When k = R or C, then the space Pn(k) is actually a differentiable manifold of
dimension n or 2n depending on whether k is R or C, respectively. In fact, Pn(C) is
what is called an n-dimensional complex manifold, but since its complex manifold
structure will not play any role in this book, we will have nothing further to say about
complex manifolds as such. It is important to note though that Pn(k) looks locally just
like kn. More precisely, we can use equations similar to equations (8.45) and (8.46) in
Section 8.13 to show that the space can be covered by coordinate neighborhoods
(Ui,ji), where, for i = 1, 2, . . . , n + 1,

(10.18)

and

is defined by

(10.19)

By identifying kn with Ui via the homeomorphism ji, one can think of Ui as consist-
ing of the “affine” points of Pn(k) with respect to the coordinate neighborhood (Ui,ji).
The set Pn(k) - Ui, which is the hyperplane V(f), where

ji n
i

i

i

i

i

n

i
c c c

c
c

c
c

c
c

c
c1 2 1

1 1 1 1, , . . . , , . . . , , , . . . , .+
- + +[ ]( ) = Ê

Ë
ˆ
¯

ji i
nk: U Æ

Ui n ic c c c= [ ] π{ }+1 2 1 0, , . . . ,

Figure 10.6. How conics can intersect.
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is then referred to as the “plane at infinity” with respect to (Ui,ji). The coordinate neigh-
borhood (Un+1,jn+1) represents the “standard” imbedding of kn in Pn(k). Although the
coordinate neighborhoods (Ui,ji) are quite adequate for most situations, they are not for
algebraic geometry. An arbitrary subvariety of Pn(k) might have lots of interesting points
lying on its plane at infinity. It would be much more convenient to be able to choose a
parameterization with respect to which all of those points, or at least all but a finite
number, are affine points. In addition, the choice of a coordinate system clearly has a big
influence on the equation for a set, so that the more choices one has, the better off one is.
For example, the standard coordinate axes of the projective plane are defined by

but they could also be defined by

in another coordinate system. Therefore, we need to rethink our representation of
projective space.

From now on, let us think of Pn(k) as an abstract topological space with its defi-
nition inducing only one out of many possible homogeneous coordinates for its points.
In fact, let A = (aij) be a nonsingular (n + 1) ¥ (n + 1) matrix over k and let

be the associated linear transformation that sends x to xA. The map T induces a well-
defined map

defined by [T]([c]) = [T(c)]. Let Ti be the ith component function of T defined by

Then

(10.20)

is a hyperplane in kn+1. Finally, let

(10.21)

and define

by

j jA i T i A i
nk, , ,:= ÆU

U U P HA i T i
n

A ik, , ,= = ( ) -

H HA i T i iT, , ker= = ( )

T T T Tnc c c c( ) = ( ) ( ) ( )( )+1 2 1, , . . . , .

T k kn n[ ] ( ) Æ ( ): P P

T k kn n: + +Æ1 1

X Y2 2 0- =

XY = 0,

f X X X Xn i1 2 1, , . . . , ,+( ) =
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(10.22)

10.3.1. Proposition. The maps jA,i are homeomorphisms and the (UA,i,jA,i) are
coordinate neighborhoods that cover Pn(k).

Proof. Exercise 10.3.1.

Definition. The tuple T(c) will be called homogeneous coordinates of [c] in Pn(k)
relative to A. The collection of coordinate neighborhoods

is called the coordinate neighborhood cover induced by A (or T). A point of HA,i is called
an ideal point or point at infinity of Pn(k) with respect to the coordinate neighborhood
(UA,i,jA,i). The set HA,i is called the plane (or line, if n = 2) at infinity with respect to
the coordinate neighborhood (UA,i,jA,i).

If A is the identity matrix I, then we get our standard homogeneous coordinates,
neighborhoods, ideal points, and planes at infinity for Pn(k). It will be convenient to
abbreviate the above notation as follows:

(10.23)

In fact, a consequence of the next two theorems is that we may always assume,
without loss of generality, that the homogeneous coordinates we use correspond to
the most standard of all cases, namely, i = n + 1.

10.3.2. Theorem. Given any hyperplane in Pn(k) we can always find a nonsingular
(n + 1) ¥ (n + 1) matrix A so that this hyperplane is the plane at infinity with respect
to the coordinate neighborhood (UA,n+1,jA,n+1).

Proof. The theorem is an immediate consequence of the fact that given any hyper-
plane X in kn+1 we can find a nonsingular linear transformation of kn+1 that maps X
onto the hyperplane xn+1 = 0.

When we defined projective hypersurfaces and varieties earlier, those definitions
implicitly assumed the standard parameterization of projective space. Although a
variety is a unique subset of projective space, how it is presented depends on the para-
meterization. The next theorem tells us how the polynomials that define a variety
change as we switch from one set of homogeneous coordinates to another.

10.3.3. Theorem. Let V = V(f) be any hypersurface in Pn(k) defined by a homogeneous
polynomial f. If A is any nonsingular (n + 1) ¥ (n + 1) matrix, then V = V(g), where

g Y Y Y f Y Y Y An n1 2 1 1 2 1
1, , . . . , , , . . . , ,+ +

-( ) = ( )( )

H H

U U
i I i

i I i

i I i
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when expressed in homogeneous coordinates relative to A.

Proof. The proof is easy. (The reader may also find it helpful to review the discus-
sion in Section 6.10 in [AgoM05] about the way that equations for implicitly defined
objects transform.)

10.3.4. Example. To find a coordinate neighborhood (U,j) for P2, so that the line
defined by the equation -2X + Y - Z = 0 becomes its line at infinity.

Solution. Consider the linear transformation

It is nonsingular because the inverse of T is easily found by back substitution to be

Note that T maps the points (X,Y,Z) with -2X + Y - Z = 0 onto the set of points
(X¢,Y¢,Z¢) with Z¢ = 0. Therefore, we can let U = UT,3 and j = jT,3 : U Æ R2, that is,

The important consequence of Theorem 10.3.3 is that if two coordinate systems
for projective space differ by a linear change of variables, then the polynomials that
define a variety with respect to these coordinate systems only differ by a linear change
of variables. Since a linear change of variables will never affect any of the properties
of varieties we are interested in, it follows that by choosing an appropriate homoge-
neous coordinate system we can reduce problems about properties of points on hyper-
surfaces in Pn(k) to problems about points on hypersurfaces in kn. More generally, we
shall feel free to choose appropriate coordinate systems for kn because there is a
natural correspondence between linear changes of coordinate systems there and in
Pn(k). These comments justify future phrases like “Without loss of generality assume
a coordinate system so that. . . .”

We have indicated that projective space is the natural space in which to do alge-
braic geometry. However, many problems arise from an attempt to understand affine
varieties. This leads to another problem. How do we convert an affine variety into a
projective one? Before we address this question we need some more definitions.

Consider a polynomial f(X1,X2, . . . ,Xn) in k[X1,X2, . . . ,Xn]. We express f in terms
of its homogeneous components. If f has degree d, then f can be written uniquely in
the form

j X Y Z
Z

X Y Z
Y Z

X Y Z
, , , .[ ]( ) = -

- + -
-

- + -
Ê
Ë

ˆ
¯2 2

T X Y Z

Y X Y

Z X

- ¢ = -

¢ = - +
¢ = -

1 1
2

1
2

:

T X Z

Y Y Z

Z X Y Z

: ¢ = -
¢ = -
¢ = - + -2
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where fi is a homogeneous polynomial of degree i in k[X1,X2, . . . ,Xn].

Definition. The polynomial

in k[X1,X2, . . . ,Xn+1] is homogeneous of degree d. It is called the homogenization of f
and is denoted by H(f).

10.3.5. Example. If

then the homogenization of f is

Another way of looking at this process is that F(X,Y,Z) is obtained by replacing X and
Y in f(X,Y) by X/Z and Y/Z, respectively, and then clearing denominators.

Definition. If F(X1,X2, . . . ,Xn+1) is a homogeneous polynomial in k[X1,X2, . . . ,Xn+1],
then the polynomial

is called the dehomogenization of F and is denoted by D(F).

Taking another look at Example 10.3.5 we see that f(X,Y) = F(X,Y,1). In general,
D(H(f)) = f but H(D(F)) does not always equal F as is shown by the example F = X1X2
and n = 2.

Definition. Let V be an (affine) variety in kn. Using the notation defined by equa-
tions (10.23), the smallest projective variety in Pn(k) which contains j-1

n+1(V) is called
the projective completion of V relative the coordinate system (Un+1,jn+1) and is denoted
by H(V). More precisely,

H(V) = the intersection of all projective varieties in Pn(k) that contain jn+1
-1 (V).

If V is a (projective) variety in Pn(k), then V«Un+1 is called the affine part of V and
will be denoted by D(V).

It is the operations of homogenization, dehomogenization, projective completion,
and affine part that allow us to pass back and forth between varieties in affine and
projective space. See [Kend77] for more details on the relationship between affine and
projective varieties. In particular.

f X X X F X X X k X X Xn n n1 2 1 2 1 21, , . . . , , , . . . , , , , . . . ,( ) = ( ) Œ [ ]

F X Y Z X XYZ XY Z, , .( ) = - + -2 5 173 2 3

f X Y X XY XY, ,( ) = - + -2 5 173 2

F X X X f X f X f X fn n
d

n
d

d n d1 2 1 0 1 1 1
1

1 1, , . . . , . . .+ + +
-

- +( ) = + + + +

f f f fd= + + +0 1 . . . ,
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10.3.6. Theorem. Let f Œ C[X1,X2, . . . ,Xn] and V = V(f) Õ Cn.

(1) The (projective) hypersurface V(H(f)) in Pn(C) is the projective completion
H(V) of V.

(2) The projective completion H(V) of V is the topological closure of V in Pn(C).
(3) Using the notation defined by equations (10.23), j-1

n+1(V) = D(H(V)). (Basically,
this says that V is the affine part of the projective completion of V.)

Proof. See [Kend77] or [Shaf94].

The next example shows that Theorem 10.3.6 is false if the field is the reals. The
algebraic closure property of the complex numbers is essential.

10.3.7. Example. Consider

and let V = V(f) Õ R2. Figure 10.7(a) shows V. Note that the origin is an isolated 
point of the graph. It is basically such an isolated point that will lead to our coun-
terexample but it will not be V directly because we need a variety that has its isolated
point at infinity. To get this variety we simply move V. Consider the transformation

which moves the y-axis to the line at infinity. This will transform

into

G X Y Z Y X Z Z X, ,( ) = - +2 3 2

H f Y Z X X Z( ) = - +2 3 2

T X Z

Y Y

Z X

:

,

¢ =
¢ =
¢ =

f X Y Y X X,( ) = - -( )2 2 1

Y Y

X X

V = V(f )

f(X,Y) = Y2 – X2 (X – 1) g(X,Y) = Y2X + X – 1

W = V(g)

(a) (b)

Figure 10.7. The varieties of Example 10.3.7.
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with

Let W = V(g) Õ R2. Figure 10.7(b) shows W. The variety W is the counterexample we
are looking for. Note that G = H(g) and [1,0,0] Œ V(H(g)), but the topological closure
of W in P2 is W » {[0,1,0]} (Exercise 10.3.4) and [1,0,0] is not in it. Although we do
not yet have the tools to prove this, it is the case that H(W) = V(H(g)) (Exercise 10.5.3).
We have found a counterexample to Theorem 10.3.6(2). Actually, W serves as our
counterexample no matter what might have happened because if it were the case that
H(W) π V(H(g)), then we would have violated Theorem 10.3.6(1) instead.

The reason that behavior as in Example 10.3.7 is impossible in complex projec-
tive space is that the algebraic closure of the complex numbers guarantees that equa-
tions have enough solutions to prevent the kind of isolated points that we found in
our example. Over the complex numbers the projective variety defined by g(X,Y) will
be a pinched sphere and what was our isolated point over the reals will be the pinched
point which is no longer isolated (Exercise 10.3.5).

We shall have more to say about the projective completion of a variety at the end
of Section 10.8 once we have a little more algebra behind us.

10.4 Resultants

This section introduces an important tool for determining if polynomials in one vari-
able have a common factor. It will be needed later in several contexts.

Definition. Let

(10.24)

be two polynomials in D[X] of positive degrees m and n, respectively, where D is a
unique factorization domain. Define the Sylvester matrix SM(f,g) of f and g by

SM f g

a a a a

a a a a

a a a

b b b b

b b b b

b b b

m m

m m

m m

n n

n n

n n

,( ) =

Ê

Ë

Á
Á
Á
Á
Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜

-

-

-

-

-

-

1 1 0

1 1 0

1 0

1 1 0

1 1 0

1 0

0 0

0 0

0

0 0

0 0

0

L L L

L L L

O L O M

L L L

L L L

L L L
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L L L

˜̃
˜
˜
˜
˜
˜
˜

f X a X a X a

g X b X b X b

m
m

m
m

n
n

n
n

( ) = + + +
( ) = + + +

-
-

-
-

1
1

0

1
1

0

. . . ,

. . .

g X Y D G Y X X, .( ) = ( ) = + -2 1

(10.25)



10.4 Resultants 691

where we have n rows of a’s and m rows of b’s. The determinant of SM(f,g) is called
the (Sylvester) resultant of f and g and is denoted by R(f,g) (or RX(f,g) if we want to
emphasize the fact that f and g are polynomials in X in case ai and bj are themselves
polynomials in some other variables).

Note that the resultant is not a symmetric function, but it is easy to show from
basic properties of the determinant that R(g,f) = (-1)mnR(f,g).

10.4.1. Lemma. If R = R(f,g) is the resultant of two polynomials f(X) and g(X) of
positive degree m and n, respectively, then

where F(X) and G(X) are polynomials with deg (F) < m and deg (G) < n.

Proof. For each i, 1 £ i £ m + n - 1, multiply the ith column of the Sylvester matrix
(10.25) by Xm+n-i and add the result to the last column. This will produce the matrix

.

Let Ci,j denote the cofactors of the matrix in (10.26). Since both of the matrices (10.25)
and (10.26) have the same determinant, expanding the determinant of (10.26) by the
last column gives that

Since the polynomials F(X) and G(X) have the desired properties, Lemma 10.4.1 is
proved.

10.4.2. Lemma. If R = R(f,g) is the resultant of two polynomials f(X) and 
g(X) of positive degree m and n, respectively, then R = 0 if and only if there 
exist nonzero polynomials F(X) and G(X) with deg (F) < m and deg (G) < n, so 
that

(10.27)G X f X F X g X( ) ( ) + ( ) ( ) = 0.
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Proof. If R = 0, then Lemma 10.4.1 shows that there are polynomials F(X) and G(X)
of degree less than m and n, respectively, satisfying equation (10.27), but we still need
to show that they are nonzero. Let

and

Collecting coefficients of powers of X in (10.27) and setting them equal to 0 gives the
following system of equations:

(10.28)

This system is equivalent to the equation

(10.29)

Since the resultant R, which is the determinant of SM(f,g), is zero, there is a non-
trivial solution and we are done.

Next, we prove the converse. Assume therefore that the nonzero polynomials 
F(X) and G(X) exist. We are again led to equation (10.29). Since we have a non-trivial
solution, the determinant of SM(f,g), namely, R, must be 0. Lemma 10.4.2 is 
proved.

10.4.3. Theorem. Two nonconstant polynomials f(X) and g(X) have a nonconstant
common factor if and only if R(f,g) = 0.

Proof. Let d(X) be the greatest common divisor of f(X) and g(X). It suffices to show
that R = R(f,g) = 0 if and only if d(X) is a nonconstant polynomial.

First, assume that d(X) is a nonconstant polynomial. Then f(X) = d(X)H(X) and
g(X) = d(X)G(X). It follows that F(X) = -H(X) and G(X) satisfy equation (10.27) in
Lemma 10.4.2, and hence R = 0. Conversely, assume that R = 0. By Lemma 10.4.2,
there exist nonzero polynomials F(X) and G(X) satisfying

having degree less than m and n, respectively. It follows that f(X) divides g(X)F(X).
Since f(X) is not a constant polynomial, deg F < deg f, and g(X) is not the zero poly-
nomial, some prime factor of f must divide g(X). In other words, f(X) and g(X) have

G X f X F X g X( ) ( ) + ( ) ( ) = 0

d d d c c c SM f gn n m m
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- - - -[ ] ( ) =1 2 0 1 2 0 0. . . . . . , .
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d a d a c b c b1 0 0 1 1 0 0 1 0+ + + =
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d a c bn m m n- -+ =1 1 0
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0. . .
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a common factor and their greatest common divisor is not constant. Theorem 10.4.3
is proved.

10.4.4. Corollary. Two polynomials f(X) and g(X) defined over an algebraically
closed field have a common root if and only if R(f,g) = 0.

Proof. Obvious.

The resultant can be used to check for multiple roots of a polynomial.

10.4.5. Corollary. A polynomial f(X) has a nonconstant factor of multiplicity larger
than 1 if and only if R(f,f ¢) = 0. In particular, f(X) has a multiple root if and only if
R(f,f ¢) = 0.

Proof. By Theorem B.8.10, f(X) has a nonconstant factor of multiplicity larger than
1 if and only if that factor also divides f ¢(X). Now use Theorem 10.4.3.

Definition. Let f(X) be a nonconstant polynomial. The resultant R(f,f¢) is called the
resultant of f.

Here are two useful formulas for resultants that are worth stating explicitly.

10.4.6. Example. The resultant of the polynomials a1X + a0 and b1X + b0 is

10.4.7. Example. The resultant of the polynomials a2X2 + a1X + a0 and b2X2 + b1X
+ b0 is

10.4.8. Theorem. Let

be two polynomials where the ai and bj are homogeneous polynomials of degree 
m - i and n - j, respectively, in the variables X1, X2, . . . , Xr and ambn π 0. Then the
resultant R(X1,X2, . . . ,Xr) of f and g (with respect to X) is either identically equal to
0 or a homogeneous polynomial of degree mn.
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Proof. The resultant, or determinant of the Sylvester matrix, consists of a sum of
signed terms, each one of which is an (m + n)-fold product of factors. If the term is
nonzero, then n factors are ai’s and m factors are bj’s. Since the degree of a nonzero
(i,j)th element in the first n rows is j - i and the degree of a nonzero (s,t)th element
in the last m rows is t - s, the total degree of the term is a sum of the form

where the sets of indices A and B are a partition of {1,2, . . . ,m + n}. This means that
the total degree is

10.4.9. Theorem. Let R be the resultant of the two polynomials

where m, n > 0. Then

(10.30)

(10.31)

(10.32)

Proof. Let us assume that am, bn, ri, and sj are indeterminates. Expressing f(X) and
g(X) as in (10.24) we see that

(10.33)

where si and tj are elementary symmetric polynomials in the ri’s and sj’s and of degree
n and m, respectively. From this we see that

Fact 1. an
mbn

m divides R.

Next, we show

Fact 2. ri - sj divides R for 1 £ i £ m and 1 £ j £ n.
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Observe that if we replace ri by sj then f(X) and g(X) have a common factor X - sj.
By Theorem 10.4.3, R vanishes after this substitution and hence Fact 2 is proved.

Fact 2 and the fact that the ring of polynomials k[am,bn,r1, . . . ,rm,s1, . . . ,sn] over
any field k is a prime factorization domain imply that the right-hand side of equation
(10.30) divides R. On the other hand, (10.33) implies that R is homogeneous of degree
mn with respect to ri’s and sj’s. Therefore,

(10.34)

for some constant c. To determine c, set all the ri to 0. In that case, a1 = a2 = . . . = am
= 0 and so the determinant of the Sylvester matrix (10.25), namely, R, is an

mb0
m. This

fact and (10.34) implies that

(10.35)

The right-hand side of (10.35) is just

Therefore, c = 1 and (10.30) is proved. Equalities (10.31) and (10.32) follow easily, and
so the theorem is proved.

Theorem 10.4.8 leads to another useful formula for evaluating resultants.

10.4.10. Corollary. Given polynomials f(X), g(X), and h(X), then the resultants
satisfy the product identity

Proof. Exercise 10.4.2. For an alternate proof see [Seid68].

The resultant we have defined above addresses the problem of finding the common
zeros of two polynomials. There are times when one is interested in the common zeros
of a larger collection of polynomials. For properties and applications of the corre-
sponding multipolynomial resultant see, for example, [CoLO98].

10.5 More Polynomial Preliminaries

Polynomials are the glue which holds the various aspects of algebraic geometry
together. This section summarizes some additional important basic facts about poly-
nomials and the hypersurfaces they define.

Now, we saw in Section 10.2 that if one wanted to understand curves it was impor-
tant to look at these in projective space (in fact, complex projective space) since one

R fg h R f h R g h, , , .( ) = ( ) ( )

-( ) =1 0
mn

m
n

n
m

j
m

m
n mc a b s c a b .

a b c a b sm
n m

m
n

n
m

j
j

n m

0
1

= -( )
Ê
ËÁ

ˆ
¯̃=

’ .

R c a b r sm
n

n
m

i j
j

n

i

m

= -( )
==

’’
11



696 10 Algebraic Geometry

needs the points “at infinity.” To do this one must express curves in homogeneous
coordinates and via homogeneous polynomials. This means that it is important that
one can relate properties of polynomials with their homogenized versions and vice
versa. The next two results basically say that the answers to questions about factor-
ization of polynomials for varieties are the same for projective varieties and their affine
counterparts and so we may permit ourselves to not explicitly state which type of
variety we are talking about in such cases.

10.5.1. Proposition. Any factor of a homogeneous polynomial is homogeneous.

Proof. Exercise.

10.5.2. Theorem. Let F be a homogeneous polynomial and f = D(F) its 
dehomogenization.

(1) Each factor of F dehomogenizes to a factor of f and conversely each factor of
f homogenizes to a factor of F.

(2) F is irreducible if and only if f is.

Proof. Exercise.

10.5.3. Proposition. Let k be an algebraically closed field and let f(X,Y) be a homo-
geneous polynomial of degree d in k[X,Y]. Then f can be factored into linear factors,
that is, f has the form

Proof. Write f in the form

where g(Z) is a polynomial of degree d in k[Z]. Since k is algebraically closed, g (as a
polynomial in Z) factors into linear factors. Replacing Z by Y/X in this factorization
and simplifying gives the result.

For example,

Note that we could equally well have put things in terms of X/Y rather than Y/X,
because
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10.5.4. Proposition. Let (a1,a2, . . . ,an) Œ kn. Every polynomial f Œ k[X1,X2, . . . ,Xn]
can be written in the form

where b Œ k, fi Œ k[X1,X2, . . . ,Xn].

Proof. The proposition follows from the fact that

so that k[X1,X2, . . . ,Xn] can be thought of as a polynomial ring in X1 - a1, . . . , 
Xn - an.

10.5.5. Theorem. If k is an algebraically closed field, then any nonconstant poly-
nomial f in k[X1, . . . ,Xn], n > 1, has an infinite number of zeros.

Proof. We shall sketch a proof for the case n = 2 and leave the general case to the
reader. Since f is not constant, we may assume without loss of generality that f(X,Y)
is of the form

where r > 0 and ar(Y) π 0. If the degree of ar(Y) is s, then ar(Y) has at most s roots.
Since k is infinite, there are infinitely many c in k so that ar(c) π 0. Consider

This equation has a root b because k is algebraically closed. By definition, f(b,c) = 0.
To finish the proof one simply needs to show that the infinite number of choices for
c lead to an infinite number of solutions to f(X,Y) = 0.

10.5.6. Theorem. Let k be an arbitrary field, f an irreducible polynomial in 
k[X1, . . . ,Xn], and g an arbitrary polynomial in k[X1, . . . ,Xn]. If f does not divide g,
then there are only a finite number of solutions to the equations

Proof. Again, we shall only give a proof for the case n = 2 and leave the general case
to the reader. By hypothesis f cannot be constant and so we may assume without loss
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of generality that f(X,Y) contains a positive power of X. Consider f to belong to
k(Y)[X].

Claim. f is irreducible in k(Y)[X].

To prove the claim, suppose that f factors in k(Y)[X], that is, f = f1f2, where fi Œ
k(Y)[X]. The coefficients of the fi are rational functions in Y. That means that there is
some polynomial a(Y) (we could use the product of all the denominators) so that 
af = h1h2, hi Œ k[Y][X] = k[X,Y]. This easily contradicts the irreducibility of f, and so
the claim is proved.

Now, as polynomials in X over the field k(Y), f and g are relatively prime. It follows
that there are polynomials u1, u2 Œ k(Y)[X], so that u1f + u2g = 1. Again, multiplying
through by an appropriate polynomial in Y, this equation can be transformed into 
an equation v1f + v2g = w, where v1, v2 Œ k[X,Y] and w(Y) Œ k[Y]. If f(a,b) = g(a,b) =
0, then w(b) = 0. But w(Y) has only a finite number of roots. For each root b of 
w, consider f(X,b) = 0. This is either identically equal to zero or has only a finite
number of roots. It cannot be identically equal to zero, because if it were, then Y - b
would divide f, which is impossible. This clearly proves that f and g have only a 
finite number of roots in common and finishes the proof of Theorem 10.5.6 for the
case n = 2.

Theorem 10.5.6 implies a special case of the Hilbert Nullstellensatz, which is
proved in Section 10.8.

10.5.7. Corollary. Let k be an algebraically closed field, let f be an irreducible 
polynomial in k[X1, . . . ,Xn], and let g be an arbitrary polynomial in k[X1, . . . ,Xn]. If
g vanishes wherever f does, then f divides g.

Proof. First, assume that f has degree 0, that is, f Œ k. If f π 0, then the result is
obvious since f is invertible. If f = 0, then g vanishes everywhere and by Theorem
B.11.12 must be 0.

Now assume that f has degree r, r > 0. Since k is algebraically closed, f and g have
an infinite number of common zeros by Theorem 10.5.5. If f did not divide g, then we
would have a contradiction to Theorem 10.5.6.

10.5.8. Theorem. Consider a hypersurface V(f) (either affine or projective) defined
by a polynomial f in C[X1, . . . ,Xn] of the form

(10.36)

where the fi are irreducible and nonassociates and ni > 0. If V(f) = V(g) for some poly-
nomial g in C[X1, . . . ,Xn], then g has the form

where mi > 0 and c is a constant.

Proof. Write

g c f f fm m
k
mk= 1 2

1 2 . . . ,

f f f fn n
k
nk= 1 2

1 2 . . . ,
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where the gj are irreducible and nonassociates and mj > 0. Since each fi is irreducible
and fi vanishes on V(g), it follows from Corollary 10.5.7 that fi divides g, that is, g =
fih. Factoring h into irreducible polynomials and using the fact that we are in a unique
factorization domain, fi must be an associate of some gj. A similar argument shows
that each gj is an associate of some fi. These facts clearly imply the result.

Definition. Let S be a hypersurface in Cn. By definition S = V(f) where f is a poly-
nomial of the form shown in equation (10.36). The polynomial f1f2 . . . fk is called “the”
minimal polynomial associated to V(f), its degree is called the order or degree of the
hypersurface S, and the equation

is called “the” minimal equation for S. The degree of a hypersurface S will be denoted
by deg S.

In the context of higher dimensions the term “degree” is the one usually used, but
for curves, the term “order” seems to be the more common one. It suggests more that
we are talking about an invariant associated to a geometric set and not to a particu-
lar polynomial.

10.5.9. Corollary. Two minimal polynomials associated to a hypersurface in Cn

differ by a nonzero constant. Two minimal equations for such a hypersurface differ
by a nonzero constant.

Proof. This is an easy consequence of Theorem 10.5.8.

It follows from Corollary 10.5.9 that minimal polynomials and equations for
hypersurfaces (over the complex numbers) are essentially unique and so in the fu-
ture we are justified in referring to “the” minimal polynomial or equation. They are
polynomials, respectively, equations of minimal degree. The order or degree of a
hypersurface is also well defined.

Definition. A variety V is said to be reducible if it is the proper union of two other
varieties, that is, V = V1 » V2, where Vi π V. Otherwise, V is said to be irreducible.

10.5.10. Example. In R3, the y-z plane V(X) and the x-z plane V(Y) are irreducible.
The variety V(XY) = V(X) » V(Y) is reducible.

10.5.11. Example. The variety V(XZ,YZ) in R3 is reducible because it is the union
of two varieties, the z-axis and the xy-plane, that is, V(XZ,YZ) = V(Z) » V(X,Y).

The next example is less trivial.

10.5.12. Example. Consider the varieties V = V(f1,f2) and W = V(f1,f3) in R3, where

f f fk1 2 0. . . =

g g g gm m
s
ms= 1 2

1 2 . . . .
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V is the intersection of two cylinders V(f1) and V(f2) of radius 1 centered on the z-
and y-axis, respectively. See Figure 10.8(a). It is easy to check that V is the union of
two ellipses that are the intersection of the cylinder V(f1) and the planes V(X - Z) and
V(X + Z), respectively. In other words,

and so V is reducible. The variety W, on the other hand, is the intersection of the
cylinder V(f1) and the cylinder V(f3) of radius 2, which is centered on the y-axis. See
Figure 10.8(b). It is irreducible because this time the two connected pieces of W
cannot be separated by varieties. Although we do not yet have the tools to prove this,
we sketch the steps in the argument. The reader should return to this example after
reading Section 10.18. First of all, one needs to look at this as a problem in C3. One
also needs to know about pure dimensional varieties, their degree, and Bézout’s
Theorem for them. The degree of an n-dimensional variety in Cm has to do with the
number of points in the intersection of (m - n)-dimensional planes with the variety.
The complex varieties defined by f1 and f3 are pure two-dimensional varieties of degree
2 (seen in R3 by the fact that “most” lines intersect V(f1) and V(f3) in 2 points). It
follows from Bézout’s Theorem (Theorem 10.18.16) that the degree of their intersec-
tion is the product of the two degrees, namely, 4. Assume that the intersection were
reducible and a union of two varieties of degree r and s, respectively. Then each would
contain precisely one of the two components of W. Such a union would have degree
r + s. It would follow that r + s = 4. But this leads to a contradiction because neither
degree 1 or 2 is possible (again seen in R3 by the fact that there are too many hori-
zontal and almost horizontal planes that meet the curves in W in 4 points, something
that would violate Theorem 10.18.7 and the definition of degree).

Example 10.5.12 shows that determining whether or not a general variety is irre-
ducible can be tricky. Making this determination in the case of hypersurfaces is easier.

V = -( ) » +( )V f X Z V f X Z1 1, , ,

f X Y Z X Z3
2 2 4, , .( ) = + -

f X Y Z X Z and2
2 2 1, , ,( ) = + -

f X Y Z X Y1
2 2 1, , ,( ) = + -

(a) (b)

Figure 10.8. Reducible and irreducible varieties.
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10.5.13. Theorem.

(1) A hypersurface in Cn with minimal equation f = 0 is irreducible if and only if
f is irreducible.

(2) Every hypersurface in Cn is the union of irreducible hypersurfaces in essen-
tially a unique way.

Proof. To prove (1), assume that V(f) is irreducible. Assume that f has minimal
degree and

where the fi are irreducible and k > 1. If g = f2f3 . . . fk, then f = f1g and

If V(g) Õ V(f1), then f1 would vanish on V(g). This would imply that f1 divides g, which
is a contradiction. Therefore, V(g) À V(f1). A similar argument shows that V(f1) À V(g).
But we now have a contradiction to the fact that V(f) is irreducible.

Next, assume that f is irreducible and that V(f) = V1 » V2. Assume that V1 π
V(f). We shall prove that V2 = V(f), which will show that V(f) is not reducible. 
Let V1 = V({gi}) and V2 = V({hi}). Now one of the gi, say g1, does not vanish on 
V(f); otherwise, V(f) Õ V1 and it would follow that V1 = V(f). But g1hj vanishes on 
V(f) for all j. By Corollary 10.5.7, f divides g1hj. Since f is irreducible and does 
not divide g1, it must divide hj. It follows that V(f) Õ V2. Clearly, V2 Õ V(f) and so 
V2 = V(f).

To prove (2), assume that the hypersurface S is defined by the minimal equation
f = 0, where

the fi are irreducible, and k > 1. If Si = V(fi), then the Si are irreducible and distinct.
Furthermore,

To prove that the Si are unique, assume that

where the Tj are irreducible hypersurfaces and distinct. If Tj = V(gj), where gj are irre-
ducible polynomials, then each gj must be an associate of some fi by Theorem 10.5.8
and so Tj = Si and (2) is proved.

Definition. Let V(f) be a hypersurface defined by a polynomial f that has a factor-
ization as shown in equation (10.36). The sets V(fi) are called the irreducible compo-
nents, or simply components, of V(f).

The next result is useful when we want to localize a problem to affine space.

S S S S T T T= » » » = » » »1 2 1 2. . . . . . ,k m

S S S S= » » »1 2 . . . .k

f f f fk= 1 2 . . . ,

V f V f V g( ) = ( ) » ( )1 .

f f f fk= 1 2 . . . ,
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10.5.14. Theorem. Let X be any hypersurface in Pn(k) and let p be any point in X.
We may always choose a coordinate system, so that the plane at infinity relative to
that coordinate system is neither a component of X nor does it contain p.

Proof. Over C, there are only a finite number of planar components of X. Therefore,
we can choose a hyperplane Y which is none of these and which does not contain the
point p either. By Theorem 10.3.2 we now define a coordinate system with Y its plane
at infinity.

What Theorems 10.3.6 and 10.5.14 allow us to do is that if we want to analyze a
projective variety in Pn(C) in the neighborhood of a point we may always assume that
the point and a neighborhood of it always lie in Cn.

10.6 Singularities and Tangents of Plane Curves

One thing we would like to have stand out in the course of reading this chapter is the
constant interplay between algebra and geometry. Seeing the geometry is especially
useful when the subject matter gets very abstract, which tends to be the case in alge-
braic geometry. We are starting to get to some very important concepts in algebraic
geometry that one can arrive at in different ways. By and large, insofar as it is possi-
ble, we emphasize a geometric approach to minimize the amount of algebraic back-
ground required of the reader. Nevertheless there are unavoidable technical aspects
to definitions and theorems if we want to state things precisely; therefore, let us start
with a brief overview of how our particular approach is motivated by some intimate
connections between algebra and geometry.

Let C be an affine plane curve and f(X,Y) its minimal polynomial. In the last
section we defined the degree of the curve C to be the degree of f(X,Y). The degree
of a polynomial is a well-defined standard algebraic invariant associated to a poly-
nomial. Here is a geometric definition of this invariant of the curve. Let

be the parametric equations for an arbitrary line L through a point p = (x0,y0) on the
curve. If f(X,Y) has degree d, then

is a polynomial in t of degree e £ d (e could be less than d). The roots of the poly-
nomial g correspond to intersections of the line L with the curve C. A geometric 
interpretation of the degree of a plane curve is then that it is the maximum number
of points that a line can intersect the curve.

How can one define tangent lines to the curve C at p? Suppose that

g t c t c t c tk
k

k
k

e
e( ) = + + ++

+
1

1 . . . ,

g t f x t y t( ) = + +( )0 0l m,

y y t= +0 m

x x t= +0 l
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where ck and ce are nonzero. The integer k is called the intersection multiplicity of
C and L at p and is denoted by i(C,L;p). The integer i(C,L;p) is the analog, in the
context of intersections, of the multiplicity of a root of a polynomial with the same
intuitive connotation. The integer k can vary from line to line, therefore, define the
multiplicity of C at p, denoted by mp(C), by

A line L is then tangent to C at p if i(C,L;p) > mp(C). What this says is that a tangent
line is a line that intersects the curve more often at p than other lines and hence in
fewer points elsewhere. This agrees with one intuition of tangent lines, namely, that
they are lines that intersect a curve in only one point whereas nearby lines through
the point intersect the curve in additional points. See Figure 10.9.

Finally, the multiplicity mp(C) defined geometrically above has an algebraic 
interpretation.

Definition. Given a polynomial f(X1,X2, . . . ,Xn), expand f about a point p =
(x1,x2, . . . ,xn) in a finite sum of the form

The smallest degree of all the monomials appearing in the expansion above is called
the order of f at p and is denoted by ordp(f).

It is easy to see that

This concludes our overview. It should prepare the reader for the various defini-
tions in this section and subsequent ones, in particular Section 10.17, where inter-
sections of lines and planes with varieties are used to isolate important concepts. Right
now we start back at the beginning.

Assume that C is a plane curve in P2(C). Our main goal is to analyze points of 
C, in particular, certain special points, the “singular” points. In the process we shall
also define tangent lines. Assume that C is defined by the homogeneous polynomial
F(X,Y,Z) and consider a point of C. By Theorem 10.5.14 we can choose a coordinate
system in which the point does not lie on Z = 0 and in which Z = 0 is not a compo-
nent of C. With this choice of coordinate system we can study properties of C at our

m ord fp pC( ) = ( ).

f X X X a X x X x X xn i i i
i i

i i
n n

i
n

n

n

i
1 2 1 1 2 21 2

1 2

1 2, , . . . , . .. . .
, , . . . ,

. .( ) = -( ) -( ) -( )Â

m i
line through

p
L p

C C,L;p( ) = ( )min .

p
Figure 10.9. Comparing the tangent with non-tangent

lines.
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point using affine coordinates. In what follows, the term “line” will refer to either an
affine line or the corresponding projective line, as appropriate.

Let f(X,Y) = F(X,Y,1). The affine plane curve defined by

is clearly the affine part of our projective curve C. Assume that p = (x0,y0) is our point
of interest in affine coordinates. Let

and

For fixed l and m, g(t) can be thought of as the value of f along the line through p
with direction vector (l,m) and parameterization t Æ (x0 + lt,y0 + mt). The Taylor expan-
sion for the function g(t) is

(10.37)

Definition. The multiplicity of g(t) at 0 is said to be r if all the kth order derivatives
of g vanish at 0 for k < r, but g(r)(0) π 0.

Equation (10.37) leads to the expansion

(10.38)

But f(x0,y0) = 0, and so

(10.39)

Definition. The multiplicity of C (or f) at p, denoted by mp(C) (or mp(f)), is said to
be r if all the kth order partials of f vanish at p for k < r but at least one rth order
partial of f does not vanish at p. In this case p is called a point of multiplicity r, or
an r-fold point of C (or f).

10.6.1. Proposition. The multiplicity of a plane curve at a point is well defined and
does not depend on the chosen coordinate system.

Proof. Since all our coordinate systems are related by linear transformations, the
proposition is an easy consequence of the chain rule for derivatives.
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If the multiplicity of C at p is r, then we say that every line through p has at 
least r intersections with C at p. The multiplicity tells us the minimum power of t 
that we can factor out of equation (10.38). On the other hand, it may be possible to
factor out more powers of t depending on the line. For example, if the multiplicity is
1, then

(10.40)

would imply that we can factor at least one more t out of the equation. The l and m
correspond to a unique line with direction vector (l,m) which is called the “tangent”
line to the curve at p. If the multiplicity of the curve is 2 at p, then we can again factor
another power of t out of the equation provided that

(10.41)

Equation (10.41) has up to two linearly independent root pairs (l,m). Each of these
pairs is the direction vector for a line through p, which is again called a “tangent”
line. We can continue in this way defining what is meant by “tangent” lines of higher
and higher multiplicity at a point. Basically, we want to call a line with direction vector
(l,m) a “tangent” line if we can factor a higher power of t out of equation (10.38) for
those values of l and m than is warranted by the multiplicity of the curve at that point.
In the general case, the tangent lines are determined by finding the linearly inde-
pendent solutions (l,m) to the equation

(10.42)

These observations lead to the following definition:

Definition. A tangent line to the plane curve C (or f) at p is a line through p with
the property that if (l,m) is a direction vector for the line then g(i)(0) in equation (10.37)
vanishes for 0 £ i £ k, where k > mp(C) (or, equivalently, g has multiplicity higher than
mp(C) at 0).

10.6.2. Proposition. Tangent lines to a plane curve at a point are well defined and
do not depend on the chosen coordinate system.

Proof. Clear.

One can easily see that if tangent lines are counted with their multiplicities, then
there are exactly mp(C) tangent lines at every point on a plane curve C (or f).

Definition. The point p is called a simple point of C (or f) if mp(C) = 1. The point p
is called a singular point of C (or f) if mp(C) > 1. A singular point is called a double,
triple, etc., point if mp(C) = 2, 3, . . . , respectively. A nonsingular plane curve is a plane
curve that has no singular points. A point of multiplicity r is called ordinary if the r
tangents at the point are distinct.
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Note that singular points of C (or f) are those points p for which

It should also be clear that if f has no terms of degree less than r and some of degree
r, then the origin is a point of multiplicity r and the tangents to C (or f) at the origin
are the components of the equation which equates the terms of f of degree r to 0.

10.6.3. Theorem. If C and D are distinct irreducible curves, then every point p in
the intersection of C and D is a singular point of C » D. In particular, every point that
belongs to two distinct components of a curve is a singular point.

Proof. Let f and g be minimal polynomials for C and D, respectively. It is easy to
see that fg is the minimal polynomial for C » D. Without loss of generality, we may
assume that p is the origin. Then

which clearly implies that the origin is a singular point for fg = 0.

10.6.4. Theorem. A plane curve has at most a finite number of singularities.

Proof. First assume that the curve is irreducible and defined by the irreducible poly-
nomial f(X,Y). Either X or Y must appear in f(X,Y). Without loss of generality assume
that it is X. Then fX π 0. Since fX has smaller degree than f, f does not divide fX. It follows
from Theorem 10.5.6 that fX has at most a finite number of zeros on the curve. If the
curve is reducible, the result follows from the irreducible case since distinct compo-
nents intersect in at most a finite number of points. Finally, the result applies to pro-
jective curves as well because a curve has only a finite number of infinite points.

10.6.5. Theorem. If (x0,y0) is a simple point of a plane curve C defined by f(X,Y) =
0, then

is the equation of the tangent line to C at (x0,y0).

Proof. This is an easy consequence of equation (10.40) and the discussion above.

Below are some curves that show some of the possibilities in the behavior of a
curve at a point, in this case, the origin.

10.6.6. Example. X3 - X2 + Y2 = 0

Analysis. See Figure 10.10(a). The origin is an ordinary double point with tangent
lines X + Y = 0 and X - Y = 0.

10.6.7. Example. X3 + X2 + Y2 = 0

f x y X x f x y Y yX Y0 0 0 0 0 0 0, ,( ) -( ) + ( ) -( ) =

ord fg ord f ord g( ) = ( ) + ( ) ≥ 2,

f f fX Yp p p( ) = ( ) = ( ) = 0.
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Analysis. See Figure 10.10(b). The origin, now an isolated point of the real curve,
is an ordinary double point with tangent lines X + iY = 0 and X - iY = 0.

10.6.8. Example. X3 - Y2 = 0

Analysis. See Figure 10.10(c). The origin is a double point but not ordinary. We have
a “cusp.”

10.6.9. Example. (X2 + Y2)3 - 4X2Y2 = 0

Analysis. See Figure 10.10(d). The origin is a point of multiplicity four. There are
two double tangents.

10.6.10. Example. Y6 - X3Y2 - X5 = 0

Analysis. See Figure 10.10(e). There is a triple tangent and two simple tangents at
the origin.

The curve in example 10.6.8 is a special case of the well-known family of curves

(10.43)

where p, q > 1. These curves capture a whole class of singularities that can be indexed
by the pair of integers (p,q). In general though, singular points of plane curves are
much more complicated than that and cannot be catalogued that simply. A general

X Yp q- = 0,

(a) (b) (c)

(d) (e)

Figure 10.10. Different types of singularities.
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singularity can be described in terms of a finite sequence of what are called Puiseux
pairs! See [BriK81].

We shall show that a plane curve can have at most a finite number of singular
points and that all the other points are regular. Again note that looking at real curves
can be deceptive because it might seem that certain points look regular, when in fact
they are not. For example, one can show that the curves defined by equation (10.43)
give rise to only one of three shapes

(10.44a)

(10.44b)

(10.44c)

Just like some of the plane curves in Examples 10.6.6–10.6.10, these curves may look
pretty “regular” at the origin but actually have singularities there. To see this one has
to deal with these curves over C. One can show (see [BriK81]) that the manifold that
they define is not as differentiable at the singularity as it is at regular points. For
example, the curve defined by equation (10.44b) is a C1 submanifold of R2 but not a
C2 submanifold. When one passes to C2, one can show that the complex curve is never
a submanifold at the singularity. In fact, singularities of complex curves are points
that do not have any neighborhood U so that the imbedding of U in C2 looks like the
imbedding of R2 in R4. More precisely, one can show that if one intersects the curve
with the boundary of a ball neighborhood of the singular point in C2, which is home-
omorphic to S3, one will get a knot in S3. In the case of our curves one gets a torus
knot of type (p,q). To summarize, one can show that small neighborhoods of a sin-
gular point of a curve in C2 are topologically disks (assuming that they are not dis-
connected pieces) which are a cone on a knot in their boundary. In general, when we
get disconnected pieces, neighborhoods consist of a collection of such cones.

Although we started out at the beginning of this section wanting to analyze 
projective plane curves, everything we have done so far was with respect to a special
affine version of it. Fortunately, one can show that all the concepts we defined are
independent of the particular affine representation of the curve. As an example, we
rephrase the notion of multiplicity in the context of homogeneous polynomials.

10.6.11. Theorem. A point p of a plane curve C in P2(C) defined in P2(C) by the
homogeneous polynomial F(X,Y,Z) has multiplicity r if and only if all the (r - 1)th
derivatives of F vanish at p, but not all rth derivatives.

Proof. First of all, we may assume as before that p does not lie on the line Z = 0
and that Z = 0 is not a component of F. If f(X,Y) = F(X,Y,1), then f(X,Y) = 0 is the
affine equation corresponding to F(X,Y,Z), that is, f(x,y) = 0 if and only if F(x,y,1) = 0.
Let p = [a,b,1]. Since

it follows that
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if and only if

This means that there is no problem matching the zeros of the partials of f and F with
respect to X and Y. The only sticky part is ∂F/∂Z. However, Euler’s formula (see
Theorem B.7.8) implies that

where d is the degree of F. Therefore,

if and only if

Induction and a similar argument for higher partials finish the proof of the theorem.

10.6.12. Theorem. If p is a regular point on a plane curve C defined by F(X,Y,Z),
then the equation of the tangent to C at p is

Proof. Let us use the same coordinate system and notation as in Theorem 10.6.11.
Then equation (10.40) shows that a tangent line is defined by

and so

(10.45)

But since F(a,b,1) = 0, the Euler formula implies that
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p

C
L1

L2

L3

L4
L5

L6

Figure 10.11. A cubic with six concurrent 
tangents.

Now multiply equation (10.45) by Z and use equation (10.46) to get the desired result.

Additional facts about multiplicities and singular points are postponed to the end
of the next section after we have discussed Bézout’s theorem. We finish this section
with an interesting fact about the intersection of lines with a curve.

10.6.13. Theorem. Let C be a plane curve order n and let p be a point not on C.
Then (in P2(C)) there are at most n(n - 1) lines Li through p so that for any other line
L through p, L intersects C in exactly n distinct points.

Proof. The proof will follow the one given in [BriK81]. By a change of coordinates,
we may assume that p = [1,0,0] and C is the set of zeros of the equation F(X,Y,Z) = 0
for some homogeneous polynomial F of degree n. Let Ly denote the line with equation
X = 0. Since every line through p intersects Ly in a unique point, let us parameterize
those lines by their intersection point, that is Ls,t will denote the line through p and the
point [0,s,t] Œ Ly. By (the complex version of) Theorem 3.4.1.4 every point on Ls,t - p
has a unique representation [r,s,t], r Œ C. It follows that the intersections of Ls,t and the
curve C are defined by the zeros of the equation F(r,s,t) = 0. Note that F(r,s,t) is not iden-
tically zero because Ls,t is not a component of C. In fact, it will have degree n in r. If we
fix s and t and think of F as a polynomial in r, then by Corollary 10.4.5 F will have mul-
tiple roots for r if and only if its resultant is zero. But the resultant of F and ∂F/∂r is a
homogeneous polynomial in s and t of degree n(n - 1). This can be turned into a poly-
nomial in s/t or t/s of the same degree and hence has at most n(n - 1) zeros. Only the
lines corresponding to those zeros will intersect C with a multiplicity higher than 1.

For example, the case n = 2 in Theorem 10.6.13 says that at most two lines through
a point not on a quadratic curve in C2 are tangent to that curve. The case 
n = 3 says that at most 6 = 3·2 lines are tangent to a cubic. Figure 10.11 shows a cubic
that actually has six such tangents.

10.7 Intersections of Plane Curves

We now come to one of the basic results in the theory of intersections of plane curves,
namely, Bézout’s theorem. This theorem is important in other areas of algebraic
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geometry. Roughly speaking, the theorem states that if two curves in the complex
plane have order m and n, respectively, then they have precisely mn points in the 
intersection if the intersection points are counted with the appropriate multiplicity.
If m = 1, note the similarity between Bézout’s theorem and the fundamental theorem
of algebra that says that a polynomial of degree n has n roots. The latter is also 
only true if we have the correct notion of multiplicity of roots. Therefore part of our
problem is going to be to decide how to count. We defined a notion of multiplicity of
points in the intersection of a curve and a line but do not yet have a corresponding
definition when we are intersecting two nonlinear curves. Different approaches to
defining this notion of multiplicity exist. We shall follow the approach used in
[BriK81].

Consider two plane curves C1 and C2 in P2(C) of order m and n, respectively. The
first assumption we make is that these curves have no common component (other-
wise the intersection would contain an infinite number of points). Let p be a point
which does not lie on either C1 or C2 and let L be any line that does not contain p.
For each point q on L let Lq be the line that contains p and q. See Figure 10.12. The
central projection of P2(C) - p onto L maps all points of Lq - p to q. Our object will
now be to show two things. First, we show that only a finite number of lines through
p contain intersection points of C1 and C2. Second, we shall define intersection mul-
tiplicities using these lines.

We begin by choosing homogeneous coordinates (X,Y,Z) for P2(C) so that p has
coordinates (0,0,1) and L is the line defined by the equation Z = 0. If we identify points
(X,Y,0) on L with the pair of coordinates (X,Y), then the central projection of P2(C) -
p onto L is given by

Next, let C1 and C2 be defined by homogeneous polynomials F = F(X,Y,Z) and G =
G(X,Y,Z) of degree m and n, respectively. Let us consider these polynomials in C[X,Y].
Then

(10.47a)F a Z a Zm
m

m
m a= + +-

- +1
1

0. . .

X Y Z X Y, , , .( ) Æ ( )

p

C1

Lq

C2

L

q

Figure 10.12. Defining the multiplicity of
intersections.
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and

(10.47b)

where ai and bj are homogeneous polynomials in C[X,Y] of degree m - i and n - j,
respectively. Now the fact that ai and bj are homogeneous polynomials in X and Y
means that ai(0,0) = bj(0,0) = 0 whenever i < m and j < n and so

Since p does not belong to either C1 or C2, it follows that both constants am and bn
are nonzero. Therefore, by Theorem 10.4.8, the resultant R = R(F,G) of F and G
thought of as polynomials in Z is either 0 or a homogeneous polynomial in X and Y
of degree mn. The possibility that R is identically zero is impossible by Theorem 10.4.3
since F and G do not have any common factors. Therefore, R must be a nonzero homo-
geneous polynomial of degree mn.

Now assume that [x,y,z] lies on the intersection of C1 and C2. Then F(x,y,z) =
G(x,y,z) = 0 and z is a common root of

(10.48a)

and

(10.48b)

In other words, R(x,y) = 0. The converse is also true, that is, if R(x,y) = 0, then equa-
tions (10.48) have a common root. To summarize,

10.7.1. Lemma. The resultant R of the polynomials F and G vanishes precisely 
at those points q = (x,y) of L where the lines Lq contain an intersection point of C1 and C2.

Our first result about the number of intersection points of two curves is the fol-
lowing:

10.7.2. Theorem. Two plane curves of order m and n, respectively, that do not have
a common component have at most mn points in common.

Proof. Suppose that the curves have mn + 1 points p1, p2, . . . , pmn+1 in common.
Choose the point p so that p does not lie on any line through any of the point pairs
pi and pj, i π j. Then all the lines through p contain at most one intersection point pi.
Let qi be the point of L that is the central projection of pi from p. The mn + 1 points
qi are all distinct and roots of the resultant R(F,G) (Lemma 10.7.1). This contradicts
the fact that the resultant has degree mn and proves the Theorem.

We are ready to define the multiplicity of intersection points. Let C1 and C2 be two
plane curves in P2(C) of order m and n, respectively, that have no common component.
Let p be a point that does not lie on either C1 or C2 and let L be any line that does not
contain p. Choose homogeneous coordinates (X,Y,Z) for P2(C) so that p has coordi-

b x y z b x y z b x yn
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-
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0 0

a x y z a x y z a x ym
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nates (0,0,1) and L is the line defined by the equation Z = 0. Let F and G be the homo-
geneous polynomials which define C1 and C2, respectively. Let R(F,G) be the resultant
of F and G thought of as polynomials in Z. Theorem 10.7.2 implies that our curves C1
and C2 have at most a finite number of intersection points p1, p2, . . . , pk. We can there-
fore choose the point p in such a way that all the lines through p contain at most one
intersection point. Let qi be the point of L that is the central projection of pi from p.

Definition. The intersection multiplicity or order of contact of pi, denoted by 
mpi(C1,C2), is defined to be the multiplicity of the zero qi of the resultant R(F,G).

The definition of intersection multiplicity was with respect to a particular coor-
dinate system. In fact, the definition is independent of this choice.

10.7.3. Proposition. The definition of intersection multiplicity is independent of
the choice of coordinate system for the complex projective plane.

Proof. See [BriK81].

10.7.4. Theorem. (Bézout’s Theorem) If C1 and C2 are two plane curves in P2(C) of
order m and n, respectively, which have no common component, then

Proof. The theorem follows immediately from the fact that, since R(F,G) is a poly-
nomial of degree mn, it has mn zeros when counted with their multiplicity.

A weaker form of Bézout’s theorem that is an immediate consequence is

10.7.5. Corollary. If two plane curves of order n and m, respectively, have more than
nm points in common, then they have a common component.

The next definition allows us to restate Bézout’s theorem in a more suggestive
manner.

Definition. Let C1 and C2 be two plane curves that have no component in common.
The intersection number of C1 and C2, denoted by C1•C2, is defined by

Restatement of Bézout’s theorem (with the same hypotheses):

The intersection number of two plane curves is what we needed to count the 
points of the intersection of two such curves correctly and with their multiplicity.

C C C C1 2 1 2• deg deg= ( )( )
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Eventually (in Section 10.17) we shall make this equation look more elegant still. 
If two hypersurfaces intersect transversally it will say that the degree of the intersec-
tion is equal to the product of the degrees of the hypersurfaces. We cannot do this 
yet because the intersection, although a variety, may not be a hypersurface (defined
by a single polynomial) and we have only defined the degree of hypersurfaces so 
far.

The definition of intersection multiplicity as presented has the advantage that it
leads relatively easily to generalizations of Bézout’s theorem in higher dimensions.
However, as it stands, it is difficult to work with since zeros of resultants are not easy to
analyze. Therefore, the following theorem is useful. It allows one to compute the inter-
section multiplicities from the multiplicities of the individual curves in many cases.

10.7.6. Theorem. Let C1 and C2 be two plane curves that have no component in
common and let p be an intersection point. Then

with equality holding if and only if the tangents of C1 at p are disjoint from those of
C2 at p, that is, the curves intersect transversally.

Proof. See [BriK81].

Bèzout’s theorem has a number of geometric applications. Among them are the
theorems of Pascal and Brianchon. Another application gets an estimate of the
number of singular points of a plane curve.

10.7.7. Theorem. Let C be a plane curve of order n without multiple components.
Then

Proof. See [BriK81].

The result in Theorem 10.7.7 can be strengthened in the case of some special
curves.

10.7.8. Theorem. Let C be an irreducible plane curve of order n. Then

Proof. See [BriK81]. The inequality cannot be improved because equality is possi-
ble as the curve

shows (the origin is a point of multiplicity n - 1).

x yn n+ =-1 0
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10.7.9. Corollary.

(1) An irreducible quadratic plane curve has no singular points.
(2) An irreducible cubic plane curve has at most one singular point and that is a

double point.
(3) If an irreducible plane curve of order n has an (n - 1)-fold point then it has

no other singular points.

Proof. These facts are a trivial consequence of Theorem 10.7.8.

10.8 Some Commutative Algebra

The varieties we have talked about so far were all hypersurfaces, that is, they were
defined by a single polynomial. One polynomial defines a variety of codimension 1
(over R or C, depending on the context) and so the restriction might not seem unrea-
sonable from a dimensional point of view when one studies curves in the real or
complex planes. On the other hand, even in dimension two, we do not pick up all vari-
eties in this way, because the ring of polynomials in more than one variable is not a
principal ideal domain. If we want to consider varieties in dimensions higher than
two, then the restriction to hypersurfaces is even more inadequate because in n-
dimensional space we want to talk about sets other than (n - 1)-dimensional ones.
We definitely need to allow the possibility that our space is defined by a collection of
polynomials. For example, it takes two equations to define a line in 3-space. In order
to be able to handle higher dimensions, we need some additional machinery. This
section will give a brief overview of some fundamental results relating point sets
(topology) and ideals (algebra). The algebra side of this is falls into the field of com-
mutative algebra. In general, commutative algebra deals with commutative rings with
1. In fact, the rings are usually closely related to polynomial rings over a field or the
integers.

Definition. Let A be a subset of kn. Define the ideal of A, I(A), by

If A consists of a single point a, then we shall write I(a) rather than I(A).

10.8.1. Lemma. I(A) is an ideal in k[X1,X2, . . . ,Xn].

Proof. Straightforward.

The map A Æ I(A) associates ideals to arbitrary sets. We already have a kind of
converse that associates a set of points to a finite set of polynomials, namely their
zeros. It is convenient to extend this notion to arbitrary sets of polynomials.

Definition. Let S be a set of polynomials in k[X1,X2, . . . ,Xn]. Define a subset V(S)
of kn, called the variety of S, by

I f k X X f for allXnA a a A( ) = Œ [ ] ( ) = Œ{ }1 2 0, , . . , .. ,
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10.8.2. Lemma. Let S be an arbitrary set of polynomials in k[X1,X2, . . . ,Xn].

(1) V(S) = V(<S>).
(2) V(S) is an algebraic variety, that is, V(S) is the set of zeros of a finite set of

polynomials.

Proof. Part (1) is easy. Part (2) follows from part (1) and the Hilbert Basis Theorem,
which asserts that an arbitrary ideal has a finite basis.

It follows from Lemma 10.8.2 that what seemed like a new concept is actu-
ally nothing new. We could have defined a variety in the above more general way right
at the beginning of the chapter (some authors do that) but we did not in order to
emphasize the fact that a variety is defined by a finite set of polynomials because that
finiteness property is important. In any case, nothing would have been simplified
because one would have to appeal to the Hilbert Basis Theorem at some point no
matter what.

At any rate, we now have correspondences

Our main goal in this section will be to analyze these two correspondences. In par-
ticular, we are interested in the following two questions:

Question 1. Given an ideal I of polynomials, how does its algebraic structure influ-
ence the topological structure of the set of points V(I)?

Question 2. Given a set of points A, how does its topological structure influence the
algebraic structure of the ideal I(A)?

It is clear, however, that without some restrictions on the domain of the correspon-
dences and the field k we will not be able to say very much. For example, V(X) = V(X2).
If k = R and n = 1, then V(X2 + 1) = V(<X2 + 1>) = f.

We start with some needed preliminary results. The first lists some simple prop-
erties of the I and V operators.

10.8.3. Theorem. Let V, V1, V2 be varieties in kn and let I, I1, I2 be ideals in 
k[X1,X2, . . . ,Xn].

(1) If V1 Õ V2, then I(V2) Õ I(V1).
(2) If I1 Õ I2, then V(I2) Õ V(I1).
(3) For all V, V(I(V)) = V. In particular, I is one-to-one on varieties.

Proof. The proofs of (1) and (2) are easy and left to the reader. To prove (3) we 
need to show two inclusions. Let V = V(f1,f2, . . . ,fn). Let I = <f1,f2, . . . ,fn>. Clearly, 
V = V(I).

subsets of k ideals in k X X Xn
I

V
n

æ Ææ¨ ææ [ ]1 2, , . . . , .

V S k f for all f Sn( ) = Œ ( ) = Œ{ }p p 0 .
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Claim 1. V(I(V(I))) Õ V(I)

Let p Œ V(I(V(I))). Then f(p) = 0 for all f Œ I(V(I)). Since I is clearly contained in
I(V(I)), p must belong to V(I) and Claim 1 is proved.

Claim 2. V(I) Õ V(I(V(I)))

Let p Œ V(I). Given an arbitrary f Œ I(V(I)), f(p) = 0 by definition and so Claim 2
is obvious. The two inclusions in Claim 1 and 2 prove the equality in (3).

Next, we state another of the really important theorems of algebraic geometry, the
Hilbert Nullstellensatz. This theorem gets used in many places and in particular we
shall need it. We state two variants. The proofs are not that difficult but still too long
to present here.

10.8.4. Theorem. (The Hilbert Nullstellensatz: weak form) Let k be an algebraically
closed field. If I is a proper ideal in k[X1,X2, . . . ,Xn], then there is at least one point
on which all polynomials of I vanish.

Proof. See [CoLO97].

10.8.5. Theorem. (The Hilbert Nullstellensatz) Let k be an algebraically closed field
and let f, f1, f2, . . . , and fk be polynomials in k[X1,X2, . . . ,Xn]. If f vanishes on all the
common zeros of the fi, then some power of f is a linear combination of the fi, that
is, for some m > 0,

In other words, if I is an ideal in k[X1,X2, . . . ,Xn] then I(V(I)) = ÷I
–
.

Proof. See [CoLO97]. The proof uses Theorem 10.8.4.

An immediate consequence of the Nullstellensatz is that we can state the corre-
spondence between varieties and ideals more precisely.

10.8.6. Corollary. If k is algebraically closed, then the maps I and V define corre-
spondences

that are one-to-one and onto.

Proof. We already know from Theorem 10.8.3(3) that V(I(V)) = V. To show that
I(V(I)) = I for all radical ideals I we simply observe that I(V(I)) = ÷I

–
by the Nullstel-

lensatz and ÷I
– = I whenever I is a radical ideal.

Another consequence of the Nullstellensatz is an algebraic characterization of
points.

var , , . . . , .ieties of k radical ideals in k X X Xn
I

V
n

æ Ææ¨ ææ [ ]1 2

f a f a f a fm
k k= + + +1 1 2 2 . . . .
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10.8.7. Theorem. Every ideal in k[X1,X2, . . . ,Xn] of the form <X1 - a1,X2 - a2,
. . . ,Xn - an>, ai Œ k, is maximal. To put it another way, for every point p in kn, I(p) is
a maximal ideal.

Proof. Let p = (a1,a2, . . . ,an). Every polynomial f Œ k[X1,X2, . . . ,Xn] can be written
in the form

where b Œ k and fi Œ k[X1,X2, . . . ,Xn]. It follows that f Œ I(p) if and only if b = 0. This
shows that the polynomials Xi - ai generate I(p), that is,

On the other hand, if f does not belong to I(p), then b π 0. The ideal generated by I(p)
and f will then contain b and therefore be the whole ring k[X1,X2, . . . ,Xn]. It follows
that I(p) is maximal.

Note that I(p) is a prime ideal. This fact is easy to prove directly but it also follows
from the general fact that every maximal ideal is prime. In addition, the proof of
Theorem 10.8.7 basically showed that

is isomorphic to k. Hilbert’s Nullstellensatz implies the following converse to Theorem
10.8.7:

10.8.8. Theorem. If k is algebraically closed, then every maximal ideal I of k[X1,X2,
. . . ,Xn] has the form <X1 - a1,X2 - a2, . . . ,Xn - an>, for some ai Œ k.

Proof. We follow the proof given in [CoLO97]. Since I π k[X1,X2, . . . ,Xn], it follows
from the weak form of the Hilbert Nullstellensatz that V(I) is not empty. Assume that
p = (a1,a2, . . . ,an) Œ V(I). Clearly,

By the strong Hilbert Nullstellensatz I(V(I)) = ÷I
–
. Since I is maximal and every

maximal ideal is prime, it follows that ÷I
– = I. Therefore,

Since I is maximal, we must have I = I(p), and the theorem is proved.

Theorems 10.8.7 and 10.8.8 imply

10.8.9. Corollary. If k is algebraically closed, then the map

I I X a X a X a k X X Xn n nÕ ( ) = < - - - > Ã [ ]p 1 1 2 2 1 2, , . . . , , , . . . , .

I V I I( ) Ã ( )( p .

k X X X
I

n1 2, , . . . ,[ ]
( )p

I X a X a X an np( ) = < - - - >1 1 2 2, , . . . , .

f b X a f X a f X a fn n n= + -( ) + -( ) + + -( )1 1 1 2 2 2 . . . ,
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is one-to-one and onto.

What Corollary 10.8.9 shows is that the ring k[X1,X2, . . . ,Xn] completely deter-
mines kn when k is algebraically closed. Since one can define a topology on the set of
maximal ideals, k[X1,X2, . . . ,Xn] also determines the topology of kn. These facts are
actually not that surprising because they reflect similar facts about general topologi-
cal spaces. For example, a theorem of I. Gelfand and A. Kolmogoroff asserts that the
ring of continuous functions C(X) on a compact space X determines X. Specifically,
the map which sends a point p Œ X to the maximal ideal in C(X) consisting of the
functions that vanish on p is a homeomorphism. This theorem is false if X is not
compact, but generalizations are known.

Next, we look at Questions 1 and 2 above with respect to general varieties and
ideals. As a warm up, we show how the result in Theorem 10.5.13(1) regarding hyper-
surfaces translates into the language of ideals. First, given a polynomial f in k[X],
write f in the form

where the pi are irreducible polynomials and pi and pj are nonassociates for i π j. Let
g = p1p2 . . . pk be the minimal polynomial associated to V(f). Both f and g are poly-
nomials for the same hypersurface. What is the algebraic relation between f and g?

10.8.10. Lemma. The ideal <g> is the radical of <f >.

Proof. Easy.

10.8.11. Lemma. If f is an irreducible polynomial in k[X], then the (principal) ideal
generated by f, <f >, is a prime ideal.

Proof. Easy.

Lemma 10.8.11 generalizes to a characterization of the irreducibility of an arbi-
trary variety in terms of its ideal.

10.8.12. Theorem. An affine variety V in kn is irreducible if and only if I(V) is a
prime ideal.

Proof. First assume that V is irreducible and f1f2 Œ I(V). Let Vi = V « V(fi). The sets
Vi are varieties. Let W = V1 » V2. Clearly, W Ã V. Furthermore, if (f1f2)(p) = 0, then
f1(p) = 0 or f2(p) = 0. This easily implies that V Ã W. Therefore, V = W. But V is irre-
ducible, so either V = V1 or V = V2. In other words, either f1 or f2 vanishes on V, which
means that either f1 or f2 belongs to I(V). This shows that I(V) is prime.

Conversely, assume that I(V) is prime and V = V1 « V2. Assume that V π V1. We
shall show that V = V2, which would prove that V is irreducible.

Claim. I(V) = I(V2).

f p p pn n
k
nk= 1 2

1 2 . . . ,

p pÆ ( )I

k set of imal ideals in k X X Xn
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First of all, V2 Ã V implies that I(V) Ã I(V2). On the other hand, since V1 is con-
tained in but not equal to V there must exist a polynomial f1 Œ I(V1) - I(V). Let f2 be
any polynomial in I(V2). It follows that f1f2 vanishes on V, that is, f1f2 Œ I(V). Since
I(V) is prime, either f1 or f2 belongs to I(V). It must be f2 because f1 does not by hypoth-
esis. Since f2 was an arbitrary element of I(V2), we have shown the opposite inclusion
I(V2) Ã I(V) and the Claim is proved.

The claim and Theorem 10.8.3(3) imply that V = V2 and the theorem is proved.

Theorem 10.8.12 and Corollary 10.8.6 lead to

10.8.13. Corollary. If k is algebraically closed, then the maps I and V define 
correspondences

that are one-to-one and onto.

While we are on the subject of irreducibility, Theorem 10.8.14 may be an important
theoretical result but not as useful as one would like, because checking the primality of
an ideal is not that easy. Therefore, it is nice to have a theorem like the one below
because it provides a practical means to establishing the irreducibility of many varieties.

10.8.14. Theorem. Let k be an infinite field. If V is a variety in kn that admits a
parameterization of the form

where fi Œ k[t1,t2, . . . ,tm], then V is irreducible.

Proof. Let

By Theorem 10.8.12, to prove the theorem in this case, it suffices to show that I(V) is
a prime ideal. Let r, s Œ k[X1,X2, . . . ,Xn] and assume that rs Œ I(V). Then (rs)°p =
(r°p)(s°p) is the zero polynomial in k[t1,t2, . . . ,tm] and so either r°p or s°p is the zero
polynomial. In other words, either r or s belongs to I(V) and we are done.

As one example of an application of Theorem 10.8.14, we see that all planes in Rn

are irreducible because they can be parameterized by linear polynomials. Another
example is a parabola in R2. Later we shall see (Theorem 10.14.6) that Theorem
10.8.14 generalizes to rational functions.

The next step in our program is to generalize Theorem 10.5.13(2) from hyper-
surfaces to arbitrary varieties.

10.8.15. Theorem. Every variety V can be expressed as a finite union of irreducible
varieties.

I h k X X X h p t t t is

t t
n m

m
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Proof. If V is reducible, then V = W1 » V1, where W1 and V1 are two proper sub-
varities of V. If one of these, say V1 is reducible, then V1 = W2 » V2, where W2 and
V2 are two proper subvarities of V1. If the theorem is false for some V, then we could
continue on like this to get a strictly decreasing chain V … V1 … V2 … . . . of subvari-
eties Vi. This would give a strictly increasing chain of ideals I(V) Ã I(V1) Ã I(V2) Ã
. . . , contradicting the Hilbert Basis Theorem.

Definition. A union

is called an irredundant union if no Vi is contained in any Vj for i π j.

10.8.16. Theorem. Let

where the Vi and Wj are irreducible and we have irredundant unions. Then {Vi} = {Wj}.

Proof. We have

Since Vi is irreducible, we must have Vi = Vi « Wj for some j. In other words, Vi Õ
Wj. A similar argument shows that Wj Õ Vs for some s. The inclusions Vi Õ Wj Õ Vs
and the irredundancy of the unions imply that Vi = Wj.

Theorems 10.8.15 and 10.8.16 say that every variety can be expressed as a finite
irredundant union of irreducible varieties in only essentially one way. This justifies
the next definition that generalizes one in Section 10.5.

Definition. If a variety V is written as a finite irredundant union of irreducible vari-
eties Vi, then the Vi are called the irreducible components of V.

Do the analogs of the last two results about varieties hold for ideals? The relevant
facts are:

(1) The Hilbert Basis Theorem (Theorem B.7.9) and Corollary B.7.4 imply that in
a polynomial ring over a field one gets a unique factorization of ideals into
primary ideals whose associated prime ideals are unique.

(2) Prime ideals are irreducible. (Irreducible ideals are not necessarily prime but
they are primary in a Noetherian ring. A primary ideal is not necessarily 
irreducible.)

We do not quite get the unique decomposition of an arbitrary ideal into irreducible
ideals (see Exercise 10.8.2), but we are close. We can prove

10.8.17. Theorem. If k is algebraically closed, then every radical ideal in k[X1,X2,
. . . ,Xn] can be expressed as a unique finite irredundant intersection of prime ideals.

V V V V W V Wi i i j
j

i j
j

= « = «
Ê
ËÁ

ˆ
¯̃

= «( )U U .

V V V V W W W= » » » = » » »1 2 1 2. . . . . . ,s t

V V V V= » » »1 2 . . . n
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Proof. The theorem follows from Corollary 10.8.6 and Theorems 10.8.15 and 10.8.16.

Finally, to press home the close relationship between algebra and geometry further,
we show how some other algebraic operations on ideals correspond to set-theoretic
operations on varieties and then summarize everything in Table 10.8.1. We first need
one more definition to capture the algebraic analog of the difference of two varieties.

Definition. Let I and J be ideals in k[X1,X2, . . . ,Xn]. Define the ideal quotient or colon
ideal, I :J, by

10.8.18. Proposition. The ideal quotient of two ideals I and J in k[X1,X2, . . . ,Xn] is
an ideal that contains I.

Proof. Straightforward.

10.8.18. Theorem. Let I and J be ideals in k[X1,X2, . . . ,Xn].

I J p k X X X pq I for all q Jn: , , . . . , .= Œ [ ] Œ Œ{ }1 2

Table 10.8.1 The correspondence between affine alge-
braic and geometric concepts.

Algebra Geometry

radical ideals I, J Õ k[X1,X2, . . . , Xn] varieties V, W Õ kn

(the field k is assumed to be algebraically closed)

Radical ideal Varieties
I V(I)

I(V) V

Inclusion of ideals Reverse inclusion of
varieties

I Õ J

Addition of ideals Intersection of varieties
I + J V(I) « V(J)

V « W

Product of ideals Union of varieties
I J V(I) » V(J)

V » W

Intersection of ideals Union of varieties
I « J V(I) » V(J)

I(V) « I(W) V » W

Quotient of ideals Difference of varieties
I :J V(I) - V(J)

I(V) : I(W) V - W

Prime ideal Irreducible variety

Maximal ideal Point of affine space

I IV W( ) ( )

I IV W( ) + ( )

V I V J( )   ( )
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(1) V (I + J) = V(I) « V(J).
(2) V (I • J) = V(I) » V(J).
(3) V (I « J) = V(I) » V(J).
(4) We always have V(I :J) … V(I) - V(J), but if k is algebraically closed and I is a

radical ideal, then V(I :J) = V(I) - V(J). ( is the closure of the space X.)

Proof. Parts (1)–(3) are straightforward. Part (4) needs the Hilbert Nullstellensatz.
See, for example, [CoLO97].

Up to here we have dealt with affine varieties in this section. We now turn our atten-
tion to projective varieties and show how one can associate ideals to them also. Recall
that to define projective varieties we had to use homogeneous polynomials. Therefore,
it might seem as if the natural ideals to associate to projective varieties are those that
consist of homogeneous polynomials. The problem with that is that the sum of two
homogeneous polynomials may not be homogeneous. The right definition is the fol-
lowing:

Definition. An ideal in k[X1,X2, . . . ,Xn] is said to be homogeneous if it is generated
by a set of homogeneous polynomials.

Definition. If V is a projective variety in Pn(k), define

If I is a homogeneous ideal of k[X1,X2, . . . ,Xn], define

10.8.20. Proposition.

(1) An ideal I of k[X1,X2, . . . ,Xn] is a homogeneous ideal if and only if I = <f1,f2,
. . . ,fs>, where the fi are homogeneous polynomials.

(2) If I is a homogeneous ideal in k[X1,X2, . . . ,Xn], then ÷I
–

is a homogeneous ideal.
(3) If V is a projective variety in Pn(k), then V(I(V)) = V.

Proof. The proofs are not hard. Part (1) needs the Hilbert Basis Theorem.

It follows from Proposition 10.8.20(1) that V(I) is a projective variety for all homo-
geneous ideals I. With the definitions above and Proposition 10.8.20 one can estab-
lish a correspondence between projective varieties and radical homogenous ideals
over algebraically closed fields similar to what we had in the affine case. For the details
and some minor required modifications see [CoLO97]. See Exercise 10.8.5 for another
approach to projective varieties and their algebraic counterparts.

This seems like a good time to introduce another concept.

Definition. The Zariski topology of a variety V in kn or Pn(k) is the topology defined
by saying that its closed sets are the subvarieties of V. Alternatively, the sets

V I k fn( ) = Œ ( ) ( ) = Œ{ }p P p 0 for all homogeneous polynomials f I .

I f k X X X hat is zero onnV V( ) = < Œ [ ] >1 2, , . . . , .f is a homogeneous polynomial t     

X
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where f is a polynomial in k[X1,X2, . . . ,Xn] that is homogeneous if V is a projective
variety, define a base for the open sets of the Zariski topology.

The Zariski topology is a topology because arbitrary intersections of varieties are
varieties by Lemma 10.8.2(2). This new topology on a variety is quite different from
the topology induced by the standard topology of kn or Pn(k) when k = R or C. For
one thing, all open sets intersect. (See Exercise 10.8.6 for some of its properties.) 
Nevertheless, it is convenient terminology which is often used in algebraic geometry.
Varieties are sometimes called closed sets and some authors call an open subset of a
projective variety a quasiprojective variety. The latter term is in an attempt to unify
the concept of affine and projective variety. Projective varieties are clearly quasipro-
jective varieties, but affine varieties over C are also because of Theorem 10.3.6 on the
projective completion of an affine variety. On the other hand, it turns out that the set
of quasiprojective varieties is bigger than the set of affine and projective varieties. A
lot of what we do in this chapter could be done in terms of quasiprojective varieties,
but we shall not in order to cut down on the abstraction. At any rate, we shall run
into the Zariski topology again at several places later on. From now on any topolog-
ical statements about varieties will refer to it unless otherwise stated.

We finish this section by describing the algebraic analog of the projective 
completion.

Definition. If I is an ideal in k[X1,X2, . . . ,Xn], then

is called the homogenization of I.

10.8.21. Proposition. If I is an ideal in k[X1,X2, . . . ,Xn], then, H(I) is a homoge-
neous ideal in k[X1,X2, . . . ,Xn+1].

Proof. Easy.

Definition. Let V be an (affine) variety in kn. The projective variety V(H(I(V))) in
Pn(k) is called the projective closure of V.

10.8.22. Theorem. Let V be an affine variety in kn.

(1) The projective closure of V is the same as the projective completion of V.
(2) If V is irreducible, then so is the projective closure of V.

Proof. The proof is not hard. See [CoLO97].

10.9 Defining Parameterized Curves Implicitly

Suppose that we have a curve in the plane whose points are parameterized by rational
functions, say,

H I H f f I( ) = ( ) Œ{ }

p V pŒ ( ) π{ }f 0 ,
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Clearing denominators gives

(10.49)

If we could eliminate the variable t, then we would have an implicit equation in x and
y only. For example, consider the parameterization

of a line L in the plane. If we solve both equations for t, set the results equal, and sim-
plify, we get

which is an equation for L. We could also find the equation for a curve C defined by
quadratic parameterizations in this way, such as, for example,

We again simply solve for t and set the results equal. However, as the degree of the
parameterization got higher, solving for t would get more and more complicated. In
fact, if the degree was larger than 4, then this approach would not work at all because
there is a well-known theorem that states that there is no solution by radicals of the
general equation of degree five or higher. Something else is needed if we want to find
implicit definitions for spaces defined parametrically.

Recall resultants. What do they have to do with eliminating variables? Well, con-
sider the equations (10.49) again and rewrite them as

(10.50)

The polynomials f and g are now thought of as polynomials in t with coefficients in
R[x,y]. If

x
p t
q t

y
p t
q t

0
1 0

1 0

0
2 0

2 0

=
( )
( )

=
( )
( )

,

f t xq t p t

g t yq t p t

( ) = ( ) - ( ) =
( ) = ( ) - ( ) =

1 1

2 2

0

0.

x t t

y t

= - +
= +

2

2

3 1

2 7.

3 2 7 0x y- + = ,

y t= +3 5

x t= -2 1

xq t p t
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1 1
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0
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then the two equations in (10.50) have a common root t0 when x = x0 and y = y0. It
follows that

The latter is an equation in x and y and corresponds to having eliminated t from the
equations in (10.49).

10.9.1. Example. To find an implicit equation for the curve parameterized by

(10.51a)

(10.51b)

Solution. If

then

Of course, we could also have eliminated the t from equation (10.51a) directly, namely,
t = ÷x

–
, and substituted into equation (10.51b) to get

Squaring both sides of this equation gives the same equation in x and y as the one we
got from the resultant.

10.9.2. Example. To find an implicit equation using resultants for the standard
rational parameterization of the unit circle given by

Solution. Let

f t x t t

g t y t t

( ) = +( ) + -

( ) = +( ) -

1 1

1 2

2 2

2 .

x
t

t

y
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t
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-
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=
+

1
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2
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2

2

2
.

y x x= -( )1 .
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0 0 1 0
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0 1 0 1

22 3 2

f t x t
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3 ,
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Then

is essentially the standard implicit definition of the circle.

10.9.3. Example. To find an implicit equation using resultants for the unit sphere
S with center (0,0,1) parameterized by

(10.52a)

(10.52b)

(10.52c)

Solution. First, note that this sphere has an obvious implicit representation of the
form

which simplifies to

On the other hand, if we use resultants to eliminate t first from equations 
(10.52a) and (10.52b) and then from equations (10.52b) and (10.52c), we get 
equations

and

respectively. To eliminate the parameter s we find the resultant of the last two equa-
tions. However, to simplify the computations, we eliminate the factors 4s2 first. We
know from the product rule given in Corollary 10.4.10 that the result will be a poly-
nomial which divides the actual resultant but is good enough for what we want. We
get

(10.53)

The first factor is of course what we would want, but notice the second factor that
corresponds to some extraneous values.

x y z z y y x z y z y x x z2 2 2 6 4 2 2 2 2 2 2 22 2 2 4 0+ + -( ) + +( ) - +( ) +[ ] = .

4 2 02 2 2 2 2 2 2s s z z s z s y+ - +( ) = ,

4 2 02 2 2 2 2s y s x x sx+ + -( ) =

x y z z2 2 2 2 0+ + - = .

x y z2 2 2
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Example 10.9.3 points out a major problem with using the Sylvester resultant for
finding implicit equations from parameterizations. One may get a much higher degree
polynomial equation than is necessary and, since factoring polynomials is a nontriv-
ial problem, there would be no easy way to eliminate the extraneous factors in general.
From a computational point of view one always has to worry about numerical sta-
bility, so that it is important to get polynomials with as small degree as possible. A
more efficient method for implicitizing parametric objects is needed.

Finally, in showing how resultants can be used to implicitize objects, we have
assumed above that computations are carried out with exact arithmetic. Unfortunately,
when one tries to do this on a computer it is easy to give examples, where, due to round-
off errors, small variations in polynomial coefficients can lead to wildly different and
incorrect implicit forms. Although exact rational arithmetic is possible it is very expen-
sive computationally. For a more efficient way to deal with the round-off problem here
see, for example, [Hobb91].

10.10 Gröbner Bases

This section will define and discuss applications of certain special bases of polyno-
mial ideals called Gröbner bases. These bases lead to algorithms that not only solve
a large variety of problems but provide efficient solutions to them. We shall use them
to give answers to the following questions:

(1) Does an ideal I Õ k[X1,X2, . . . ,Xn] have a finite basis and how does one find one?
(2) Given an ideal I Õ k[X1,X2, . . . ,Xn] and a polynomial f, when is f Œ I?
(3) Given polynomials f1, f2, . . . , fk Œ k[X1,X2, . . . ,Xn], what are the solutions in

kn to the system of equations

(10.54)

(4) How does one find an implicit representation for a set defined parametrically by

(10.55)

where the fi are either polynomials or rational functions?

Our brief introduction to the subject will hopefully motivate the reader to go and
learn more about it. Some good references for Gröbner bases and their many appli-
cations are [CoLO97], [AdaL94], and [CoLO98].

Gröbner bases were developed to answer questions such as the four listed above
in the case of multivariable polynomials or ideals where things get more complicated
than in the one-variable case. The main reason that answers are either easy or at least
well-understood in the 1-variable case is that one has a nice division algorithm. Specif-

x f t t tm m n= ( )1 2, , . . . , ,

M M

x f t t tn1 1 1 2= ( ), , . . . ,

f X X Xm n1 2 0, , . . . , ?( ) =

f X X Xn1 1 2 0, , . . . ,( ) =
MM
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ically, it is known (Theorem B.8.7) that, given polynomials f(X) and g(X), there are
unique polynomials a(X) and r(X) with deg r < deg g, so that

(10.56)

More to the point, there is a simple algorithm for finding a(X) and r(X). Algorithm
10.10.1 is one variant of this one-variable division algorithm. We show it here to help
motivate the generalization to the multivariable case that we shall describe shortly.
As simple as it is, this division algorithm has many applications. For example, it is
used in the Euclidean algorithm that computes the greatest common divisor of a finite
set of polynomials. (This algorithm proceeds just like the one for computing the great-
est common divisor of a finite set of integers. Structurally, the polynomial ring k[X]
looks very much like the integers Z, and many of the constructions that one can use
for Z carry over to k[X].) Algorithm 10.10.1 also leads to simple algorithms that
answer questions (1) and (2), because it is the key ingredient to proving that k[X] is
a PID (Theorem B.8.11), that is, every ideal I Õ k[X] has the form I = <g(X)> for some
g Œ k[X]. This obviously shows that every ideal I has a finite basis. A polynomial f Œ
k[X] belongs to I if and only if the remainder r(X) in equation (10.56) is zero.

When we try to answer questions (1) and (2) in the multivariable case, the first
problem we encounter is that the ring k[X1,X2, . . . ,Xn] is not a PID if n > 1. There-
fore, we shall want to reduce a polynomial by long division with respect to a set of k
> 1 polynomials (corresponding to the basis of an ideal), not just one. In k[X], this
task reduces to the case k = 1 because of the PID property. On the other hand, with
polynomials of more than one variable it is in general possible to perform long divi-
sion reductions in different ways which lead to different remainders. Without unique
remainders we would lose some good algorithms. Fortunately, we can get uniqueness
if we choose the basis carefully (and define a good division algorithm). This is where
Gröbner bases come in. The fact that some bases are better than others is hardly new.
For example, in the case of vector spaces, orthonormal bases are often particularly
desirable.

f X a X g X r X( ) = ( ) ( ) + ( ).

Inputs:   f(X), g(X) Œ k[X] ,  g(X) π 0.
Outputs:   a(X), r(X) Œ k[X] satisfying  f(X) = a(X) g(X) + r(X) with either 

r(X) = 0   or deg r < deg g 

a := 0;  r := f;  
while  (r π 0) and (lt(g) divides lt(r)) do { lt(p) returns the leading term of p } 

begin
a := a + lt(r)/lt(g); 
r := r - (lt(r)/lt(g)) g; 

end;

Algorithm 10.10.1. The one-variable polynomial division algorithm.
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Next, consider questions (3) and (4). To see the possible role of polynomial divi-
sion and bases in answers to those questions, we look at the special case of linear
equations and parameterizations. The standard solution to the problem in question
(3) when we have linear equations is to turn it into a matrix problem and apply the
Gauss-Jordan elimination method and standard row reductions. This approach can
be thought of as a method for finding certain bases.

10.10.1. Example. Consider two linear equations

(10.57)

Applying the standard row reduction method to the matrix which represents the
system of equations (10.57) leads to the row echelon form of that matrix:

It follows that solving (10.57) is equivalent to solving

(10.58)

Equations (10.58) are easily solved for X and Y in terms of Z and turned into a para-
metric solution of the form

A similar approach works for question (4) in the linear case.

10.10.2. Example. Consider the parameterization

(10.59)

which we rewrite as

(10.60)

Again, the matrix associated to the system in (10.60) can brought into standard form
using row reductions:
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The last row leads to the equation

which is an implicit representation of the plane defined parametrically by equations
(10.59).

Let us see how we can interpret what we did in these examples in polynomial
terms. For example, in Example 10.10.1 the row reductions in the matrices corre-
spond to showing that

where g1 = g - 2f and f1 = f + 2g1. Replacing g by g1 will be called a reduction. It corre-
sponds to eliminating the X term in g. How this is done is via a long division of g by f:

If there are more equations, then more divisions may be needed and by more than
one polynomial. In analyzing what is going on here, there are two points to observe
as we prepare to generalize this process:

(1) We ordered the terms of the linear polynomials – we decided to eliminate X
first in Example 10.10.1 and we listed the xi after the ti in Example 10.10.2.

(2) We subtract multiples of a polynomial to eliminate the current “leading” terms
from remaining polynomials.

In the nonlinear case for arbitrary polynomials in k[X1,X2, . . . ,Xn] we shall try to
use similar steps, but things get more complicated. We address question (1) first. If an
ideal I is generated by polynomials g1, g2, . . . , gm, then to determine whether or not the
polynomial f belongs to I reduces to finding polynomials a1, a2, . . . , am, so that

(10.61)

Finding such polynomials ai or showing that they do not exist is not as easy as in the
linear case, especially, since we cannot assume anything about their degree even if we

f a g a g a gm m= + + +1 1 2 2 . . . .
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know something about the degrees of f and the gi. For example, if the gi all have degree
2 and f has degree 4, we cannot assume that the ai will have degree at most 2. Nev-
ertheless, the approach will be to try to reduce f to 0 by successively subtracting appro-
priate multiples of g1 from f, then multiples of g2, etc. We will need some criteria that
will tell us that as we change f we are making progress. To do this we define a notion
for when a term of a polynomial is more complicated than another one. We need an
ordering of monomials. One such well-known ordering is the following:

Definition. The lexicographic order or lex order < of the monomials in indeterminates
X1, X2, . . . , Xn over a ring R is defined as follows: Given monomials

then u < v if the left-most nonzero entry in the vector d = (f1,f2, . . . ,fn) - (e1,e2, . . . ,en)
in Zn is positive. The reverse lexicographic order defines u < v if the right-most nonzero
entry in the vector d is negative.

For example, if X = X1 and Y = X2, then

with respect to the lexicographic order. Note that the lexicographic order is deter-
mined by the order in which the indeterminates Xi are listed. In essence, one has
chosen a fixed ordering of the variables, namely, Xn < Xn-1 < . . . < X1.

The lexicographic order is only one of many orderings. Other orderings actually
work better with certain problems. Here are two other standard ones; however, the
reader should be aware of the fact that the terminology varies between authors.

Definition. The degree lexicographic order or deglex order < of the monomials in inde-
terminates X1, X2, . . . , Xn over a ring R is defined by saying that any monomial of
total degree d is less than any monomial of degree e if d < e and monomials of equal
total degree are ordered using the lexicographic order.

For example, if X = X1 and Y = X2, then

Definition. The degree reverse lexicographic order or degrevlex order < of the mono-
mials in indeterminates X1, X2, . . . , Xn over a ring R is defined by saying that any
monomial of total degree d is less than any monomial of degree e if d < e and mono-
mials of equal total degree are ordered using the reverse lexicographic order.

In the case of two variables, the degrevlex and deglex order are the same 
(Exercise 10.10.2). On the other hand, when X3 < X2 < X1, then

for deglex order, but

X X X X X1 2
3

1
2

2 3<

1 2 2< < < < < <Y X Y XY X .. . .

1 2 2 2 2< < < < < < < < < < < <Y Y Yk X XY XY X X Y. . . . . . . . . . . .

u cX X X and v dX X Xe e
n
e f f

n
fn n= =1 2 1 2

1 2 1 2. . . . . . ,



10.10 Gröbner Bases 733

for degrevlex order.
We would like to isolate the essential properties that an ordering should possess

to be useful. Since ordering monomials 

will ignore the constant c and will be equivalent to ordering their exponent tuples

in Nn, the definition of an ordering often deals simply with orderings of elements of
Nn rather than monomials. We shall state both definitions for comparison purposes
but concentrate on Nn.

Definition. A monomial ordering of Nn is a total ordering < on Nn that satisfies

(1) 0 £ e for all e Œ Nn, and
(2) if whenever e, f Œ Nn and e < f, then e+g < f+g for all g Œ Nn.

Definition. A monomial ordering of k[X1,X2, . . . ,Xn] is a total ordering < on the
monomials of k[X1,X2, . . . ,Xn] satisfying

(1) c < Xi for all c Œ k and all i.
(2) For all monomials u, v, w Œ k[X1,X2, . . . ,Xn], u < v implies that uw < vw.

10.10.3. Theorem. Every monomial ordering of Nn is a well-ordering.

Proof. Let < be monomial ordering. We need to show that every subset of Nn has a
smallest element, or, equivalently, that every decreasing sequence

(10.62)

must terminate after a finite number of steps. The theorem will be proved by induc-
tion on n.

If n = 1, then it is easy to show that < is just the standard less than relation on the
nonnegative integers. Assume that n ≥ 2 and that the theorem is true for n - 1. Suppose
that we have a decreasing sequence of elements ei as shown in (10.62).

Claim 1. The theorem is true if there is a j so that all the jth entries in the ei are
constant.

Without loss of generality we may assume that j = n. Suppose that ein = c for all
i. Because

f f f c g g g c

f f f g g g
il i in il i in

il i in il i in
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we may also assume that c = 0. Define an ordering < of Nn-1 by:

(10.63)

It is easy to check that this defines a monomial ordering on Nn-1. Our inductive
hypothesis applied to the sequence ei¢ = (ei1,ei2, . . . ,ein-1) in now proves Claim 1.

Claim 2. If x = (x1,x2, . . . , xn), y = (y1,y2, . . . , yn) Œ Nn-1 satisfies xj < yj for all j,
then x < y.

Let dj = yj - xj and d = (d1,d2, . . . ,dn). Then 0 < d implies that x = 0 + x < d + x =
y and Claim 2 is proved.

Now consider the sequence in (10.62) again and assume that it is an infinite
sequence. If any of the sequences of nonnegative integers eij, j = 1,2, . . . , is bounded
for some fixed i, then we can choose a subsequence of the ei so that the jth entries in
that subsequence are constant. By Claim 1 we would be done. Assume therefore that
the sequences eij, j = 1,2, . . . , are unbounded for all i. Choose a subsequence of the ei
so that for that subsequence the first components form a strictly increasing sequence
of integers going to infinity. Let fi be this new decreasing sequence of elements of Nn.
Now look at the second components of all the fi and choose a subsequence so that
the second components form a strictly increasing sequence of integers going to infin-
ity. Continue in this way until we finally end up with a subsequence gi = (gi1,gi2,
. . . ,gin) of the original sequence ei with the property that gi+1,j > gij for all i and j. By
Claim 2 we would have gi+1 > gi, which is impossible since the sequence ei was decreas-
ing. This contradiction proves the theorem.

Theorem 10.10.3 is important because we need monomial orderings to have the
well-ordering property in addition to the total order to ensure that various algorithms
we shall define will terminate.

10.10.4. Proposition. The lex, deglex, and degrevlex orders of k[X1,X2, . . . ,Xn] are
monomial orderings.

Proof. Obvious.

We need some more terminology before we can state the multivariable long divi-
sion theorem.

Definition. Fix a monomial order < on k[X1,X2, . . . ,Xn] and let f Œ k[X1,X2, . . . ,Xn].
The largest monomial in f with respect to this order is called the leading term of f and
is denoted by lt(f). Its coefficient is called the leading coefficient and is denoted by lc(f).
The leading power product, denoted by lpp(f), is defined by the equation lt(f) =
lc(f)lpp(f) and is the largest power product appearing in f.

For example, assuming deglex order and Y < X, if

f X Y X Y XY Y, ,( ) = + -7 2

f f f g g g

f f f g g g
il i in il i in

il i in il i in

, , . . . , , , . . . ,

, , . . . , , , , . . . , , .
2 1 2 1

2 1 2 10 0
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- -
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if and only if 
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then

In the future, whenever we talk about leading terms, etc., we shall always assume
a monomial order has been chosen even if we do not say so explicitly.

10.10.5. Theorem. (The Division Algorithm for k[X1,X2, . . . ,Xn]) Fix a monomial
order < on k[X1,X2, . . . ,Xn] and let P = {p1,p2, . . . ,pm} be a fixed set of m nonzero 
polynomials in k[X1,X2, . . . ,Xn]. Then every f Œ k[X1,X2, . . . ,Xn] can be expressed 
as

where ai, r Œ k[X1,X2, . . . ,Xn] , and either r is zero or none of the monomials appear-
ing in r is divisible by any of the lt(pi). The polynomial r will be called a remainder of
f by division with respect the sequence of polynomials P. Furthermore,

Proof. Algorithm 10.10.2 is an algorithm that finds the ai and r. Therefore, the proof
of the division theorem boils down to showing that that algorithm does what it claims.
The reader should compare this algorithm with Algorithm 10.10.1 for one variable.
Two key observations for a proof of Algorithm 10.10.2 are:

(1) f = a1p1 + a2p2 + · · · + ampm + g + r at each stage.
(2) The leading term of g in (1) decreases with respect to the ordering so that the

algorithm terminates.

See [CoLO97] or [AdaL94].

See Exercise 10.10.4 for a simple variant of a multivariable division algorithm.

Definition. Let f and g be two polynomials. We say that f is simpler than g if lt(f) 
< lt(g).

For example, if

then f is simpler than g. Algorithm 10.10.2 shows how to simplify polynomials with
respect to any set of polynomials. We introduce some other common terminology.

Definition. Fix a monomial order. Let P be a set of polynomials and f an arbitrary
polynomial. Assume that some monomial term u of f is divisible by the leading term
of a polynomial p in P, that is,

f XY X and g X Y Y= + = +2 3 3 3,

lpp f lpp a lpp p lpp a lpp p lpp a lpp p lp rm m( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }max , , . . . , , .1 1 2 2

f a p a p a p rm m= + + + +1 1 2 2 . . . ,

lt f X Y lc f and lpp f X Y( ) = ( ) = ( ) =7 72 2, , .
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for some monomial h. Let g = f - hp. We shall say that the polynomial g is obtained
from f via an elementary P-reduction and write f fi g. If no such polynomial p exists,
then we shall say that f is P-irreducible. If there exists a sequence of elementary P-
reductions f = f0 fi f1 fi f2 fi . . . fi fm = g, then we say that f P-reduces to g and 
write . If f P-reduces to g and g is P-irreducible, we shall call g a P-normal
form for f and denote such g by NF(f,P).

f gPæ Ææ

u h lt p= ( )

Inputs:   f, p1, p2, º  , pm Œ k[X1,X2, º ,Xn] ,  pi π 0 
Outputs:   a1, a2, º  , am, r Œ k[X1,X2, º ,Xn]  satisfying 

f  =  a1 p1 + º + am pm + r,

  where either r is zero or none of the monomials appearing in r is divisible  
  by any of the lt(pi)

integer i; 
boolean noDivision; 

a1 := a2 := º := am := r := 0;     g := f; 
while  g π 0 do
      begin

i := 1;   noDivision := true; 
while  (i £ m) and noDivision  do

then
begin

ai := ai + lt(g)/lt(pi);
g := g - (lt(g)/lt(pi))*pi;
noDivision := false;

end
else  i := i + 1; 

if noDivision  then
begin

r := r + lt(g); 
g := g - lt(g); 

end
end;

if lt(pi) divides lt(g) 

Algorithm 10.10.2. The multivariable polynomial division algorithm.
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The term “P-normal form” for a polynomial is not quite just another name for a
remainder in Algorithm 10.10.2. The reason is that an elementary reduction of f does not
require that the term u in f is a leading term. In practical algorithms, however, u always
will be chosen to be a leading term because of Algorithm 10.10.2.

10.10.6. Example. Choose the lexicographic order for k[X,Y] with X > Y and let

and

The first term of each of the polynomials pi is the leading term. Define polynomials
gi and hi by

This shows that

Thus, f P-reduces to g4 and h3. Since both g4 and h3 are P-irreducible, they are both
P-normal forms for f.

Note that Example 10.10.6 shows that P-normal forms (or remainders in 
Algorithm 10.10.2) are not unique in general. Now, an elementary P-reduction intro-
duces potentially new terms to the original polynomial. It might seem initially that
we could have an infinite chain of elementary P-reductions. This is not possible
however. See [AdaL94]. (The termination part of the proof for Algorithm 10.10.2 does
not apply directly because elementary P-reductions of f do not necessarily pick a
leading term of f. One needs a simple modification of that proof.)

10.10.7. Proposition. Let P be a finite set of polynomials and f an arbitrary poly-
nomial. If the P-normal form g for f is unique, then g = 0 if and only if f belongs to
the ideal <P>.

Proof. Let P = {p1,p2, . . . ,pm}. Now, if , then

for some polynomials ai. Therefore, if g = 0 then f Œ <P>. Conversely, let f Œ <P>. It is
not true in general that every P-normal form of f is 0. See Exercise 10.10.6. On the
other hand, at least one will be because if

f a p a p a p gm m= + + + +1 1 2 2 . . .
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for some polynomials ai (each of which is a sum of monomials), then f is sum of 
products bjqj, where bj is a monomial and qj Œ P, and this provides a sequence of 
elementary P-reductions that lead to 0. It follows that if the P-normal form is unique,
then all P-normal forms will be 0.

Proposition 10.10.7 motivates us to find bases P for ideals so that they induce unique
P-normal forms on polynomials. Such bases will be called Gröbner bases. There are
many possible equivalent definitions for these. We choose one based on leading term
properties rather than the unique P-normal form property because it is the former that
play the central role in all the proofs and practical algorithms.

Definition. Fix a monomial order and let I be a nonzero ideal in k[X1,X2, . . . ,Xn].
A finite set P = {p1,p2, . . . ,pm} of nonzero polynomials in I is called a Gröbner basis or
standard basis for I if and only if for all nonzero f Œ I, there is some j, 1 £ j £ n, so
that lt(pj) divides lt(f).

Note that if we have a Gröbner basis P for an ideal I, then no nonzero polynomial
in I is P-irreducible.

Definition. Let S be an arbitrary nonempty subset of k[X1,X2, . . . ,Xn]. Define the set
of leading terms of S, lt(S), by

10.10.8. Theorem. Fix a monomial order and let I be a nonzero ideal in 
k[X1,X2, . . . ,Xn]. The following statements are equivalent for a finite set P = (p1,p2,
. . . ,pm) of nonzero polynomials in I:

(1) P is a Gröbner basis for I.
(2) f Œ I if and only if .
(3) f Œ I if and only if

for some polynomials ai.
(4) <lt(P)> = <lt(I)>.
(5) Every polynomial f Œ k[X1,X2, . . . ,Xn] has a unique P-normal form.

Proof. We shall only prove that (1)–(4) are equivalent. For a proof showing that (5)
is equivalent to (2) see [AdaL94].

(1) fi (2): Let f Œ I. Let r = NF(f,P). Clearly, r Œ I. But r must be 0, otherwise one
would be able to reduce it further by the definition of a Gröbner basis. The converse
is also immediate.

f a p and lpp f lpp a lpp pi i
i ni

m

i i= ( ) = ( ) ( ){ }
£ £=

Â max ,
11

f Pæ Ææ 0

1t S lt f f S( ) = ( ) Œ{ }.

f a p a p a pm m= + + +1 1 2 2 . . .
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(2) fi (3): This is a straightforward consequence of Theorem 10.10.5.
(3) fi (4): Obviously, <lt(P)> Õ <lt(I)>. We need to show the reverse inclusion. Let

g Œ <lt(I)>. Then g is a linear combination of leading terms of polynomials in I. But
if f Œ I, then (3) implies that

where the sum is taken over all i with the property that

This shows that g is a linear combination of lt(pi), that is, g Œ <lt(P)>.
(4) fi (1): Let f Œ I. By (4), lt(f) can be expressed in the form

where bi Œ k[X1,X2, . . . ,Xn]. Consideration of the right-hand side of this equation after
expanding the polynomials bi into their monomial parts shows that lpp(f) must be
divisible by lpp(pj) for some j, which is what we had to prove.

10.10.9. Corollary. If P = {p1,p2, . . . ,pm} is a Gröbner basis for an ideal I, then I =
<p1,p2, . . . ,pm>.

Proof. Since each pi belongs to I, we clearly have <p1,p2, . . . ,pm> Õ I. On the other
hand, if f Œ I, then Theorem 10.10.8(3) implies that f Œ <p1,p2, . . . ,pm>.

We have listed some properties of Gröbner bases, but do they exist?

10.10.10. Theorem. Every nonzero ideal in k[X1,X2, . . . ,Xn] has a Gröbner basis.

Proof. See [CoLO97] or [AdaL94]. One needs the Hilbert basis theorem for this.

The next question is how one can find a Gröbner basis. Consider an ideal I = <p1,p2,
. . . ,pm> and let P = {p1,p2, . . . ,pm}. What might cause P not to be a Gröbner basis for
I? First of all, although every element f in I is a linear combination of the pi, the leading
terms might cancel out leaving f with a leading term that is smaller than all of the
leading terms of the pi.

10.10.11. Example. Using the deglex order of k[X,Y] with X > Y, let

The existence of such a polynomial f in I shows that the set P = {p1,p2} does not form
a Gröbner basis.

The next observation strikes more at the heart of the problem with picking any
old basis for an ideal. The problem is that one usually has many choices when reduc-

I p X Y X p XY and f Yp Xp XY X I= < = + = + > = - = - Œ1
2

2
2

1 21, .
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lt f lt a lt pi i
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ing polynomials to get to a reduced one. For example, there are two choices when
reducing the polynomial

with respect to the set of polynomials P in Example 10.10.11, that is, g has the two
P-normal forms

That one gets different sequences of polynomials on the way to a reduced form might
not be bad by itself, but what turns out to be bad is that differences such as

(10.64)

are irreducible. Trying to fix this problem is what leads to an algorithm for finding
Gröbner bases.

Definition. Let f and g be nonzero polynomials in k[X1,X2, . . . ,Xn]. Let L =
lcm(lpp(f),lpp(g)). The S-polynomial of f and g, denoted by S(f,g), is defined by

For example, if p1 and p2 are the polynomials in Example 10.10.11, then

This is in fact the same polynomial as the one in equation (10.64) that measured 
differences in outcomes of reductions.

10.10.12. Theorem. (Buchberger) Let P be a finite set of polynomials in k[X1,X2,
. . . ,Xn]. Then the following are equivalent:

(1) P is a Gröbner basis for <P>.
(2) For all f and g in P we have NF(S(f,g),P) = 0.

Proof. See [CoLO97] or [AdaL94].

10.10.13. Theorem. (Buchberger Gröbner Basis Algorithm) Fix a monomial order
and let I be a nonzero ideal in k[X1,X2, . . . ,Xn]. If P = {p1,p2, . . . ,pm} is any basis for I,
that is, I = <p1,p2, . . . ,pm>, then Algorithm 10.10.3 computes a Gröbner basis G for I.

Proof. See [CoLO97] or [AdaL94]. Algorithm 10.10.3 does not produce a unique
Gröbner basis because different choices could be made as it proceeds.

10.10.14. Example. To use Algorithm 10.10.3 to find a Gröbner basis for the ideal
I = <p1 = X2Y + X,p2 = XY2 + 1> using the deglex order on k[X,Y] with X > Y.

S p p Yp Xp XY X1 2 1 2, .( ) = - = -

S f g
L

lt f
f

L
lt g

g, .( ) = ( ) - ( )

g g XY X2 1- = -

g g yp XY X and g g xp X1 1 2 2 2= - = - - = - = - .

g X Y X= -2 2
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Solution. We show the steps in the algorithm.

At start of first time through loop: G = {p1,p2} and B = {{p1,p2}}
In first loop: {p,q} = {p1,p2}, B is set to empty,

S(p,q) = XY - X, and g = NF(S(p,q)) = XY - X.
We add to B and G

At start of second time through loop: G = {p1,p2,XY - X} and 
B = {{XY - X,p1}, {XY - X,p2}}

In second loop: (p,q) = {XY - X,p1}, B is set to {{XY - X,p2}}
S(p,q) = -XY - X, and g = NF(S(p,q)) = -2X.
We add to B and G

At start of third time through loop: G = {p1,p2,XY - X,-2X} and
B = {{-2X,p1},{-2X,p1},{-2X,XY - X},{XY - X,p2}}

In third loop: {p,q} = {-2X,p1}, B is set to {{-2X,p1},{-2X,XY - X},{XY - X,p2}},
S(p,q) = X, and g = NF(S(p,q)) = 0.

We now go through the loop three more times, removing one element of B
each time, and each time the reduced element g is again 0.

Input:  A nonempty finite set P of polynomials. 
Output: A Gröbner basis G for the ideal <P>. 

polynomialSet        G; 
polynomialPairSet B; 
polynomial         p, q, g; 

G := P;     B := { {p,q}  |  p, q Œ G  and  p π q } ; 
while  B π ff do

begin
{p,q} := AnyElementOf (B); 
B := B - {{p,q}}; 
g := NF(S(p,q),G); 

gif π 0 then
begin

B := B » { {g,g¢ } |  g¢ Œ G }; 
G := G » { g }; 

end
end;

Algorithm 10.10.3. The Buchberger Gröbner basis algorithm.
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This shows that the algorithm produces the basis G = {p1,p2,XY - X,-2X}, which is
easily shown to satisfy the definition of a Gröbner basis. Of course, since there were
choices made along the way (we could have chosen different elements of B), we should
not expect to end up with a unique basis.

Because finding a Gröbner basis can be very time consuming, it is important that
one proceeds in as efficient manner as possible. The basic Buchberger algorithm is
not very efficient. For one thing, the set B may get large. We shall briefly mention two
ways to improve the algorithm. The first simplification of Gröbner bases rests on the
following lemma.

10.10.15. Lemma. If G is a Gröbner basis for an ideal I and if p Œ G is a polynomial
with the property that lt(p) Œ <lt(G - {p})>, then G - {p} is also a Gröbner basis for I.

Proof. Easy.

Definition. A Gröbner basis G = {g1,g2, . . . ,gm} is called minimal if

(1) lc(gi) = 1 for all i.
(2) For all i and j, i π j, lpp(gi) does not divide lpp(gj).

For example, given the Gröbner basis

that we got in Example 10.10.14, we can normalize the fourth element and apply
Lemma 10.10.15 to the first three elements of G to show that {X} is also a Gröbner
basis that is in fact minimal.

Minimal Gröbner bases get rid of some extra elements but may not be unique.
For example, the ideals <X2 + aXY,XY> are minimal Gröbner bases for the ideal
<X2,XY> for any constant a Œ k.

Definition. A Gröbner basis G = {g1,g2, . . . ,gm} is said to be reduced if

(1) lc(gi) = 1 for all i.
(2) For all i, gi is reduced with respect to G - {gi}. Equivalently, no nonzero term

in gi is divisible by any lpp(gj) for j π i.

10.10.16. Theorem. If we fix a monomial order, then every nonzero ideal I in
k[X1,X2, . . . ,Xn] has a unique reduced Gröbner basis with respect to that order.

Proof. See [CoLO97] or [AdaL94].

One immediate application of the uniqueness in Theorem 10.10.16 is the 
following:

A test for when ideals are equal: Simply compute the reduced Gröbner basis for both
and check if they are the same.

G X Y X XY XY X X= + + - -{ }2 2 1 2, , ,
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Another application using Gröbner bases is:

A test for ideal membership: To see if a polynomial f belongs to an ideal, compute a
Gröbner basis G for the ideal and check if the G-normal form for f is zero.

Here are some more uses of Gröbner bases:

10.10.17. Example. To find the solutions S to the equations

Solution. If

then by Lemma 10.8.2, S = V(p1,p2,p3) = V(I), where I = <p1,p2,p3>. Using our algo-
rithms one can show that G = {g1,g2,g3} is a reduced Gröbner basis for I, where

Since I = <g1,g2,g3>, the interesting thing about this is that g2 and g3 are polynomials
of only one variable. Solving for their zeros we get

Substituting these solutions into the equation g1 = 0 and solving for x gives

These values give us all the answers over the complex numbers. Although our example
is a trivial one, we shall see that it is not atypical and that Gröbner bases can be used
to eliminate variables in equations, solve the simpler equations, and then extend the
partial solutions to a solution of the original equations.

10.10.18. Example. To find an implicit form for the curve parameterized by
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Solution. Clearly, the curve is just the set

where I is the ideal <t4 - x,t3 - y,t2 - z> in C[t,x,y,z]. One can show that

is a Gröbner basis for I using the lex order of C[t,x,y,z] with z < y < x < t. Note how
the last two polynomials in G do not involve the parameter t. It follows that the curve
is contained in the variety defined by

Does this variety in C3 contain any extra points that were not in the curve? It turns
out the answer to this question is no. See Theorem 10.11.4 and the comments leading
up to it. We were again able to solve our problem with Gröbner bases. The general
algorithm for the implicitization problem using this approach is described in the next
section.

In this section we have seen how useful Gröbner bases can be. It is therefore
important to have the most efficient algorithm for computing them possible. We have
indicated a few improvements to the basic Buchberger algorithm. More improvements
can be made by a careful analysis of the role that S-polynomials play in the algorithm.
We refer the reader to [AdaL94] or [CoLO97] for a discussion of such improvements
and actual algorithms that carry them out. Even so, finding Gröbner bases can still
be a very slow process for certain ideals. From a theoretical point, it is a very complex
problem for the worst cases. One problem is that the degrees of the polynomials in 
a Gröbner basis can be quite large. It has been shown that even if an ideal can be 
generated by polynomials whose total degree is bounded by some d, the degrees of
the polynomials in a Gröbner bases for it can in certain cases be doubly exponential
in d. Initial pessimism in this regard has been mitigated by the fact that things do not
turn out so badly in many practical problems. Recall our pointing out that the mono-
mial order we choose and the way we order the individual variables Xi can influence
the results. One has found that the degrevlex order seems to work best in most
instances in that one seems to get polynomials of smallest total degree. Nevertheless,
although Gröbner bases have a great theoretical value and have much going for them,
it turns out that methods based on resultants turn out to be more efficient in many
practical problems. Sweeping statements that one method is always better than the
other are not possible.

The implicitization problem remains a difficult computational problem in general.
The solution can end up being a high degree polynomial with a large number of terms.
For example, in CAGD a triangular surface patch of degree n has an implicit equa-
tion of degree n2 in general. A tensor product patch using polynomials of degree n
and m has an implicit equation of degree 2nm in general. See [Sede87]. For another
approach to implicitization using the Wu-Ritt method see [Hoff93] or [CoLO97].
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10.11 Elimination Theory

Resultants and Gröbner bases are two very useful and general tools in algebraic geo-
metry. In the last two sections we saw how they could be applied to the problem of
implicitizing parameterized curves and solving equations. The approach basically
boiled down to eliminating variables and extending solutions. The examples we gave,
however, were just that, examples, and without any theory about the elimination
process and extending solutions in a systematic way. We correct that now and, at least
briefly, indicate some essential results in that theory. A more thorough discussion can
be found in [CoLO97].

Definition. Given an ideal I = <f1,f2, . . . ,fn> Õ k[X1,X2, . . . ,Xn], define the mth elim-
ination ideal Im by

Clearly, Im consists of polynomials in I from which the variables X1, X2, . . . , Xm
have been eliminated. In other words, to eliminate those variables we need to find
nonzero polynomials in Im.

10.11.1. Theorem. (The Elimination Theorem) If I Õ k[X1,X2, . . . ,Xn] is an ideal
and if G is a Gröbner basis for I with respect to the lex order, where Xn < Xn-1 < · · · <
X1, then the set

is a Gröbner basis of the mth elimination ideal Im for all m, 0 £ m £ n.

Proof. See [CoLO97].

Theorem 10.11.1 tells us something about how to eliminate variables from equa-
tion. When it comes to finding solutions to a set of equations, the elimination ideals
suggest an approach with the following inductive step: If we have a solution for the
equations corresponding to the elimination ideal Ij, we extend this solution to a solu-
tion for the equations in one more variable corresponding to Ij-1. Unfortunately, such
an extension may not always exist.

10.11.2. Example. Consider the equations

These equations have solution set

The Elimination Theorem shows that the elimination ideal I1 = <y - z>. All solutions
(c,c) to the equation y = z, except (0,0), extend to solutions (1/c,c,c) Œ X.

X = - -( ) = ( ) =< - - >V xy xz V I where I xy xz1 1 1 1, , , .
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xz
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The next theorem answers the question about when extensions exist in one case.

10.11.3. Theorem. (The Extension Theorem) Assume that k is an algebraically
closed field. Let I = <f1,f2, . . . ,fm> Õ k[X1,X2, . . . ,Xn] and let I1 be the first elimination
ideal of I. For each fi, 1 £ i £ m, write fi in the form

where Ni ≥ 0 and gi Œ k[X2, . . . ,Xn] is nonzero. Suppose that we have a partial solu-
tion (a2, . . . , an) Œ V(I1). If (a2, . . . , an) œ V(g1,g2, . . . ,gm), then there exists an a1 Œ k,
such that (a1,a2, . . . , an) Œ V(I).

Proof. See [CoLO97].

The reader should look at Examples 10.10.17 and 10.10.18 again to see how the
last two theorems justify the Gröbner basis approach to solving the problems in those
examples. A geometric interpretation of Theorem 10.11.3 can be found in [CoLO97].

Next, we address a question raised in the solution for Example 10.10.18 that had
to do with the nature of the implicit representation that we obtain for a set X from a
given parametric one using the Gröbner basis approach. Let V be the variety that one
obtains. The set X is presumably contained in V by construction, but since the set X
might not even be a variety, one should not expect V to be the same as X in general.
On the other hand, the variety V could easily be much larger than necessary. There-
fore, the implicitization problem should be stated more precisely as asking for the
smallest variety that contains X. The following questions need to be answered:

(1) Is the variety V obtained via the Gröbner basis approach this smallest variety?
(2) If V π X, then how does one determine those points of V not in X?

The first of these questions is answered by the following theorem.

10.11.4. Theorem. (The Polynomial Implicitization Theorem) Let k be an infinite
field. Consider the parameterization defined in equation (10.55) and define F:kn Æ km

by

Let I be the ideal

and let

be the nth elimination ideal. Then V(In) is the smallest variety in km containing F(kn).

Proof. See [CoLO97].
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Theorems 10.11.1 and 10.11.4 lead to Algorithm 10.11.1 for finding an implicit
representation for a parameterized set.

10.12 Places of a Curve

This section is concerned with studying the local structure of a plane curve. In 
particular, we would like to analyze the curve in a neighborhood of a singularity. 
The analysis will be carried out by expanding the curve locally using power 
series. Again, if we were to jump right in and begin with all the relevant definitions,
readers new to algebraic geometry would probably find everything very abstract 
and even if they would have no trouble following the technical details it would seem
to be a lot of formal mumbo-jumbo. For that reason, we shall start this section 
with some motivation for what we are going to do. The motivation comes from
complex analysis. We will basically take a well-known theory in complex analysis 
and translate it into an algebraic setting. Therefore, we start with a simple example
on the complex analysis side and subsequently show how its analysis has bearing on
the analysis of curves in algebraic geometry. This will hopefully clarify some of the
issues at stake. We are relying on the fact that every reader has had calculus and prob-
ably a little complex analysis, so that the ideas should make a little more sense here
and help the reader understand the more algebraic and abstract discussion that
follows.

Input:  A set X in km with parameterization 

x1  =  f1 (t1,t2,º , tn

x2  =  f2 (t1,t2,ºº º  ,tn),
),

xm  =  fm (t1,t2,º ,tn),

where fi Œ k[t1, º ,tn]
Output: A set of polynomials  g1, g2, º , gs Œ k[x1, º ,xm],  so that the variety 

V = V(g1,g2,º ,gs) is the smallest variety in km containing X.

Compute a Gröbner basis for the ideal  I = <x1-f1,x2- f2,º , xm-fm>  in 
k[t1,º ,tn,x1,º xm] with respect to the lex order, where 

xm < xm-1 <  < x1 < tn < tn-1 < ......  < t1     .

The elements gj of the Gröbner basis not involving the variables ti are the basis 
of an ideal J and  V = V(J).

Algorithm 10.11.1. Implicitization algorithm using Gröbner bases.
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Consider the “function”

(10.65)

This w is actually not a function of z because it is not single-valued. Over the reals
one would normally break it into two functions

with their domains restricted to the nonnegative reals. Here ÷ is the usual real-valued
function defined on nonnegative reals that returns the nonnegative square root of its
argument. If one allows complex values, a function version of w for negative real z is

It is easy to see that the two functions w+(z) and w0(z) would then define a nice 
continuous function defined on all of the reals. Things get more complicated if one
considers z as a complex number. In that case, writing z in the polar form

we can express two single-valued functions or “branches” for w in the form

(10.66a)

(10.66b)

The problem we run into now is one of continuity, or lack of it, because in the 
complex plane there are many paths from one point to another. For example, one can
start at e0 = 1 and then get back to that same point by walking along the points 
eiq, 0 £ q £ 2p, of the unit circle in a counter clockwise fashion. The function w1(z)
starts out as +1 but approaches -1 at the end. What this basically shows is that it is
not possible to define a continuous single-valued square root function on the unit
circle.

Returning to the issue of single-valuedness, one could, of course, pick one or the
other of the branches and forget about the other one, but this would be an unsatis-
factory solution since the multiple-valuedness of the function is an important aspect
of it. Therefore, with the domain of functions restricted to the complex plane, one is
stuck with a concept of multiple-valued function. On the other hand, we shall see that
if one allows enlarging the domain of a function to a “Riemann surface,” then one
can restore the single-valuedness of functions. Historically, searching for a continu-
ous way to pass from one value of a function at a point to another first lead to the
concept of analytic element and analytic continuation, something introduced by K.
Weierstrass.

Let us call a pair (f,c) an analytic element with center c if f is an analytic function
in a neighborhood of c. We know f has a power series expansion

(10.67)f z a a z c a z c( ) = + -( ) + -( ) +0 1 2
2

. . .

w z rei
2

2( ) = - q .

w z rei
1

2( ) = q ,

z r e with r and ri= Œ £q q, , ,R 0

w z i z z0 0( ) = + - Œ -•( ], , .
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with a certain positive radius of convergence r called the radius of the analytic 
element (f,c). The open disk of radius r about c will be called the disk of (f,c). Note
that the function f may be analytic over a larger region than its disk but the formula
(10.67) is valid only over that disk. How to extend the definition of f? Choose a 
point d in the disk, |d - c| < r. The series in (10.67) can be rearranged into a new power
series

(10.68)

about d. The radius of convergence of the series in (10.68) is at least r - |c - d|, but it
may be larger. If it is larger then since f and f2 agree on an open set, they define an
analytic function with domain larger than that of f. In any case, the analytic element
(f2,d) is called a direct analytic continuation of the element (f,c). A point either in or
on the boundary of the disk for (f,c) which lies in the interior of the disk of a direct
analytic continuation of (f,c) is called a point of continuability of (f,c); otherwise, it is
called a point of noncontinuability or a singular point of (f,c). For example, one can
show that 0 is a singular point for the analytic elements (wi(z),1), i = 1, 2, where wi(z)
are the square root functions in (10.66).

If we repeat the process of continuation starting with f2, we shall get a 
sequence of analytic functions f, f2, f3, . . . . See Figure 10.13. This general process of
extending functions by a sequence of direct analytic continuations is called 
analytic continuation. One can continue functions uniquely along curves, but if 
two curves end up at the same point, the two functions we get at the end of the 
curves by this process may not be the same. Weierstrass defined a global analytic func-
tion to be the totality of analytic elements that can be obtained by analytic continua-
tion from a given one. (Actually, Weierstrass did not use the adjective “global”. He also
dealt with holomorphic, that is, differentiable, functions. Although the terms “holo-
morphic” and “analytic” are often used interchangeably, “analytic” has a more general
connotation and can allow certain singularities.) One can prove that if two global ana-
lytic functions have an analytic element in common, then they are identical.

Given two analytic elements (f1,c1) and (f2,c2) belonging to the same global ana-
lytic function, one says that they determine the same branch at a point c that belongs
to the intersection of their disks if the functions f1 and f2 are identical in a neighbor-
hood of c. Determining the same branch at a point c is an equivalence relation on the
set of analytic elements that contain c in their disk. An equivalence class is called an
analytic branch at c. The equivalence classes are in one-to-one correspondence with
power series in (z - c), which have a positive radius of convergence. For example, the
expansion of w1(z) about the point 1 is

f z b b z d b z d2 0 1 2
2( ) = + -( ) + -( ) + . . .

Figure 10.13. Analytic continuation.
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and since w2(z) = -w1(z), it has a different series expansion.
Given a global analytic function F = {(f,c)}, associate to each equivalence class of

(f,c) the well-defined value f(c). This defines a well-defined single-valued function on
the Riemann surface, which is the set of analytic branches of F. The Riemann surface
has a natural topology associated to it and is in general a legitimate surface. One can
visualize the Riemann surface in the case of the square root function in (10.65) as
follows (see Figure 10.14): We superimpose two copies, called sheets, of the complex
plane on top of each other and cut each along the positive x-axis starting at the origin.
Think of the edge of the cut along the upper half plane side as the upper cut and the
other edge as the lower cut on each branch. Then starting at point A on the lower
sheet (the branch defined by w1(z)) we continue around to the points B, C, D, E, and
F on the same sheet. Leaving F we get to the lower cut of the first sheet. There we
jump to the upper cut of the second sheet (defined by the function w2(z)) and con-
tinue on to G on the second sheet. Then move on to H, I, and J on the second sheet.
From J we reach the lower cut of the second sheet. At that point we jump back to the
upper cut of the first sheet and arrive back at A. The positive axis we cut along is
called a branch line and the origin is called a branch point. Actually, we could have
cut along any curve that starts at 0 and goes to infinity.

Because we are dealing with multiple-valued functions, rather than expressing
them in the functional notation w = f(z), it is more convenient to think of them and
their associated Riemann surface as defined implicitly by the equation

(10.69)

The Riemann surface is actually a complex manifold, meaning that its coordinate
neighborhoods are defined by analytic functions (rather than just differentiable real-
valued functions). Basically, this means that every point on the surface has a neigh-
borhood where we can parameterize both variables z and w by a single (complex)
parameter t in the form

w f z- ( ) = 0.
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(10.70)

where g1(t) and g2(t) have power series expansions in t that have a positive radius of
convergence. Such a variable t is called a (local) uniformizing variable and the process
is called uniformization. It exists because of the very definition of a Riemann surface
in terms of analytic elements and convergent power series. An expansion like in
(10.67) translates into a uniformization

with uniformizing variable t. For example, the square root in (10.65) is replaced by
an equation

(10.71)

and happens to have an especially simple uniformization

(10.72)

The uniformization in (10.72) is actually valid for the whole Riemann surface asso-
ciated to (10.71) and not just to a neighborhood of 0. That is not always possible.
Whether or not a global uniformization exists for a Riemann surface is called the 
uniformization problem in complex analysis. The interested reader can find a nice 
discussion of this problem and its history in [Abik81].

The pair of functions (g1(t),g2(t)) in equations (10.70) is just another representa-
tion of what we called an analytic element. As we just pointed out, from a topologi-
cal point of view it simply corresponds to showing that the Riemann surface is a
surface. Thinking of things in that way, since there are many ways to coordinatize a
neighborhood about a point in a manifold, why not try to find a special coordinate
neighborhood that gives us more information about this neighborhood. Define two
representations (g1(t),g2(t)) and (h1(t),h2(t)) to be equivalent if there exists a power
series

(10.73)

which converges in a neighborhood of 0, and is one-to-one there, so that

One can prove that this is an equivalence relation and that if z has an expansion

(10.74)

with m > 0 and am π 0, then z has an equivalent expansion

(10.75)z a b sm
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In fact, if the representation (10.75) was obtained by substituting the series u(t) in
(10.73) for t in (10.74), then (up to equivalence) all the other different representation
can be obtained by substituting u(wt) for t in (10.74), where w is an arbitrary mth root
of unity. The point a0 is called a point of order m. If m = 1, then a0 is called a regular
point. It follows that we are either at a regular point or our surface looks like

This finishes our quick look at analytic continuation and Riemann surfaces and
how they play a role in the analysis of complex functions and their singularities. To
keep things as simple as possible we only dealt with holomorphic functions, but in
any serious discussion one would also consider meromorphic functions so that quo-
tients of power series would replace the power series in the discussion above. This
will show up later on when we use quotient fields rather than rings.

We now move on to an example that brings out the relevance of what was just
discussed to algebraic geometry. Consider the affine plane curve C in C2 defined by

(10.76)

Note: It turns out that for every irreducible cubic curve with an ordinary double
point we can find an affine coordinate system so that in that coordinate system the
curve is defined by the equation (10.76) (see [BriK81]).

The curve C has a singularity at the origin, namely, a double point. See Figure
10.15. We can parameterize the curve by computing the intersection of the lines y =
xt with the curve. This will give the parameterization

where
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Figure 10.15. Parameterizing y2 = x2(1 - x).
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We can think of this map as sending the complex line x = 1 onto the complex curve
with t = +1, -1 mapping onto the origin. The map is onto and one-to-one except for
these two points. The line x = 1 is obviously a curve with no singularities. Later on
we shall look at this as an example of how singularities are “resolved.” Although c is
not globally one-to-one, it is locally so. Small enough neighborhoods of +1 get mapped
in a one-to-one fashion onto a set in C, similarly for a small neighborhood of -1. See
Figure 10.15 again, where the points p, q, r, and s get mapped onto p¢, q¢, r¢, and s¢,
respectively. One can think of this as having broken the curve C into more primitive
parts, in analogy with how we factored polynomials into their irreducible factors and
expressed varieties as unions of irreducible varieties. In our case the polynomial

in the ring C[X,Y] that defines C is irreducible. But then again, we are now dealing
with a local decomposition of the curve, not a global one as in the case of factoring
polynomials. Is there another ring in which f factors? Factoring into polynomials did
not work. Factoring into rational functions would also not work. However, suppose
we consider holomorphic functions in two variables in a neighborhood U of the origin.
In this case we can factor f as f = f1f2, where

and we have used one of the branches of the square root function. To avoid 
the problem with the neighborhood U not being well defined, one passes to equiva-
lence classes of holomorphic functions. In other words, we have a factorization in 
the ring of holomorphic branches at the origin, where “branch” is being used in the
sense described above. We have found a ring of the type we were looking for. Singu-
larities of curves can be detected by checking the “irreducibility” of the curve in this
ring.

We are done with the introductory remarks for this section. See [BriK81] for a
much more complete discussion of how complex analysis comes into the picture for
algebraic geometry. Being part of analysis, the methods and approaches described
above make heavy use of convergence and differentiability, concepts intimately con-
nected with the topology of the complex plane. Topology also plays a role in algebraic
geometry, but algebraic geometers prefer not to have to worry about convergence of
series and approach the same questions in a purely algebraic way. They are guided
by what is known from analysis, but replace convergent series with formal power
series where convergence is not an issue. Hopefully, this abstract algebraic approach,
which we shall now describe, will make more sense with our background discussion.

We could start with the most concrete case of an affine plane curve defined by an
equation

The plan would then be to express X and Y as formal power series in a variable t. This
is plausible because an implicit function type theorem basically states that this is pos-
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sible in the world of continuous functions and convergent series, but we should not
expect this representation to be unique. One reason for the nonuniqueness can be
explained by the that fact that the curve is derived from a projective curve that can
be coordinatized in many ways. For this and other reasons it is better to start with a
projective curve from the beginning. Our discussion will follow the presentation of
places of curves as given in [Walk50].

Let C be a plane curve in P2(k). As usual, because it is convenient to study the
curve in the context of a coordinate system, we pick one, but one of our tasks as we
go along is to make sure that everything we do is independent of such a choice.
Assume that the curve C is defined by an equation

where F(X,Y,Z) a homogeneous polynomial in our coordinate system.

Definition. A (projective) parameterization of C (with respect to the given coordinate
system) is a triple (X(t),Y(t),Z(t)) of rational functions X(t), Y(t), Z(t) Œ k((t)) satisfying

(1) F (X(t),Y(t),Z(t)) = 0.
(2) For no h(t) Œ k((t)) do all of the products h(t)X(t), h(t)Y(t), or h(t)Z(t) belong

to k.

From a technical point of view, to make sense of some statements we should think
of our curve as a curve in P2(k((t))), the projective plane over the field k((t)). For
example, condition (1) only really makes sense in that context, namely, we think of F
as a polynomial over k((t)). We shall not emphasize this point to keep the discussion
simple. All the important concepts will live in P2(k). Also, condition (2) can be
rephrased as saying that [X(t),Y(t),Z(t)] is a point of P2(k((t))) that does not lie in
P2(k). It ensures that a parameterization deals with nonconstant, nontrivial rational
functions. We could pick representatives X(t), Y(t), and Z(t) that are formal power
series, but this will not always be possible when we switch to affine coordinates. The
field k((t)) is the algebraic analog of the meromorphic functions in analysis. What we
call a parameterization here is sometimes called a branch representation (see [Seid68]).

Given how coordinate transformations are defined, we leave it to the reader to
check that a parameterization defined in one coordinate system will be a parameter-
ization (satisfying (1) and (2)) when transformed to another coordinate system (Exer-
cise 10.12.1). This means that a parameterization defined in one coordinate system
defines a well-defined parameterization in any other coordinate system. We shall allow
ourselves to talk about “the parameterization (X(t),Y(t),Z(t))” even though strictly
speaking we shall mean [X(t),Y(t),Z(t)]. Furthermore, since it is the equivalence class
[X(t),Y(t),Z(t)] that is important, we shall feel free to switch to whatever representa-
tive (X(t),Y(t),Z(t)) is convenient.

Let (X(t),Y(t),Z(t)) be a parameterization of C and let

By multiplying each coordinate by tm we may assume that our parameterization has
the property that each coordinate is a formal power series

m ord X t ord Y t ord Z t= - ( )( ) ( )( ) ( )( )( )min , , .

F X Y Z, , ,( ) = 0
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and at least one of ord(X(t)), ord(Y(t)), or ord(Z(t)) is zero. It follows that

Definition. The point [c] in P2(k) is called the center of the parameterization.

10.12.1. Proposition. The center of a parameterization for a plane curve is inde-
pendent of the coordinate system and lies on the curve.

Proof. The proof of the first part is straightforward and left as an exercise. One must
show that related parameterizations define the same center. Although the proof of the
second part is not hard, the fact may seem more obvious than it actually is. The
problem is that we are dealing with infinite power series and evaluation of such has
to be handled carefully. Specifically, what we know is that

(10.77)

but all we know immediately is that F(X(t),Y(t),Z(t)) is a power series G(t). There is
no à priori relationship between G(0) and F(c). One way to prove that [c] lies on the
curve is to develop a theory of congruence first (something that is needed in Theorem
B.7.5 to prove that substitution into power series is alright). Equation (10.77) then
implies

This equation and the fact that

imply that F(c) = 0 (mod t), from which the result follows.

Next, given an arbitrary parameterization (X(t),Y(t),Z(t)) of C, let h(t) Œ k[[t]],
where h π 0 and ord(h) > 0. Let

It is easy to show that

10.12.2. Proposition. (Xh(t),Yh(t),Zh(t)) is a parameterization with the same center
as that of (X(t),Y(t),Z(t)).
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Proof. Exercise.

Definition. If ord(h) = 1, then we say that the parameterizations (Xh(t),Yh(t),Zh(t))
and (X(t),Y(t),Z(t)) are equivalent.

10.12.3. Proposition. Being equivalent is an equivalence relation on the set of
parameterizations for a plane curve. Equivalent parameterizations have the same
center.

Proof. Exercise.

Another way of looking at the relation “equivalent” is that it corresponds to an
automorphism of k[[t]] over k.

Definition. A parameterization of the form (X(t),Y(t),Z(t)), with X(t), Y(t), Z(t) Œ
k[[tm]] and m > 1, is called reducible; otherwise it is called irreducible.

We shall be interested in irreducible parameterization because reducible ones can
be simplified using the substitution s = tm.

Up to now we have used homogeneous coordinates. Now let us translate every-
thing to affine coordinates. Assume that Z(t) π 0 in a parameterization (X(t),Y(t),Z(t)).
Let

be the affine equation of the curve C. We can think of

as an affine parameterization. It satisfies

(10.78)

Conversely, given any (t) and (t) satisfying equation (10.78), we get a projective 

parameterization ( (t), (t),1).
Note that in the interesting special case where ord(Z(t)) = 0 it follows from

Theorem B.11.13 that 1/Z(t) belongs to k[[t]] so that both (t) and (t) also belong
to k[[t]]. Since we can always assume that one of ord(X(t)), ord(Y(t)), or ord(Z(t)) is
zero, there is always one coordinate system with respect to which the affine curve is
parameterized by formal power series.

Definition. An (affine) parameterization of C (with respect to a given coordinate
system) is a pair (X(t),Y(t)) of rational functions X(t), Y(t) Œ k((t)) satisfying

YX

YX

YX

f X t Y t( ) ( )( ) =, .0

X t
X t
Z t

Y t
Y t
Z t

( ) =
( )
( )

( ) =
( )
( )

f X Y F X Y, , ,( ) = ( )1
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(1) f (X(t),Y(t)) = 0. (Here, f is thought of as a polynomial over the field k((t))).
(2) Not both X(t) and Y(t) belong to k.

The notions of equivalent and reducible or irreducible parameterizations carry
over to the affine ones in the obvious way.

10.12.4. Theorem. Given any parameterization we can always find a coordinate
system so that in that coordinate system the related affine parameterization is equiv-
alent to one of the form

where a1 π 0, 0 < m, and 0 < m1 < m2 < . . .

Proof. See [Walk50].

The next theorem gives us a criterion for when a parameterization is reducible.

10.12.5. Theorem. An affine parameterization of the form shown in Theorem
10.12.4 is reducible if and only if the integers m1, m2, . . . have a common factor larger
than 1.

Proof. See [Walk50].

Definition. A place of a plane curve is an equivalence class of irreducible parame-
terizations of the curve with respect to being equivalent. The point on the curve deter-
mined by the center of any one the representatives of a place is called the center of
the place.

A place is the algebraic version of what is called a branch of a function in complex
analysis and for that reason is sometimes also called a branch. Proposition 10.12.3
shows that the center of a place is well defined. One can talk about a place of a pro-
jective curve or any of its associated affine curves. One always talks about them in the
context of a particular representative for its equivalence class.

Proposition 10.12.1 proved that the center of a place is a point on the curve. At
this point, however, we do not know if any places or parameterizations even exist. To
put it another way, can curves be represented locally by power series? Therefore, the
next theorem is fundamental to the subject.

10.12.6. Theorem. Every point of a plane curve in C2 is the center of at least one
but no more than a finite number of places.

Theorem 10.12.6 can be proved in different ways. We follow [Seid68] because this
approach will introduce certain local quadratic transformations which are useful for
computations. We start with a sequence of lemmas. Also, it will be convenient to work
with an affine representation of a curve in the rest of this section.

X t t

Y t a t a t

m

m m

( ) =
( ) = + +1 2

1 2 . . . ,
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10.12.7. Lemma. If the origin is a simple point of a plane curve f(X,Y) = 0 and if
the tangent is not vertical there, then there exists a unique power series

so that

Proof. To prove the existence of h(X) we shall inductively construct polynomials

so that ord(f(X,hi(X))) > i. Now, since the origin lies on the curve and there is no ver-
tical tangent there, we may assume that

for some constant a. Let c1 = -a and h1(X) = - aX. Assume that hi-1 has been defined
for i > 1. Using the Taylor series expansion for f about the “point” (X,c1X + . . . +
ci-1Xi-1) (see Equation (10.39)) and the fact that

we see that

for some d. Therefore, let ci = -d. This sequence of ci clearly guarantees that

which implies that

and so f(X,c1X + c2X2 + . . .) must be identically zero. This proves the existence of the
desired power series. To prove uniqueness one assumes that there are two power series
satisfying the hypothesis of the lemma and then inductively shows that their ith coef-
ficients must be equal. See [Seid68].

10.12.8. Theorem. Every simple point of a plane curve in C2 is the center of a
unique place.

ord f X c X c X i for all i, . . . , ,1 2
2+ +( ) ≥

f X c X c X f X c X c X Xi
i i, . . . , . . . . . . ,1 2

2
1 1

1+ +( ) = + +( ) + ( )-
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f X c X c X c X f X c X c X

g X c X c X c X

dX c X
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i
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i
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i
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i
i

i
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i
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∂
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2 . . .
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Proof. By translating and rotating the curve if necessary, we may assume that the
simple point is the origin and that it has a nonvertical tangent. Let h(X) be the power
series guaranteed by Lemma 10.12.7 and set

using the notation of that Lemma. It follows that (u0(t),v0(t)) determines a place of
the curve with center the origin. On the other hand, let (u(t),v(t)) be an arbitrary irre-
ducible parameterization of the curve with center the origin. By Theorem 10.12.4 we
may assume that ord(u), ord(v) > 0. Now

implies that

for some polynomial g(X,Y) in k[[X]][Y]. The polynomial g(X,Y) has a nonzero con-
stant term since f has linear terms. Therefore,

in k[[t]]. Because g(X,Y) has a nonzero constant term it is a unit in k[[t]]. Therefore
we must have

which implies that ord v = 1, since the parameterization is irreducible. It follows that
(u(t),v(t)) and (u0(t),v0(t)) are equivalent parameterizations and hence determine the
same place. This proves the theorem.

Next, we handle singular points p of a plane curve. The idea will be to transform
the curve to a new curve so that if q is a point on the new curve corresponding to the
point p on the original curve, then q is no longer singular. By Theorem 10.12.8 the
new curve will have a place with center q and this place can be transformed back to
a place with center p on the original curve. As an example of the kind of transfor-
mation we have in mind, consider

(10.79)

Definition. The transformation defined by equations (10.79) is called a (local) quad-
ratic transformation with center (0,0).

First of all, here are some simple observations about the map in (10.79). As a
mapping from the plane to the plane, it is of course not defined for points on the y-
axis; however, consider a line Y = mX. The transformation (10.79) will send the points
of that line other than 0 to the line V = m. See Figure 10.16. What this means is that
if the origin is a singular point for a plane curve C and if the tangent lines to the curve
at the origin have slopes m1, m2, . . . , mr, then (0,mi) will be the points on the trans-
formed curve C¢ corresponding to the origin on C and C¢ will have tangent lines V =

U X V
Y
X

= =, .

v c u c u= + +1 2
2 . . . ,

f u v v c u c u g u v, . . . ,( ) = - - -( ) ( ) =1 2
2 0

f X Y Y c X c X g X Y, . . . ,( ) = - - -( ) ( )1 2
2

f X c X c X, . . .1 2
2 0+ +( ) =

u t t and v t c t c t0 0 1 2
2( ) = ( ) = + + . . .
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mi at those points. If the mi are distinct, then in effect we have separated the singu-
larity into distinct points that are now simple points (at least if the original tangent
lines had multiplicity 1). This process is referred to as blowing up or resolving the
singularity.

10.12.9. Example. X3 - X2 + Y2 = 0

Result. Equations (10.79) transform this into U - 1 + V2 = 0. See Figure 10.17(a).

10.12.10. Example. X3 - Y2 = 0

Result. Equations (10.79) transform this into U - V2 = 0. See Figure 10.17(b).

10.12.11. Example. (Y - X2) (Y - 3X) = 0

Y
slopes
m3 m3

m2
m2

m1 m1

X

V

U

Figure 10.16. An example of the
transformation defined by (10.79).

Y V Y

X U X

V

U

(a) (b)

(c)

Y

X

V

U

Figure 10.17. Quadratic Transformations of Curves. 
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Result. Equations (10.79) transform this into (V - U) (V - 3) = 0. See Figure 10.17(c).

Let C be an affine plane curve with equation

and let (X(t),Y(t)) be a parameterization of C with center 0.

Definition. The parameterization (X(t),Y(t)/X(t)) will be called the transformed para-
meterization of C with respect to the quadratic transformation (10.79).

Write

where the fi(X,Y) are homogeneous polynomials of degree i and fr(X,Y) π 0. Then

which shows that f(X,XY) is divisible by Xr and no higher power of X. Let Cn be the
affine curve defined by

Definition. The plane curve Cn is called the transformed curve with respect to the
quadratic transformation (10.79).

10.12.12. Lemma. If C is irreducible and not the line X = 0, then Cn is irreducible.

Proof. We need to show that fn(X,Y) is irreducible.

Claim. fn(X,Y) is not divisible by a nonconstant polynomial g(X).

If fn(X,Y) = g(X)h(X,Y), then replacing Y by Y/X and multiplying through by Xr

would mean that f(X,Y) = Xr g(X)h(X,Y/X) and the irreducibility of f would imply that
g(X) = cXd for some constant c. But fn(X,Y) is not divisible by X and so d = 0 and the
claim is proved.

Now assume that fn(X,Y) is a product of two polynomials. By the claim, these 
polynomials would contain terms with Y to a positive power. Again replacing Y by
Y/X and multiplying through by an appropriate power of X would show that Xdf (X,Y)
is a product of two polynomials, which is impossible. The lemma is proved.

10.12.13. Lemma. If C is a plane curve that does not have a vertical tangent at 0,
then there is a one-to-one correspondence between the parameterizations of C cen-
tered at 0 and the parameterizations of Cn centered on the finite y-axis.

f X Y
f X XY

Xrn ,
,
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( )
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Proof. See [Seid68]. The transformation (10.79) sets up the desired correspondence
between parameterizations.

The next lemma is another special case of Theorem 10.12.6.

10.12.14. Lemma. An ordinary r-fold point p of C has exactly r parameterizations
centered at p that are linear and that have the same tangents as those of C.

Proof. We may assume that the r-fold point, r > 0, is the origin and, since our base
field is the complex numbers,

The transformed curve Cn will be defined by

It follows that X = 0 intersects Cn precisely in the points (0,mi). Furthermore, the 
multiplicity of the intersection points is 1 because all the mi are distinct. This 
means that the points (0,mi) are simple points for Cn and that Cn has r parameteriza-
tions centered on X = 0. We conclude that C has r branches centered at the origin. From
Lemma 10.12.7 and Theorem 10.12.8, the parameterization of Cn at (0,mi) is given by

and its tangent line is Y = miX. The lemma is proved.

10.12.15. Lemma. Any irreducible curve can be transformed into a curve with only
ordinary singularities with a finite sequence of quadratic transformations.

Proof. See [Walk50].

After these preliminaries, we are ready to prove Theorem 10.12.6.

Sketch of proof for Theorem 10.12.6. Lemma 10.12.7 and Lemma 10.12.14
already proved two special cases. Let p be an arbitrary r-fold point of C. We may
assume that C is irreducible, p = 0, and X = 0 is not a tangent of C at 0. Since our
base field is the complex numbers,

where the mi are not necessarily distinct. It follows that

f X Y Y m Xi
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which shows that the sum of the intersection multiplicities of the line X = 0 with the
curve Cn is r.

Now if two of the mi are distinct, then, since the intersection multiplicities at those
points would be each less that r, we could prove this case of Theorem 10.12.6 using
induction on r. But what if all the mi are equal? We would have

We can now translate Cn so as to move the point (0,m1) to the origin. The new curve
does not have a vertical tangent at the origin, so that we can apply a quadratic trans-
formation to it. Unfortunately, the new curve could also have an r-fold singularity with
multiplicity r. The question arises, if we keep repeating this process of translating to
the origin and applying a quadratic transformation, will we continue to get r-fold sin-
gularities at the origin with multiplicity r? The answer is no. See [Seid68] for the
details. Therefore, after a finite number of steps our procedure will lead us to a situ-
ation where we have a simple point. Induction works.

Places provide an alternate way to prove various theorems of algebraic geometry
such as Bèzout’s theorem. See [Walk50]. Some definitions can also be phrased in terms
of places. For example,

10.12.16. Theorem. A point of a plane curve is nonsingular if it is the center of just
one linear place.

Proof. See [Walk50]. The only if part of this theorem is Theorem 10.12.8.

The definition of a place given in this section was chosen because it is less abstract
than other definitions. However, it is worth being aware of another common defini-
tion that is used in “valuation theory.” Let Then c defines a
homomorphism

The element f(c) is called a value of f. Now k[X1,X2, . . . ,Xn] is a subring of the quo-
tient field K = k(X1,X2, . . . ,Xn) and v extends to a homomorphism on K except at those
elements whose denominators vanish on c. This motivates the following:

Let K be a field. A subring R of K is called a valuation ring if for all x Œ K, either
x or 1/x belongs to R. A place for K is a nonzero homomorphism p from a valua-
tion ring Kp in K to a field F, so that if x Œ K and x œ Kp, then p(1/x) = 0.
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The new definition of a place leads to a development of results in algebraic geometry
that parallels what we can do with our definition. For more on this approach see
Volume II of [ZarS60]. Valuation rings are also discussed in [Kend77].

10.13 Rational and Birational Maps

The material in this section is necessary background material for what we have to say
about when an implicitly defined plane curve can be parameterized in the next section.
We start with an example.

10.13.1. Example. Consider the affine conic C defined by

(10.80)

See Figure 10.18. The point p0 = (x0,y0) = (4,2) lies on C. The line L through p0 with
slope t has equation

(10.81)

To find the intersections of L with C, we simply need to substitute the right hand 
side of equation (10.81) into (10.80) and solve for X. We already have one 
intersection of L with C and it is easy to check that the second intersection (x1,y1) is
given by

The approach used in Example 10.13.1 works to parameterize any nondegenerate
affine conic curve C defined by

x
t t

t t

y
t t

t t

1

2

2

1

2

2

1 4 4

1

2 5 2

1

=
- +
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=
- +
- +

,

.

Y t X= + -( )2 4 .

f X Y X XY Y X, .( ) = - + - =2 2 3 0

(1,2)

(1,–1)

L

C

(x1,y1)

(x0,y0) = (4,2)

Figure 10.18. The conic defined by
equation (10.80).
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Assume that p0 = (x0,y0) lies on C. The line L through p0 with slope t has equation

(10.82)

We need to solve

(10.83)

for X. Rather than using the standard quadratic formula which would seem to involve
square roots, note that we already have one solution x0. It follows that the second root
x1 satisfies

where B is the coefficient of X in equation (10.83) after one has divided the equation
by the coefficient of the X2 term. Therefore, the second intersection (x1,y1) of L with
C is determined by rational functions in t since one can use equation (10.82) to solve
for y1.

Because conics can be described by rational functions, they are called “rational”
curves. Before we introduce the terminology required to study rational functions, let
us look at the simpler case of polynomial functions.

Definition. Let V Õ kn and W Õ km. A function

is called a polynomial function from V to W if there exist polynomials p1, p2, . . . , pm
Œ k[X1,X2, . . . ,Xn] such that

The polynomials pi are called representatives for the function u. If m = 1 and W = k,
then u will be called simply a polynomial or regular function on V. The set of polyno-
mial functions

on V will be denoted by k[V].

The representatives pi of a polynomial function are typically not unique. For
example, if V is a hypersurface V(f), then pi and pi + f define the same function on V
because f vanishes on V. Note that pointwise addition and multiplication makes k[V]
into a ring.

10.13.2. Theorem. Let V Õ kn.

(1) k[V] is isomorphic to 
k X X X

I
n1 2, , . . . ,

.
[ ]

( )V

u k: V Æ

u p p p for all km
na a a a a( ) = ( ) ( ) ( )( ) Œ1 2, , . . . , , .

u : V WÆ

x x B1 0+ = - ,

f X y t X x, 0 0 0+ -( )( ) =

Y y t X x= + -( )0 0 .

f X Y, .( ) = 0



766 10 Algebraic Geometry

(2) V is irreducible if and only if k[V] is an integral domain.
(3) Assume that k is algebraically closed. If V is a hypersurface V(f), then the ring 

k[V] is isomorphic to the ring If f is irreducible, then k[V]

is an integral domain.

Proof. Consider the map

which sends a polynomial to the function it induces. It is an easy exercise to show
that j is a ring homomorphism with kernel I(V), which proves (1). The proof of (2)
is Exercise 10.13.2 (see [Shaf94]). The first part of (3) follows from the fact that

and the second part follows from (2).

Definition. If V is an affine variety, then k[V] is called the coordinate ring or ring of
polynomial functions of V.

Because of Theorem 10.13.2(1) we shall feel free to identify k[V] with

In fact, we will think of it as a vector space over k by identifying the constant func-
tions with k.

To every affine variety V we have now associated a ring k[V], the coordinate ring.
How does this ring behave with respect to maps?

Definition. Let u:V Æ W be a polynomial function between affine varieties V and
W. Define

by

The map u* is sometimes called the pullback map defined by u.

10.13.3. Theorem. u* is a well-defined ring homomorphism that is the identity on
the constant functions. Conversely, if h :k[W] Æ k[V] is any ring homomorphism that
is the identity on the constant functions, then there exists a unique polynomial map
u:V Æ W, such that h = u*.

Proof. The first part of the theorem is easy. It is the proof of the converse part that
is interesting. Assume that V Õ kn and W Õ km. The coordinates of km induce m coor-
dinate functions

u f f u* .( ) = o

u k k* : W V[ ] Æ [ ]

k X X X
I

n1 2, , . . . ,
.

[ ]
( )V

I fV( ) = < >

j : , , . . . , ,k X X X kn1 2[ ] Æ [ ]V

k X X X

f
n1 2, , . . . ,

.
[ ]

< >
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It follows that h(yi) will be represented by some polynomial ai(X1,X2, . . . ,Xn) Œ k[X1,
X2, . . . , Xn]. One needs to show that the map

defined by

is the unique map that does the job. For more details see [CoLO97].

A fact that will be useful later is

10.13.4. Proposition. Let f :V Æ W be a polynomial function between affine vari-
eties. Then f(V) is dense in W with respect to the Zariski topology if and only if 
f* :k[W] Æ k[V] is one-to-one.

Proof. See [CoLO97]. The “only if” part is easy.

Definition. Let V Õ kn and W Õ km be affine varieties. A polynomial function

is called an isomorphism if u has an inverse that is also a polynomial function. In that
case the two varieties are said to be isomorphic.

10.13.5. Theorem. Two affine varieties V Õ kn and W Õ km are isomorphic if and
only their coordinate rings k[V] and k[W] are isomorphic over k.

Proof. Only the “if” part is nontrivial. Given an isomorphism of coordinate rings we
must produce a polynomial function from V to W which is an isomorphism. Theorem
10.13.3 does that.

10.13.6. Example. To show that the graph of a polynomial function f(X,Y), namely
V(Z - f(X,Y)) Ã k3, is isomorphic to k2.

Solution. Consider the bijections

where

p
s

x y z x y

x y x y f x y
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It is easy to check that their pullback maps

are inverses of each other. The map s* basically sends every polynomial F(X,Y,Z) on
V into the polynomial where Z has been replaced by f(X,Y).

10.13.7. Example. The variety V(Y5 - X2) » R2 is homeomorphic but not isomor-
phic to R. See Figure 10.19. The projection to the x-axis clearly defines a homeo-
morphism between it and R. The proof that it is not isomorphic to R is somewhat
involved. See [CoLO97].

Example 10.13.7 shows that the algebraic concept of isomorphism is stronger than
the topological concept of homeomorphism.

After this overview of polynomial functions we are ready to tackle rational func-
tions. Intuitively, the reader should think of a rational function on a variety as a func-
tion which can be expressed as a quotient p/q of polynomials p and q. Unfortunately,
this intuitive definition runs into lots of technical problems which would require a
lengthy discussion to overcome. For example, such a “function” is not defined at points
where the denominator q vanishes. This in turn would make it tricky to define the com-
position of such functions. There are alternate, more abstract ways to define rational
functions that avoid these difficulties and lead to the basic theorems more quickly. In
the interest of saving time, we shall take one of these approaches so that we can give rig-
orous statements of theorems, even though the author normally prefers to go from the
concrete to the abstract rather than vice versa. We shall sketch how the abstract con-
cepts relate to the intuitive ones as we go along. Our approach follows that of [Shaf94].

Definition. Let V be an irreducible affine variety. The function field or field of rational
functions of V, denoted by k(V) is defined to be the quotient field of the coordinate
ring k[V] and its elements are called rational functions on V.

The next proposition shows among other things that our abstract definition of
rational function really is simply another way of expressing the intuitive idea of a quo-
tient of polynomials.

10.13.8. Proposition. If V is an irreducible affine variety, then k(V) is a well-defined
field. Furthermore,

p s*: * :k k and k kW V V W[ ] Æ [ ] [ ] Æ [ ]

V(y5 – x2)

y

x

Figure 10.19. A curve homeomorphic but not iso-
morphic to R.
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(1) Every rational function on V can be represented by a quotient p(X)/q(X),
where p(X), q(X) Œ k[X] and q(X) œ I(V).

(2) Two such quotients p1(X)/q1(X) and p2(X)/q2(X) represent the same rational
function on V if p1(X)q2(X) - p2(X)q1(X) Œ I(V).

Proof. The fact that k(V) is well defined follows from the fact that k[V] is an inte-
gral domain by Theorem 10.13.2. The rest is an easy exercise.

Definition. A rational function u on V is said to regular at a point a in V and a is
called a regular point of u if it can be represented as a quotient of polynomial func-
tions p(X)/q(X), where q(a) π 0. In that case we call p(a)/q(a) the value of u at a and
denote it by u(a).

It follows from Proposition 10.13.8(2) that the value of a rational function at a
regular point is well defined.

10.13.9. Theorem. Let k be an algebraically closed field. A rational function on an
irreducible affine variety V in kn that is regular at every point of V is a polynomial (or
regular) function.

Proof. See [Shaf94].

Definition. The set of regular points of a rational function is called its domain of
definition.

10.13.10. Proposition. Let V be an irreducible affine variety.

(1) The domain of definition of a rational function on V is a nonempty open
subset.

(2) A rational function on V is completely specified by its values on any nonempty
open subset of its domain of definition.

(3) The intersection of the domain of definitions of a finite number of rational
functions on V is again a nonempty open subset of V.

Proof. See [Shaf94].

Definition. Let V Õ kn and W Õ km be affine varieties with V irreducible. A rational
function from V to W,

consists of an m-tuple u = (u1,u2, . . . ,um) of rational functions ui Œ k(V) with the prop-
erty that if a is a regular point for all the ui, then

We call such a point a a regular point of u and u(a) is called the image of a. The set
of regular points of u is called the domain of definition of u and the set

u u u uma a a a W( ) = ( ) ( ) ( )( ) Œ1 2, , . . . , .

u : ,V WÆ
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is called the image of V under u. The rational function u is said to be dominant if u(V)
is dense in W with respect to the Zariski topology.

It is easy to see that a rational function u:V Æ W is dominant if and only if W is
the smallest variety in W containing u(V) (Exercise 10.13.6). The next proposition is
an immediate corollary of Proposition 10.13.10.

10.13.11. Proposition. The domain of definition of a rational function u:V Æ W
between affine varieties with V irreducible is an open set and the rational function
itself can be represented by an m-tuple

(10.84)

of functions, where pi, qi Œ k[X] and the qi do not vanish on V.

Clearly a rational function on an irreducible variety is the special case of 
where m is 1 and W = k above. This shows that it is natural to think of rational func-
tions on a variety as functions defined by quotients of polynomials. It follows 
that polynomial functions are a special case of rational functions. They are of 
course defined on all of V, but rational functions are strictly speaking not functions
in general because they may not be defined everywhere. However, Theorem 
10.5.6 implies that in the case of an irreducible hypersurface they are defined every-
where except on possibly a finite set of points. Finally, in analogy with Proposition
10.13.8(2), it is easy to see that representatives for rational functions are not unique
in general.

It is worthwhile to see what all this means in the special case of hypersurfaces.
Let V be a hypersurface defined by an irreducible polynomial f. The denominators qj
in the representation (10.84) for the rational function u will then be polynomials
which are not divisible by f. Furthermore, if p/q and r/s are representatives for rational
functions u and v, respectively, which agree on V wherever they are both defined, then
ps - rq is divisible by f. The reason for this is that ps - rq vanishes on all but a finite
number of points of V and the result follows from Theorem 10.5.6.

Just as in the case of coordinate rings, let us see how function fields behave with
respect to maps. Unfortunately, rational functions are not necessarily defined every-
where and so, although the idea is the same as in the case of coordinate rings and
simple, the trick now is showing that everything is still well defined.

Let u:V Æ W be a rational function between irreducible affine varieties V and W.
Assume that u is represented by

where pi, qi Œ k[X] and the qi do not vanish on V. If f Œ k[W], then let f°u denote the
rational function in k(V) represented by

p
q

p
q

m

m
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1
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¯
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The map

is a ring homomorphism over k that extends to a unique homomorphism

Definition. The map u* is called the pullback map defined by u.

10.13.12. Proposition. The pullback map u* is a well-defined homomorphism 
over k.

Proof. See [Shaf94].

10.13.13. Proposition. Let u:V Æ W and v :W Æ U be rational functions between
irreducible affine varieties V, W, and U.

(1) If u is dominant, then u* is one-to-one.
(2) If both u and v are dominant, then

is a dominant rational function and

Proof. See [Shaf94].

Definition. A dominant rational map j :V Æ W between irreducible affine varieties
V and W is said to be birational if j has a dominant rational inverse, that is, there is
a dominant rational map y :W Æ V, so that j°y and y°j are the identity maps wher-
ever they are defined. We call V and W birationally equivalent if there is a birational
map j :V Æ W. An affine variety is called rational if it is birationally equivalent to kn

for some n.

10.13.14. Theorem. Two irreducible affine varieties are birationally equivalent if
and only if they have isomorphic rational function fields.

Proof. See [Shaf94] or [CoLO97].

10.13.15. Theorem. Every irreducible affine variety is birationally equivalent to a
hypersurface in some kn.

v u u vo o( ) =* * *.

v uo : V UÆ

u k k* : .W V( ) Æ ( )

k k

u f u

W V[ ] Æ ( )
Æ o
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Proof. See [Shaf94].

Note that Theorem 10.13.15 can be rephrased as saying that every irreducible
variety “projects” to a hyperplane.

Let us again look at the special case of plane curves more closely.

10.13.16. Example. The variety V(y5 - x2) described in Example 10.13.7 is bira-
tionally equivalent to R. See [CoLO97].

Example 10.13.16 shows that isomorphism is stronger than birational equiva-
lence.

10.13.17. Theorem. Every rational transform of an affine rational curve is rational.

Proof. The theorem follows easily from Theorem B.11.16.

10.13.18. Theorem. Let C be an irreducible plane curve defined by an equation
f(X,Y) = 0. The following two conditions are equivalent:

(1) There exist two rational functions p(t), q(t) Œ k(t) so that

(a) f(p(t),q(t)) = 0 for all but a finite number of t, and
(b) for all but a finite number of points (x,y) on C there is a unique t Œ k sat-

isfying x = p(t) and y = q(t).

(2) The curve C is rational.

Proof. Because of Theorem 10.13.14, condition (2) is equivalent to

(3) The function field k(C) is isomorphic to the field of rational functions k(t) for
a transcendental variable t.

We follow the proof in [Walk50] and show that (1) and (3) are equivalent.

(1) fi (3): Condition (1b) implies that the functions p and q are not both con-
stants. Assume that p is not constant. It will then be transcendental over k. Since
k(p,q) Õ k(t), Theorem B.11.5 implies that k(p,q) = k(l) for some l Œ k(t). But k(C) ª
k(p,q), and so we have proved (3).

(3) fi (1): If the function field of C is isomorphic to k(l), where l is transcendental
over k, then C is birationally equivalent to the line s = 0 in (s,t)-space, that is,

for rational functions p and q. These functions satisfy (1a) and (1b) because, except
for a finite number of points on C and s = 0, the birational equivalence is a bijection
between the points of these two curves.

Theorem 10.13.18 is proved.

x p t and y q t= ( ) = ( )
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10.13.19. Theorem. If a plane curve f(X,Y) = 0 has the property that there exist non-
constant rational functions p(t), q(t) Œ k(t) so that f(p(t),q(t)) = 0 for all but a finite
number of t, then the curve is rational.

Proof. This theorem was really already proved in the process of proving Theorem
10.13.18 since condition (1b) was only used to show that the p(t) and q(t) were not
both constant.

Theorems B.11.5, 10.13.17, and 10.13.19 are all equivalent and often referred to
as Lüroth’s Theorem. More generally, stated in field theory terms we have:

The general Lüroth problem: If K is a subfield of k(X1,X2, . . . , Xn) such that k(X1,X2,
. . . , Xn) is a finite separable extension of K, is K isomorphic to a rational function field?

The answer is “yes” when n = 1, even without the separability condition. If n = 2, the
answer is “yes” if k is algebraically closed. The answer is “no” if n ≥ 3, even if k = C.
See [Shaf94].

Sometimes condition (1) in Theorem 10.13.18 is what is used for a definition of
a rational plane curve. The theorem shows that this alternate definition and ours above
are equivalent. In other words, to show that a curve is rational it suffices to parame-
terize a curve with rational functions in a one-to-one fashion and one does not have
to check anything about its inverse (whether it is rational). The finite number of excep-
tions in (1a) arise from denominators of rational functions vanishing and from sin-
gularities of the curve.

Let us take a closer look at what all this means in the special case of affine curves.
Assume that C is an affine plane curve defined by an equation

The rational functions on C are function of X and Y. Furthermore, X and Y are alge-
braically dependent since they satisfy an algebraic equation. We can strengthen that.

10.13.20. Lemma. Any two elements of k(C) are algebraically dependent over k.

Proof. See [Walk50].

10.13.21. Lemma. k(C) has transcendence degree 1 over k.

Proof. First of all, k(C) has transcendence degree at least 1 since the “functions” X
or Y are not algebraic over k. Lemma 10.13.20 finishes the proof.

Looking ahead to Section 10.16 where we define the dimension of a variety, we shall
see that it is Lemma 10.13.21 that establishes the fact that curves have the dimension
we expect them to have, namely, they are one-dimensional spaces (Theorem 10.16.9).

10.13.22. Theorem. A field K over an algebraically closed field of characteristic 0
is the function field of an irreducible plane curve if and only if

(1) trk (K) = 1.
(2) K has a finite basis over k.

f X Y, .( ) = 0
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Proof. See [Walk50].

Next, we describe another way of looking at rational functions.

Definition. Let K be an extension field of the complex numbers. Let f Œ C[X,Y] and
assume that f(X,Y) = 0 is the minimal equation for a curve C Õ K2. A point (a,b) Œ K2

is called a generic point for C if g Œ C[X,Y] and g(a,b) = 0 implies that g(x,y) = 0 for
all points (x,y) Œ K2 on the curve C.

The parameterizations discussed in the last section provide the context we have
in mind for generic points. It follows that if (a,b) is a generic point for the curve C,
then g(a,b) = 0 implies that f divides g. Also, the next theorem shows that generic
points are only meaningful in the case of irreducible curves.

10.13.23. Theorem. Let C be a curve as in the definition of a generic point.

(1) If C is reducible, then it does not have any generic points.
(2) If C is irreducible, then every point (a,b) Œ C with not both a and b complex

numbers is a generic point. In particular, C has an infinite number of generic
points.

Proof. See [Seid68].

Definition. Let K be an extension field of k. Two points (x1,y1) and (x2,y2) in K2 are
said to be isomorphic is there is an isomorphism s :k[x1,y1] Æ k[x2,y2] over k that sends
x1 to x2 and y1 to y2.

10.13.24. Theorem. Any two generic points (x1,y1) and (x2,y2) for a curve C as above
are isomorphic.

Proof. See [Seid68].

One can now show ([Seid68]) that if (x,y) is a generic point for an irreducible
curve, then an alternate definition for the field of rational functions on the curve 
is to say that it is the field C(x,y). That field is well defined, up to isomorphism 
over the complex numbers C, by Theorem 10.13.24. The field C(x,y) will be a 
finite extension of C with transcendency degree 1. This fits in with Theorem 
10.13.22.

Here are some more useful observations about birational maps on affine varieties.

10.13.25. Proposition. If j :C Æ D is a birational map between irreducible affine
plane curves C and D, then j-1(q) is finite for every q Œ D.

Proof. This is an easy consequence of Theorem 10.5.6. Let y :D Æ C be the inverse
of j. Let U Ã C be the set of points at which j is defined. Let V Ã D be the set of
points at which y is defined. Both C – U and D – V are finite sets. It follows that the
complement of j-1(V) « U in C and the complement of y-1(U) « V in D is finite and
j is a bijection between j-1(V) « U and y-1(U) « V.
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Another interesting fact about birational equivalences is that they define a bijec-
tion between places and generic points. See [Seid68].

10.13.26. Theorem. Any irreducible affine plane curve in C2 is birationally equiva-
lent to a plane curve with only ordinary singularities.

Proof. This is only a restatement of Lemma 10.12.15 since the quadratic transfor-
mations used there are birational equivalences. See [Walk50].

If we want to end up with a plane curve, then Theorem 10.13.26 cannot be
improved. We cannot prevent ordinary singularities, that is, points where the curve
crosses itself transversally. On the other hand, if we allow ourselves to move to curves
in higher dimensions, then one can show the following:

10.13.27. Theorem. Any affine variety in C2 is birationally equivalent to a variety
with no singularities.

Proof. See [Harr92] or [Shaf94].

Theorem 10.13.27 does not say anything about the dimension of the space that
contains the variety with no singularities. One can show that any plane curve in P2(C)
is birationally equivalent to a curve in P3(C) that has no singularities ([BriK81]). See
also Theorem 10.14.7 in the next section.

Next, we discuss a class of functions defined on varieties that are especially inter-
esting, namely, the “finite” functions. They give an algebraic characterization of cov-
ering spaces. First, we need a definition.

Definition. Let S be a subring of a commutative ring R with identity and assume
that S contains that identity. An element r Œ R is said to be integral over S if

We say that R is integral over S if every element of R is integral over S.

Let f :V Æ W be a dominant regular function between affine varieties. We know
from Proposition 10.13.4 that f*: k[W] Æ k[V] is one-to-one and so we may consider
k[W] as a subring of k[V].

Definition. We say that f is a finite map if k[V] is integral over k[W].

10.13.28. Theorem.

(1) The inverse image of every point for a finite map is a finite set.
(2) If k is algebraically closed, then a finite map is onto and takes closed sets to

closed sets.

Proof. See [Shaf94].

To be a finite map is a local property.

r s r s r s for some s Sm
m

m
i+ + + = Œ-

-
1

1
1 0 0. . . .
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10.13.29. Theorem. Let f :V Æ W be a regular map between affine varieties. If every
point of W has a neighborhood so that the inverse image under f of every point in
that neighborhood is a finite set, then f is finite.

Proof. See [Shaf94].

Up to now we have discussed functions defined on affine varieties. It is possible
to define regular and rational functions for projective varieties, but things get more
complicated. Recall how we restricted ourselves to homogeneous polynomials in order
to get a well-defined definition for a projective variety. We need to make similar restric-
tions here.

Definition. A rational homogeneous polynomial in n + 1 variables X1, X2, . . . , Xn+1
is a rational polynomial function of the form

where f and g are homogeneous polynomials of the same degree. Let V = V(g) be the
set of points where the denominator g vanishes. The function

is called a rational function on Pn(k) and will also be denoted by h or f/g.

It is easy to check that a rational homogeneous polynomial in n + 1 variables
defines a well-defined rational function on Pn(k).

Definition. Let h = f/g be a rational homogeneous polynomial in n + 1 variables. If
p Œ Pn(k) and g(p) π 0, then the rational function h on Pn(k) is said to be regular at
p. If h is regular at all points of a set X Õ Pn(k), then it is called a regular function on
X. The set of regular functions on X is denoted by k[X].

Clearly, the natural addition and multiplication make k[X] into a ring.

10.13.30. Proposition. .

Proof. See [Harr92].

It is also easy to show that if we restrict a regular function on a projective variety
to some affine part with respect to some parameterization, then the new notion of
regular agrees with the same notion for affine varieties. There is one big difference
however. The only regular functions on irreducible projective varieties are the con-
stants (Theorem 10.13.32). This does not happen in the affine case.

Definition. Let f :V Æ W be a map between projective varieties with W Õ Pn(k). Let
p Œ V. Assume that the following two properties hold:

k
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(1) One can choose homogeneous coordinates for Pn(k) so that for some neigh-
borhood U of p in V the image f(U) belongs to the affine part of Pn(k) with
respect to these coordinates. With this choice we can (and will) consider the
map g = f|U as a map from U to kn.

(2) If g(q) = (g1(q),g2(q), . . . , gn(q)), then the gi :U Æ k are rational functions that
are regular at p.

In this case, we say that the function f is regular at p. The function f is said to be
regular on V if f is regular at all points of V.

Again one can show that the notion of being regular, or regular at a point, does
not depend on n, U, or the homogeneous coordinates that are chosen. As we warned
earlier, defining regularity of maps between projective varieties is complicated. It
involves checking that for each point one can find a coordinate system with respect
to which the function is affine-valued and can be expressed in terms of regular rational
functions. One type of function that it is easily seen to be a regular map is one that
can be expressed globally as an (n + 1)-tuple of homogeneous polynomials of the same
degree that do not have any common zeros. It is unfortunate that, as the next example
shows, not all regular maps can be obtained in this way, because that would have
allowed for a much simpler definition.

10.13.31. Example. Consider the variety V in P2(C) defined by

and the “stereographic projection”

The polynomials X and Z - Y have a common zero at (0,1,1), so that f is not defined
at [0,1,1], but we define it there by setting f([0,1,1]) equal to [1,0]. We claim that f is
a regular map. Furthermore, it cannot be expressed as a pair of homogeneous poly-
nomials without common zeros.

Proof. Consider the open cover {O1,O2} of P1(C), where

Let

Then f is regular on U2, because f sends [X,Y,Z] to the point whose affine coordinate
is X/(Z - Y). On U1 the point [X,Y,Z] gets sent to the point whose affine coordinate is
(Z - Y)/X. It may seem as if there is a problem with regularity at [0,1,1], but for-
tunately we can rewrite the quotient as

U O P C U O P C1
1

1
2

2
1

2
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which is well defined at [0,1,1]. This shows that f is regular everywhere. The rest is
left as Exercise 10.13.8.

It is the fact that we were forced to figure out a way to rewrite the formula for the
function f in Example 10.13.31 over the open set U1 that shows that determining whether
or not a function is regular would not be any simpler if we were to define regular maps in
terms of tuples of homogeneous polynomials where common zeros are allowed.

Like in the affine case, a regular map

defines a homomorphism

Definition. A regular map f :V Æ W between two projective varieties is called an iso-
morphism if it has an inverse that is also a regular map.

Next, we define rational functions between projective varieties. We cannot simply
define a rational function on a projective variety to be a regular function, because of
the following result:

10.13.32. Theorem. A regular function defined on an irreducible projective variety
is constant.

Proof. See [Shaf94].

Definition. Let V be a projective variety in Pn(k). A rational function on V is a rational
homogeneous polynomial in k(X1,X2, . . . ,Xn+1). The set of rational functions on V is
called the function field of V and is denoted by k(V). A rational function h is regular at
a point p Œ V, if it can be written in the form h = f/g, where f and g are homogeneous
polynomials of the same degree and g(p) π 0. In that case, h(p) = f(p)/g(p) is called the
value of h at p. The set of regular points of h is called the domain of h.

The function field of a projective variety is clearly a field. In fact, it is easy to see
that

where Y1, Y2, . . . , Yn are indeterminates, because
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where Yi = Xi/Xn+1 are considered indeterminates.

Definition. Let V be a projective variety in Pn(k). A rational map f :V Æ Pm(k) is a
map of the form

where the fi are homogeneous polynomials in k[X1,X2, . . . ,Xn+1] of the same degree
and at least one of the fi must be nonzero at every point p Œ V. The map f will be
denoted by the tuple (f1,f2, . . . ,fm+1)

Clearly, two rational maps

are equal if and only if figj = gifj on V for all i and j. Since, given a rational map 
f = (f1,f2, . . . ,fm+1), we could divide through by one of the fi, we see that a rational 
map is defined by m + 1 rational functions on V. Projections, defined below, are good
examples of regular rational maps.

Definition. Assume that X is a d-dimensional linear subspace of Pn(k) defined the
(n - d) equations

where the Li are linear homogeneous polynomials. Define

by

If V Õ Pn(k), then pV = pX|V is called the projection of V with center X.

The map pX is clearly a regular map on Pn(k) - X. In fact, if V is any projective
variety that is disjoint from X, then pX|V is a regular rational map. To get a feel for
what the map pX does, let Y be any (n - d - 1)-dimensional linear subspace of Pn(k).
Then pX maps p Œ Pn(k) to the (unique) intersection of the linear subspace of Pn(k)
generated by p and X with Y. See Figure 10.20 for the case where d = 0.

Here is another example of a regular rational map.

Definition. Fix n and d and define

by the condition

where mI ranges over all monomials of degree d in x1, x2, . . . , xn+1, of which there are
N = (n + d

d ) - 1. The map nd is called the Veronese imbedding of Pn(k) in PN(k) and its
image nd(Pn(k)) is called the Veronese variety.

For example, if n = 2, then

v x x x md n I1 2 1, , . . . , . . . , , . . . ,+[ ] = [ ]
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is defined by

It is easy to see that the Veronese variety is in fact a projective variety in PN(k). Some-
times any variety isomorphic to it is also called a Veronese variety.

Definition. Let V and W be projective varieties and assume that W Õ Pm(k). A
rational map

is a rational map

with the property that f(V) Õ W. The map f is called birational and we say that 
V and W are birationally equivalent if f has an inverse g :W Æ V that is a rational 
map.

10.13.33. Theorem. The image of a projective variety under a rational map is a 
projective variety.

Proof. See [Shaf94].

10.13.34. Theorem. Any two nonsingular projective curves that are birationally
equivalent are isomorphic.

Proof. See [Shaf94].

10.13.35. Corollary. Any two nonsingular projective curves that are birationally
equivalent are homeomorphic.

We generalize the notion of a finite map to projective varieties by making it a local
property.
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Figure 10.20. The projection of Pn(k) with center X.
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Definition. A regular map f :V Æ W between projective varieties is called a finite
map if every point q in W has an affine neighborhood Bq in W, so that Aq = f-1(Bq) is
an affine set in V and

is a finite map between affine varieties.

Projections are important examples of finite maps.

10.13.36. Theorem. Let V be any projective variety in Pn(k) that is disjoint from a
d-dimensional linear subspace X in Pn(k). Then the projection of V

with center X defines a finite map

Proof. See [Shaf94].

A very useful application of Theorem 10.13.36 is the following generalization
needed later.

10.13.37. Theorem. Let p1, p2, . . . , ps+1 Œ k[X1,X2, . . . ,Xn+1] be homogeneous poly-
nomials of degree d. If the pi have no common zeros on a projective variety V Õ Pn(k),
then

defines a finite map f :V Æ f(V).

Proof. Consider the Veronese imbedding

Now, if

is a homogeneous polynomial of degreed, then let Lp be the hyperplane of PN(k)
defined by the linear equations

where Xi1i2 . . . in+1 is the indicated indexed variable in the collection, X1, X2, . . . , XN.
The property of the Veronese imbedding that we want to use here is that vd(V(p)) =
vd(Pn(k)) « Lp. To prove our theorem, let p be the projection of PN(k) defined by the
hyperplanes Lpi

. One can show that f = p°vd, so that our theorem now follows from
Theorem 10.13.36.
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10.13.38. Theorem. (The Noether Normalization Theorem)

(1) Any irreducible projective variety V in Pn(k) admits a finite map f :V Æ Pm(k)
for some m £ n.

(2) Any irreducible affine variety V in kn admits a finite map f:V Æ km for some m £ n.

Proof. See [Shaf94]. We sketch the proof of (1). Assume that V π Pn(k) and let 
p Œ Pn(k) - V. The projection j of V with center p will be regular. The image j(V) in
Pn-1(k) will be a projective variety and j :V Æ j(V) is a finite map by Theorem
10.13.36. If j(V) π Pn-1(k) then we can repeat this process. Since the composite 
of a finite number of finite maps is finite we will finally get our map f.

Our coordinate rings used functions (polynomials) that were defined on the whole
variety. However, one can also get useful information from local properties. Instead
of globally defined functions one can look at local rings. These are defined for every
point and are rings of functions that are only defined in a neighborhood of the point.
See [Shaf94]. They also show up in complex analysis.

Finally, we want to draw the reader’s attention to a property of the rational para-
meterization, call it j(t), of a conic that we described in the discussion after Example
10.13.1 and its bearing on the following type of problem: Given a subfield k of a field
K and a curve in K2 defined by f(X,Y) = 0, find all the points of the curve with coor-
dinates in k. For example, we might want the rational points of the curve in Example
10.13.1. In the case of a conic, if all the coefficients of f(X,Y) and the coordinates of
the given point p0 of the curve belonged to k, then our j(t) will generate the desired
points as t ranges over k. Other curves admit similar parameterizations.

10.14 Space Curves

In addition to plane curves, another class of spaces that have great practical interest
are space curves, specifically curves in R3. The simplest and intuitive definition is:

Definition. A curve or algebraic curve is an irreducible algebraic variety of dimension 1.

The only problem with this definition is that we have not yet defined what the
dimension of an algebraic variety is. We shall do so in Section 10.16, but the concept
of dimension and the associated topic of higher dimensional varieties, although very
important in algebraic geometry, is too advanced for us to do anything more than give
a brief overview. For that reason, to avoid a lengthy digression at this point, we shall
give an equivalent, but ad hoc, definition of a curve that does not use dimension and
yet will enable us to study some of their properties. Our approach, which follows that
given in [Walk50], will seem rather roundabout and a kind of “trick.” At the end of
this section we shall rephrase the definition in terms of ideals. There is one property
of dimension that the reader should be aware of right now though, otherwise it might
be puzzling why we continually restrict ourselves to transcendence degree one in the
discussion that follows. In the case of an irreducible variety, its dimension is the same
as the transcendence degree of its function field (see Theorem 10.16.9).

Note that the function field K of an affine curve in the “plane” k2 can be expressed
in the form K = k(x,y), where x is transcendental over k and y is algebraic over k(x).
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The definition of a space curve will be based on parameterizations and is gotten by
expressing K as an extension of k by n elements, n > 2 . The extra elements in the
basis will let us interpret the curve as a curve in kn. This new way of looking at the
plane curve will tell us what the definition of a curve in kn should be.

After these preliminary comments, assume that

is an arbitrary extension of k with transcendence degree 1. By Theorems B.11.4 
and B.11.8, K will have the form k(x,y) described in the previous paragraph and 
correspond to an affine plane curve Cf defined by an equation

Assume that f(X,Y) π aX + b , so that y π 0, which is the interesting case. Assume further
that the projective curve that it represents is irreducible. It follows that we can express
the xi in terms of x and y and conversely that we can express x and y in terms of the xi.
In other words, there exist g, h Œ k(X1,X2, . . . ,Xn) and zi Œ k(X,Y) so that

and

Any parameterization (x(t),y(t)) representing a place P of Cf induces a 
“parameterization”

Switching to projective coordinates we get a “parameterization”

Choose our representative for the projective point so that min(ord(zi(t))) = 0. Let

Let CP be the subset of Pn(k) consisting of all these points q as we let P range over
all places of Cf. Let C be the affine subset of kn associated to CP.

Definition. The subset CP in Pn(k) that is obtained in this way is called an irreducible
projective space curve. The subset C in kn is called an irreducible affine space curve.

Equivalence classes of parameterizations of CP or C are called places for the
curves. All the terminology that we developed for places for plane curves apply here.
One can also define birational correspondences

u K k K kn n: , , . . . , , , . . . , ,= ( ) Æ = ¢ ¢ ¢( )q q q q q q1 2 1 2

q = ( ) ( ) ( )( )+z z zn1 2 10 0 0, , . . . , .

z t z t z t where z zn i n1 2 1 1( ) ( ) ( )( ) =+ +, , . . . , , . xi

z x t y t z x t y t z x t y t x t x t x tn n1 2 1 2( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) = ( ) ( ) ( )( ), , , , . . . , , , , . . . , .

x g y hn n= ( ) = ( )x x x x x x1 2 1 2, , . . . , , , , . . . , .

xi iz x y= ( ),

f X Y, .( ) = 0

K k n= ( )x x x1 2, , . . . ,
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which have the form

in the affine case. We get a unique curve for each basis of K.
All of this may sound good, but we still need to show that CP and C are not simply

sets but varieties, specifically, curves. Various facts have to be established first before
one can prove the following:

10.14.1. Theorem. If C is a variety, then C is a space curve if and only if C is an
irreducible curve.

Proof. The theorem is a consequence of the next two theorems.

We relate the space curve C in kn to an ideal. Define

10.14.2. Theorem. The ideal I in k[X1,X2, . . . ,Xn] is a prime ideal and K is 
isomorphic to the quotient field of k[X1,X2, . . . ,Xn]/I.

Proof. It is trivial to check that I is an ideal. The rest follows easily by analyzing the
map

This map is onto and has kernel I.

Theorem 10.14.2 shows that I determines the curve C completely. One also has

10.14.3. Theorem.

(1) f Œ I if and only if f(p) = 0 for all p Œ C.
(2) Let p Œ kn . If f(p) = 0 for all f Œ I, then p Œ C.

Proof. See [Walk50].

In the above we started with a curve and got an ideal that defined it. We can go
the other way and get a curve starting with an ideal.

10.14.4. Theorem. Let k be an algebraically closed field of characteristic 0. An ideal
I in k[X1,X2, . . . ,Xn] is the ideal associated to an irreducible space curve if and only
if I is prime and its transcendence degree over k, that is, trk(k(I)), is equal to 1.

Proof. See [Walk50].

It follows from Theorem 10.14.3 that C = V(I(C)). This fact and Theorem 10.14.4
show that we could have defined a space curve as being the set of zeros of certain
ideals. This algebraic approach to the definition of a space curve would certainly be
much cleaner than our messy construction for the points of such a curve.

k X X X k

X
n n

i i

1 2 1 2, , . . . , , , . . . , .[ ] Æ [ ]
Æ

x x x
x

I f k X X X fn n= Œ [ ] ( ) ={ }1 2 1 2 0, , . . . , , , . . . , .x x x

¢ = ( )q q q qj j nY 1 2, , . . . ,
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10.14.5. Example. Consider the space curve called the twisted cubic

Here are some facts about it:

(1) It can be parameterized by the map t Æ (t,t2,t3), so that it is the same curve
as the one defined in Exercise 9.4.2

(2) I (V) = <y - x2,z - x3> (See [CoLO97])
(3) V is irreducible (Theorem 10.8.14).
(4) The curve is an example that shows that homogenizing its equation does not

lead to the smallest projective variety containing it. See Exercise 10.3.4. On
the other hand, a Gröbner basis for it is

and a homogenization of this basis does lead to a basis

for the projective ideal for that smallest projective variety. See [CoLO97].
(5) Property (3), Theorem 10.8.12, and Theorem 10.14.4 imply that the twisted

cubic is a space curve.

The argument that showed that the twisted cubic is irreducible can be extended
to prove the following:

10.14.6. Theorem. If k is an infinite field, then any affine variety V in kn that has a
rational parameterization is irreducible.

Proof. See [CoLO97]. Theorem 10.8.14 was a special case of this theorem.

Applying Theorem 10.14.6 in the special case of polynomial parameterizations
gives lots of examples of irreducible varieties, so that, using Theorem 10.8.12 and
Theorem 10.14.4, we get lots of examples of space curves.

10.14.7. Theorem. Every space curve is birationally equivalent to a plane curve that
is either nonsingular or has only ordinary singularities.

Proof. See [Walk50] or [Seid68].

The fact that every space curve is birationally equivalent to a plane curve was
already suggested from Theorems 10.13.14 and 10.13.15. The only problem is that
they applied to hypersurfaces, which (nonplane) curves are not. Now, Theorem
10.13.27 showed that every space curve is birationally equivalent to a nonsingular
curve; however, this curve may not be planar. There are nonsingular space curves 
that are not birationally equivalent to a nonsingular plane curve. We can reduce any
singularities to ordinary double points, however.

x wy xy wz xz y2 2- - -{ }, ,

G x y xy z xz y= - - -{ }2 2, , ,

V R= - -( ) ÃV y x z x2 3 3, .



786 10 Algebraic Geometry

Two more facts about space curves are:

10.14.8. Theorem. If k is an algebraically closed field, then any space curve in k3

is contained in an algebraic surface.

Proof. See [Abhy90].

On the other hand,

10.14.9. Example. A space curve is not necessarily the intersection of two surfaces.
Consider, for example, the twisted cubic. Since a plane in general position will inter-
sect this curve in three points, it has degree 3. But Bèzout’s theorem then implies that
the curve would have to be the intersection of a plane and a cubic surface. This is
impossible since it is not a plane curve.

10.15 Parameterizing Implicit Curves

Given a rational parametric representation for a space, it is always possible to repre-
sent the space in implicit form via equations. We can do this either using the result-
ant or Gröbner bases techniques. The converse problem is unfortunately not so
simple. In fact, there are implicitly defined plane curves that do not admit a repre-
sentation via rational polynomial functions. What can be said about this problem
tends to get quite complicated and so this section will restrict itself to only some of
the simpler results.

Theorems 10.13.5 and 10.13.14 are fundamental for this section. They answer the
question of when a curve can be parameterized. We must answer:

When is an extension field K over a field k which has transcendence degree 1 and is 
generated by two elements isomorphic to the field k(t) of rational functions in one 
variable?

Actually, the key condition is that the transcendence degree is 1. We could allow the
number of generators to be n; however, this would not gain us anything in generality.
Once the extension field satisfies the conditions we can get a parameterization. See
Theorem 10.13.18.

The basic approach to parameterize a set X is to do a central projection from a
point p not in the set onto a d-dimensional plane. This will give a parameterization
of X with d coordinates provided that the lines through p meet X in only one point.
Choosing the point p so that this will happen is the hard part. The case where the
lines meet X in a finite number of points is the next best case. It essentially gives us
local parameterizations.

Here is another approach to parameterizing plane curves. Consider a conic. If we
can, by a linear change in variables of the form

(10.85)¢ = + + ¢ = + +X X Y and Y X Ya b g a b g1 1 1 2 2 2,
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eliminate the quadratic term of one of the variables, say Y, then we could set X = t,
and solve the resulting linear equation in Y for Y giving us Y as a function of t also.
Specifically, after eliminating the Y2 term in the equation for the conic, we will have
an equation of the form

(10.86)

which has solutions

(10.87)

We can see from this that we always have one “point at infinity” (t = •), but we may have
a second one for t = -b/a if a π 0. In general, we will get a rational parameterization, but
if a = 0 in equation (10.86), then we actually get a polynomial parameterization.

To get a better picture of what is happening, consider a degree n curve for a
moment and write

where the fi are homogeneous of degree i. The Yn term that we want to eliminate is
part of fn. Note that over the complex numbers

(10.88)

by Proposition 10.5.3, so that fn = 0 corresponds to n lines through origin. The curve
will have no Yn term if and only if some ai is zero and one of the lines is X = 0, that
is, a line parallel to the y-axis meets the curve at infinity. We can see things even better
if we switch to homogeneous coordinates. Homogenizing f by replacing X by X/Z and
Y by Y/Z gives

(10.89)

Finding the intersection of the (projective) plane curve

with the line at infinity (Z = 0) means solving
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In other words, the [ai,bi,0] are the intersection points at infinity. The points may 
be complex (as in case of unit circle). Therefore, we need to look for real solutions. 
It is easy to check that the change of variables shown in (10.85) will eliminate the 
Yn term if and only if (b1,b2) is a multiple of one of the (ai,bi). Now, since we are 
in projective space we do not have to restrict ourselves to the affine linear transfor-
mations defined by equations (10.85). On the other hand, projective linear transfor-
mations correspond to fractional transformations in the affine world and so it is 
then even more likely that we may get rational parameterizations rather than 
polynomial ones.

We got a fairly nice answer for conics. In the case of cubic plane curves, if we can
find a double point, then lines through it will intersect curve in a single point and the
same approach will work.

10.15.1. Theorem. A cubic plane curve admits a rational parameterization if and
only if it has a double point (it is a singular curve).

Proof. See [Abhy90].

10.15.2. Theorem. If a plane curve has more than one point at infinity, then it
cannot be parameterized by polynomials.

Proof. Assume that

is a parameterization of the curve with polynomials p(t) and q(t). The affine part of
the associated projective curve has parameterization

Dividing through by td, where d = max(deg(p),deg(q)), and letting t approach ±• shows
that the curve has only one point at infinity.

The converse is not true if the degree of the curve is larger than two, but

10.15.3. Theorem. A plane curve can be parameterized by polynomials if and 
only if it can be parameterized by rational functions and has only one place at 
infinity.

Proof. See [Abhy90].

A criterion for when a plane curve has only one place at infinity can be found in
[Abhy90].

It is possible to relate the problem of rational parameterizations to its topology.
First, let C be an irreducible curve of order n and note that Theorem 10.7.8 can be
restated as saying that

(10.90)n n m mi i
i

-( ) -( ) ≥ -( )Â1 2 1 ,

C t p t q t( ) = ( ) ( )[ ], , .1

c t p t q t( ) = ( ) ( )( ),
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where mi is the multiplicity of the ith singularity and we sum over all singularities of
C. It turns out that the difference between the maximum number of double points of
a curve and actual number of double points defines an important invariant.

Definition. Let C be a plane curve in C2 of order n defined by f(X,Y) = 0 that has
only ordinary singularities. The genus g of C is defined by

where mi is the multiplicity of the ith singularity and we sum over all singularities.

For a general definition of the genus of a curve, even if it has nonregular singu-
larities, see, for example, [Walk50]. Note that inequality (10.90) implies that the genus
is a nonnegative integer.

10.15.4. Theorem. The genus of an irreducible curve is a birational invariant.

Proof. See [Walk50].

Theorem 10.15.4 has lots of consequences. For example, any nonsingular cubic
curve in P2 is not rational because it has genus 1 and the genus of P1 is 0. One can
also conclude the following (see [Walk50] for details):

(1) There are an infinite number of birationally nonequivalent curves. One way
to show this is to consider the curves Cm defined by

(10.91)

where F(X) is any polynomial of odd degree n = 2m + 1 with no multiple roots.
The curve Cm is nonsingular. The nonsingular projective version of Cm is called
a hyperelliptic curve. One can show that the hyperelliptic curve has genus m. See
[Shaf94].

(2) No nonsingular irreducible plane curves are equivalent if they have different
orders, the only exception being the case where one is a line and the other a conic.

In general, curves with the same genus need not be birationally equivalent. There
is one case where they are, however.

10.15.5. Theorem. (Noether’s Theorem) A plane curve admits a rational parame-
terization (and is birationally equivalent to a line) if and only if it has genus 0.

Proof. See [Walk50], [Hoff89], [Abhy90], [Harr92], or [Shaf94].

It follows that any nonsingular cubic curve in P2 is not rational because it has
genus 1.

Y F X2 0- ( ) = ,

g n n m mi i
i

= -( ) -( ) - -( )Â1 2 1 ,
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The genus that we just defined is an algebraic concept, but if we are talking about
curves over the complex numbers, then Theorem 10.2.5 implies that the curve is either
a surface or a singular surface where a finite number of points have been identified.
In this case, the algebraic genus and the topological one which was defined in Chapter
6 are the same. (In the singular surface case consider the topological genus to be
defined by equations (6.3).) The proof of Theorem 10.15.5 does not really provide a
good algorithm for finding the rational parameterizations. There are simple algo-
rithms in the case of curves of order 2 or 3 or so-called monoids (a curve of degree n
with a point of multiplicity n - 1). See the discussion earlier in the section or the
lengthy discussion in [Hoff89].

The genus g is not the only birational invariant of a curve. There are continuous
invariants called “moduli.” Only when two curves have genus 0 are they isomorphic.
There are curves with the same genus g > 0 that are not isomorphic. See [Shaf94].

We finish this section with one final observation. If an implicitly defined set con-
sists of a finite number of points (so that a parameterization amounts to simply listing
the zeros), then there is an algorithm that will find those zeros. The algorithm involves
using Gröbner bases. See [Mish93].

10.16 The Dimension of a Variety

Every topological space has a notion of dimension associated to it. We defined 
this concept in the case of cell complexes and manifolds. Since an algebraic variety 
lives in projective space, it can be thought of as a topological space and so has a dimen-
sion. The interesting question is whether one can determine its dimension  from its
algebraic structure and if yes, then how one would compute it.

Here are some simple two-dimensional examples of varieties V(f) in R3.

10.16.1. Example. f(X,Y,Z) = aX + bY + cZ + d

Description. V(f) is an arbitrary plane that intersects the x-, y-, and z-axis at -d/a,
-d/b, and -d/c, respectively (if a, b, and c are nonzero).

10.16.2. Example. f(X,Y,Z) = X2 + Y2 + Z2 - 1

Description. V(f) is the sphere of radius 1 about the origin.

10.16.3. Example.

Description. V(f) is a connected hyperboloid with horizontal slices that are ellipses.
See Figure 10.21(a).

10.16.4. Example.

Description. V(f) is a disconnected hyperboloid with vertical slices that are ellipses.
See Figure 10.21(b).
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The four examples above are very nice and manifold-like, although, in general,
varieties can have bad singularities, even in R3. Concentrating on the nice cases for a
moment, one might be tempted to define dimension in terms of parameterizations
like we did for manifolds. In fact, there is a version of the implicit function theorem
for complex analytic maps that gives us a criterion for when a point is not a singular
point and has a neighborhood that can be parameterized. The precise version of this
theorem is too technical to state here, but it has the same flavor as Theorem 4.4.7.
See [Kend77] for details. We sketch the basic idea.

Let V = V(f1,f2, . . . ,fm), fi Œ C[X1,X2, . . . ,Xn], be a variety in Cn. Define

by F(x) = (f1(x),f2(x), . . .,fm(x)) and consider the Jacobian matrix F¢ for this map, 
that is,

One can show that if F¢ has rank r in the neighborhood of a point p in Cn, then a
neighborhood of p in V is an (n - r)-dimensional complex manifold. Because we are
dealing with a local property here, one that only involves points in an arbitrarily small
neighborhood of a point, one can prove a similar result for projective varieties since
Pn(C) looks like affine space locally. These results can be used to define the dimension
of a variety.

Definition. If p is a point of V that has a neighborhood in Cn on which the Jaco-
bian matrix F¢ in formula (10.92) has constant rank r, then p is called a smooth point
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of V. The (complex) dimension of V at such a smooth point is then defined to be n -
r and is denoted by dimp(V). Similar definitions are made for varieties in Pn(C). A
variety is called a smooth variety if every one of its points is a smooth point.

Note that the dimension in the definition is a complex dimension, so that as a
real manifold, the variety would have real dimension 2dimp(V) at p.

10.16.5. Theorem. The set of smooth points of a variety in either Cn or Pn(C) are
dense in the variety.

Proof. See [Kend77].

Theorem 10.16.5 implies that the next definition is well defined.

Definition. The dimension of a variety V at a point p in V, denoted by dimp(V), is
defined by

where Ui is any sequence of neighborhoods of p that converge to p. In other words,
dimp(V) is the maximum of the dimensions of V at smooth points in an arbitrarily
small neighborhood of p. The dimension of V, denoted by dim V, is defined by

The codimension of V, denoted by codim V, is defined by

10.16.6. Theorem. In an irreducible variety in Cn or Pn(C) all points have the same
dimension.

Proof. See [Kend77].

Definition. A variety is said to have pure dimension d if it has the same dimension
d at each of its points.

10.16.7. Corollary. Every irreducible variety in Cn or Pn(C) has pure dimension.

10.16.8. Theorem. A variety in Cn or Pn(C) is a hypersurface if and only if it has
pure dimension n - 1.

Proof. See [Kend77].

In the next section we shall carry this definition of dimension further to study sin-
gularities, intersection multiplicities, and other concepts that we dealt with in the case

codim V V= -n dim .

dim ,
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= max dim  otherwise.
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of curves. However, we pause at this stage and point out a defect in our definition, at
least as far as an algebraic geometer is concerned. Our definition was more topolog-
ical than algebraic. “Pure” algebraic geometry should not have to rely on a notion of
continuity or differentiability of functions.

The next theorem gives several other characterizations of dimension that are
purely algebraic in nature. As a result we see that the dimension of a variety does not
depend on any particular coordinatization.

10.16.9. Theorem. Let V be a nonempty irreducible algebraic variety in kn or Pn(k).
If k = C, then there is an integer d with the property that the following statements
about V and d are equivalent:

(1) dim V = d.
(2) There is a finite map f :V Æ kd.
(3) trk(k(V)) = d.
(4) If V = V0 … V1 … . . . … Vs π f is any maximal chain of nonempty distinct irre-

ducible subvarieties Vi, then s = d.
(5) If 0 = I0 Ã I1 Ã . . . Ã Is is any maximal chain of distinct prime ideals Ii in k[V],

then s = d.

The rest of this section is devoted to motivating this theorem and sketching a
proof. See [Kend77], [Harr92], or [Shaf94] for more details. It should be noted that
as far as proofs are concerned, the only thing important about the complex numbers
is that they are algebraically closed. Only the definition of dim V was inherently
dependent on the complex numbers.

(1) ¤ (2) ¤ (3): Consider the affine case. By Theorem 10.13.38(2) there is an m,
m £ n and a finite map

The pullback map

is one-to-one and k(V) can be thought of as a finite extension of k(km), which is just
k(X1,X2, . . . ,Xm). This shows that the transcendence degree of k(V) is m. Since f is a
regular map, it follows that V is locally homeomorphic to km, so that m = d.

Using (3) in Theorem 10.16.9, one can prove the following theorem, which is
needed to prove that (4) and (5) are equivalent to (3).

10.16.10. Theorem. Let W be a subvariety of a variety V in Cn or Pn(C).

(1) dim W £ dim V.
(2) If V is irreducible and dim W = dim V, then W = V.

Proof. See [Kend77] or [Shaf94].

Another result we shall need is

f k k km* : ( ) Æ ( )V

f km: .V Æ
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10.16.11. Theorem. Let V be an irreducible projective variety in Pn(k) for an alge-
braically closed field k and assume that f Œ k[X1,X2, . . . ,Xn+1] is a homogeneous poly-
nomial that does not vanish on V. If Vf is the subvariety of V defined by the equation
f = 0, then dim Vf = dim V - 1.

Proof. We follow the argument in [Shaf94]. By hypothesis, Vf π V, so that dim Vf <
dim V by Theorem 10.16.10. Set V1 = Vf and f0 = f. Now pick a point in each irre-
ducible component of V1 and let f1 be a homogeneous polynomial that does not vanish
on any of these points. Let V2 be the subvariety of one of the irreducible components
of V1 defined by the condition that f1 = 0. Continue on in this way to get a sequence
of irreducible varieties Vi and homogeneous polynomials fi so that

and dim Vi+1 < dim Vi. Since the dimension of the varieties is decreasing there is a d,
d £ dim V, so that Vd π f and Vd+1 = f. By definition the polynomials f0, f1, . . . , fd have
no common zeros and so we can define a map

by

By Theorem 10.13.37, j :V Æ j(V) is a finite map and by Theorem 10.13.33 j(V) is a
subvariety of Pd(k). It follows that dim V = dim j(V) = d. Note also that j(V) = Pd(k)
by Theorem 10.16.10. Clearly we must have dim Vi = dim Vi+1 + 1. In particular, dim
Vf = dim V - 1 and the theorem is proved.

Returning to the proof of Theorem 10.16.9, we first observe

(4) ¤ (5): This is easy because of the connection between ideals and varieties.

Therefore, to finish the proof of Theorem 10.16.9 we have the choice of proving that
(3) is equivalent to (4) or (5).

(3) ¤ (4): Theorem 10.16.10 clearly implies that there cannot be a strictly decreas-
ing sequence of irreducible varieties of longer length than d. Repeated application of
Theorem 10.16.11 shows that there is at least one of that length in the projective case.
In the affine case this follows from an affine version of Theorem 10.16.11. To finish
the proof we must show that every maximal such sequence has length d. For that it
suffices to show that if W1 and W2 are irreducible varieties with W2 properly contained
in W1 and if

then there is an irreducible subvariety W¢ of W1 with the property that

W W W  W  W1 2 1 1… ¢ … ¢ = -and dim dim .

dim dim W  W2 1 1< -

j x x x x[ ]( ) = ( ) ( ) ( )[ ]f f fd0 1, , . . . , .

j : V PÆ ( )d k

V V V2… … …1 . . .
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To prove this we switch to the ideal version of this fact. We look at the affine case and
leave the projective case as an exercise. Specifically, it suffices to show that if I and J
are prime ideals in k[V] of transcendence degree e and f over k, respectively, with 
I … J, then we can find a chain of distinct prime ideals

of length e - f. We sketch the proof in [Kend77].
We may assume that

where xi is the projection of Xi in k[V], and that y1, y2, . . . , ye and z1 = y1, z2 = y2, . . . ,
zf = yf are a transcendence basis of I and J over k, respectively. Furthermore, we may
assume that the natural projection homomorphism

sends yi to zi under the appropriate identifications.
Because the yi are a transcendental basis for k[y1,y2, . . . ,ye] over k, there is a

unique ring homomorphism (over k)

defined by

Claim. The homomorphism s extends to a unique ring homomorphism

To prove the claim, note that ys is algebraic over k[y1,y2, . . . ,ye] for e < s £ n. Let

be its minimal polynomial. Applying the projection map p, we see that ps(z1,z2,
. . . ,ze,X) has positive degree, which in turn implies that ps(z1,z2, . . . ,zf+1,yf+2, . . . ,ye,X)
has positive degree. The claim now follows from Theorem B.8.15.

Let J1 = s1(I). The ideal J1 is prime. Since zt is algebraic over k[z1,z2, . . . ,zf] for 
t > f, it follows that J1 has transcendence degree e - 1 over k. Repeating the same steps
for J1, produces a prime ideal J2, J1 … J2, of transcendence degree e - 2 over k, and so
on until we finally get Je-f = J.

Theorem 10.16.9 is proved.

Let us expand on the definition of dimension of a projective variety V Õ Pn(C) in
terms of the existence of a finite map

p y y y X k y y y Xs e e1 2 1 2, , . . . , , , , . . . ,( ) Œ [ ][ ]

s1 1 2: , , . . . , .I k y y y In= [ ] Æ

s y z i f

y f i e
i i

i

( ) = £ £ +
= + < £

,

, .

1 1

1

s : , , . . . , .k y y y Ie1 2[ ] Æ

p : I
I

I V J
JÆ ( )( ) =

k
k X X X

I V
k x x x

I k y y y

J k z z z

n
n

n

n

V[ ] =
[ ]

( ) = [ ]

= [ ]
= [ ]

1 2
1 2

1 2

1 2

, , . . . ,
, , . . . , ,

, , . . . , ,

, , . . . , ,
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(Theorem 10.16.9(2)). Such a map can be obtained by a succession of projections from
a point that leads to a projection of V with center a linear subspace of Pn(C). It is easy
to see that the integer d is characterized by the property that one can find an (n - d
- 1)-dimensional plane X in Pn(C) (the center of the projection) that does not inter-
sect V, but every (n - d)-dimensional plane in Pn(C) intersects V.

10.17 The Grassmann Varieties

Grassmann manifolds were defined in Section 8.14. We take another look at these
special manifolds, but from the point of view of algebraic geometry this time. The
Grassmann manifolds Gn(Rn+k) can actually be thought of as subvarieties of projec-
tive space and are an important example of higher-dimensional varieties. An overview
of Grassmann varieties in the context of algebraic geometry can be found in [KleL72].
See also [Harr92] and [Shaf94].

Note that if V is an n-dimensional linear subspace of Rn+k and if B = (v1,v2, . . . ,vn)
is a basis for V, then the wedge product v1 Ÿ v2 Ÿ . . . Ÿ vn defines an element in the
N-dimensional vector space Ln(Rn+k), where

We shall identify Ln(Rn+k) with RN using the canonical basis

Changing the basis B for V will change the wedge product by a scalar multiple. There-
fore, the map

defined by

where (v1,v2, . . .,vn) is a basis for V, is well defined. Now

Definition. The homogeneous coordinates ai1i2 … in are called the Plücker coordinates
of V.

One can show that the Plücker coordinates are just the n ¥ n minors of the n ¥ (n
+ k) matrix whose rows are the vectors vi.

v v v e e e1 2
1

1 2 1 2

1 2

Ÿ Ÿ Ÿ = Ÿ Ÿ Ÿ
£ < < £ +

Â. . . . . . .. . .
...

n i i i i i i
i i i n k

a n n

n

m V v v v( ) = Ÿ Ÿ Ÿ[ ]1 2 . . . ,n

m : Gn
n k NR P+ -( ) Æ 1

e e ei i i nn i i i n k1 2 1 1 2Ÿ Ÿ Ÿ £ < < < £ +. . . , . . . .

N
n k

n
=

+Ê
Ë

ˆ
¯.

f kd: V Æ
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10.17.1. Lemma. The map m is an imbedding.

Proof. The lemma follows from the fact that if m(V) = [w], then

10.17.2. Theorem. The set m(Gn(Rn+k)) is a smooth submanifold of PN-1 and is the
set of zeros of a finite set of quadratic homogeneous polynomials called the Plücker
relations.

Proof. See the algebraic geometry references listed above.

Finally, one can generalize the definition of the Grassmann varieties both by allow-
ing a more general field and by passing from an affine to a projective version. In par-
ticular, Gn(Cn+k) denotes the space of complex n-dimensional linear subspaces of Cn+k

and Gn(Pn+k) and Gn(Pn+k(C)) denote the spaces of n-dimensional linear subspaces of
the projective spaces Pn+k and Pn+k(C), respectively. In all these cases one gets nice
varieties that are also manifolds.

10.18 N-Dimensional Varieties

This section gives a very brief overview of algebraic geometry in higher dimensions.
We continue the approach to higher-dimensional varieties taken in Section 10.16. The
results will divide up into two types, those that deal with properties of varieties that
are local in nature and those that are global. For example, some theorems deal with
what neighborhoods of points look like (see Theorem 10.18.9). This is a local prop-
erty. Others deal with whether or not the space is connected, whether it is orientable
(in the case where we are dealing with a manifold), or what its homology groups or
derived invariants, such as the Euler characteristic, are. These are global properties.
In addition to considering intrinsic properties of varieties by themselves, we also want
to generalize how intersections behave. We shall see that what we learned about plane
curves will generalize if we use the concept of codimension.

Let V = V(f1,f2, . . . ,fm), fi Œ C[X1,X2, . . . ,Xn], be a variety in Cn. Define

by

Here is a local criterion for smoothness.

10.18.1. Theorem. If V is irreducible, then it is smooth at a point p if and 
only if

(10.93)codim rank of Jacobian matrix F  at V p= ¢ .

F f f fmx x x x( ) = ( ) ( ) ( )( )1 2, , . . . .

F n m: C CÆ

V v R v= Œ Ÿ ={ }+n k w 0 .
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A corresponding result holds for projective varieties in Pn(C).

Proof. See [Kend77].

Theorem 10.18.1 leads to a definition of nonsingularity which generalizes the def-
inition we gave in the case of plane curves.

Definition. Let V be an irreducible variety in Cn and let p Œ V. If equation (10.93)
holds at p, then p is called a nonsingular point of V and V is said to be nonsingular
at p. Otherwise, p is called a singular point for V and V is said to be singular at p. If
every point of V is a nonsingular point, then V is said to be a nonsingular variety. A
similar definition is made in the case of an irreducible projective variety in Pn(C).

10.18.2. Theorem. The set of singular points of an irreducible variety in Cn or Pn(C)
form a proper subvariety.

Proof. See [Kend77].

Theorems 10.18.1 and 10.18.2 generalize to arbitrary varieties. We now turn to
some topological issues.

10.18.3. Theorem.

(1) Every algebraic curve in Pn(C) is connected.
(2) Every irreducible variety in Cn or Pn(C) is connected.

Proof. See [Kend77]. The reason that irreducibility is not needed in (1) is that the
irreducible components of a curve all intersect in this case and the union of connected
sets that intersect is connected.

10.18.4. Theorem.

(1) Every nonsingular one-dimensional variety in Cn or Pn(C) is an orientable
surface.

(2) Every irreducible d-dimensional nonsingular variety in Cn or Pn(C) is ori-
entable as a real 2d-dimensional manifold.

Proof. See [Kend77]. Compare (1) with Theorem 10.2.5.

The final topic of this section deals with intersections of varieties and Bèzout’s
Theorem. There will be a long list of theorems which deal with the intersection of
suitable linear subspaces with varieties. The reader should reread the comments at
the beginning of Section 10.6 for why this is a reasonable geometric approach to the
definitions and theorems we shall state. Intersections of varieties with linear sub-
spaces also played a role in Section 10.7 (in that case we used lines) and in Section
10.16 (see the comments at the end of the section regarding the definition of dimen-
sion in terms of finite maps). First, though, it is convenient to state a bound on the
dimension of an intersection in terms of its codimension.
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10.18.5. Theorem. Let V1 and V2 be two irreducible varieties in Cn that have a 
nonempty intersection. Then

Proof. See [Kend77].

10.18.6. Corollary. If V1 and V2 are irreducible varieties in Pn(C), then

Proof. This corollary is an immediate consequence of Theorem 10.18.5 because any
two varieties in Pn(C) intersect.

Definition. We say that two irreducible varieties V1 and V2 in Cn or Pn(C) intersect
properly if

Two arbitrary varieties V1 and V2 are said to intersect properly if each irreducible com-
ponent of V1 intersects properly with each irreducible component of V2.

The idea of intersecting properly tries to capture the idea that two varieties overlap
as little as possible. Too much overlap corresponds to degenerate cases about which
not much can be said. The condition on codimension in the definition of intersecting
properly is equivalent to saying that the dimension of the intersection is as small as
possible, namely, dim V1 + dim V2 - n. The ideal case is where varieties intersect trans-
versally but the weaker condition of intersecting properly is adequate. To see that to
intersect properly is not the same as intersecting transversally consider the varieties
V(X2 + Y2 - 1) and V(Z - 1), which intersect properly but not transversally. If varieties
intersect transversally, then they will also intersect properly, so that the former con-
dition is stronger than the latter.

In order to state the generalized version of Bèzout’s theorem we need to define
the degree of an arbitrary variety. There are a number of ways to do this, but first of
all, just like in the case of dimension, one has to agree on what the degree should be
in simple cases. We already agreed earlier in Section 10.5 that a hypersurface defined
by an irreducible polynomial should have degree equal to the degree of that polyno-
mial. A natural way to deal with the general case would be to divide it into two steps:

Step 1: Define the degree of an arbitrary irreducible variety (which may not be
defined by a single irreducible polynomial since the polynomial ring in more than
one variable is not a principal ideal domain).
Step 2: Define the degree of an arbitrary variety to be the sum of the degrees of
its irreducible components.

Step 2 is plausible given the relationship between the degree of a plane curve and the
number of intersections it has with a line discussed at the beginning of Section 10.6.
Step 1 is clearly the hard part but we shall deal with it in a similar way, in terms of
intersections with linear subspaces.

codim codim codim 1 1 2V V V V«( ) £ +2 .

codim codim codim 1 1 2V V V V«( ) £ +2 .

codim codim codim 1 1 2V V V V«( ) £ +2 .
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10.18.7. Theorem. Let V be a variety of pure dimension d in Cn or Pn(C). Almost
all transforms of a given (n - d)-dimensional affine or projective plane, respectively,
intersect V in a common fixed number s of distinct points. If V is a hypersurface with
minimal polynomial f, then s is the degree of f.

Proof. See [Kend77].

Note. The set of linear transformations forms a manifold and the expression “almost
all transforms” in the last and next several theorems means all transforms except 
possibly those on a proper lower-dimensional submanifold (a set of measure 
zero). The planes for which the theorems hold are those that intersect the variety 
in question transversally. The planes for which the theorems do not hold is a set 
of measure zero. Another way of looking at the expression “almost all transforms” is
via Grassmann manifolds and have it mean “for all n-dimensional linear subspaces in
an open dense subset of the Grassmann variety with respect to the Zariski topology.”

Definition. If V is any variety of pure dimension d in Cn or Pn(C), then the number
s in Theorem 10.18.7 is called the degree of V and is denoted by deg V.

Note that the second part of Theorem 10.18.7 implies that the new definition 
of the degree of a variety V agrees with the definition in Section 10.5 when V is a
hypersurface.

The degree is a global property. There is a local version of the degree that says
that near a point the number of points in the intersection with a linear subspace does
not change. We shall describe this also. It is the analog of the multiplicity for plane
curves.

10.18.8. Theorem. Let p be a point of a pure r-dimensional variety V in Cn or Pn(C)
and let L be any (n - r)-dimensional affine or projective plane in Cn or Pn(C), respec-
tively, that intersects V properly at p. Then for almost all transforms L¢ of L suffi-
ciently close to L, V « L¢ consists of a common fixed number d of points in an
arbitrarily small neighborhood of p.

Proof. See [Kend77].

Definition. If p is a point of a pure r-dimensional variety V in Cn or Pn(C), then the
number d in Theorem 10.18.8 is called the multiplicity of intersection of V and L at p
and is denoted by i(V,L; p).

10.18.9. Theorem. Let p be a point of a pure r-dimensional variety V in Cn or Pn(C).
For almost all transforms L¢ of any (n - r)-dimensional affine or projective plane L in
Cn or Pn(C), respectively, with both L¢ and L containing p, the number i(V,L¢; p) is
defined and equal to a common fixed number d. If V is a hypersurface with minimal
polynomial f, then d is the order of f at p.

Proof. See [Kend77]. Recall that the order of an arbitrary polynomial at a 
point is the smallest degree of all the monomials appearing in an expansion 
about p.
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Definition. If p is a point of a pure r-dimensional variety V in Cn or Pn(C), then the
number d in Theorem 10.18.9 is called the multiplicity of V at p or the order of V at p
and is denoted by mp(V).

Note that for a hypersurface V the multiplicity of V at p is ordp(f), just like for
plane curves.

10.18.10. Theorem. Let V1 and V2 be varieties in Cn or Pn(C) of pure dimension r
and s, respectively, and let L be any (2n - r - s)-dimensional plane in Pn(C). For almost
all transforms V1¢, V2¢, and L¢ of V1, V2, and L, respectively, (V1¢ « V2¢) « L¢ consists
of a common fixed number d of points.

Proof. See [Kend77].

The value 2n - r - s = (n - r) + (n - s) in the theorem comes from the fact that
this is the codimension of V1 « V2 if they intersect transversally.

Definition. If V1 and V2 are any two pure dimensional varieties in Cn or Pn(C) that
intersect properly, then the number d in Theorem 10.18.10 is called the degree of inter-
section of V1 and V2 and is denoted by deg(V1•V2).

Note. The degree of intersection, deg(V1•V2), is in general not equal to 
deg(V1«V2), the degree of the intersection of the two varieties, as one will see in 
Example 10.18.15 below. The two degrees are the same if the varieties intersect 
transversally.

We have all the definitions needed to state Bèzout’s theorem; however, it is worth-
while to show how they relate to a generalized concept of multiplicity of intersections.
In analogy with the plane curve case, this concept is introduced by considering inter-
sections of linear subspaces with varieties.

10.18.11. Theorem. Let V1 and V2 be varieties in Cn or Pn(C) of pure dimension r
and s, respectively, and let L be any (2n - r - s)-dimensional linear subspace. If V1,
V2, and L intersect properly at a point p, then for almost all transforms V1¢ of V1 near
V1, V2¢ of V2 near V2, and L¢ of L near L respectively, there is a common fixed number
d of distinct points of V1¢ « V2¢ « L¢ near p.

Proof. See [Kend77].

Definition. The fixed number d in Theorem 10.18.11 is called the intersection
multiplicity of V1, V2, and L at p and is denoted by i(V1,V2,L;p).

10.18.12. Theorem. Let V1 and V2 be varieties in Cn or Pn(C) of pure dimension 
r and s, respectively, which intersect properly. Then for almost all transforms L¢ of a
linear subspace L of dimension 2n - r - s that contain a point p, the number 
i(V1,V2,L¢;p) is defined and has a common fixed value.

Proof. See [Kend77].
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Definition. The fixed number in Theorem 10.18.12 is called the intersection multi-
plicity of V1 and V2 at p and is denoted by i(V1,V2;p).

10.18.13. Theorem. Let V1 and V2 be any two pure dimensional varieties in Cn or
Pn(C) which intersect properly. If C is an irreducible component of V1 « V2, then at
almost every point p in C, i(V1,V2;p) has a common fixed value.

Proof. See [Kend77].

Definition. The fixed number in Theorem 10.18.13 is called the intersection multi-
plicity of V1 and V2 along C and is denoted by i(V1,V2;C).

Finally,

Definition. Let V1 and V2 be any two pure dimensional varieties in Cn or Pn(C) that
intersect properly. The formal sum

over all the distinct irreducible components Ci of V1 « V2 is called the intersection
product of V1 and V2 and is denoted by V1•V2.

Note the purely formal nature of the intersection product V1•V2 and its simi-
larity between the formal sum that it is and the formal sums that are used to define
homology groups. We can now tie together the concepts of intersection degree and
intersection multiplicities, namely,

10.18.14. Theorem. If V1 and V2 are any two pure dimensional varieties in Cn or
Pn(C) that intersect properly, then

where the sum on the right-hand side of this equation is taken over all the distinct
irreducible components Ci of V1 « V2.

Proof. See [Kend77].

Note that the right hand side of the equation in Theorem 10.18.14 would be the
natural definition for the degree of the intersection product V1•V2 although we do not
bother to make such a definition.

10.18.15. Example. Let T be the torus in R3 obtained by rotating the circle in the
x-z plane with center (r,0,0) and radius s, where r > s > 0, about the z-axis.

Analysis. As a surface of revolution, it is easy to see that T is the real hypersurface
V(f), where
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The torus T intersects the plane P defined by Z = s in a circle defined by

Note that P = V(Z - s). Note also that T and X intersect properly but not transversally.
Now consider everything as defined over the complex numbers. The correspond-

ing complex varieties V(f) and V(Z - s) have degree 4 and 2, respectively. The complex
variety

has degree 2. It is also easy to see that

for all points p in S, and so

It follows that

and

We can at last state Bèzout’s theorem.

10.18.16. Theorem. (Bézout’s Theorem) If two pure dimensional varieties V and W
in Pn(C) intersect properly, then

If they intersect transversally, then

Proof. See [Kend77].

10.18.17. Corollary. If two plane curves in P2(C) of degree m and n intersect in
more than nm points counted with their multiplicity, then they must have at least one
irreducible component in common.

There is an alternate approach to the degree of a variety and Bèzout’s theorem
that connects these ideas to homology theory and topology. Suppose that V is a

deg deg deg .V W  V  W«( ) = ( )( )

deg • deg deg .V W  V  W( ) = ( )( )
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V f V Z s( ) -( ) =• ,2S

i V f V Z s( ) -( )( ) =, ; .S 2

i V f V Z s( ) -( )( ) =, ;p 2
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complex variety of Pn(C). If V is a complex manifold of dimension 2k, then V is
compact and orientable and a fundamental homology class of V determines a homol-
ogy class in H2k(Pn(C)), which we shall denote by [V]. In fact, an arbitrary projective
variety determines such a class [V] not just one that has no singularities. But the topol-
ogy of Pn(C) is well-understood and it is known that H2k(Pn(C)) is isomorphic to Z.
Therefore, if s be a generator, then there is a d so that [V] = ds. One can show that
deg V = |d|. Finally, there is a close connection between the degree of intersection of
two varieties and their topological intersection numbers, with the final result that
Bèzout’s theorem can be proved via algebraic topology. We refer reader to [BriK81]
and [Harr92].

Finite maps are almost imbeddings. This leads to the question as to whether we
can find finite maps which are imbeddings and how large the n has to be. The next
theorem is the analog of the Whitney imbedding theorem for differentiable manifolds
in the algebraic setting (see the comments following Theorem 8.8.7).

10.18.18. Theorem. A nonsingular projective n-dimensional variety is isomorphic
to a subvariety of P2n+1.

Proof. See [Shaf94].

Every nonsingular “quasi-projective” curve is isomorphic to a curve in P3. Recall
from the discussion after Theorem 10.14.7 that not every curve is isomorphic to a
nonsingular one in P2.

The last result of this section returns to the subject of resolution of singularities
and blowups. We looked at an aspect of this for curves in Section 10.12. Blowups are
basically a special type of birational map. They are important in the study of rational
maps. Lack of space prevents us from going into any details here. The reader is
referred to [Harr92] and [Shaf94]. [Harr92] also discusses the following theorem of
H. Hironaka (his proof assumes a field of characteristic zero with the general case not
yet known):

10.18.19. Theorem. For any variety V we can find a smooth variety W and a regular
birational map j :W Æ V. The map j is called a resolution of the singularities of V.

This brief overview of algebraic geometry in higher dimensions consisted mainly
of a collection of definitions and unproved theorems but hopefully it gave the reader
at least a slight idea of the subject. If the reader is left with the feeling excessive
abstractness, of theorems that were true because the definitions were formulated in
such a way as to make them true, then this is quite understandable. This is not the
only place in mathematics where one encounters such a phenomenon. It definitely
does not mean that it is all abstract nonsense though, because one gets concrete results
at the end. As we have said before, it is coming up with the right definitions that pick
out the essential aspects of a problem that often leads to a breakthrough in the subject
and makes everything seem simple to prove afterwards.

In closing we should mention the following. We have studied varieties as subsets
of kn or Pn(k), k = R or C, but one can also study them intrinsically the way one studies
abstract manifolds. They can be given intrinsic differentiable and analytic structures
and one can do calculus on them.
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10.19 EXERCISES

Section 10.1

10.1.1. Show that C - {0} cannot be a variety in C.

10.1.2. Show that a proper nonempty variety in C consists of a finite set of points.

Section 10.2

10.2.1. Show that the closure in P2(C) of the variety in Example 10.2.3 really is a sphere.

Section 10.3

10.3.1. Prove Proposition 10.3.1.

10.3.2. Find coordinate neighborhoods (U,j) for P2 so that the lines defined by the equations
below becomes their lines at infinity:

(a) Y = 0
(b) X - 3Y = 0

10.3.3. Find coordinate neighborhoods (U,j) for P3 so that the planes defined by the equa-
tions below becomes their planes at infinity:

(a) W = 0
(b) X + Y + Z + W = 0

10.3.4. Consider the polynomial

and let W = V(g) Õ R2. Show that the topological closure of W in P2 is W » {[0,1,0]}.

10.3.5. Consider the polynomial

and let X be the projective variety in P2(C) defined by H(f). Show that topologically X
is a pinched sphere. (Hint: We can relate this problem to the one in Example 10.2.4,
which considered the variety

for e = 1. If we let e go to zero, then we will get the variety V = V(f) Õ R2. In Figure
10.4 (a) the circle will shrink to a point.)

10.3.6. Find a coordinate system for P2 that shows that the projective completion of the curve
XY = 1 in R2 is an ellipse.

10.3.7. (a) Show that for any finite set of points in P2, there is a line in P2 that does not pass
through these points.

V Y X X X2 1- +( ) -( )( )e

f X Y Y X X,( ) = - -( )2 2 1

g X Y Y X X,( ) = + -2 1
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(b) Generalize (a) and show that for any finite set of points in Pn, there is a hyper-
plane in Pn that does not pass through these points.

Section 10.4

10.4.1. Consider the polynomial f(X) = (X - 1)2. Show that R(f,f ¢) = 0, thereby verifying 
Corollary 10.4.5 in this case.

10.4.2. Prove Corollary 10.4.10.

Section 10.5

10.5.1. Show that the only varieties in C2 are C2, a finite (possibly empty) set of points, or the
union of a plane curve and a finite (possibly empty) set of points. (Hint: Suppose that
a variety X is defined by polynomial equations

Let g be the greatest common factor of the fi and let fi = hig. Determine the conditions
under which X is the union of two varieties, one of which is determined by g and the
other by the hi. Use Theorem 10.5.6.)

10.5.2. (a) Show that f(X,Y) = X2 + Y2 - r2, r Œ R, r π 0, is irreducible in C[X,Y] and hence
also in R[X,Y]. (Hint: Show that any factorization of f(X,Y) must consist of two
linear factors and then use Exercise 1.5.19(b).)

(b) Show that f(X,Y) = X2 + Y2 + r2, r Œ R, r π 0, is irreducible in C[X,Y]. (Hint: Con-
sider the transformation (x,y) Æ (ix,iy) in C2.)

10.5.3. Look back at Example 10.3.7 where we considered the polynomial

and the variety W = V(g) Õ R2. Show the following

(a) H(g) is irreducible in R[X,Y,Z].
(b) The projective completion H(W) in P2 is just V(H(g)).

10.5.4. Just because a set is described by transcendental functions does not automatically
mean that it is not an algebraic variety. Consider, for example, the circle { (cos t,sin t)
| t Œ R}. On the other hand, show that the graph of the sine function, { (t,sin t) | t Œ
R}, is not an algebraic variety.

Section 10.6

10.6.1. Consider the polynomial

Compute deg(1,2)f.

f X Y X Y XY X Y X Y, .( ) = - - + + - +2 2 22 2 4 4

g X Y Y X X, ,( ) = + -2 1

f f fk1 2 0= = = =. . . .
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10.6.2. Consider the curve V(Y - X2) in R2. Using only the definition, find the multiplicity of
the curve at (-1,1) and its tangent line.

10.6.3. Draw the plane curves below and analyze them at the point p like we did in Examples
10.6.6–10.6.10.

(a) V (X2 + Y2 - 2Y), p = (1,1)
(b) V (X3 - Y4), p = (0,0)
(c) V ((X2 + Y2)2 + 3X2Y - Y3), p = (0,0)

10.6.4. Show that any curve in C2 of degree n that has a point p of multiplicity n consists of
n (not necessarily distinct) lines through p.

Section 10.7

10.7.1. Consider the curves C1 = V(YZ - X2) and C2 = V(Y2 - XZ) in P2(C). Compute the inter-
section multiplicities mp(C1,C2) at the intersection points p and verify the validity of
Bézout’s theorem

Section 10.8

10.8.1. Prove that the graph of any polynomial function f(x,y) in R3 is an irreducible variety.

10.8.2. Show that

are two irredundant intersections of irreducible ideals. Therefore the direct analog of
Theorem 10.8.16 for ideals fails. The closest we come is Theorem B.6.8. By this
theorem and Lemma B.6.7 only the associated intersection into prime ideals is unique.

10.8.3. Prove that the radical of a primary ideal in a commutative ring is prime.

10.8.4. Prove that a prime ideal in a commutative ring is irreducible.

10.8.5. This exercise describes another approach to projective varieties. Assume that the field
k is infinite in this exercise.

Definition. We say that a polynomial f Œ k[X1,X2, . . . ,Xn+1] vanishes at a point p Œ
Pn(k) if

Given a set S of polynomials in k[X1,X2, . . . ,Xn+1], define

Any such subset of Pn(k) is called a projective variety.

(a) Let f Œ k[X1,X2, . . . ,Xn+1]. Show that if

f f f fd= + + +0 1 . . . ,

V S kn( ) = Œ ( ) Œ{ }p P pevery f S vanishes at .

f c c c c c c c c cn n n1 2 1 1 2 1 1 2 10, , . . . , , , . . . , , . . . , .+ + +( ) = ( ) = [ ] for all  with p

< > = < > « < > = < > « < + >X XY X X Y X X X Y2 2 2, , ,
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where fi is the homogeneous components of degree i for f, then f vanishes at a
point p Œ Pn(k) if and only if each fi vanishes at p. (Hint: For fixed (c1,c2, . . . ,cn+1)
consider

(b) Let S be a set of polynomials in k[X1,X2, . . . ,Xn+1]. Prove that there are a finite
number of homogeneous polynomials f1, f2, . . . , fs Œ k[X1,X2, . . . ,Xn+1], so that

Definition. An ideal I Õ k[X1,X2, . . . ,Xn+1] is said to be homogeneous if for all f Œ I
all the homogeneous components of f belong to I.

(c) Prove that an ideal I Õ k[X1,X2, . . . ,Xn+1] is homogeneous if and only if I is gen-
erated by a finite set of homogeneous polynomials.

Definition. Let V be a projective variety in Pn(k). Define

(d) Prove that I(V) is a homogeneous ideal.

It follows from (a)–(d) that the definitions in this exercise agree with the correspon-
ding definitions in this chapter.

10.8.6. This exercise deals with some properties of the Zariski topology.

(a) Show that if U1 and U2 are two nonempty open subsets of a variety V, then U1 «
U2 π f. It follows that the Zarisk i topology is not Hausdorff. Also, every open
subset of a variety is dense in it.

(b) Show that any infinite subset of a plane curve is dense in the curve.
(c) Let V be a variety in kn. Using the notation defined by equations (10.23), show

that the projective completion of V in Pn(k) relative the coordinate system
(Un+1,jn+1) is the closure (in the Zariski topology) of jn+1

-1(V) in Pn(k).

10.8.7. (a) Let f Œ k[X1,X2, . . . , Xn]. Show that if I = <f>, then H(I) = <H(f)>.
(b) Consider the variety V = V(Y - X2,Z - X3) in k3. Show that

This example from [Fult69] shows that (a) does not generalize, namely, if I =
<f1,f2, . . . ,fs>, then it is not necessarily true that H(I) = <H(f1),H(f2), . . . ,H(fs)>.

Section 10.9

10.9.1. Find an implicit equation for the parameterized curve

x t t

y t t

= +

= - +

2

2

I I Y X Z X and ZW XY H I k X Y Z W

ZW XY H Y X H Z X

= ( ) = < - - > - Œ ( ) Ã [ ]

- œ< -( ) -( )>

V 2 3

2 3

, , , , ,

, .

but

I f k X X X fnV V( ) = Œ [ ]{ }+1 2 1, , . . . , . vanishes at every point of 

V S V f f fs( ) = { }( )1 2, , . . . , .

g t f tc tc tc f tf t fn
d

d( ) = ( ) = + + ++1 2 1 0 1, , . . . , . . . .)
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using the resultant like in Examples 10.9.1. Compare your answer with what you
would get by simple elimination of t in the equations:

Section 10.10

10.10.1. List the following monomials in three variables X1, X2, and X3 in the degrevlex order:

10.10.2. Show that the degrevlex and deglex order are the same in the case of two variables.

10.10.3. Apply Algorithm 10.10.2 to the polynomials

(a) f = X2 + 2XY2 - XY, p1 = 3X + Y - 1
(b) f = X2Y + 1, p1 = X2 + X, p2 = XY + X

Use the deglex order and assume that Y < X.

10.10.4. If g(X1,X2, . . . ,Xn) Œ k[X1,X2, . . . ,Xn] and a1, a2, . . . , an Œ k, show that

for hi(X1,X2, . . . ,Xn) Œ k[X1,X2, . . . ,Xn].

10.10.5. Let

Find a P-normal form for f with respect to the deglex order assuming that Y < X.

10.10.6. Consider the polynomials

Let P = {p1,p2}. Show that

with respect to the deglex order assuming that Y < X. Since f = Yp1 + p2 belongs to
the ideal <P> in R[X,Y], this shows that the mere fact that a polynomial belongs to
the ideal <P> does not guarantee that every one of its P-normal forms is zero.

10.10.7. Use Theorem 10.10.12 to determine which of the following sets of polynomials P are
Gröbner bases for the ideal I, if any, with respect to the deglex order assuming that
Y < X:

(a) P = { p1 = XY - Y, p2 = Y2 - X }
(b) P = { p1 = X2 + X, p2 = XY + Y, p3 = Y2 + Y }

f X XPæ Ææ æ Ææ -0 2and f P

f XY X p XY Y p Y X X Y= - = - = - Œ [ ]2
1 2

2, , , .R

f X Y X Y Y Y

P p X X p X XY p XY Y

= + + +

= = + = + = -{ }
3 2 2 2

1
3

2
2

3

,

, , .

g X X X h X X X X gn i n i n
i

n

1 2 1 2 1 1 2
1

, . . . , , , . . . , , , . . . ,( ) = ( ) -( ) + ( )
=
Â a a a a

X X X X X X X X X X2
3

1 2 3 1
2

3 2 3
2

1
3

2
3, , , , , .
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10.10.8. Use the deglex order on k[X,Y] and Algorithm 10.10.13 to find Gröbner bases for the
ideals <P> below assuming that Y < X:

(a) P = { XY + X, X2 + Y }
(b) P = { X2Y + X, X + Y }

10.10.9. Consider the ideal I = <X2Y - X - Y,XY2 + Y> in k[X,Y]. Use a Gröbner basis to deter-
mine which, if any, of the polynomials below belongs to I. If it does, then express the
polynomial in terms of that Gröbner basis.

(a) f = X3Y + 2X2Y2 + XY3 - X2 - XY
(b) f = X3Y + X2Y2 - XY + X2Y - XY2 - X2

10.10.10. Solve Exercise 10.9.1 using Gröbner bases.

Section 10.12

10.12.1. Let C be a plane curve in P2(k). Show that a parameterization of C defined in one
coordinate system will remain a parameterization when transformed to another coor-
dinate system.

10.12.2. Show that

is a parameterization of the projective curve in P2(C) defined by

Find its center.

10.12.3. Let g(t) be the parameterization in Exercise 10.12.2. Let h(t) = t + t2. Show by direct
computation that gh(t) = g(h(t)) has the same center as g(t).

10.12.4. Consider the irreducible curves below:

(a) Y2 - X5 = 0
(b) X4 + X2Y2 - Y2 = 0

(One way to see that this curve is irreducible is to note that it has a parameterization

What are their singular points? Find a sequence of quadratic transformations that
transform them into curves with only ordinary singularities.

Section 10.13

10.13.1. Consider the affine conic defined by

f X Y X XY Y X Y, .( ) = - + - + + =5 6 5 14 2 5 02 2

g t
t
t

t t
t t

( ) =
-
+

- -
+( )

Ê
ËÁ

ˆ
¯̃

ˆ
¯̃

2

2

4 2

2

1
1

2 1
2 1

, .

4 9 36 02 2 2X Y Z+ - = .

g t
t

t
t
t

( ) =
-
+ +

È
ÎÍ

˘
˚̇

3 3
1

4
1

1
2

2 2, ,
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Find a parameterization of the curve using the method described in Example 10.13.1
and the point (3/2,1/2) on the curve.

10.13.2. Prove Theorem 10.13.2(2).

10.13.3. (a) If f Œ k[V] is a polynomial function on an affine variety V, then f :V Æ k is a con-
tinuous function with respect to the Zariski topology.

(b) Generalize (a) and prove that any polynomial function between affine varieties
is continuous.

10.13.4. Prove or disprove that the following maps define isomorphisms:

(a) f :V(XY - 1) Æ R, f(x,y) = x
(b) g :R Æ V (Y3 - X4), g(t) = (t3,t4)
(c) h :R Æ V (Y - Xk), h(t) = (t,tk)

10.13.5. Let X and Y be varieties in kn. Let D = { (v,v) | v Œ kn} be the diagonal in k2n =
kn ¥ kn.

(a) Show that X ¥ Y and D are varieties in k2n.
(b) Define

Show that j defines an isomorphism between X « Y and (X ¥ Y) « D. In other
words, one can replace an intersection between varieties with the intersection
of another variety and a linear variety.

10.13.6. Show that a rational function u :V Æ W between varieties V and W is dominant if
and only if W is the smallest variety in W containing u(V).

10.13.7. Let f(X,Y) = X3 - X2 + Y2 and g(X,Y) = X2 + Y2 + X. Show that the map

sends the variety V(f) to the variety V(g). Show also that the two places of f with
center 0 are mapped to places of g with distinct centers. See Figure 10.22.

j X Y
X

X Y
XY

X Y
, ,( ) =

+ +
Ê
ËÁ

ˆ
¯̃

2

2 2 2 2

j j: , .X Y v v v« Æ ( ) = ( )k byn2

Figure 10.22. The curves in Exercise
10.13.7.

Y

X
X2 + Y2 + X = 0

X3 – X2 + Y2 = 0
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10.13.8. Show that the map f in Example 10.13.31 cannot be expressed as a pair of homoge-
neous polynomials without common zeros.

Section 10.15

10.15.1. What is the genus of the cubic f(X,Y) = X3 - Y2?
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Notation

N = the natural numbers {0,1,2, . . .}
Z = the ring of integers
Q = the field of rational numbers
R = the field of real numbers
R* = the extended real numbers, that is, R » {•}
I = the unit interval [0,1]
C = the field of complex numbers
H = the noncommutative division ring of quaternions

In the context of an n-tuple p, pi will always refer to the ith component of p. The same
holds for functions. If f :Rn Æ Rm, then fi is the ith component function of f, that is,

Nn = {z = (z1,z2, . . . ,zn) | zi Œ N}
Zn = {z = (z1,z2, . . . ,zn) | zi Œ Z}
Rn = {p = (p1,p2, . . . ,pn) | pi Œ R}

= n-dimensional Euclidean space
Rn

+ = {p Œ Rn | pn ≥ 0}
= the upper halfplane of Rn

Rn
- = {p Œ Rn | pn £ 0}

= the lower halfplane of Rn

In = {p = (p1,p2, . . . ,pn) | 0 £ pi £ 1}
= the unit “cube” in Rn

dij = Kronecker delta (1, if i = j, and 0, otherwise)
e1, e2, . . . , en = standard (orthonormal) basis of Rn, that is, ei = (di1,di2, . . . ,din)
|v| = length of vector v
pq = the segment from point p to point q in Rn, unless p and q are

quaternions, in which case this denotes their product
||pq|| = signed distance from p to q
–(u,v) = angle between vectors u and v

f f f fmp p p p( ) = ( ) ( ) ( )( )1 2, , . . . , .



–s(u,v) = signed angle between vectors u and v
Bn(p,r) = {q Œ Rn | |pq| < r}
Bn(r) = Bn(0,r)
Bn = Bn(0,1)

= the open (n-dimensional) unit disk in Rn

Dn(p,r) = {q Œ Rn | |pq| £ r}
= an n-dimensional closed disk

Dn = Dn(0,1)
= the closed (n-dimensional) unit disk in Rn

Sn-1 = {q Œ Rn | |q| = 1}
= the (n - 1)-dimensional unit sphere in Rn

S+
n-1 = Sn-1 « Rn

+
= the upper hemisphere

S-
n-1 = Sn-1 « Rn

-
= the lower hemisphere

Pn = n-dimensional projective space
Pn(k) = n-dimensional projective space over a field k
[L] = [a,b,c], where L is a line in P2 defined, in homogeneous coor-

dinates, by the equation 

There are natural inclusions: 0 = R0 Ã R1 Ã R2 Ã . . .
Similarly for the other spaces above.

The map f: Sn Æ Sn, f(p) = -p, is called the antipodal map of Sn and p and -p are
called antipodal points.

Xk = the k-fold Cartesian product of the set X

X D Y = (X - Y) » (Y - X) (symmetric difference)
inf X = infimum or greatest lower bound of the set X of real numbers
sup X = supremum or least upper bound of the set X of real numbers
cl(X) = closure of X
int(X) = interior of X
aff(X) = affine hull of X
conv(X) = convex hull of X
f(a+) = right-handed limit of f at a
f(a-) = left-handed limit of f at a
f(d)(x) = the dth derivative of f
I = In = n ¥ n identity matrix that consists of 1s along the diagonal and

0s elsewhere
Eij(c) = n ¥ n elementary matrix that consists of 1s on the diagonal,

the value c in the ijth position, and 0s elsewhere (if i = j, then
the ith element on the diagonal is c, not 1)

D(c1,c2, . . . ,cn) = n ¥ n diagonal matrix whose ith diagonal entry is ci and which
has 0s elsewhere

AT = transpose of the matrix A
det(A) = determinant of matrix A
tr(A) = trace of matrix A

X X X¥ ¥ ◊ ◊ ◊ ¥
k

1 244 344

aX bY cZ+ + = 0.
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vT = the column vector form (n ¥ 1 matrix) of the row vector v (1
¥ n matrix)

GL(n,k) = the linear group of nonsingular n ¥ n matrices over k = R or
C

O(n) = the group of real orthogonal n ¥ n matrices
SO(n) = the group of real special orthogonal n ¥ n matrices
ker h = kernel of a homomorphism
im h = image of a homomorphism
V(f) = set of zeroes of f (see pages 468, 675, and 676)
<a,b, . . .> = ideal generated by elements a, b, . . . in a ring

= the radical of an ideal I
R(f,g) = RX(f,g) = the resultant of polynomials f(X) and g(X)
k[V] = ring of polynomial function on V
k(V) = field of rational functions on V
trk(K) = transcendence degree of field K over k

= the complex conjugate of the complex number z

1X = the identity map on the set X
cA = the characteristic function of a set A as a subset of a given

larger set X
f-1(y) = {x | f(x) = y}
a | b = a divides b
Sign(x) = +1 if x ≥ 0 and -1 otherwise (returns an integer)
Sign(s) = sign of permutation s

= +1 if s is an even permutation, -1 if s is an odd permutation
atan2(y,x) = undefined, if x = y = 0,

p/2, if x = 0 and y > 0,
-p/2, if x = 0 and y < 0,
0, if y = 0 and x > 0,
p, if y = 0 and x < 0, and
q, where -p < q < p, tan q = y/x, and q lies in the same 

quadrant
as (x,y).

Note: atan2(y,x) is closely related to the ordinary arctangent tan-1(y/x). However, 
the ordinary arctangent, which is a function of one variable, is not able
to keep track of the quadrant in which (x,y) lies, whereas atan2 does. For
example,

exp(x) = ex

L(V,W) = vector space of linear (see page 873)
Lk(V1,V2, . . . ,Vk;W) = Vector space of multilinear maps (see page 875)
tM = tangent bundle of manifold M
nM = normal bundle of manifold M

atan but atan2 3 3
3
4

2 3 3
4

- -( ) = - ( ) =, , , .
p p

z

I
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Vect (M) = vector space of vector fields on the manifold M
kS(s) = signal curvature function of curve in R2

k(s) = curvature function
t(s) = torsion function
<s> = simplicial complex generated by simplex s
[s] = oriented simplex s
Cq(K) = group of q-chains
Bq(K) = group of q-boundaries
Zq(K) = group of q-cycles
Hq(K) = q-th homology group
ª = homeomorphic, isomorphic
� = homotopic, homologous
�A = homotopic relative to A

Partial derivative notation for a function f:

T(A,B, . . .) = (A¢,B¢, . . .) : This means that T(A) = A¢, T(B) = B¢, . . .

Commutative diagram: In general, if one has a directed graph where the nodes are
sets and the arrows correspond to maps between these sets, then this is said to con-
stitute a commutative diagram if, whenever two directed paths start and end at the
same points, the corresponding composition of maps is equal. Commutative diagrams
are nice to have and the terminology is useful in many areas of mathematics. As an
example, consider the diagram

If G(g(a)) = F(f(a)) for all a Œ A, then the diagram is said to be commutative.

A B

g F

C D

f

G

æ Ææ
Ø Ø

æ Ææ

∂
∂

∂
∂

∂
∂

∂
∂ ∂

f
x

f
y

or f f for D f D f

f

x

f
x y

or f f for D f D f respectively etc

x y

xx yy

, , , ,

, , , , , ., ,

1 2

2

2

11 1 2

respectively, etc,

2
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Basic Algebra

B.1 Number Theoretic Basics

Definition. If a and b, b π 0, are integers and if a = kb for some integer k, then we
say that b divides a and that b is a divisor of a. We write b|a.

Definition. A positive integer p greater than 1 whose only integer divisors are ±1 or
±p is called a prime number. Two integers a and b are said to be relatively prime if ±1
are the only common divisors. Given nonzero integers n1, n2, . . . , nk, the greatest
common divisor of these integers, denoted by gcd(n1,n2, . . . ,nk) or simply (n1,n2) if k
= 2, is the largest integer that divides all the ni. The least common multiple of these
integers, denoted by lcm(n1,n2, . . . ,nk), is defined to be the smallest nonnegative
integer m so that ni divides m for all i.

B.1.1. Theorem. If a and b are integers that have a greatest common divisor d, then
there are integers s and t such that

Proof. This follows from the Euclidean algorithm for integers. See, for example,
[Mill58].

Definition. Let m be an integer. Two integers a and b are said to congruent modulo
m, or mod m, if m divides a - b, equivalently, a = b + km for some k. In that case we
shall write

Definition. Let a and m be integers. If (a,m) = 1, then a is called a quadratic residue
modulo m if the congruence

has a solution; otherwise, a is called a quadratic nonresidue modulo m.

x2 ∫ ( )a mod m

a b mod m .∫ ( )

sa tb d+ = .



B.2 Set Theoretic Basics

Definition. A (binary) relation between sets X and Y is a subset S of the Cartesian
product X ¥ Y. If X = Y, then we call S a relation on X. The notation xSy is often used
to denote the fact that (x,y) Œ S.

Definition. Let S be a relation between sets X and Y. Define subsets dom(S) and
range(S), called the domain and range of S, respectively, by

and

The relation S is said to be one-to-one if x1Sy and x2Sy imply that x1 = x2. The rela-
tion S is said to be onto Y if for all y in Y there is an x in X so that xSy. S is said to
be well defined if xSy1 and xSy2 imply that y1 = y2.

Definition. Let S be a relation on a set X. Below are names and definitions of some
common properties such a relation may possess:

Reflexive: For all x Œ X, xSx
Symmetric: For all x, y Œ X, if xSy, then ySx
Antisymmetric: For all x, y Œ X, if xSy and ySx, then x = y
Transitive: For all x, y, z Œ X, if xSy and ySz, then xSz

Definition. An equivalence relation on a set X is a reflexive, symmetric, and transi-
tive relation on X.

B.2.1. Example. It is easy to show that the congruence relation ∫ on the set of inte-
gers is an equivalence relation.

The reason that equivalence relations play such an important role in mathemat-
ics is that they capture a fundamental concept.

B.2.2. Theorem. Let X be a nonempty set.

(1) Given a relation S on X and x Œ X, define

If S is an equivalence relation, then each Sx is nonempty and X is the disjoint
union of these sets.

(2) Conversely, assume that X is the disjoint union of nonempty sets Aa. Define a
relation S on X by the condition that (x,y) Œ S if and only if both x and y
belong to Aa for some a. Then S is an equivalence relation.

S X Sx y x y= Œ{ }.

range y x y for some x inS S X( ) = { }.

dom x x y for some y inS S Y( ) = { }
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Proof. Straightforward.

Definition. Let S be an equivalence relation on a set X. If x Œ X, then the equiva-
lence class of x, denoted by [x], is defined by

The quotient space of X by S, denoted by X/S, is defined by

Definition. Let S be a relation on a set X. The equivalence relation on X induced by
S, or the induced equivalence relation, is defined to be intersection of all equivalence
relations on X that contain S.

One can easily show that the equivalence relation induced by a relation is an 
equivalence relation and one can think of it as the “smallest” equivalence relation 
containing S.

Definition. A well-defined relation S between two sets X and Y is called a 
function or map from the domain of S to Y. A one-to-one function is called an 
injective function or injection. An onto function is called a surjective function or
surjection.

We shall use the notation

to mean that f is a function between sets X and Y whose domain is X and call f a
function from X to Y. Given such a function, the standard notation for y, given xfy, is
f(x) and one typically uses the notation y = f(x) when talking about f. One sometimes
calls the range of f the points traced out by f.

Definition. Given a set X, define the diagonal map

by

Definition. Given maps fi :Xi Æ Yi, define the product map

by

f f f x x x f x f x f xn n n n1 2 1 2 1 1 2 2¥ ¥ ◊ ◊ ◊ ¥( )( ) = ( ) ( ) ( )( ), , . . . , , , . . . , .

f f fn n n1 2 1 2 1 2¥ ¥ ◊ ◊ ◊ ¥ ¥ ¥ ◊ ◊ ◊ ¥ Æ ¥ ¥ ◊ ◊ ◊ ¥: .X X X Y Y Y

d x x x x( ) = ( ), , . . . , .

d : X X X XÆ ¥ ¥ ◊ ◊ ◊ ¥

f : X YÆ

X S X= [ ] Œ{ }x x .

x y x y[ ] = Œ{ }X S .

B.2 Set Theoretic Basics 819



Definition. The graph of a function f :X Æ Y, denoted by graph(f), is the set that
defines it, that is,

Definition. Given two functions f :X Æ Y and g :Y Æ Z, the composite function

is defined by (g � f)(x) = g(f(x)), x Œ X.

Definition. A function f :X Æ Y that is one-to-one and onto is called a bijective func-
tion or a bijection. In this case, the inverse of f, denoted by f-1, is the function

defined by the condition that f-1(y) = x if and only if f(x) = y.

If the function f :X Æ Y has an inverse, then it is easy to see that f-1 � f and 
f � f-1 are the identity functions on X and Y, respectively. There is a converse to this.

B.2.3. Theorem. If f :X Æ Y and g :Y Æ X are two functions with the property that
g � f and f �g are the identity maps of X and Y, respectively, then g = f-1.

Proof. Straightforward.

The characterization of the inverse of a function in Theorem B.2.3 is often what
is used to determine if a function is the inverse of another one.

Definition. Let f :X Æ Y and let A Õ Y. The inverse image of A under f, denoted by
f-1(A), is defined by

For example, if f(x) = x2, then [3,5] = f-1([9,25]).

Definition. Let f :X Æ X. Any x in X with the property that f(x) = x is called a fixed
point of the map f. If A Õ X and if f(a) Œ A for all a Œ A, then we say that A is invari-
ant under f or that A is an invariant or fixed set for f.

Note that a fixed set is not necessarily a set of fixed points. For example, the map
f(x,y) = (x + 1,y) has the x-axis as a fixed set but none of the points on the x-axis are
fixed points.

Definition. A set X is countable if it is finite or there is a bijection between X and
the set of positive integers.

We finish with some definitions of orderings for the elements of a set.

f x f x- ( ) = Œ ( ) Œ{ }1 A X A .

f - Æ1 : Y X

g f� : X ZÆ

graph f x f x x( ) = ( )( ) Œ{ } Õ ¥, .X X Y
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Definition. Let X be a set. A partial order on X is a reflexive, antisymmetric, and
transitive relation on X. A total order on X is a partial order £ with the additional
property that for all x, y Œ X either x £ y or y £ x. A well-ordering on X is a total order
£ with the property that every nonempty subset A of X has a smallest element in A,
that is, there is an a Œ A such that a £ a¢ for all a¢ Œ A.

Notation. Given a total order £ on a set X, we shall let < denote the relation on X
defined by x < y if and only if x £ y and x π y. Note that the relation < obtained in this
way is not a total order because it is not reflexive, but we get back to the total order
£ by simply adding the relations x £ x. Throughout this book, when we have a rela-
tion denoted by “<” and call it an ordering, we will always assume that it came from
some associated total order £. Expressions such as “the total order <” or “the well-
ordering <” will mean “the total order £” or “the well-ordering £”, respectively.

The standard example of a total order is the usual £ relation on numbers, which
explains our choice of notation for such a relation. The usual £ relation is a well-
ordering of the set of nonnegative integers. On the other hand, the usual < relation is
not a total order on numbers by itself because it is not reflexive. If one desires to have
stand-alone definitions for natural orderings like <, one can introduce a notion of
strict partial orders (which basically removes the reflexive property), strict total
orders, and a corresponding version of well-ordering and smallest element. This is not
needed in this book. It should also be noted that there are some slight variations in
the definitions for orderings in the literature and readers might have to be careful
when they see these terms. However, any differences are technical only and do not
change the essential concepts they are trying to capture.

B.3 Permutations

Definition. A permutation of a set X is a bijection s :X Æ X. The set of permuta-
tions on X will be denoted by S(X). Given two permutations s and t of X, define their
product s �t to be the composition of the two maps, namely,

The operation � actually makes S(X) into a (noncommutative) group (see the 
next section for the definition of a group), but this will not play a role in the current 
discussion.

Definition. The set of permutations of {1,2, . . . ,n} together with the operation � is
called the symmetric group of degree n and is denoted by Sn.

This section collects a few basic facts about Sn.

Definition. A permutation t in Sn is called a transposition if it interchanges two
numbers and leaves all others fixed, that is, there are i, j Œ{1,2, . . . ,n} with i π j such
that t(i) = j, t(j) = i, and t(k) = k, for k π i or j.

s t s t�( )( ) = ( )( ) Œx x for x X.
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B.3.1. Lemma. Every permutation s in Sn, n ≥ 2, can be written as a product of
transpositions, that is,

where ti is a transposition.

Proof. We use induction on n. The lemma is clearly true if n = 2. Note that the iden-
tity map is the composition t �t for any transposition t. Assume that the lemma is true
for n - 1, n ≥ 3, and let s be a permutation in Sn.

Case 1. s(n) = n.

In this case, s can be thought of as belonging to Sn-1. The inductive hypothesis
implies that s is a product of transpositions in Sn-1. Since transpositions of 
{1,2, . . . ,n - 1} can be thought of as transpositions of {1,2, . . . ,n}, we are done.

Case 2. s(n) = i, i π n.

Let t1 be the transposition in Sn defined by t1(n) = i and t1(i) = n. Then

By Case 1, t1 �s = t2 �t3 � · · · �tk, for some transpositions ti. It follows that 
s = t1 �t2 � · · · �tk, which proves Case 2 and hence the Lemma.

The way in which a permutation can be written as a product of transpositions is
not unique, but we have

B.3.2. Theorem. Let s be a permutation in Sn and suppose that

where ti and hj are transpositions in Sn. Then s and t are either both even or both
odd.

Outline of Proof. If f :Rn Æ R and s Œ Sn, then define fs :Rn Æ R by

(B.1)

Now consider the function D :Rn Æ R given by

One can show that D and Ds (as defined by equation (B.1)) satisfies the following two 
properties:

D x x x x xn j i
i j

1 2, , . . . , .( ) = -( )
<

’

f x x x f x x xn ns s s s1 2 1 2, , . . . , , , . . . , .( ) = ( )( ) ( ) ( )

s t t t
h h h

= ◊ ◊ ◊
= ◊ ◊ ◊

1 2

1 2

� � �

� � �

s

t ,

t s t s t1 1 1�( )( ) = ( )( ) = ( ) =n n i n.

s t t t= ◊ ◊ ◊1 2� � � k ,
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(1) If s, t Œ Sn, then Ds�t = (Dt)s.
(2) For each transposition t in Sn, Dt = -D.

Using (1) and (2) we see that for the s in the theorem

In other words, (-1)s = (-1)t and the theorem is proved.

Theorem B.3.2 shows that the next definition is well defined.

Definition. A permutation s in Sn is said to be even if it can be written as a product
of an even number of transpositions. Otherwise, s is said to be odd.

Clearly, the product of two even permutations is even. Also, s in Sn is even if and
only if s-1 is even. Therefore, if we define s ~ t whenever s �t-1 is even, then ~ is an
equivalence relation on Sn and Sn gets partitioned into two equivalence classes by ~,
namely, the even and odd permutations.

Definition. The sign of a permutation s, denoted by sign (s), is defined by

Definition. A function f :Xd Æ Y is said to be symmetric if

for all xi Œ X and all permutations s of {1,2, . . . ,d}.

B.4 Groups

The word “group” comes up in several places in this book. The concept is really only
essential in Chapters 7 and 8, which involve algebraic topology, but it is useful else-
where because it does capture some important properties in a single word. This
section will only survey those definitions and results that are needed in this book.
More is not possible. In fact, with the exception of the fundamental group of a topo-
logical space which involves free groups and references the concept of the commuta-
tor subgroup, all the groups will be abelian. For that reason, other than giving the
necessary definitions, most of the discussion and examples will concentrate on abelian
groups. The interested reader is directed to books on modern algebra for a more thor-
ough discussion of groups, in particular, the references in the bibliography.

Let G be a set and let · be a binary operation on G, that is, · is a map

◊ ¥ Æ: .G G G

f x x x f x x xd d1 2 1 2, , . . . , , . . . ,,( ) = ( )( ) ( ) ( )s s s

sign if is even

if is odd

s s
s

( ) = +
= -

1

1

, ,

, .

D D D

D D

s t t t

h h h

= = -( )

= = -( )
◊◊◊

◊◊◊

1 2

1 2

1

1

� � �

� � �

s

t

s

t
.
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As usual in this case, if g1 and g2 belong to G, then we shall write g1 ·g2 instead of the
functional form · (g1,g2).

Definition. The pair (G,·) is called a group provided that the operation · satisfies:

(1) (Associativity) For all elements g1, g2, and g3 in G,

(2) (Identity) There is an element e in G, called the identity of G, such that

for all g in G.
(3) (Inverse) For every g in G, there is an element g-1 in G, called the inverse of

g, such that

B.4.1. Example. The symmetric group of degree n, Sn, along with product 
operation �, which we discussed in the last section is a finite group with n! 
elements.

It is not hard to show that the identity and the inverse of each element in a group
is unique. Also, it is always the case that

The simplest group is one that consists only of an identity element.

Definition. A group consisting only of an identity element is called a trivial group.

Definition. A group (G,·) is said to be an abelian or commutative group if it also 
satisfies:

(4) (Commutativity) For all g1 and g2 in G, g1 ·g2 = g2 ·g1.

B.4.2. Example. The standard examples of abelian groups are Z, Q, R, and C with
respect to addition. The sets Q - 0, R - 0, and C - 0 become groups under multipli-
cation. The sets Rn and Zn become groups using the vector addition

B.4.3. Example. For each positive integer n let

and define an operation +n on Zn as follows: If a, b Œ Zn, then set

Zn n= -{ }0 1 2 1, , , . . . ,

x x x y y y x y x y x yn n n n1 2 1 2 1 1 2 2, , . . . , , , . . . , , , . . . , .( ) + ( ) = + + +( )

g g- -( ) =1 1
.

g g g g e◊ = ◊ =- -1 1 .

e g g e g◊ = ◊ = ,

g g g g g g1 2 3 1 2 3◊ ◊( ) = ◊( ) ◊ .
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where

and k and d are integers with 0 £ d < n. It is easy to check that (Zn,+n) (or Zn for short)
is an abelian group called the group of integers modulo n (or mod n).

B.4.4. Example. Let p be a prime number and let X = {1,2, . . . ,p-1}. Define an oper-
ation · on X as follows: Let a, b Œ X. Choose integers k and r so that

and set

It is easy to check that (X,·) is a well-defined abelian multiplicative group. Note that
since any integer in X is relatively prime to p, Theorem B.1.1 implies that it has an
inverse with respect to ·.

Note. In the future, when dealing with a group (G,·) for which the operation · is
obvious from the context, we shall simply refer to “the group G.”

In the case of a general group one typically thinks of the group operation as a
multiplication operation and uses “1” as the group identity. The trivial groups con-
sisting of only one element will be denoted by 1. One also simply writes “gh” for a
product of group elements g and h rather than “g ·h”. If g is a group element, then gk

will denote the element

In the abelian group case, the standard convention is to use additive notation, so that
we shall use “+” for the group operation, “0” will be the (additive) identity, and “-g”
will denote the inverse of g. The trivial abelian groups consisting of only one element
will be denoted by 0. If k Œ Z, then kg will denote the element

Definition. Let (G,·) and (H,·¢) be groups. We say that (H,·¢) is a subgroup of
(G,·) provided that H Õ G and ·¢ agrees with ·, that is, ·¢ = · | (H ¥ H).

B.4.5. Example. Two trivial subgroups of any group are the subgroup consisting of
only the identity and the whole group itself.

g g g
k times

+ + ◊ ◊ ◊ +1 244 344

g g g
k times

◊ ◊ ◊ ◊ ◊ ◊1 244 344

a b r◊ = .

ab kp r where r pn= + < <, .0

a b kn d+ = + ,

a b dn+ = ,
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B.4.6. Example. For each integer k,

is a subgroup of Z (with respect to addition) and all subgroups of Z are of that form.

B.4.7. Example. Zn is a subgroup of Rn (with respect to vector addition).

B.4.8. Example. The set {0,3,6} defines a subgroup of Z9.

B.4.9. Example. The set {2n | n Œ Z} » {3} is not a subgroup of Z.

The next lemma gives a simple criterion for when a subset of a group is a 
subgroup.

B.4.10. Lemma.

(1) A nonempty subset H of a group G is a subgroup (under the operation induced
from that of G) if and only if the element h1h2

-1 belongs to H for all h1 and
h2 in H.

(2) The intersection of an arbitrary number of subgroups is a subgroup.

Proof. Straightforward.

Definition. A subgroup H of a group G is said to be a normal subgroup of G if for
all g in G and all h in H, ghg-1 belongs to H.

Note that every subgroup of an abelian group is normal.

Definition. Let G and H be groups. A map f :G Æ H is called a homomorphism if

for all g1 and g2 in G. The homomorphism is said to be an isomorphism if it is a bijection.
In that case we say that the group G is isomorphic to the group H and write G ª H.

It is easy to see that homomorphisms map the identity to the identity and inverses
to inverses. In the abelian case this means that f(0) = 0 and f(-g) = - f(g) for a homo-
morphism f. If f is an isomorphism, then so is its inverse f-1.

B.4.11. Example. Inclusion maps such as Z Ã Q Ã R are clearly homomorphisms.

B.4.12. Example. Define a map

as follows: If k Œ Z and k = an + b, where a and b are integers and 0 £ b < n, then let
pn(k) = b. The map pn is a homomorphism.

Next, let f :G Æ H be a homomorphism of groups.

pn n: Z ZÆ

f g g f g f g1 2 1 2( ) = ( ) ( )

k kn nZ Z= Œ{ }
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Definition. The kernel of f, ker(f), and the image of f, im(f), are defined by

and

B.4.13. Lemma.

(1) The sets ker(f) and im(f) are subgroups of G and H, respectively, with ker(f) a
normal subgroup.

(2) The homomorphism f is one-to-one if and only if ker(f) = 1.

Proof. Easy.

Now let H be a subgroup of a group G.

Definition. Let g Œ G. The sets

and

are called the left and right coset, respectively, of H in G generated by g. If G is abelian,
then the left and right coset are the same set and will be called simply a coset in that
case.

It can be shown that two left cosets of H in G are either the same sets or they are
totally disjoint and the union of all left cosets is G. The same holds for right cosets.
In the abelian case, if we define a relation ~ in G by

then ~ is an equivalence relation and the cosets of H in G are nothing but the equiv-
alence classes of ~.

B.4.14. Example. The cosets of {0,3,6} in Z9 are {0,3,6}, {1,4,7}, and {2,5,8} .

B.4.15. Example. The cosets of Z = Z1 in Z2 are the sets {(n,k) | n Œ Z} for integers k.

Cosets have the same number of elements. One can also show that every left coset
is a right coset if the subgroup is normal.

Definition. The factor or quotient group of a group G by a normal subgroup H is
defined to be the pair (G/H, ·¢), where

g g if g g H1 2 1 2~ ,- Œ

Hg hg h H= Œ{ }

gH gh h H= Œ{ }

im f f g H g G( ) = ( ) Œ Œ{ }.

ker f g G f g( ) = Œ ( ) ={ }1
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and

for all g1, g2 Œ G.

It is straightforward to check that the normality of H implies that (G/H,·¢) is a
well-defined group usually denoted simply by G/H. If H is the trivial subgroup, then
one always identifies G/H with G in the natural way.

B.4.16. Example. If G = Z9 and H = {0,3,6}, then G/H ª Z3 .

B.4.17. Example. If G = Z2 and H = Z, then G/H ª Z .

B.4.18. Example. If G = Z and H = {kn | k Œ Z}, then G/H ª Zn.

B.4.19. Lemma. Let G and H be groups. If f :G Æ H is a surjective homomorphism,
then

Proof. Let K = ker f. Simply check that the map

is an isomorphism.

Definition. A group G is said to be cyclic if G = {1, g, g2, . . .} for some fixed element
g in G.

It is easy to see that a cyclic group G is abelian and that the group G in the defi-
nition is just Zg using additive notation. The standard examples of cyclic groups are

and

It follows from the next lemma that there are no others.

B.4.20. Lemma. A cyclic group G is isomorphic to either Z or Zn for some positive
integer n.

Proof. Let G = Zg and define a homomorphism

Z Z Zn nk for k in and k relatively prime to n= , .

Z Z= 1

G K H

gK f g

Æ
Æ ( )

H G fª ( )ker .

g H g H g g H1 2 1 2( ) ¢◊ ( ) = ◊( ) ,

G H gH g G= Œ{ }
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by

If ker(j) = 0, then G ª Z; otherwise,

for some n Œ Z and G ª Zn.

Definition. Let G be a group and let g be an element of G. Define the order of g, o(g),
to be the smallest of the integers k > 0, such that gk = 1, if such integers exist; other-
wise, define the order of g to be •.

B.4.21. Example. Let G = Z6 = {0,1,2,3,4,5}. Then o(1) = 6 = o(5), o(2) = 3 = o(4),
o(3) = 2, and o(0) = 1.

Definition. The number of elements in a group G is called the order of G and is
denoted by o(G). If G has only a finite number of elements, then G is called a group
of finite order, or simply a finite group.

Note that two finite groups of the same order need not be isomorphic.

B.4.22. Theorem. (Lagrange) Let G be a finite group.

(1) If H is a subgroup of G, then o(H) | o(G). In fact, if n is the number of cosets
of H in G, then o(G) = n o(H). The number n is called the index of H in G.

(2) If g Œ G, then o(g) | o(G).

Proof. Part (1) follows from the fact that G is a union of disjoint cosets of H, each
of which has the same number of elements. To prove (2), one only has to observe that
o(g) = o(Zg) and apply (1).

Definition. A commutator of a group G is any element in G of the form ghg-1h-1,
where g, h Œ G.

B.4.23. Theorem. The set of finite products of commutators of G is a normal sub-
group H called the derived or commutator subgroup of G. The factor group G/H is
abelian and called the abelianization of G.

Proof. See [Dean66].

Finally, we want to define a free group. Basically, a free group is a group in which
no “nontrivial” identities hold between elements. An example of a trivial identity is
gg-1 = 1, which holds for all elements g in a group. A nontrivial identity would be
something like g1g2

5g3 = 1, if that were to hold for all elements gi. Although the idea

ker j( ) = Œ{ }kn k Z

j k kg( ) = .

j : Z Æ G
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of a free group is fairly simple, the definition is surprisingly complicated. We shall
sketch it only.

Let S be any set of elements called symbols. Think of the elements of S as the
letters in an alphabet S. A reduced word in S will refer to any formal string of the form

where si Œ S, ni Œ Z, and we have made all possible elementary contractions. An ele-
mentary contraction involves replacing occurrences of the form snsm by sn+m, occur-
rences of s0 by 1, and occurrences of 1·s for s·1 by s. For example, if S = {a,b,c}, then
a2bc-7 is a reduced word but a2a-2bc is not since it can be reduced to bc. Let F(S) denote
the set of reduces words in S. If u, v Œ F(S), define u·v to be the element of F(S) obtained
by concatenating u and v and then reducing the result as much as possible.

B.4.24. Lemma. (F(S),·) is a group.

Definition. (F(S),·) is called the free group generated by S. The elements of S are called
generators of the group F(S).

A key property of free groups is that they satisfy a universality property with
respect to being able to extend maps of S into a group to a homomorphism of F(S).

B.4.25. Theorem. Let G be any group and let h :S Æ G be any map. Then h extends
to a unique homomorphism H:F(S) Æ G.

Proof. See [Fral67]. To put it another way, each h lifts to a unique map H so that
we have a commutative diagram

s s sn n
k
nk

1 2
1 2 ◊ ◊ ◊
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inclusion map i

S
h

G

H
F(S)

»

This universal factorization property is what actually defines the free group F(s) in the
sense that if K is any other group containing S and satisfying this property, then K is
isomorphic to F(S).

Definition. Let G1, G2, . . . , and Gn be groups. The direct product of the Gi, denoted
by G1 ¥ G2 ¥ · · · ¥ Gn, is the group (G1 ¥ G2 ¥ · · · ¥ Gn,·), where the operation · is defined
by

(The operations on the right are the operations from the groups Gi.)

It is easy to check that (G1 ¥ G2 ¥ · · · ¥ Gn,·) is a group.

g g g g g g g g g g g gn n n n1 2 1 2 1 1 2 2, , . . . , , , . . . , , , . . . , .( ) ◊ ¢ ¢ ¢( ) = ◊ ¢ ◊ ¢ ◊ ¢( )



B.5 Abelian Groups

In this section we concentrate on abelian groups and we shall use the standard addi-
tive notation.

Definition. Let G be an abelian group and let g1, g2, . . . , gk Œ G. Then

is called the subgroup of G generated by the g1, g2, . . . , and gk.

It is easy to show that Zg1 + Zg2 + · · · + Zgk is in fact a subgroup of G and also that it
is the intersection of all subgroups of G which contain the elements g1, g2, . . . , and gk.

B.5.1. Lemma. For any abelian group G the elements of finite order form a unique
subgroup T(G) called the torsion subgroup of G.

Proof. The proof is clear since o(0) = 1, o(-g) = o(g), and o(g + h) | o(g)o(h) for all
g, h Œ G.

Definition. An abelian group G is said to be torsion-free if it has no element of finite
order other than 0, that is, T(G) = 0.

Clearly, G/T(G) is a torsion-free group for every abelian group G.

Definition. An abelian group G is said to be finitely generated if

for some g1, g2, . . . , gn Œ G. In that case, the gi are called generators for G.

B.5.2. Example. All cyclic groups are finitely generated.

B.5.3. Example. The group Z2 is not cyclic, but it is finitely generated since 
Z2 = Z(1,0) + Z(0,1). A similar statement holds for Zn, n ≥ 2 .

B.5.4. Example. The groups Q and R are not finitely generated.

B.5.5. Lemma. Subgroups of finitely generated abelian groups are finitely 
generated.

Proof. See [Dean66].

Definition. Let G1, G2, . . . , and Gn be abelian groups. The external direct sum of the
Gi, denoted by G1 ƒ G2 ƒ · · · ƒ Gn, is the group (G1 ¥ G2 ¥ · · · ¥ Gn,+), where the oper-
ation + is defined by

G Zg Zg Zgn= + + ◊ ◊ ◊ +1 2

Z Z Z Zg g g n g n g n g nk k k i1 2 1 1 2 2+ + ◊ ◊ ◊ + = + + ◊ ◊ ◊ + Œ{ }
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It is easy to check that (G1 ¥ G2 ¥ · · · ¥ Gn,+) is an abelian group. Except for the
different name and notation that is used in the abelian case, the external direct sum
is just the direct product defined at the end of the last section.

B.5.6. Example. The groups Zn and Rn are the external direct sums of n copies of
Z and R, respectively.

Definition. Let G1, G2, . . . , and Gn be subgroups of an abelian group G. Define the
sum of the groups Gi, denoted by G1 + G2 + · · · + Gn, by

It is easy to show that G1 + G2 + · · · + Gn is a subgroup of G.

Definition. If G1, G2, . . . , and Gn are subgroups of a given abelian group G and if
each element g in G can be written uniquely in the form g1+g2+ · · · +gn with
gi in Gi, then G is called the internal direct sum of the groups Gi and we write 
G = G1≈G2≈ · · · ≈Gn.

Because it is easily shown that G1≈G2≈ · · · ≈Gn is isomorphic to 
G1ƒG2ƒ · · · ƒGn, one usually does not distinguish between internal and external
direct sums and uses the same symbol ≈ to denote either direct sum. The context
decides which is being used. One also uses the summation notation, so that the 
expressions

will all refer to the same object.

B.5.7. Theorem. (The Fundamental Theorem of Finitely Generated Abelian
Groups) Let G be a finitely generated abelian group. Then

for some r, t ≥ 0, where 1 < ni Œ Z and ni | ni+1 if t > 0. The integer r is called the rank of
G and is denoted by rank(G). The integers n1, n2, . . . , and nt are called the torsion coef-
ficients of G. Both the rank and the torsion coefficients are uniquely determined by G.

Proof. See [Dean66].

Note that the example

Z Z Z2 3 6≈ ª

G
r

n n ntª ≈ ≈ ◊ ◊ ◊ ≈ ≈ ≈ ≈ ◊ ◊ ◊ ≈Z Z Z Z Z Z1 244 344 1 2 ,

G G G G G G and Gn n
i

n

i1 2 1 2
1

≈ ≈ ◊ ◊ ◊ ≈ ƒ ƒ ◊ ◊ ◊ ƒ ≈
=

, ,

G G G g g g g Gn n i i1 2 1 2+ + ◊ ◊ ◊ + = + + ◊ ◊ ◊ + Œ{ }.

g g g g g g g g g g g gn n n n1 2 1 2 1 1 2 2, , . . . , , , . . . , , , . . . , .( ) + ¢ ¢ ¢( ) = + ¢ + ¢ + ¢( )
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shows that the condition that ni divides ni+1 is important for the uniqueness part of
Theorem B.5.7.

B.5.8. Theorem. Assume that G, H, and K are finitely generated abelian groups.

(1) If j :K Æ G and y :G Æ H are homomorphisms satisfying

(a) j is injective,
(b) im(j) = ker(y), and
(c) y is surjective,

then

(2) The function rank is “additive”, that is,

Before proving Theorem B.5.8, we introduce some more notation.

Definition. The subset {g1,g2, . . . ,gn} of an abelian group G is said to form a basis
for G provided that

(1) G = Zg1 + Zg2 + · · · + Zgn, and
(2) if k1g1 + k2g2 + · · · + kngn = 0, for ki Œ Z, then kigi = 0 for all i.

It is easy to show that {g1,g2, . . . ,gn} is a basis for the group G if and only if

Thus, by Theorem B.5.7 each finitely generated group has a basis.

Definition. Any abelian group which is isomorphic to G1≈G2≈ · · · ≈Gn, where each
Gi is isomorphic to Z, is called a free abelian group.

It follows easily from Theorem B.5.7 and the definitions that the following con-
ditions on a finitely generated abelian group are equivalent:

(1) G is free.
(2) G is torsion-free.
(3) G has a basis consisting of elements of infinite order.

Proof of Theorem B.5.8. To prove part (1), assume without loss of generality that
all three groups G, H, and K are torsion-free. Let {h1,h2, . . . ,hs} and {k1,k2, . . . ,kt} be
bases for H and K, respectively, where s = rank(H) and t = rank(K). Choose elements
g1, g2, . . . , and gs in G such that y(gi) = hi. It is now easy to show that

j j jk k k g g gt s1 2 1 2( ) ( ) ( ){ }, , . . . , , , , . . . ,

G g g gn= ≈ ≈ ◊ ◊ ◊ ≈Z Z Z1 2 .

rank H K rank H rank K≈( ) = ( ) + ( ).

rank G rank K rank H( ) = ( ) + ( ).
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forms a basis for G. In other words,

Part (2) follows from (1) by letting G = H ≈ K and letting j and y be the natural
inclusion and projection map, respectively, and the theorem is proved.

B.5.9. Theorem. Let G be a free abelian group with basis {g1,g2, . . . ,gn} . If H is any
group and h1, h2, . . . , hn Œ H, then there exists a unique homomorphism j :G Æ H
such that j(gi) = hi.

Proof. Show that any element g of G has a unique representation of the form

and define

Free abelian groups behave very similarly to free groups. Compare Theorem B.5.9
with Theorem B.4.25. There is also an analogous commutative diagram to describe
what is going on and we again have a universal factorization property. Alternatively,
Theorem B.5.9 can be paraphrased by saying that, given a free group G and any other
group H, in order to define a homomophism from G to H it suffices to define it on a
basis of G, because any map from a basis of G to H extends uniquely to a homo-
morphism of G. The freeness of G is important because consider

and define

The map j does not extend to a homomorphism j :Z3 Æ Z. Of course, although 1 is
a basis for Z3, the group Z3 is not a free group and so there is no contradiction.

Next, let G and H be groups.

Definition. Let

and if hi Œ hom(G,H), then define

by

h h g h g h g for g G1 2 1 2+( )( ) = ( ) + ( ) Œ .

h h G H1 2+ Æ:

hom , :G H h h G( ) = Æ{ }H is a homomorphism

j 1 1( ) = ŒZ.

G = = { }Z3 0 1 2, ,

j g k h k h k hn n( ) = + + ◊ ◊ ◊ +1 1 2 2 .

g k g k g k g kn n i= + + ◊ ◊ ◊ + Œ1 1 2 2 , ,Z

rank G t s rank K rank H( ) = + = ( ) + ( ).
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B.5.10. Lemma. (hom (G,H),+) is an abelian group.

Proof. Straightforward.

B.5.11. Lemma. Let G be any group that is isomorphic to Z. If h Œ hom (G,G), then
there is a unique integer k such that h(g) = kg for all g in G.

Proof. Since G is isomorphic to Z, there is some g0 in G so that G = Zg0. It fol-
lows that h(g0) = kg0 for some integer k, because {g0} is a basis for G. The fact that
o(g0) = • implies that the integer k is unique. Now let g be any element of G. Again,
there is some integer t with g = tg0. Thus,

and the lemma is proved.

Lemma B.5.11 implies that if G ª Z, then hom (G,G) = Z1G ª Z.

B.6 Rings

Definition. A ring is a triple (R,+,·) where R is a set and + and · are two binary oper-
ations on R, called addition and multiplication, respectively, satisfying the following:

(1) (R,+) is an abelian group.
(2) The multiplication · is associative.
(3) For all a, b, c Œ R we have

(a) (left distributativity)
(b) (right distributativity)

Two standard examples of rings are Z and Zn.

Definition. A ring in which the multiplication is commutative is called a commuta-
tive ring. A ring with a multiplicative identity is called a ring with unity. An element
of a ring with unity is called a unit if it has a multiplicative inverse in R.

Definition. Let (R,+,·) be a ring. If A is a subset of R and if (A,+,·) is a ring, then
(A,+,·) is called a subring of R.

Note. From now on, like in the case of groups, we shall not explicitly mention the
operations + and · for a ring(R,+,·) and simply refer to “the ring R.” Products “r · s”
will be abbreviated to “rs.”

Definition. A subset I of a ring R with the property that

(1) I is an additive subgroup of R (equivalently, a - b Œ I for all a, b Œ I), and
(2) ra, ar Œ I for all r Œ R and a Œ I,

a b c a c b c+( ) ◊ = ◊( ) + ◊( )
a b c a b a c◊ +( ) = ◊( ) + ◊( )

h g h tg th g t kg k tg kg( ) = ( ) = ( ) = ( ) = ( ) =0 0 0 0 ,
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is called an ideal of R.

An ideal is a subring. Note that if the ring R is commutative, then we can replace
condition (2) in the definition of an ideal by

(2¢) ra Œ I for all r Œ R and a Œ I.

Definition. Let R and R¢ be rings. A map h :R Æ R¢ is said to be a (ring) homomor-
phism if

for all a, b Œ R. If h is a bijection, then h is called a (ring) isomorphism.

Definition. Let h :R Æ R¢ be a homomorphism between rings. The kernel of h, ker
h, and the image of h, im(h), are defined by

and

B.6.1. Theorem.

(1) The image of a ring homomorphism is a subring.
(2) The kernel of a homomorphism is an ideal.
(3) A ring homomorphism is an isomorphism if and only if its kernel is 0.

Proof. See [Fral67].

Definition. Let I be an ideal in a ring (R,+,·). The factor or quotient ring of the ring
R by the ideal I, denoted by (R/I,+,·), is defined as follows: The additive group (R/I,+)
is just the quotient group of (R,+) by the subgroup (I,+). The operation · is defined by

Using the definition of an ideal it is easy to check that the quotient ring of a ring
R by an ideal I is in fact a ring and that the map

that sends an element into its coset is a surjective ring homomorphism with kernel I.
In analogy with the integers one can define a notion of congruence.

Definition. Let I be an ideal in a commutative ring R. Let a, b Œ R. We say that a
and b are congruent modulo I, or mod I, and write

R R IÆ

r I s I rs I+( ) ◊ +( ) = + .

im h h r r R( ) = ( ) Œ{ }.

ker h r R h r= Œ ( ) ={ }0

h a b h a h b and

h ab h a h b

+( ) = ( ) + ( )
( ) = ( ) ( ),
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if a - b Œ I.

It is easy to show that ∫ is an equivalence relation on R and the equivalence classes
are just the cosets of the additive subgroup of R.

Definition. Let r1, r2, . . . , and rk be elements of a commutative ring R. then

is called the ideal generated by the ri.

It is easy to show that <r1,r2, . . . ,rk> is an ideal.

Definition. If r is an element of a commutative ring R, then <r> is called the prin-
cipal ideal generated by r in R.

Definition. An ideal I in a ring R, I π R, is called a maximal ideal if, whenever J is
an ideal of R with I Õ J Õ R, then either J = I or J = R.

Definition. A commutative ring R, I π R, with identity is said to be an integral domain
if ab = 0 implies that either a = 0 or b = 0.

Definition. An integral domain is called a principal ideal domain (PID) if all of its
ideals are principal ideals.

The ring of integers is a good example of a principal ideal domain.

Definition. Let a and b be elements of a commutative ring R. We say that b divides
a, denoted by b|a, if b is nonzero and a = bc, for some c in R. One calls b a factor or
divisor of a in this case.

Definition. Let R be a commutative ring with unity. Two elements a and b in R are
said to be associates if a = ub, where u is a unit.

Definition. Let R be an integral domain. An element a in R is said to be irreducible
if

(1) a is not 0,
(2) a is not a unit,
(3) for all b in R, if b|a, then b is a unit or b is an associate of a.

Definition. An integral domain is called a unique factorization domain (UFD)
provided that

(1) Every nonzero element r is either a unit or a product of irreducible 
elements.

(2) If

r p p p q q qn m= ◊ ◊ ◊ = ◊ ◊ ◊1 2 1 2 ,

< > = + + ◊ ◊ ◊ + Œ{ }r r r a r a r a r a Rk k k i1 2 1 1 2 2, , . . . ,

a b I∫ ( )mod ,
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where the pi and qj are irreducible elements, then n = m and upon renum-
bering we may assume that pi and qi differ by a unit factor.

The ring of integers is the standard example of a UFD.

B.6.2. Theorem. Every PID is a UFD.

Proof. See [Fral67].

Definition. Let I and J be ideals in a commutative ring R. Define the product of I
and J, denoted by I · J or IJ, by

Define the sum of I and J, denoted by I + J, by

It is easy to show that I · J, the set of finite linear combinations of products of 
elements from I and J, is actually an ideal. One can rephrase the definition of an ideal
in a commutative ring R as follows:

One can also show that the sum of ideals is an ideal. In fact, if I, J, and K are ideals,
then the following properties hold:

(1) Associativity: I · (J ·K) = (I · J) ·K
(2) Commutativity: I · J = J · I
(3) Distributivity: I · (J + K) = I · J + I ·K

(I + J) ·K = I ·K + J ·K

What this means is that using the product and sum on ideals along with standard set
operations, one can define a factorization theory for ideals.

Definition. Let I and J be ideals in a commutative ring R. We say that I is a divisor
of J and that J is a multiple of I if I � J.

For example, <5> is a divisor of <15> and <15> is a multiple of <5> in Z.

Definition. An ideal I in a commutative ring R is called a prime ideal if, whenever ab
lies in I for some elements a and b in R, then either a or b belongs to I. Equivalently,
the ideal I is prime if ab ∫ 0 (mod I) implies that either a ∫ 0 (mod I) or b ∫ 0 (mod I).

For example, <7> is a prime ideal in Z.

B.6.3. Theorem. Let R be a commutative ring with unity element and let I be an
ideal in R. Then I is a prime ideal if and only if R/I is an integral domain.

An ideal is an additive subgroup I with R I I◊ Õ .

I J a b a I b J+ = + Œ Œ{ }, .

I J a b a b a b a I and b J for all in n i i◊ = + + ◊ ◊ ◊ + Œ Œ{ }1 1 2 2 .
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Proof. See [Mill58].

Definition. Let I be an ideal in a commutative ring R. The radical of I, denoted 
by , is defined by

An ideal I is called a radical ideal if .

B.6.4. Proposition. Let I be an ideal in a commutative ring R.

(1) is an ideal that divides I.

(2) is a radical ideal.
(3) If I is prime, then I is a radical ideal.

Proof. Easy.

The next definition generalizes the notion of a prime power element.

Definition. An ideal I in a commutative ring R is called a primary ideal if whenever
ab Œ I for some b that does not lie in I, then .

We can rephrase the definition to say that every zero divisor of a primary ideal 
I is in its radical, that is, ab ∫ 0 (mod I) and b � 0 (mod I) implies that a ∫ 0
(mod ).

B.6.5. Proposition. The radical of a primary ideal in a commutative ring is a prime
ideal.

Proof. Easy.

For example, note that the ideal <q> is primary in Z if and only if q = pn where p
is a prime.

Now the equation

implies that

The natural question is whether such a factorization of ideals holds in general. The
answer is yes, provided that the ring satisfies certain chain conditions.

Definition. A commutative ring R is said to satisfy the ascending chain condition if
for every sequence of ideals Ii satisfying

I I1 2Õ Õ ◊ ◊ ◊

< > = < > « < > « ◊ ◊ ◊ « < >n p p pk k
m
km

1 2
1 2 .

n p p pk k
m
km= ◊ ◊ ◊1 2

1 2

I

a IŒ

I

I

I I=

I a R a I for some nn= Œ Œ >{ }0 .

I

B.6 Rings 839



there is an n, so that i > n implies that Ii = Ii+1.

Definition. A commutative ring R is said to be a Noetherian ring provided that it 
satisfies the ascending chain condition.

B.6.6. Theorem. A commutative ring R is Noetherian if and only if every ideal is
finitely generated.

Proof. See [Jaco66] or [ZarS60], Volume I.

Definition. An ideal I in a commutative ring is said to be reducible if I can be
expressed as the intersection of two ideals I1 and I2, I = I1 « I2, where Ij π I. Other-
wise, I is said to be irreducible.

A prime ideal is irreducible, but a primary ideal need not be. An irreducible ideal
is not necessarily prime. For example, <pk> is irreducible in Z but not prime if k > 1.
On the other hand,

B.6.7. Lemma. Every irreducible ideal in a Noetherian ring is primary.

Proof. See [Jaco66] or [ZarS60], Volume I.

Definition. An intersection

of ideals in a ring is said to be an irredundant intersection if I is a proper subset of

for i = 1, 2, . . . , n.

B.6.8. Theorem. Every ideal in a Noetherian ring is a finite irredundant 
intersection of primary ideals and the prime ideals associated to this factorization are
unique.

Proof. See [Jaco66] or [ZarS60], Volume I.

B.7 Polynomial Rings

One of the important examples of rings are polynomial rings.

Definition. Let A be a subring and S a subset of a ring R. The polynomial ring over
A generated by S, denoted A[S], is defined by

A S B B is a subring of R and A S B[ ] = « Õ{ }, .

I I I I Ii i n1 2 1 1« « ◊ ◊ ◊ « « « ◊ ◊ ◊ «- +

I I I In= « « ◊ ◊ ◊ «1 2
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It is easy to show that the intersection of subrings is a subring, so that A[S] is a
subring. Furthermore, if A is a subring of a commutative ring R with unity and if u
is any element of R, then it is easy to show that

This justifies calling A[u] a polynomial ring. We would like to define the polynomial
ring R[X] in an “indeterminate” (or “variable”) X, where “indeterminate” basically
means that X is transcendental over R in the following sense:

Definition. Let A be a subring of a commutative ring R with unity and let u Œ R.
We say that u is transcendental over A if

with ai Œ R implies that ai = 0 for all i. If u is not transcendental, then u is said to be
algebraic over A.

The definition of R[X] boils down to constructing an object with the desired 
properties. Because polynomials are a special case of formal power series, we shall
deal with both simultaneously so as not to have to duplicate basically the same defi-
nitions later on.

Definition. Let R be a ring. A formal power series over R is an infinite sequence
(a0,a1,a2, . . .) where the ai are elements of R. If all but a finite number of the ai are
zero, then the sequence is called a polynomial over R. The power series for which all
the ai are zero is called the zero power series or zero polynomial and will be denoted
by 0. In the case of a nonzero polynomial, the largest index i for which ai is nonzero
is called the degree of the polynomial. The zero polynomial is said to have degree 0.

Let f = (a0,a1,a2, . . .) and g = (b0,b1,b2, . . .) be formal power series over a ring R.
Define an addition + and a multiplication · of formal power series as follows:

and

Let X be some symbol (or indeterminate). We shall identify the polynomial

with the formal expression “aXi.” The terms “aX0” and “aX1” will be abbreviated to
“a” and “aX,” respectively. With this identification a formal power series

f a a a= ( )0 1 2, , , . . .

( , , . . . , , , , . . .)0 0 0 0
1i

a
-

1 24 34

f g c c c where c a bk i k i
i

k

◊ = ( ) = -
=
Â0 1 2

0

, , , . . . , .

f g a b a b a b+ = + + +( )0 0 1 1 2 2, , , . . .

a a u a u a un
n

0 1 2
2 0+ + + ◊ ◊ ◊ + =

A u a a u a u a u a R and nn
n

i[ ] = + + + ◊ ◊ ◊ + Œ ≥{ }0 1 2
2 0 .
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can then be expressed in the more usual form as

In the case of a polynomial of degree n, one writes f in the form

(B.2)

Definition. The term anXn in expression (B.2) is called the leading term of f and an
is called the leading coefficient of f and are denoted by lt(f) and lc(f), respectively.

B.7.1. Theorem. If R[[X]] is the set of formal power series over R, then (R[[X]],+,·)
is a ring. If R is commutative, then so is R[[X]]. If R is an integral domain, then so is
R[[X]]. If R[X] Ã R[[X]] is the set of polynomials over R, then (R[X],+,·) is a subring
of R[[X]].

Proof. Easy.

Definition. R[[X]] is called the formal power series ring over R (in the indeterminate
X). R[X] is called the polynomial ring over R (in the indeterminate X).

Formal power series are the algebraic analog of power series in calculus. The 
difference is that we do not worry about convergence here and there is no need to
define a topology for the ring.

B.7.2. Theorem. If R is a subring of a ring Q and if u is an element of Q that is
transcendental over R, then R[X] is isomorphic to R[u].

Proof. The theorem follows from a universal factorization property satisfied by R[X]
with respect to ring homomorphisms, namely,

Let R¢ be a subring of Q¢ and let u¢ Œ Q¢. Any ring homomorphism h :R Æ R¢
extends to a unique ring homomorphism H:R[X] Æ R¢[u¢], which maps X to u¢.

B.7.3. Theorem. If R is a UFD, then both R[[X]] and R[X] are UFDs. The only 
irreducible element in R[[X]], up to unit, is X.

Proof. For R[X] see [Dean66], for example. For R[[X]] see [Seid68].

Let R be a ring and let X1, X2, . . . be symbols (or indeterminates). Define rings R((n))

and R(n) recursively by

and

R R

R R X for nn n
n

0

1 0

( )( )

( )( ) -( )( )
=
= [ ][ ] >, ,

f f X a a X a X a X a Xn
n

i
i

i

n

= ( ) = + + + ◊ ◊ ◊ + =
=
Â0 1 2

2

0

.

f f X a a X a X a Xi i

i

= ( ) = + + + ◊ ◊ ◊ =
=

•

Â0 1 2
2

0

.
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Definition. R((n)) is called the formal power series ring over R in indeterminates 
X1, X2, . . . , and Xn and is denoted by R[[X1,X2, . . . ,Xn]]. R(n) is called the polynomial
ring over R in indeterminates X1, X2, . . . , and Xn and is denoted by R[X1,X2, . . . ,Xn].

Note that with our notation, R[[X1,X2, . . . ,Xn]] = R[[X1,X2, . . . ,Xn-1]] [[Xn]] and
similarly for the polynomial ring. From this, Theorem B.7.3, and induction on n we
get

B.7.4. Corollary. If R is a UFD, then both R[[X1,X2, . . . ,Xn]] and R[X1,X2, . . . ,Xn]
are UFDs.

Now, every polynomial f = f(X1,X2, . . . ,Xn) Œ R[X1,X2, . . . ,Xn] can be written as a
finite sum in the form

(B.3)

Definition. An expression of the form

where a is a nonzero element of R, is called a monomial of total degree d, where

The element a is called the coefficient of the monomial. If a = 1, we call the expres-
sion a power product.

Definition. Let f Œ R[X1,X2, . . . ,Xn]. The total degree or simply degree of the poly-
nomial f is the largest total degree of all the monomials appearing in f. We say that f
is a quadratic, cubic, . . . polynomial if its degree is 2, 3, . . . , respectively. The polyno-
mial f is said to be homogeneous of degree d or simply homogeneous if each monomial
that appears in it has total degree d.

Note that any formal power series f in R[[X1,X2, . . . ,Xn]] can be written uniquely
in the form

where each fi is a homogeneous polynomial of degree i.

Definition. If fi is not the zero polynomial, then fi is called the ith homogeneous
component of f.

Every polynomial f can be written uniquely in the form

f f f f= + + + ◊ ◊ ◊0 1 2

d r r rn= + + ◊ ◊ ◊ +1 2 .

aX X Xr r
n
rn

1 2
1 2 ◊ ◊ ◊ ,

a X X X where a Rr r r
r r

n
r

r r rn
n

n1 2
1 2

1 21 2◊◊◊ ◊◊◊◊ ◊ ◊ ŒÂ , .

R R

R R X for nn n
n

0

1 0

( )

( ) -( )

=
= [ ] >, .
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where each fi is a homogeneous polynomial of degree i and d is the total degree of f.

Definition. If f is nonzero, then the smallest integer i, so that fi π 0, is called the
order of f and is denoted by ord(f). The order of 0, ord(0), is defined to be •.

Finally, note that if f Œ R[[X1,X2, . . . ,Xn]], then for each i, if we let

then f Œ Ri[[Xi]]. The same holds for the polynomial rings.

Definition. Let

be a polynomial in R[X1,X2, . . . ,Xn]. The map

is called the evaluation map associated to f and pf(c1,c2, . . . ,cn) will be denoted by
f(c1,c2, . . . ,cn). If

then (c1,c2, . . . ,cn) is called a zero or root of f.

An evaluation map (other than at 0) does not make sense for formal power series
without a notion of limit; however, substitution or composition does as long as the
series we are substituting has no constant term. A precise definition of the formal
power series that is the composition of two power series is actually somewhat tech-
nical (see [ZarS60], Volume II or [Walk50]) and we shall not take the time to do this
here. Intuitively,

Definition. If f(X), g(X) Œ R[[X]], then the composition of f and g, denoted by 
(f �g)(X), is the power series where X in f(X) is replaced by g(X) and we collect all the
coefficients of all the same powers of X in the result. The power series f �g is also
referred to as the power series obtained from f by substitution of g into f.

We cannot allow g to have a constant term, otherwise the composition would
potentially have a constant term that would be an infinite sum of elements of R.

B.7.5. Theorem. If f, g Œ R[[X]], where ord(g) > 0, then f �g is well defined. 
Furthermore,

(1) If fg π 0, then ord(f �g) = ord(f) ord(g).
(2) If h Œ R[[X]] and ord(h) > 0, then f � (g �h) = (f �g) �h.

f c c cn1 2 0, , . . . , ,( ) =

c c c a c c cn r r r
r r

n
r

n
n

1 2 1 21 2
1 2, , . . . ,( ) Æ ◊ ◊ ◊◊◊◊Â

pf
nR R: Æ

f a X X X where a Rr r r
r r

n
r

r r rn
n

n= ◊ ◊ ◊ Œ◊◊◊ ◊◊◊Â 1 2
1 2

1 21 2 ,

R R X X X Xi i i n= [ ][ ]- +1 1 1, . . . , , , . . . , ,

f f f fd= + + ◊ ◊ ◊ +0 1
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Proof. See [Walk50].

B.7.6. Proposition. A polynomial f Œ R[X1,X2, . . . ,Xn] of degree k is homogeneous
of degree k if and only if

(B.4)

Proof. The only nontrivial part is showing that if f satisfies equation (B.4), then 
it is homogeneous of degree k, but this reduces to the easy case n = 1 by setting 
X2, X3, . . . , Xn to X1.

Definition. A polynomial f Œ R[X1,X2, . . . ,Xn] is said to be symmetric if

for all permutations s of {1,2, . . . ,n}.

Consider the equation

(B.5)

where the left-hand side is a polynomial in an indeterminate Z over the ring 
R[X1,X2, . . . ,Xn] and the right-hand side is its expansion, which defines polynomials
si = si(X1,X2, . . . ,Xn). Because the left-hand side of equation (B.5) is unchanged by
permuting the Xi’s, the polynomials si are symmetric.

Definition. The polynomial si is called the ith elementary symmetric polynomial in
the variables (indeterminates) X1, X2, . . . , Xn.

For example, if n = 3, then

The elementary symmetric polynomials form a basis for all symmetric 
polynomials.

B.7.7. Theorem. (The Fundamental Theorem of Symmetric Polynomials) If
f(X1,X2, . . . ,Xn) is a symmetric polynomial over a ring R with unity, then there exists
a unique polynomial F(X1,X2, . . . ,Xn) over R, so that

where si is the ith elementary polynomial in X1, X2, . . . , Xn.

Proof. See [Jaco66].

f X X X Fn n1 2 1 2, , . . . , , , . . . , ,( ) = ( )s s s

s
s
s

1 1 2 3 1 2 3

2 1 2 3 1 2 1 3 2 3

3 1 2 3 1 2 3
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X X X X X X X X X and

X X X X X X

, , ,

, , ,

, , .

( ) = + +
( ) = + +
( ) =

Z X Z X Z X Z Z Zn
n n n n

n-( ) -( ) ◊ ◊ ◊ -( ) = - - - ◊ ◊ ◊ - -( )- -
1 2 0 1

1
2

2 1s s s s ,

f X X X f X X Xn n1 2 1 2, , . . . , , , . . . ,( ) = ( )( ) ( ) ( )s s s

f tX tX tX t f X X Xn
k

n1 2 1 2, , . . . , , , . . . , .( ) = ( )

B.7 Polynomial Rings 845



One can define a formal derivative for power series and polynomials.

Definition. Let

be a formal power series (or polynomial) over a ring R with unity. Define the deriva-
tive of f, denoted by f ¢(X) or df/dX, by

If f(X1,X2, . . . ,Xn) is a multivariate formal power series (or polynomial), define the ith
partial derivative of f, denoted by ∂f/∂Xi, to be the derivative of f thought of as a formal
power series (or polynomial) in Xi.

It is easy to see that this definition of derivative or partial derivative of a polyno-
mial matches the corresponding definition that one encounters in calculus if one
thinks of the polynomials as functions. It also satisfies the same properties. The main
point is that there is no need to introduce the notion of limits and the purely alge-
braic aspects of the derivative turn out to have important applications in algebra, in
particular, algebraic geometry.

B.7.8. Theorem. (Euler) If f(X1,X2, . . . ,Xn) is a homogeneous polynomial of degree
d in the variables Xi, then

Proof. Clearly, it suffices to prove the result in the case where f is a monomial

But in that case,

from which the theorem easily follows.

B.7.9. Theorem. (Hilbert Basis Theorem) If R is a Noetherian ring, then so is R[X].

Proof. See [Jaco66].

B.7.10. Corollary. If R is a Noetherian ring, then so is R[X1,X2, . . . ,Xn].

Proof. This uses Theorem B.7.9 and induction.

B.7.11. Theorem. If R is a Noetherian ring, then so is R[[X1,X2, . . . ,Xn]].

Proof. See [ZarS60], Volume II.

X
X

f X X X d f X X Xi
i

n i n
∂

∂ 1 2 1 2, , . . . , , , . . . , ,( ) = ( )
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B.8 Fields

Definition. Let R be a ring with unity. If every nonzero element of R is a unit, then
R is called a skew field or division ring. A field is a commutative division ring. A subring
of a field that is a field is called a subfield.

B.8.1. Example. Q, R, and Zp, where p is prime, are all fields.

It is easy to see that the intersection of fields is again a field.

Definition. Let K be a field. The intersection k of all of its nonzero subfields is called
the prime field of K. If k = K, then K is called a prime field.

The prime field of a field can also be described as the “smallest” subfield of a 
field.

B.8.2. Theorem. A prime field is isomorphic to either Q or Zp, where p is 
prime.

Proof. See [Mill58].

Definition. Let K be a field and k its prime subfield. If k is isomorphic to Zp, where
p is prime, then K is said to have characteristic p. Otherwise, k is isomorphic to Q and
K is said to have characteristic 0.

Every integral domain D can be imbedded in a field. The construction generalizes
the way that one gets the rational numbers from the integers. Let

Define an equivalence relation ~ on Q* as follows:

It is easy to check that ~ is an equivalence relation. Let Q denote the equivalence
classes of Q* with respect to ~. Define two operations + and · on Q:

B.8.3. Theorem. (Q,+, ·) is a well-defined field.

Proof. See [Mill58].

Definition. The field (Q,+, ·) in Theorem B.8.3 is called the quotient field of the inte-
gral domain D.

a b c d ad bc bd

a b c d ac bd

, , ,

, , , .

[ ] + [ ] = +[ ]
[ ] ◊ [ ] = [ ]

a b c d if and only if ad cd, ~ , .( ) ( ) =

Q a b a b D and b* , , .= ( ) Œ π{ }0
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B.8.4. Example. The field Q of rational numbers is the quotient field of the integers
Z.

B.8.5. Theorem. Let R be a commutative ring with unity element and let I be an
ideal in R. Then I is a maximal ideal if and only if R/I is a field.

Proof. See [Mill58].

B.8.6. Corollary. Every maximal ideal in a commutative ring with unity element is
prime.

Proof. This follows from Theorems B.6.3 and B.8.5.

The next theorem and its proof is the basic division algorithm for polynomials.

B.8.7. Theorem. Let k be a field. If f(X), g(X) Œ k[X] and g(X) π 0, then there exist
unique polynomials q(X), r(X) Œ k[X] such that

(1) f = q g + r, and
(2) r = 0 or degree r < degree g.

Proof. See [Dean66].

B.8.8. Theorem. Let k be a field. If f(X) Œ k[X], then for any c Œ k there exists a
unique polynomial q(X) Œ k[X] such that

Proof. See [Dean66].

An easy consequence of Theorem B.8.8 is

B.8.9. Corollary. Let k be a field. If f(X) Œ k[X], then c is a zero of f if and only if
X - c divides f.

Let k be a field and f(X) Œ k[X]. If c is a root of f(X), then it follows from Corol-
lary B.8.9 that we can express f(X) in the form

where c is not a root of g(X).

Definition. The integer n is called the multiplicity of the root c of f(X). If n = 1, then
one calls c a simple root. If n > 1, then one calls c a multiple root. More generally, if
g(X) is a factor of f(X) and if n is the largest integer with the property that g(X)n

divides f(X), then n is called the multiplicity of the factor g(X). We call g(X) a multi-
ple factor if n > 1 .

f X X c g X
n( ) = -( ) ( ),

f X X c q X f c( ) = -( ) ( ) + ( ).
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B.8.10. Theorem. Let k be a field. A nonconstant polynomial f(X) Œ k[X] has a mul-
tiple factor g(X) if and only if g(X) is also a factor of f ¢(X).

Proof. Let f(X) = g(X)nh(X). The product rule of the derivative easily leads to the
result.

B.8.11. Theorem. If k is a field, then k[X] is a PID (and hence a UFD).

Proof. See [Mill58].

Only the polynomial ring in one variable over a field is a PID. To see that 
k[X1,X2, . . . ,Xn] is not a PID if n > 1, one simply needs to convince oneself that the
ideal in k[X,Y] consisting of all polynomials whose constant term is 0 is not a prin-
cipal ideal.

Definition. Let f1, f2, . . . , fk Œ k[X]. A greatest common divisor of the fi, denoted by
gcd(f1,f2, . . . ,fk), is a largest degree polynomial g Œ k[X] that divides each of the fi. A
least common multiple of the fi, denoted by lcm(f1,f2, . . . ,fk), is a smallest degree poly-
nomial h Œ k[X] with the property that each fi divides h.

B.8.12. Theorem. Let f1, f2, . . . , fk Œ k[X].

(1) The polynomials gcd(f1,f2, . . . ,fk) and lcm(f1,f2, . . . ,fk) are unique up to scalar 
multiple.

(2) <f1,f2, . . . ,fk> = <gcd(f1,f2, . . . ,fk)>.

Proof. This is easy. The key fact is that k[X] is a UFD.

B.8.13. Theorem. If k is a field, then both k[[X1,X2, . . . ,Xn]] and k[X1,X2, . . . ,Xn]
are Noetherian.

Proof. First note that k satisfies the ascending chain condition since it has only two
ideals, namely, 0 and itself. Now use Corollary B.7.10 and Theorem B7.11.

Definition. Let K be a field. If k is a subfield of K, then K is called an extension (field)
of k.

Definition. Let K1 and K2 be extension fields of a field k. An isomorphism 
s :K1 Æ K2 is called an isomorphism over k if s is the identity on k. If K = K1 = K2,
then s is called an automorphism of K over k.

Definition. Let k be a subfield of a field K. If A Õ K, then k(A) will denote the small-
est subfield of K containing k and A, more precisely,

k A F F is a subfield of K which contains k and A( ) = « { }.
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If A consists of a single element a, then we shall usually write k(a) instead of k(A).

It is easy to show that the intersection of fields is a field and so k(A) is a well-
defined subfield.

Definition. If K is an extension of a field k and if K = k(a) for some element a, then
K is called a simple extension of k and the element a is called a primitive element of
K over k.

Definition. If k is a field, then k(X) will denote the field of quotients, or quotient
field, of k[X]. More generally, k(X1,X2, . . . ,Xn) will denote the field of quotients of
k[X1,X2, . . .,Xn].

There are natural inclusions

B.8.14. Theorem. Let k be a subfield of a field K. If a Œ K, then either

or a is a root of an irreducible polynomial f(X) in k[X] and

Proof. See [Mill58]. Note that <f(X)> is a maximal ideal and so k[X]/<f(X)> is a field
by Theorem B.8.5.

B.8.15. Theorem. Let K and K¢ be subfields of fields E and E¢, respectively, and let
j :K Æ K¢ be an isomorphism. Let

and

Assume that p(X) is irreducible. If c Œ E and c¢ Œ E¢ are roots of the polynomials p(X)
and p¢(X), respectively, then the isomorphism j extends to a unique isomorphism 
j¢ :K(c) Æ K¢(c¢) such that j¢(c) = c¢.

Proof. See [Dean66].

B.9 The Complex Numbers

This section will simply define the field of complex numbers. Complex numbers play
an essential role in many areas of mathematics. Appendix E will discuss some of their
nontrivial properties, especially as they relate to analysis.

¢( ) = ( ) + ( ) + ◊ ◊ ◊ + ( ) Œ ¢[ ]p X a a X a X K Xn
nj j j0 1 .

p X a a X a X K Xn
n( ) = + + ◊ ◊ ◊ + Œ [ ]0 1

k a k X f X( ) ª [ ] < ( )>.

k a k X( ) ª ( )

k k X k X X k X X XnÃ ( ) Ã ( ) Ã ◊ ◊ ◊ Ã ( )1 1 2 1 2, , , . . . , .
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Identify (a,b) Œ R2 with the formal expression a + ib. (0 + ib is abbreviated to 
ib and i·1, to i.) Using this notation define arithmetic operations + and · on R2 as
follows:

B.9.1. Theorem. (R2,+,·) is a field denoted by C which contains R as a subfield under
the identification of a with (a,0). 

Proof. Straightforward.

Thought of as field elements, the elements of R2 are called complex numbers. It is
easy to check that we have the well-known identity

in other words, -1 has a square root in C.

Definition. If z = a + ib Œ C, then a is called the real part of z and b is called the
imaginary part of z. Define functions Re(z) and Im(z) by

The complex conjugate of z, , and the modulus of z, |z|, are defined by 

and

Here are two simple facts that are easily checked:

(1) The modulus function is multiplicative, that is, |z1z2| = |z1||z2| .
(2) If z = a + ib, then we have the identity

B.10 Vector Spaces

Vector spaces are discussed in more detail in Appendix C. We only define them here
and list those basic properties that are needed in the section on field extensions.

Definition. A vector space over a field k is a triple (V,+,·) consisting of a set V of
objects called vectors together with two operations + and · called vector addition and

1 1
2 2 2 2z

a

a b

b

a b z
z=

+
-

+
=i

z a b= +2 2 .z a b= - i

z

Re Im .z a and z b( ) = ( ) =

i2 1= - ,

a b c d a c b d

a b c d ac bd ad bc

+( ) + +( ) = +( ) + +( )
+( ) ◊ +( ) = -( ) + +( )
i i i

i i i
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scalar multiplication, respectively, so that (V,+) is an abelian group, and for each a Œ
k and u Œ V, a·v Œ V. Furthermore, the following identities hold for each a, b Œ k and
u, v Œ V:

(1) (distributivity) a·(u + v) = a·u + a·v
(2) (distributivity) (a + b)·u = a·u + b·u
(3) (associativity) (ab)·u = a·(b·u)
(4) (identity) 1·u = u

For simplicity, the operator · is usually suppressed and one writes au instead of
a·u. Also, if the field and the operations are clear from the context, the vector space
(V,+,·) will be referred to simply as the vector space V. It is easy to show that

and it is useful to define a subtraction operators for vectors by setting

N-dimensional Euclidean space Rn, or n-space, is the most well-known example of
a vector space because it is more than just a set of points and admits a well-known
vector space structure over R. Namely, let u = (u1, . . . ,un), v = (v1, . . . ,vn) Œ Rn,
c Œ R, and define

One thinks of elements of Rn as either “points” or “vectors,” depending on the context.
More generally, it is easy to see that if k is a field, then kn is a vector space over k.

Function spaces are another important class of vector spaces. Let k be a field and
let A be a subset of kn. Then the set of functions from A to k is a vector space over k
by pointwise addition and scalar multiplication. More precisely, if f, g :A Æ k and c Œ
k, define

by

Definition. A subspace of a vector space V is a subset of V with the property that it,
together with the induced operations from V, is itself a vector space.

For example, under the natural inclusions, the vector spaces Rm, m £ n, are all
subspaces of Rn.

f g x f x g x and cf x c f x+( )( ) = ( ) + ( ) ( )( ) = ( )( ).

f g cf k+ Æ, : A

u v

u

+ = + +( )
= ( )

u v u v

c cu cu
n n

n

1 1

1

, . . . ,

, . . . , .

u v u v- = + -( ).

- = -( )u u1
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Definition. Let V be a vector space over a field k. Given a nonempty set of vectors
S = {u1, . . . , un} in V, we define the span of the set, span(S), or the span of the vectors
in S, span(u1, . . . ,un), to be the set of all vectors that are linear combinations of these
vectors, that is,

We say that the set S spans X and the vectors u1, . . . , un span a subspace X if

It is convenient to define span(f) = {0} .

It is easy to check that span(u1, . . . ,un) is a vector subspace of V.

Definition. Let V be a vector space over a field k. A nonempty set of vectors 
S = {u1, . . . , un} in V, is said to be linearly dependent if

for some field elements c1, c2, . . . , ck not all of which are zero. The set S and the
vectors u1, u2, . . . , un are said to be linearly independent if they are not linearly depen-
dent. It is convenient to define the empty set to be a linearly independent set of vectors.

In other words, vectors are linearly independent if no nontrivial linear combina-
tion of them adds up to the zero vector. Two linearly dependent vectors are often called
collinear. Two nonzero vectors u1 and u2 are collinear if and only if they are multi-
ples of each other, that is, span(u1) = span(u2).

Definition. Let X be a subspace of a vector space. A set of vectors S is said to be a
basis for X if it is a linearly independent set that spans X.

Note. The definitions of linearly independent/dependent, span, and basis above dealt
only with finite collections of vectors to make the definitions clearer and will apply to
most of our vector spaces. On a few occasions we may have to deal with “infinite dimen-
sional” vector spaces and it is therefore necessary to indicate what changes have to be
made to accommodate those. All one has to do is be a little more careful about what
constitutes a linear combination of vectors. Given an arbitrary, possibly infinite, set of
vectors {va}aŒI in a vector space, define a linear combination of those vectors to be a sum

where all but a finite number of the ca are zero. With this concept of linear combi-
nation, the definitions above and the next theorem will apply to all vector spaces.

B.10.1. Theorem. Every vector subspace of a vector space has a basis and the
number of vectors in a basis is uniquely determined by the subspace. Every set of lin-
early independent vectors in a vector space can be extended to a basis.

c
I

a a
a

v
Œ

Â

c cn n1 1u u 0+ ◊ ◊ ◊ + =

X u u= ( ) = ( )span S span n1, . . . , .

span S span c c c kn n n i( ) = ( ) = + ◊ ◊ ◊ + Œ{ }u u u u1 1 1, . . . , .
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Proof. See [Dean66].

Theorem B.10.1 justifies the following definition:

Definition. The dimension of a vector space V, denoted by dim V, is defined to be
the number of vectors in a basis for it. A m-dimensional subspace of an n-dimensional
vector space is said to have codimension n–m.

Note. With our definitions above, the vector space that consists only of the zero
vector has dimension 0 and the empty set is a basis for it. This may sound a little
strange, but it gives us a nice uniform terminology without which some results would
get a little more complicated to state.

Definition. Let V and W be vector spaces over a field k. A map T :V Æ W is called
a linear transformation if T satisfies

for all v Œ V, w Œ W, and a, b Œ k .

B.10.2. Theorem. The inverse of a linear transformation, if it exists, is a linear
transformation and so is the composite of linear transformations.

Proof. Easy.

Definition. A linear transformation is said to be nonsingular if it has an inverse; 
otherwise, it is said to be singular. A nonsingular linear transformation is called a
vector space isomorphism.

Definition. Let V and W be vector spaces over a field k. If T :V Æ W is a linear trans-
formation, then define the kernel of T, ker (T), and the image of T, im (T), by

and

B.10.3. Theorem. If T :V Æ W is a linear transformation between vector spaces V
and W, then the kernel and image of T are vector subspaces of V and W, respectively.
Furthermore,

Proof. Easy. See [John67].

Let W be a subspace of a vector space V over a field k. It is easy to check that the
quotient group V/W becomes a vector space over k by defining

dim dim dim ker .V = ( ) + ( )im T T

im T T( ) = ( ) Œ[ ] Õv v V W.

ker T T( ) = Œ ( ) ={ }v V v 0

T a b aT bTv w v w+( ) = ( ) + ( )
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for each coset v + W in V/W and c Œ k.

Definition. The vector space V/W is called the quotient vector space of V by W.

It is easy to show that the natural projection V Æ V/W that sends a vector in V
to the coset that it determines is a well-defined surjective linear transformation whose
kernel is W.

B.10.4. Theorem. Let V and W be vector spaces over a field k. Let v1, v2, . . . , vn be
a basis for V and let w1, w2, . . . , wn be any vectors in W. There exists a unique linear
transformation T :V Æ W such that T(vi) = wi, i = 1, 2, . . . , n.

Proof. Easy.

Let k be a field and S a set. Define F(S) to be the set of “formal” sums

where rs Œ k and all but a finite number of the rs are 0. There is an obvious addition
and scalar multiplication making F(S) into a vector space. A more precise definition
of F(S) would define it to be the set of functions j :S Æ k that vanish on all but a finite
number of elements in S. We leave it to the reader to fill in the technical details.

Definition. The vector space F(S) is called the free vector space over k with basis S.

B.10.5. Theorem. Let S be a set and V a vector space. If t :S Æ V is any map, then
there is a unique linear map T:F(S) Æ V with T(s) = t(s) for all s Œ S.

Proof. Easy. Like with free groups, the best way to think about this lifting of t to a
map T is via a commutative diagram:

r ss
s S

,
Œ
Â

c cv W v W+( ) = +
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T
F(S)

»

We have another universal factorization property and this is what actually defines F(S)
up to isomorphism.

B.11 Extension Fields

This section describes some fundamental properties of extension fields.



Definition. Let k be a subfield of a field K. An element a Œ K is said to be transcen-
dental over k if k(a) ª k(X). It is said to be algebraic over k if it is the root of a poly-
nomial f(X) Œ k[X]. If it is the root of an irreducible polynomial of degree n, then it
is said to be algebraic over k of degree n.

This definition of transcendental and algebraic agrees with the definition given for
rings in Section B.7.

B.11.1. Theorem. Let k be a subfield of a field K. If an element a Œ K is algebraic
over k, then a is the root of a unique irreducible polynomial with leading coefficient
equal to 1 called the minimum polynomial of a over k.

Proof. See [Jaco64].

Definition. An extension K of a field k is called an algebraic extension of k if every
element of K is algebraic over k. If K is not an algebraic extension of k, then it is called
a transcendental extension.

Definition. An extension K of a field k is called a finite extension of k of degree n if K
is a finite dimensional vector space over k of dimension n. Otherwise, K is called an
infinite extension of k of degree •. The degree of the extension is denoted by [K:k].

B.11.2. Theorem. If K is a finite extension of a field k, then K is an algebraic exten-
sion of k.

Proof. See [Mill58].

B.11.3. Theorem. If K is a finite extension of a field k, then K = k(q1,q2, . . . ,qn),
where the qi are algebraic over k.

Proof. See [Mill58].

B.11.4. Theorem. (Theorem of the Primitive Element) If k is a field of characteris-
tic 0 and if q1, q2, . . . , and qn belong to some extension field of k and are algebraic
over k, then

for some element q (which is algebraic over k). In other words, every finite extension
of a field of characteristic 0 is simple.

Proof. See [Mill58].

B.11.5. Theorem. Let q be a transcendental element over a field k and let K be a
field such that k Ã K Õ k(q) with k π K. Then there exists an element s in K which is
transcendental over k and K = k(s).

Proof. See [Walk50].

k knq q q q1 2, , . . . ,( ) = ( )
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Definition. Let f(X) Œ k[X] be a polynomial of positive degree. An extension field K
of k is called a splitting field of f(X) if

(1) f(X) is a product of linear factors in K{X}, that is,

with a Œ k, qi Œ K, and
(2) K = k(q1,q2, . . . ,qn).

B.11.6. Theorem. Every polynomial over a field k of positive degree has a splitting
field. Any two splitting fields of the polynomial are isomorphic over k.

Proof. See [Jaco64].

Definition. A polynomial f(X) Œ k[X] is said to be separable if it is a product of irre-
ducible polynomials each of which has only simple roots in a splitting field of f(X).

B.11.7. Theorem. Every polynomial over a field of characteristic 0 is separable.

Proof. See [Jaco64].

Definition. Let K be an extension of a field k. An element of K is said to be separa-
ble over k if it is algebraic over k and its minimum polynomial is separable. K is a
separable extension of k if every element of K is separable over k.

Definition. Let K be an extension of a field k. The elements a1, a2, . . . , an in K 
are said to be algebraically dependent over k if there exists a nonzero polynomial
f(X1,X2, . . . ,Xn) in k[X1,X2, . . . ,Xn] and f(a1,a2, . . . ,an) = 0. Otherwise, the elements
are said to be algebraically independent. An infinite set of elements of K is said to be
algebraically dependent over k if each of its finite subsets is algebraically dependent.
Otherwise it is said to be algebraically independent.

Alternatively, the elements a1, a2, . . . , an are algebraically independent over k if
the map

is an isomorphism over k.

Definition. Let K be an extension of a field k. A maximal set of elements in K that
are algebraically independent over k is called a transcendence basis for K over k. The
number of elements in a transcendence basis is called the transcendence degree of K
over k and is denoted by trk (K).

The notion of transcendence degree is justified by the following fact:

B.11.8. Theorem. Any two transcendence bases of K over k have the same cardi-
nal number of elements.

k X X X k a a a

f X X X f a a a
n n

n n

1 2 1 2

1 2 1 2

, , . . . , , , . . . ,

, , . . . , , , . . . ,

[ ] Æ [ ]
( ) Æ ( )

f X a X X X n( ) = -( ) -( ) ◊ ◊ ◊ -( )q q q1 2
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Proof. See [ZarS60].

Definition. A field k is said to be algebraically closed if every nonconstant polyno-
mial f(X) in k[X] has a zero in k.

The complex numbers C are the standard example of an algebraically closed field.
See Corollary E.5.2 for a proof.

Definition. Let K be an extension of a field k. K is called an algebraic closure of k if

(1) K is algebraic over k and
(2) K is algebraically closed.

B.11.9. Theorem.

(1) Every field k has an algebraic closure.
(2) Any two algebraic closures of k are isomorphic over k.

Proof. See [Jaco64].

B.11.10. Theorem. If k is an algebraically closed field, then every polynomial in
k[X] factors into a product of linear factors.

Proof. See [Dean66].

B.11.11. Theorem. Every algebraically closed field k is infinite.

Proof. We use Theorem B.8.2. If k has characteristic 0, then the prime subfield of k
is isomorphic to the reals. If k has characteristic p, p prime, then one needs to show
that the algebraic closure of Zp is infinite.

B.11.12. Theorem. If k is an algebraically closed field and f is a polynomial in
k[X1,X2, . . . ,Xn] that vanishes on all but a finite subset of kn, then f is the zero 
polynomial.

Proof. Because k is algebraically closed, it has an infinite number of elements by
Theorem B.11.11. If n = 1, then this follows from Theorem B.8.9 since f can only have
a finite number of zeros. The general case is proved by induction on n.

Definition. If k is a field, then k((X)) will denote the field of quotients of k[[X]]. More
generally, k((X1,X2, . . . ,Xn)) will denote the field of quotients of k[[X1,X2, . . . ,Xn]].

There are natural inclusions

The multiplicative inverse of a formal power series f in k[[X]] is 1/f in k((X)). The
following fact about 1/f is often used and is therefore worth stating explicitly, namely,
1/f is itself a power series in k[[X]] if it has a nonzero constant term.

k k X k X X k X X XnÃ ( )( ) Ã ( )( ) Ã ◊ ◊ ◊ Ã ( )( )1 1 2 1 2, , , . . . , .
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B.11.13. Lemma. If f Œ k[[X]] has a nonzero constant term (equivalently, ord(f) =
0), then there exists a g Œ k[[X]] with fg = 1.

Proof. Simply write out the series expansions for f and g and use the equation 
fg = 1 to solve for the series coefficients of g in terms of those of f.

B.11.14. Theorem. The units of k[[X]] are the elements f with ord(f) = 0.

Proof. Lemma B.11.13 proved half of the theorem. One still needs to show that every
unit has a nonzero constant term. This is left as an easy exercise for the reader.

B.11.15. Theorem. Every nonzero element f in k((X)) can be written uniquely in
the form

where ai Œ k and a0 π 0.

Proof. See [Walk50].

Theorem B.11.15 leads to a definition of order that extends the one for formal
power series.

Definition. The integer n in Theorem B.11.15 is called the order of f and is denoted
by ord(f).

Theorem B.7.5 can be interpreted as saying that the map f Æ f�g is a homomor-
phism of R[[X]] into itself. We can strengthen this in the case where R is field.

B.11.16. Theorem. If f, g Œ k[[X]], where ord(g) = 1, then the map f Æ f�g is an
order-preserving isomorphism of k[[X]], that is,

(1) ord(f) = ord(f �g).
(2) There is a g¢ Œ k[[X]] with ord(g¢) = 1, so that f = (f �g)�g¢ for all f Œ k[[X]].

Proof. See [Walk50].

B.12 Algebras

Definition. A ring A with unity that is a vector space over a field k and that satisfies

is called an algebra over k. If A is also a skew ring, then A is called a division algebra.

u ab ua b a ub for all u k a b A( ) = ( ) = ( ) Œ Œ, , , ,

f
X

a a X a X
n

= + + +( )1
0 1 2

2 . . . ,
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A P P E N D I X C

Basic Linear Algebra

C.1 More on Linear Independence

Vector spaces were already defined in Appendix B. This appendix gives a highly con-
densed summary of all the important facts about vector spaces that are used in the
book. For more details the interested reader is referred to any book on linear algebra,
such as those listed in the bibliography. For simplicity, unless stated otherwise, all
vector spaces here are assumed to be finite-dimensional vector spaces over the 
reals.

Related to the notion of linearly independent vectors is the notion of linearly 
independent points.

Definition. Elements p0, p1, . . . , pk of a vector space are said to be linearly inde-
pendent points if

are linearly independent as vectors; otherwise, they are linearly dependent points.

C.1.1. Theorem. Whether or not points are linearly independent or dependent does
not depend on the order in which they are listed.

Proof. This is an easy exercise.

In Figure C.1(a), the points p0, p1, and p2 are linearly independent points, but not
in Figure C.1(b). Intuitively speaking, points are linearly independent if they generate
a maximal dimensional space (maximal with respect to the number of points
involved). In Figure C.1(a) and (b) the points generate two- and one-dimensional sub-
spaces, respectively. It is because three points can generate a two-dimensional space
that the points in Figure C.1(b) are called linearly dependent.

Sometimes one wants to decompose a vector space into a sum of subspaces.

p p p p p p1 0 2 0 0- - -, , . . . , k
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Definition. Let X and Y be subsets of a vector space V. The sum X + Y of X and Y
is defined by

C.1.2. Theorem. If X and Y are subspaces of a vector space V, then X + Y is a sub-
space of V.

Proof. Easy.

Definition. A vector space V is said to be the direct sum of two subspaces X and Y,
and we write

if

C.1.3. Theorem. If X and Y are subspaces of a vector space V, then V = X ≈ Y
if and only if each v Œ V has a unique representation of the form v = x + y, where 
x Œ X and y Œ Y.

Proof. See [Lips68].

Definition. Let V be a vector space and T :V Æ V a linear transformation. If T2 = T,
then T is called a projection operator on V.

C.1.4. Theorem. Let V be a vector space. If T :V Æ V is a projection operator on V,
then

V X Y X Y 0= + « =and .

V X Y= ≈ ,

X Y x y x X y Y+ = + Œ Œ{ }and .

p0

p1

p2
p0

p1

p2

p1 – p0

p2 – p0

p2 – p0

p1 – p0

(a) (b)

Figure C.1. Linearly independent/dependent points.
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Proof. This is an easy consequence of the fact that every v Œ V can be written in the
form

and v - T(v) clearly belongs to ker(T).

If V = X ≈ Y, then the map

for x Œ X and y Œ Y, is clearly a projection operator. Therefore, there is a one-to-one
correspondence between projection operators on a vector space and direct summands
of it.

C.2 Inner Products

Definition. Let Vi, 1 £ i £ n, and W be vector spaces over a field k. A map

is called a multilinear map if, for each i, 1 £ i £ n,

for all vj Œ Vj and c Œ k. Equivalently, the map f is multilinear if, for each i and any
elements v1, v2, . . . , vi-1, vi+1, . . . , vn with vj Œ Vj, the map from Vi to W defined by

is a linear transformation. If n = 2, then f is also called a bilinear map.

Definition. Let V be a vector space over the field k = R or C. A bilinear map

is called an inner or scalar product on V if it satisfies the following two additional
properties for all u, v Œ V:

< > ¥ Æ
( ) Æ < >

, :

, , ,

V Y

u v u v

k

v v v v v v vÆ ( )- +f i i n1 2 1 1, , . . . , , , , . . . ,

f f f

f c cf
i i n i n i n

i n i n

v v v v v v v v v v v v v

v v v v v v v v
1 2 1 2 1 2

1 2 1 2

, , . . . , , . . . , , , . . . , , . . . , , , . . . , , . . . ,

, , . . . , , . . . , , , . . . , , . . . ,

+ ¢( ) = ( ) + ¢( )
( ) = (( ),

f n: V V V W1 2¥ ¥ ◊ ◊ ◊ ¥ Æ

V X

x y x

Æ
+ Æ ,

v v v v= ( ) + - ( )( )T T

V = ( ) ≈ ( )im T Tker .
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(1) <u,v> = (if k = R, then this translates to <u,v> = <v,u>, that is, <,> is
symmetric).

(2) <u,u> > 0 for all nonzero vectors u.

An inner product space is a pair (V,<,>), where V is a vector space and <,> is an inner
product on V.

Note that <u,u> is always a real number by condition (1), so that (2) makes sense.
It is easy to show that a general inner product also satisfies

and

Definition. The (standard) dot product on Rn is defined by

Definition. The (standard) dot product on Cn is defined by

u1
–v1 + u2

–v2 + · · · + un
–vn.

C.2.1. Theorem. The dot products on Rn and Cn are inner products.

Proof. It is easy to check that the properties in the definition of a dot product are
satisfied.

If all one wants to do is to have a dot product in Rn, we could have dispensed with
the definition of an inner product and simply shown that the dot product satisfies the
properties listed in the definition. However, the point to abstracting the basic prop-
erties into a definition is that it isolates the essential properties of an inner product
and one does not get sidetracked by details. Vector spaces admit many different func-
tions that satisfy the definition of an inner product.

An inner product on a vector space enables us to give a simple definition of the
length of a vector.

Definition. Let V be a vector space with an inner product <,> and let v Œ V. Define
the length |v| of v by

A vector of length 1 is called a unit vector.

If one writes out this definition of the length of a vector for the standard dot
product on Rn in terms of its coordinates, one sees that it is just the usual Euclidean
length; however, that is not the really important point. It is property (2) in the defi-
nition of a dot product that guarantees that our definition of length is well defined. It

v v v= < >, .

u v• =

u v• .= + + ◊ ◊ ◊ +u v u v u vn n1 1 2 2

< > = =u u u, .0 0if and only if

< > =0 u u, , ,0 for all

< >v u,
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and the other properties also guarantee that the triangle inequality is satisfied (see
Theorem C.2.2 below), so that we have a good definition of length. This aspect needs
to be emphasized. What makes linear algebra beautiful is that it enables us to solve
problems in an elegant, clean way without having to get involved in messy computa-
tions with coordinates. As long as we use only general (and essential) properties like
those in the definition for an inner product, we shall be able to give simple proofs.

Definition. Let V be a vector space. Given two points p,q Œ V, define the vector from
p to q, pq, by

If V has an inner product, then define the distance from p to q, dist (p,q), by

There are two very important inequalities.

C.2.2. Theorem. Let u and v be vectors in a vector space with an inner 
product <,>.

(1) (The Cauchy-Schwarz inequality) |<u,v>| £ |u| |v|

We have equality if and only if u and v are linearly dependent.

(2) (The triangle inequality) |u + v| £ |u| + |v|

We have equality only if u and v are linearly dependent.

Proof. We prove (1) first. Let c be any scalar. Then

(C.1)

If we consider the right-hand side of (C.1) as a quadratic equation in the variable c,
then we can use the discriminant test from the quadratic formula to conclude that
“<” holds (that is, there are no solutions) if and only if

which simplifies to what we want. On the other hand, it is easy to see from (C.1) that
equality holds if and only if u = cv or v = 0 (that is, u and v are linearly dependent).

An alternate way to prove the Cauchy-Schwarz inequality is simply to set c to

in (C.1) and simplify the resulting expression.
Part (2) of the theorem follows from the Cauchy-Schwarz inequality because

1
2

v
u v< >,

- < >[ ] - <2 4 0
2 2 2

u v u v, ,

0 2
2 2 2£ < - - > = - < > +u v u v u u v vc c c c, , .

dist p q pq, .( ) =

pq q p= - .
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and equality holds only if u and v are linearly dependent.

The geometric content of the triangle inequality is that the sum of the lengths of
two sides of a triangle is larger than the length of the third side (see Figure C.2) and
is summarized in the next corollary.

C.2.3. Corollary. If p,q,r Œ Rn, then

unless p and q and r are collinear.

C.3 Matrices of Linear Transformations

We begin with a brief summary of basic facts dealing with matrices. See, for example,
[John67], [Lips68], or [NobD77] for more details of proofs.

Definition. An n ¥ n matrix (aij) over the reals is said to be symmetric if aji = aij for
all i and j. An n ¥ n matrix (aij) over the complex numbers is said to be Hermitian if

aji = –aij

for all i and j. An arbitrary n ¥ n matrix (aij) is said to be diagonal if aij = 0 for all 
i π j.

pr pq qr< +

u v u v u v

u u v v

u u v v

u v

+ = < + + >

= + < > +

£ + +

= +( )

2

2 2

2 2

2

2

2

,

,

q

p

r

|qr|

|pr|

|pq|

Figure C.2. The triangle inequality.



866 Appendix C Basic Linear Algebra

Definition. Let a = (aij) be an n ¥ n matrix. The determinant of A, denoted by det(A)
or |A|, is defined by

Let Mij denote the (n - 1) ¥ (n - 1) matrix obtained from A by deleting the ith row
and jth column. The determinant of Mij is called a minor of A. The ijth cofactor of A,
Aij, is the signed minor defined by

The n ¥ n matrix (Aij) of cofactors is called the adjoint matrix of A and is denoted by
adj(A).

C.3.1. Theorem. The determinant function satisfies the following properties:

(1) det AT = det A.
(2) If the matrix B is obtained from the matrix A by interchanging two rows,

then det B = - det A.
(3) If a matrix A has two identical rows, then det A = 0.
(4) If a matrix A has a row of zeros, then det A = 0.
(5) Assume that the matrices A, A¢, and A≤ are identical except for the ith rows 

Ai, A¢i, and A≤i, respectively. Assume further that Ai = aA¢i + bA≤i. Then

(6) det AB = (det A)(det B).
(7) det A-1 = 1/(det A).
(8) The determinant of a matrix is sometimes usefully computed by means of

“expansion by minors,” that is, if A = (aij) and if Aij is the ijth cofactor of A,
then

(9) The inverse A-1 of a matrix A is defined by the equations AA-1 = A-1A = I. It 
can be computed by means of the determinant and the adjoint matrix, that
is,

(10) A matrix has an inverse, or is nonsingular, if and only if it has a nonzero
determinant. (A matrix without an inverse is said to be singular.)

Proof. See [Lips68].

A
A

adj A- =1 1
.

A a A a Aij ij
j

n

ij ij
i

n

= =
= =
Â Â

1 1

.

det det det .A a A b A= ¢ + ¢¢

A Mij
i j

ij= -( ) +
1 .

det .A sign a a an n
Sn

( ) = ( )( ) ◊ ◊ ◊( ) ( ) ( )
Œ
Â s s s s

s
1 1 2 2



C.3 Matrices of Linear Transformations 867

Definition. If A = (aij) is an n ¥ n matrix, then the trace of A, denoted by tr(A), is
defined by

C.3.2. Theorem. The trace function satisfies the following properties:

(1) tr(aA + bB) = a tr A + b tr B.
(2) tr(AB) = tr(BA).
(3) tr(A) = tr(P-1AP) for any nonsingular matrix P.

Proof. Parts (1) and (2) follow from some simple computations. Part (3) follows
from (2).

Definition. Let A = (aij) be an n ¥ m matrix. The rows of A can be thought of as
vectors in Rm. The row rank of A is the dimension of the subspace in Rm that these
vectors generate. Similarly, the columns of A can be thought of as vectors in Rn. The
column rank of A is the dimension of the subspace in Rn that these vectors generate.

One can show that the row rank and column rank of a matrix are the same.

Definition. The rank of a matrix is the common value of the row rank or column
rank. An n ¥ m matrix has maximal rank if its rank is the smaller of n or m.

C.3.3. Theorem. The rank of a matrix is the dimension of its largest nonsingular
square submatrix. An n ¥ n matrix is nonsingular if and only if it has rank n.

Proof. See [John67].

It is assumed that the reader is familiar how matrices are used to solve linear
systems of equations of the form

in particular the method of Gauss elimination. (We need the transpose of the vectors
because in this book vectors in Rn are treated as 1 ¥ n matrices.) We will not describe
the method here, but there is some terminology that one runs into when the method
is discussed, which we want to record for the sake of completeness. Recall that if
Gauss elimination, applied to a matrix A to get an upper triangular matrix U, does
not involve interchanging rows, then A can be written in the form

where L is a lower-triangular matrix and U is an upper-triangular matrix. This reduces
the system of equations above to the two systems

and

L T Ty b=

A LU= ,

A T Tx b= ,

tr A a ii
i

n

( ) =
=
Â .

1
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which are easy to solve. If row interchanges are involved, then another factor comes
into play and A can be written in the form

where P is a permutation matrix, that is, a matrix obtained from an identity matrix
by a sequence of column and/or row interchanges. See [NobD77].

Definition. The representations A = LU or A = PLU are called LU-decompositions
of A.

Next, let T :V Æ V be a linear transformation and assume that v1, v2, . . . , vn is a
basis for V. If v Œ V, then

The fact that the vectors vi form a basis implies that the coefficients aij are unique.

Definition. The matrix a = (aij) is called the matrix for the linear transformation T
with respect to the basis v1, v2, . . . , vn.

Clearly, the matrix for a linear transformation depends on the basis of the vector
space that is used in the definition. It is easy to describe this dependence.

Definition. Two n ¥ n matrices A and B are similar if there exists a nonsingular
matrix P so that

Similarity of matrices is an equivalence relation.

C.3.4. Theorem. Let A be the matrix for a linear transformation T with respect to
a given basis. A matrix B represents T with respect to some other basis if and only if
B is similar to A.

Proof. See [John67].

One reason for defining a matrix for a linear transformation is that it allows us
to evaluate that transformation using matrix multiplication. It is very important that
one use the correct matrix and not its transpose. With our choice and the fact that
our vectors in Rn are row vectors (1 ¥ n matrices), given a linear transformation

(C.2a)

then

T n n: ,R RÆ

B P AP= -1 .

T ai ij j
j

n

v v( ) =
=
Â .

1

A PLU= ,

U T Tx y= ,
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(C.2b)

If we had chosen the transpose of A, then

The distinction between choosing A or its transpose is therefore a question of whether
we want to pre- or post-multiply vectors by matrices. It does not matter which one
chooses as long as one is consistent. In order to have the matrix product agree with
the action of the map, the reader needs to take note of the following:

Our choice of matrices is such that one must always pre-multiply vectors!

In this way we avoid excessive transpose operations in the writing of formulas. (They
would be needed because there is a difference between a row and a column vector.
Our vectors are row vectors.)

Important Note! Unless stated otherwise, the matrix for a linear transformation 
T :Rn Æ Rn will always be defined with respect to the standard basis. Furthermore,
with this assumption one can then use equation (C.2b) to define an unambiguous
bijective correspondence between matrices and such linear transformations. This is
the correspondence we will have in mind if we have the need to pass back and forth
between matrices and transformations. A similar comment applies to transformations
T:kn Æ kn for some field k.

C.3.5. Theorem. Let T, T1, T2 :V Æ V be linear transformations and assume that A,
A1, and A2 are the matrices for T, T1, and T2, respectively, with respect to some fixed
basis for V.

(1) The matrix for T-1 is A-1.
(2) if S = T1T2, then A2A1 is the matrix for S.

Proof. The proofs follow by straightforward computations. Note though that
because of our conventions the matrices in (2) are listed in the opposite order from
that of the transformations!

Definition. If A is the matrix for the linear transformation T, then the determinant
of A is called the determinant of T and is denoted by det(T). The trace of A is called
the trace of T and is denoted by tr(T). The rank of A is called the rank of T.

C.3.6. Theorem. The determinant, trace, and rank of a linear transformation 
T :V Æ V depends only on T and not the choice of basis for V.

Proof. The theorem is an easy consequence of Theorem C.3.4, property (6) of deter-
minants in Theorem C.3.1, and property (2) of the trace function in Theorem C.3.2.

C.3.7. Theorem. A linear transformation T :V Æ V is nonsingular if and only if
det(T) π 0.

Proof. See [John67].

T A T T
p p( ) = ( ) .

T Ap p( ) = .
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C.4 Eigenvalues and Eigenvectors

Let V be a vector space over a field k and T :V Æ V a linear transformation.

Definition. A scalar l in k is called an eigenvalue of T if there exists a nonzero vector
v in V such that

(C.3)

Every vector satisfying equation (C.3) is called an eigenvector for the eigenvalue l. The
set of eigenvectors for an eigenvalue l is called the eigenspace of l. If A is an n ¥ n
matrix over k, then the eigenvalues and eigenvectors of A are the eigenvalues and eigen-
vectors, respectively, of the linear transformation T :kn Æ kn associated to A.

C.4.1. Lemma. The eigenspace of an eigenvalue l is the kernel of the transforma-
tion T - lI and hence is a vector subspace.

Proof. Straightforward.

Definition. A linear transformation T :V Æ V that can be represented by a diagonal
matrix with respect to some basis of V is said to be diagonalized by the basis, or simply
diagonalizable. An n ¥ n matrix is diagonalizable if the associated linear transforma-
tion on kn is diagonalizable.

C.4.2. Theorem. A linear transformation T :V Æ V is diagonalizable if and only if
V has a basis of eigenvectors of T. The diagonal entries of the matrix with respect to
the basis that diagonalizes the transformation are then the eigenvalues of T.

Proof. Easy.

C.4.3. Theorem. Let T :V Æ V be a linear transformation. If v1, v2, . . . , vm are
nonzero eigenvectors for T corresponding to distinct eigenvalues l1, l2, . . . , lm,
respectively, then the vectors v1, v2, . . . , vm are linearly independent.

Proof. The proof is by induction on m. The case m = 1 is clear. Assume that the
theorem has been proved for m - 1, m > 1. Assume that the m eigenvectors v1, v2,
. . . , vm satisfy a relation

(C.4)

for some ai. Applying T to both sides gives

(C.5)

On the other hand, multiplying (C.4) by lm and subtracting from (C.5) gives

0 0

v v v

= ( )
= ( ) + ( ) + ◊ ◊ ◊ + ( )
= + + ◊ ◊ ◊ +

T

a T a T a T

a v a v a v
m m

m m m

1 1 2 2

1 1 1 2 2 2l l l

0 v v v= + + ◊ ◊ ◊ +a a am m1 1 2 2 ,

T v v( ) = l .
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By our inductive hypothesis we must have

since none of the terms li - lm, i = 1, 2, . . . m - 1, are zero. This and (C.4) in turn
implies that am = 0, and we are done.

C.4.4. Corollary. Let V be an n-dimensional vector space. If a linear transformation
T:V Æ V has n distinct eigenvalues, then it is diagonalizable.

Because of Theorem C.4.2 and the fact that diagonalizable linear transformations
are easy to understand, finding the eigenvalues and eigenvectors of a linear transfor-
mation is an important problem.

C.4.5. Theorem. A scalar l is an eigenvalue of a linear transformation T :V Æ V if
and only if the transformation T - lI is singular.

Proof. Straightforward.

Definition. Let A be an n ¥ n matrix. The polynomial

(C.6)

where In is the n ¥ n identity matrix, is called the characteristic polynomial of A. If
T :V Æ V is a linear transformation and A is a matrix that represents T with respect
to some basis of V, then the characteristic polynomial of A is called the characteris-
tic polynomial of T.

C.4.6. Lemma. The characteristic polynomial of a transformation is well defined
and independent of the matrix that is chosen to represent it.

Proof. Use Theorem C.3.4 and properties of the determinant.

C.4.7. Theorem. Let T :V Æ V be a linear transformation. A scalar l is an eigen-
value of T if and only if l is a root of the characteristic polynomial of T.

Proof. Use Theorem C.4.5 and Theorem C.3.1(10).

C.4.8. Example. To analyze the linear transformation T :R2 Æ R2 defined by the
matrix

in terms of eigenvalues, eigenvectors, and eigenspaces.

A =
-

Ê
Ë

ˆ
¯

1 3

1 1

det ,tI An -( )

a a am1 2 1 0= = ◊ ◊ ◊ = =- ,

0 v v v= -( ) + -( ) + ◊ ◊ ◊ + -( )- - -a a am m m m m m1 1 1 2 2 2 1 1 1l l l l l l .
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Solution. We need to solve the equation

for l. The solutions are l = 2 or -2, which are the eigenvalues of T. Next, to find the
eigenvectors, we need to solve

that is,

When l = 2, this leads to x = y. In other words, (1,1) is an eigenvector for the eigen-
value 2 and is a basis for its eigenspace. Similarly, when l = -2, then y = -3x, and 
(1,-3) is an eigenvector for the eigenvalue -2 and is a basis for its eigenspace.

We can use Theorem C.4.7 to show that not every linear transformation on a vector
space over the reals is diagonalizable. For example, consider the transformation on
R2 represented by the matrix

The characteristic polynomial of this transformation is t2 + 1, which has no real 
root. Of course, over the complex numbers every polynomial has a root, so that linear
transformations over complex vector spaces always have eigenvalues and eigenvectors.

The next proposition lists two properties of the characteristic polynomial which
sometimes come in handy, especially in the two-dimensional case where they com-
pletely characterize the polynomial.

C.4.9. Proposition. Let A = (aij) be an n ¥ n matrix and let

be its characteristic polynomial. Then

(1) an-1 = -tr (A), 
(2) a0 = (-1)ndet (A), and
(3) if n = 2, then

Proof. Using properties of the determinant it is easy to see that

p t t a t a t ann( ) = -( ) -( ) ◊ ◊ ◊ -( ) + -11 22 2polynomial in t of degree n .

p t t tr A t A( ) = - ( )( ) + ( )2 det .

p t t a t a t an
n

n( ) = + + ◊ ◊ ◊ + +-
-

1
1

1 0

0 1

1 0-
Ê
Ë

ˆ
¯.

1 0

3 1 0

-( ) + =
- +( ) =

l
l

x y

x y .

x y A x y( ) = ( )l ,

l lI A- = - =2 4 0
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This equation and the definition of the trace function implies (1). To prove (2), simply
substitute 0 for t in (C.6). Part (3) follows immediately from (1) and (2).

Here is a fundamental theorem about the diagonalizability of transformations.

C.4.10. Theorem. Let T :V Æ V be a linear transformation. Assume that 
l1, l2, . . . , lm are the distinct eigenvalues of T and let d1, d2, . . . , dm be the dimen-
sions of the corresponding eigenspaces. Let p(t) be the characteristic polynomial of
T. Then T is diagonalizable if and only if

Proof. This follows easily from Theorem C.4.2 and Theorem C.4.7.

Much more can be said about the diagonalizability of transformations. For
example, see [HofK71].

C.5 The Dual Space

Given vector spaces V and W over a field k, let

If S, T Œ L(V,W) and a Œ k, then define

by

C.5.1. Theorem. The maps S + T and aS are linear transformation and this addi-
tion and scalar multiplication make L(V,W) into a vector space over k.

Proof. Easy.

Definition. Let V be a vector space over a field k. A linear transformation T :V Æ k
is called a linear functional on V. The vector space of linear functionals on V is called
the dual space of V and is denoted by V*.

Let V be a vector space over a field k and let v1, v2, . . . , vn be a basis for V. Define
linear functionals

by

v V Ri* : Æ

S T S T

aS a S

+( )( ) = ( ) + ( )
( )( ) = ( )( )

v v v

v v .

S T aS+ Æ, : V W

L TV W V W, : .( ) = Æ{ }T is a linear transformation

p t t t t
d d

m
dm( ) = -( ) -( ) ◊ ◊ ◊ -( )l l l1 2

1 2 .
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C.5.2. Theorem. The map from V to V* that sends vi to vi* is a vector space 
isomorphism.

Proof. Straightforward.

The isomorphism in Theorem C.5.2 between V and V* clearly depends on the
basis.

Definition. The basis v1*, v2*, . . . , vn* is called the dual basis of v1, v2, . . . , vn.

Notice that if

then vi*(w) = ai, so that the ith dual basis element just picks out the ith component
coefficient of the expansion of a vector w in terms of the vi’s.

C.5.3. Theorem. Let V and W be vector spaces over a field k and let T :V Æ W be
a linear transformation. The map

defined by

is a linear transformation.

Proof. Easy.

Definition. The map T* in Theorem C.5.3 is called the dual map of the linear trans-
formation T.

Next, given v Œ V, define v** Œ V** = (V*)* by

C.5.4. Theorem. The map from V to V** that sends v to v** is a vector space iso-
morphism called the natural isomorphism between V and V**.

Proof. Easy.

Note that, although the isomorphism between V and V* depended on the choice
of a basis for V, the isomorphism between V and V** does not. This allows us to iden-
tify V** with V in a natural way and one often makes this identification.

v v V** , * .a a a( ) = ( ) Œfor

T T for* , ,a a( )( ) = ( )( ) Œv v v V

T* : * *W VÆ

w v=
=
Âai i
i

n

,
1

v vi j ij* .( ) = d
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C.6 The Tensor and Exterior Algebra

This section contains some rather technical mathematics. It is needed because without
a notion of tensor and exterior algebras one cannot discuss differential forms in a rig-
orous way. We could have simplified some of the discussion by restricting ourselves
to the algebras of multilinear and alternating multilinear maps as is done, for example,
by Spivak in [Spiv65] and [Spiv70a]. Those algebras will be highlighted in the dis-
cussion below, but they are special cases of a general construction and by consider-
ing only them the reader would have gotten an incomplete picture of the subject. For
that reason, we considered it worthwhile to outline the “correct” development of these
algebras. The reader still has the choice of skipping uninteresting material. Other ref-
erences for tensor and exterior algebras are [AusM63] and [KobN63].

In this section the field for a vector space will always be the reals R.

Notation. Let Vi, 1 £ i £ k, and W be vector spaces. The set of multilinear maps

will be denoted by Lk(V1,V2, . . . ,Vk;W). If V = V1 = V2 = . . . = Vk, then Lk(V1,V2,
. . . ,Vk;W) will be abbreviated to Lk(V;W) and Lk(V;R) is abbreviated to Lk(V). It
follows that Lk(V) denotes the multilinear maps

By setting V0 = R, the notation L0(V) makes sense and denotes the set of linear maps
R Æ R.

We may always identify L0(V) with R using the natural map L0(V) Æ R that sends
a to a(1).

Definition. A tensor product of vector spaces Vi, 1 £ i £ k, is a pair (A,a), where A is
a vector space and

is a multilinear map that satisfy the following universal factorization property:

If f :V1 ¥ V2 ¥ . . . ¥ Vk Æ W is any multilinear map into a vector space W, then
there is a unique linear transformation g :A Æ W so that f = g �a. See Figure C.3.

a : V V V A1 2¥ ¥ ◊ ◊ ◊ ¥ Æk

f k

k

: .V V V V R= ¥ ¥ ◊ ◊ ◊ ¥ Æ1 244 344

f k: V V V W1 2¥ ¥ ◊ ◊ ◊ ¥ Æ

V1 ¥ V2 ¥ ¥ Vk A

f g

W

a
...

Figure C.3. The universal factorization property of tensor
products.



876 Appendix C Basic Linear Algebra

C.6.1. Theorem. Let Vi, 1 £ i £ k, be vector spaces.

(1) (Existence) A tensor product (A,a) of the Vi exists. The image of a will actu-
ally span A.

(2) (Uniqueness) Given another tensor product (B,b), then there is a unique iso-
morphism m :A Æ B with b = m �a.

Proof. To prove part (1), here is how one can define A and a when k = 2. It should
be obvious how to generalize the construction to handle the case of an arbitrary k.
Let M be the free vector space with basis (v1,v2), where vi Œ Vi. Let N be the vector
subspace of M generated by all elements of M of the form

where vi, vi¢ Œ Vi and r Œ R. Define A = M/N and

by

Given a map f :V1 ¥ V2 Æ W, define g0 :M Æ W by

One can show that g0 sends N to 0 and hence induces a map g :A Æ W. Clearly, 
f = g �a. The map g is unique because the image of a spans A. It follows that the pair
(A,a) is a tensor product for V1 and V2. See [AusM63].

To prove the uniqueness of the tensor product, let (B,b) be another such. See
Figure C.4. Since b is multilinear, the universal factorization property of (A,a) implies
that there is a unique linear map m :A Æ B with b = m �a. Similarly, the universal fac-
torization property of (B,b) implies that there is a unique linear map m¢ :B Æ A with
a = m¢ �b. Therefore, b = m �m¢ �b and a = m¢ �m �a. This implies that m is an isomorphism.
The theorem is proved.

Theorem C.6.1(2) shows that it is the universal factorization property of a tensor
product that is important and not the particular construction that is used. For that
reason one usually talks about “the” tensor product and uses a uniform notation.

g a a f0 1 2 1 21 2

1 2 1 2

1 2

1 2 1 2

v v
v v V V

v v
v v V V

v v v v,
,

,
,

, , .( )Ê
ËÁ

ˆ
¯̃

= ( )
( )Œ ¥ ( )Œ ¥

Â Â

a v v v v N1 2 1 2, , .( ) = ( ) +

a : V V A1 2¥ Æ

v v v v v v v v v v v v v v

v v v v v v v v
1 1 2 1 2 1 2 1 2 2 1 2 1 2

1 2 1 2 1 2 1 2

+ ¢( ) - ( ) - ¢( ) + ¢( ) - ( ) - ¢( )
( ) - ( ) ( ) - ( )

, , , , , , , ,

, , , , , ,r r r r

V1 ¥ V2 ¥ ¥ Vk A

B

a

b
m

m¢

...

Figure C.4. The uniqueness of tensor 
products.
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Notation. Let (A,a) be the tensor product of vector spaces Vi, 1 £ i £ k, constructed
as in Theorem C.6.1. The space A will be denoted by V1 ƒ V2 ƒ . . . ƒ Vk and the map
a by ƒ. If vi Œ Vi, then the element ƒ(v1,v2, . . . ,vk) in A will be denoted by v1 ƒ v2 ƒ
. . . ƒ vk and is called the tensor product of the vectors vi.

We summarize some basic properties of the tensor product. Part of what we 
have accomplished is that we have formalized a tensor product notation for 
vectors.

C.6.2. Theorem. Let U, V, and W be vector spaces.

(1) Let u, ui Œ U, v, vi Œ V, and ci Œ R. Then

(2) The map

induces a natural isomorphism

Using this isomorphism, we shall always identify R ƒ V with V.
(3) (Associativity) The maps

induce natural isomorphisms

respectively. As a result one does not have to worry about parenthesizing
tensor products.

(4) If u1, u2, . . . , un and v1, v2, . . ., vm are bases for U and V, respectively, then
the ui ƒ vj for 1 £ i £ n and 1 £ j £ m form a basis for U ƒ V. In particular,

Proof. The proofs are straightforward and easy. See [AusM63].

Note another property of the tensor product: there is a one-to-one correspondence
between multilinear maps from V1 ¥ V2 ¥ . . . ¥ Vk to a vector space W and linear maps
from V1 ƒ V2 ƒ . . . ƒ Vk to W. In other words, rather than talking about multilinear

dim dim dim .U V U Vƒ( ) = ( )( )

U V W U V W

U V W U V W

ƒ( ) ƒ Æ ƒ ƒ
ƒ ƒ( ) Æ ƒ ƒ ,

u v w u v w

u v w u v w

ƒ( ) ƒ Æ ƒ ƒ
ƒ ƒ( ) Æ ƒ ƒ

R ƒ ÆV V.

c cƒ Æv v

c c c c

c c c c
1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

u u v u v u v

u v v u v u v

+( ) ƒ = ƒ( ) + ƒ( )
ƒ +( ) = ƒ( ) + ƒ( )
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maps we can always talk about ordinary linear maps instead. We shall see this in
action below but introduce some notation first.

Definition. Let V be a vector space. Define the r-fold tensor product of V, denoted by
TkV, by

Let TV denote the direct sum of the vector spaces TkV, k ≥ 0. The product operation

makes TV into an algebra called the tensor algebra of V. (Theorem C.6.2(2) shows that
we may assume that the product ƒ is defined also when either r or s are 0.)

The tensor algebra is an example of what is called a graded algebra or graded ring,
that is, an algebra or ring A that is a direct sum of additive subgroups Ai with the
property that the product of an element in Ai and an element in Aj lies in Ai+j.

Although we shall only be interested in tensor algebras, one usually generalizes
the notation TkV to allow for “mixed” tensors.

Definition. Let V be a vector space and V* its dual. Define vector spaces Vs
r by

An element of Vs
r, r + s > 0, is called a tensor of type (r,s) or simply a tensor and is said

to have contravariant order r and covariant order s. Elements of V1
0 are called con-

travariant vectors and elements of V1
0 are called covariant vectors.

Clearly, TrV is the same as Vr
0 and Ts(V*) is the same as Vs

0.
Next, let Ui and Vi be vector spaces and let Ti :Ui Æ Vi be linear transformations.

Since the map

defined by

is bilinear, there is unique linear transformation

T T1 2 1 2 1 2ƒ ƒ Æ ƒ: .U U V V

T T T T1 2 1 2 1 1 2 2¥( )( ) = ( ) ƒ ( )u u u u,

T T1 2 1 2 1 2¥ ¥ Æ ƒ: U U V V

V R

V V V V V V V

0
0

0

=

= ƒ ƒ ◊ ◊ ◊ ƒ ƒ ƒ ƒ ◊ ◊ ◊ ƒ + >s
r

r s

r s1 2444 3444 1 2444 3444* * *, .

ƒ ¥ Æ
( ) Æ ƒ

+:

,

T T Tr s r sV V V

a b a b

T

T kk

k

0

1

V R

V V V V

=
= ƒ ƒ ◊ ◊ ◊ ƒ ≥

,

, .1 2444 3444
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so that

Because we do not have to worry about parenthesizing tensor products by Theorem
C.6.2(3), this construction generalizes to produce a unique linear transformation

Definition. The map T1 ƒ T2 ƒ · · · ƒ Tk is called the tensor product of the maps Ti.

Now, although it is clear from the definition that tensor products have to do with
multilinear maps, we want to describe a much more fundamental relationship
between the two. See Theorem C.6.6 below. First of all we shall define a parallel
algebra structure on multilinear maps.

Definition. If f Œ Lr(V) and g Œ Ls(V), then define f ƒ g Œ Lr+s(V) by

(C.7)

for vi Œ V. The map f ƒ g is called the tensor product of f and g.

Notation. Let L(V) denote the direct sum of the vector spaces Lk(V), k ≥ 0.

C.6.3. Theorem. The tensor product operation ƒ defined by equation (C.7) turns
L(V) into an algebra called the algebra of real-valued multilinear maps on Vk.

Proof. This theorem is the analog of Theorem C.6.2(1–3). One can easily prove that
ƒ is associative and that the distributive laws hold.

C.6.4. Theorem. There is a unique vector space isomorphism

(C.8a)

with the property that

(C.8b)

for all g Œ Lk(V) and vi Œ V.

Proof. This is an easy consequence of the universal factorization property of the
tensor product.

C.6.5. Theorem. Let U and V be vector spaces.

(1) There is a unique isomorphism

j : * * *U V U Vƒ Æ ƒ( )

g gk kv v v v v v1 2 1 2, , . . . ,( ) = ( ) ƒ ƒ ◊ ◊ ◊ ƒ( )y

y : *,L Tk kV V( ) Æ ( )

f g f gr r r s r r r sƒ( )( ) = ( ) ( )+ + + +v v v v v v v v v v1 2 1 1 2 1, , . . . , , , . . . , , , . . . , , . . . , ,

T T Tk k k1 2 1 2 1 2ƒ ƒ ◊ ◊ ◊ ƒ ƒ ƒ ◊ ◊ ◊ ƒ Æ ƒ ƒ ◊ ◊ ◊ ƒ: .U U U V V V

T T T T1 2 1 2 1 2 1 2¥( )( ) = ƒ( ) ƒ( )u u u u, .
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defined by the condition that

for all a Œ U*, b Œ V*, u Œ U, and v Œ V.
(2) There is a unique isomorphism

(C.9a)

defined by

(C.9b)

for all ai Œ V* and vi Œ V.

Proof. To prove part (1), note that the universal factorization property of tensor
products implies that j is induced by the bilinear map

(C.10a)

defined by

(C.10b)

To show that j is an isomorphism, show that the vectors j(ui* ƒ vj*) are linearly inde-
pendent for some dual basis ui* for U* and vj* for V*. See [AusM63] or [KobN63]. Part
(2) is an easy generalization of part (1).

Because of Theorem C.6.5 we shall not distinguish between tensor products like
U* ƒ V* and (U ƒ V)* whenever it is convenient. Note that another way to prove the
existence of an isomorphism between these spaces is to show that ((U ƒ V)*,f) is a
tensor product for U and V, where f is the map in (C.10b). The same comment applies
with regard to the existence of an isomorphism between Tk(V*) and (TkV)*. We did
not do this because for us it is convenient to be explicit about the formula (C.9b) for
the isomorphism j.

Using the isomorphism y and j in Theorems C.6.4 and C.6.5(2), respectively, gives
us an isomorphism

(C.11)

C.6.6. Theorem. The isomorphisms in (C.11) induce an isomorphism of algebras

(C.12a)

where

(C.12b)

for all ai Œ V*.

F a a a a a a1 2 1 2ƒ ƒ ◊ ◊ ◊ ƒ( ) = ƒ ƒ ◊ ◊ ◊ ƒk k

F : * ,T LV V( ) Æ ( )

y j- ( ) Æ ( )1� : * .T Lk kV V

f a b a b, .( ) ƒ( ) = ( ) ( )u v u v

f : * * *U V U V¥ Æ ƒ( )

j a a a a a a1 2 1 2 1 1 2 2ƒ ƒ ◊ ◊ ◊ ƒ( ) ƒ ƒ ◊ ◊ ◊ ƒ( ) = ( ) ( ) ◊ ◊ ◊ ( )k k k kv v v v v v

j : * *T Tk kV V( ) Æ ( )

j a b a bƒ( ) ƒ( ) = ( ) ( )u v u v
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Proof. This is an easy exercise working through the definitions. Note that the left side
of equation (C.12b) has a tensor product of simply “elements” or symbols ai that happen
to belong to V* whereas the right side is a tensor product of maps as defined by (C.7).

Because multilinear maps are more intuitive than abstract tensor products,
Theorem C.6.6 justifies our always treating T(V*) as if it were L(V). Notice, however,
that we had to use the dual space V* to make this identification.

Now we move on to a definition of exterior algebras. Let Sk be the group of per-
mutations of {1,2, . . . ,k}. Any element s of Sk induces a unique isomorphism

(C.13a)

satisfying

(C.13b)

Definition. A tensor a in TkV is said to be alternating if s(a) = sign(s)a, for all s Œ
Sk. A linear transformation

is said to be alternating if T �s = sign(s)T, for all s Œ Sk.

Now, by Theorem C.6.6 we can identify Tk(V*) with (TkV)*.

C.6.7. Theorem. A tensor in Tk(V*) is alternating if and only if it corresponds to an
alternating linear transformation in (TkV)* under the natural isomorphism j defined
by Theorem C.6.5(2).

Proof. See [AusM63].

Definition. The alternation map Alt :TkV Æ TkV is defined by

C.6.8. Theorem.

(1) The alternation map Alt :TkV Æ TkV is a linear transformation.
(2) If a Œ TkV, then Alt(a) is an alternating tensor.
(3) If a Œ TkV is an alternating tensor, then Alt(a) = a.

Proof. This is an easy exercise.

Theorem C.6.8 shows that Alt2 = Alt, so that Alt is a projection of TkV onto the
subspace of alternating tensors.

Alt
k

sign if k

the identity map if k
Sk

= ( ) ≥

= =
Œ
Â1

1

0

!
, ,

, .

s s
s

T Tk: V WÆ

s s s sv v v v v v v V1 2 1 2ƒ ƒ ◊ ◊ ◊ ƒ( ) = ƒ ƒ ◊ ◊ ◊ ƒ Œ( ) ( ) ( )k k i, .

s : T Tk kV VÆ
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C.6.9. Theorem. Let T :TkV Æ W be a linear transformation. The map T is alter-
nating if and only if T(ker Alt) = 0.

Proof. See [AusM63].

Definition. Let V be a vector space. Define the k-fold exterior product of V, denoted
by EkV, to be the subspace of alternating tensors in TkV, that is, using Theorem
C.6.8(2),

Clearly, E1V = V.
Next, we would like to define a product for alternating tensors that maps alter-

nating tensors to alternating tensors. The tensor product of two alternating tensors is
unfortunately not always an alternating tensor, but all we have to do is project back
into the set of alternating tensors using the Alt map.

Definition. Define a map

by

(C.14)

The map Ÿ is called the exterior or wedge product.

The ugly factorials are added here in order to avoid them in other places, such as
in the definition of the volume element for differential forms.

C.6.10. Theorem. Let V be an n-dimensional vector space.

(1) The exterior product for V is bilinear, that is,

for wi, w Œ Er(V), hi, h Œ Es(V), and a Œ R.
(2) If w Œ Er(V), h Œ Es(V), and q Œ Et(V), then

In particular, the exterior product is associative and

w h q w h q w h qŸ( ) Ÿ = Ÿ Ÿ( ) =
+ +( )

ƒ ƒ( )r s t
r s t

Alt
!

! ! !
.

w w h w h w h
w h h w h w h

w h w h w h

1 2 1 2

1 2 1 2

+( ) Ÿ = Ÿ + Ÿ
Ÿ Ÿ( ) = Ÿ + Ÿ

Ÿ = Ÿ = Ÿ( )a a a

w h w hŸ =
+( )

ƒ( )r s
r s

Alt
!

! !
.

Ÿ ( ) ¥ ( ) Æ ( )+: E E Er s r sV V V

E T

E Alt T T kk k k

0 0

1

V V R

V V V

= =
= ( ) Õ ≥

,

, ,
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for ai Œ E1(V).
(3) If w Œ Er(V) and h Œ Es(V), then

In particular, if a, b Œ E1(V), then a Ÿ b = - b Ÿ a and a Ÿ a = 0.
(4) If s Œ Sk and ai Œ E1(V), then

(5) Let a1, a2, . . . , and an form a basis for E1(V). If 1 £ k £ n, then the set of all

is a basis for Ek(V). It follows that Ek(V) has dimension for 0 £ k £ n.

(6) If k > n, then Ek(V) = 0.

Proof. The proofs in [Spiv65] for alternating multilinear maps readily translate to
our situation here.

Definition. Let EV denote the direct sum of the vector spaces Ek(V), k ≥ 0. The exte-
rior product Ÿ makes EV into an algebra called the exterior algebra or Grassmann
algebra of V.

C.6.11. Theorem. Let V be a vector space and V* its dual space. For k ≥ 1, there is
a unique isomorphism

such that

for ai Œ V* and vj Œ V = E1(V).

Proof. See [AusM63].

C.6.12. Theorem. Let V and W be vector spaces. A linear transformation T :V Æ W
induces a unique linear transformation

such that

E T E Ek k k: V WÆ

F a a a a1 2 1 2Ÿ Ÿ ◊ ◊ ◊ Ÿ( ) Ÿ Ÿ ◊ ◊ ◊ Ÿ( ) = ( )( )k k i jv v v vdet ,

F : * *E Ek kV V( ) Æ ( )

n

k
Ê
Ë

ˆ
¯

a a ai i i kk i i i n1 2 1 21Ÿ Ÿ ◊ ◊ ◊ Ÿ £ < < ◊ ◊ ◊ < £, ,

a a a s a a as s s1 2 1 2( ) ( ) ( )Ÿ Ÿ ◊ ◊ ◊ Ÿ = ( ) Ÿ Ÿ ◊ ◊ ◊ Ÿk ksign .

w h h wŸ = -( ) Ÿ1
rs

.

a a a a a a1 2 1 2Ÿ Ÿ ◊ ◊ ◊ = ƒ ƒ ◊ ◊ ◊ ƒ( )k kk Alt!
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for vi Œ V.

Proof. See [AusM63].

Definition. The map EkT in Theorem C.6.12 is called the k-fold exterior product of T.

Theorem C.6.6 showed the relationship between tensor algebras and multilinear
map algebras. Now we want to show how alternating tensors are related to special
types of multilinear maps in a similar way.

Given a permutation s Œ Sk, define

by

Definition. Let V and W be vector spaces. A multilinear map

is said to be alternating if T �s = (sign s)T for all s Œ Sk. The set of such alternating
maps will be denoted by Lk(V;W). If W = R, then Lk(V;W) will be abbreviated to Lk(V).

It is easy to show that Lk(V;W) is a vector space. By definition,

The well-known properties of the determinant function lead to the standard example
of an alternating mulilinear map.

Definition. The map

defined by

is called the determinant map of Rn.

Clearly, det Œ Ln(Rn).
The next theorem shows that, like the tensor product, the k-fold exterior product

could have been defined in terms of a universal factorization property with respect to
alternating multilinear maps. Let

det , , . . . , , , , . . . , , . . . , , , . . . , deta a a a a a a a a an n nl n nn ij11 12 1 21 22 2 2( ) ( ) ( )( ) = ( )

det : R Rn Æ

L Lk k k kL and LV W V W V V; ; .( ) Õ ( ) ( ) Õ ( )

T k: V WÆ

s s s sv v v v v v1 2 1 2, , . . . , , , . . . , .k k( ) = ( )( ) ( ) ( )

s : V Vk kÆ

E T T T Tk
k kv v v v v v1 2 1 2Ÿ Ÿ ◊ ◊ ◊ Ÿ( ) = ( ) Ÿ ( ) Ÿ ◊ ◊ ◊ Ÿ ( )
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(C.15)

be the composite of the maps

C.6.13. Theorem. Let g :Vk Æ W be an alternating multilinear map. Then there is
a unique linear transformation h :EkV Æ W so that g = h �l. In fact, the map

defines an isomorphism between alternating multilinear maps on Vk and linear maps
on EkV. As a special case we get an isomorphism

where

(C.16)

for all g Œ Lk(V) and vi Œ V.

Proof. See Figure C.5. The theorem is an easy consequence of Theorem C.6.9. For
a proof see [AusM63].

Theorem C.6.1 and C.6.2 remain true if we replace “multilinear map” with “alter-
nating multilinear map”.

Alternating multilinear maps admit a product very much like the alternating
tensor product.

Definition. The alternation map

is defined by

Alt T
k

sign T if k

T if k
Sk

( ) = ( ) ≥

= =
Œ
Â1

1

0

!
, ,

, .

s s
s

�

Alt L Lk k: V V( ) Æ ( )

g gk kv v v v v v1 2 1 2, , . . . ,( ) = ( ) Ÿ Ÿ ◊ ◊ ◊ Ÿ( )y

y : *,Lk kEV V( ) Æ ( )

g hÆ

V V Vk k Alt kT Eƒæ Ææ æ Æææ .

l : V Vk kEÆ

Vk EkV

hg

W

l

Figure C.5. The universal property of the space EkV.
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C.6.14. Theorem.

(1) The alternation map Alt :Lk(V) Æ Lk(V) is a linear transformation.
(2) If a Œ Lk(V), then Alt(a) is an alternating multilinear map.
(3) If a Œ Lk(V) is an alternating multilinear, then Alt(a) = a.

Proof. This is easy and proved like Theorem C.6.8.

Theorem C.6.14 implies that

and is a direct summand of Lk(V). We can define a product, called the exterior or wedge
product,

(C.17)

by the same formula (C.15) that we used for the exterior algebra. Theorem C.6.10
holds verbatim for alternating multilinear maps. This is exactly how Spivak ([Spiv65])
develops the exterior algebra.

Definition. An element of Lk(V) is called an exterior k-form on V. Let LV denote the
direct sum of the vector spaces Lk(V), k ≥ 0. The exterior product Ÿ makes LV into
an algebra called the algebra of exterior forms on V.

Finally, we already know from Theorem C.6.11 and Theorem C.6.13 that there are
natural isomorphisms

(C.18)

so that Ek(V*) and Lk(V) are isomorphic.

C.6.15. Theorem. The isomorphisms in (C.18) induce an isomorphism of algebras

(C.19a)

where

(C.19b)

for all ai Œ V*.

Proof. This is another easy exercise working through the definitions. Note that the
left side of Equation (C.19b) has an exterior product of simply “elements” or symbols
ai that happen to belong to V* whereas the right side is an exterior product of maps
as defined by (C.17).

Theorems C.6.6 and C.6.15 can be summarized compactly by saying that we have
a commutative diagram

F a a a a a a1 2 1 2Ÿ Ÿ ◊ ◊ ◊ Ÿ( ) = Ÿ Ÿ ◊ ◊ ◊ Ÿk k

F L: * ,E V V( ) Æ ( )

E Ek k kV V V* * ,( ) Æ ( ) ¨ ( )L

Ÿ ( ) ¥ ( ) Æ ( )+: L L Lr s r sV V V

Lk kAlt LV V( ) = ( )( )
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of inclusion maps i and algebra isomorphisms F.
We finish this section with a few more facts about L(V).

C.6.16. Theorem. Let V be an n-dimensional vector space and V* its dual. If ai Œ
V*, then the element a1 Ÿ a2 Ÿ . . . Ÿ ak Œ Lk(V) satisfies

for all vj Œ V.

Proof. This is a corollary of Theorem C.6.11.

Finally, if T :V Æ W is a linear transformation, then the induced map

on dual spaces defines

C.6.17. Theorem. Under our identifications, the map Ek(T*) induces the map

defined by

Proof. One simply has to carefully work through all the appropriate identifications.

It is the tensor algebra TV* and the exterior algebra EV* that are the most inter-
esting because they formalize the algebra of multilinear maps and the algebra of alter-
nating multilinear maps, respectively, which are needed for defining differential forms.

We finish with one final observation. One can use the exterior algebra to define
determinants. For example, let V be an n-dimensional vector space and

a linear transformation. We know that the vector space EnV has dimension 1. There-
fore, the linear transformation

E T E En n n: V VÆ

T : V VÆ

T T T Tk k
k

i* , , . . . , , , . . . , , , .a a a( )( ) = ( ) ( ) ( )( ) Œ ( ) Œv v v v v v W v V1 2 1 2 L

T k k* : L LW V( ) Æ ( )

E T E Ek k k* : * * .( ) ( ) Æ ( )W V

T* : * *W VÆ

a a a a1 2 1 2Ÿ Ÿ ◊ ◊ ◊ Ÿ( )( ) = ( )( )k k i jv v v v, , . . . , det

T L

E

V V

V V

*

*

( ) æ Ææ ( )
» »
( ) æ Ææ ( )

F

F L
i i
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has the form

(C.20)

for some unique constant d. This constant is of course the determinant of T and one
could make equation (C.20) the basis of a definition of the determinant. This can also
be used to define the determinant of a matrix. Advanced books on algebra that discuss
multilinear maps often use this approach to determinants because, having developed
the machinery of tensors one then gets many of the properties of determinants for
almost “free.”

E T dn a a( ) = ,



A P P E N D I X D

Basic Calculus and Analysis

We assume that the reader is familiar with limits, continuity, the derivative, and the
Riemann integral of real-valued functions of a real variable.

D.1 Miscellaneous Facts

We start by recalling some standard notation.

Definition. Let a, b Œ R. Define the closed interval [a,b], the open interval (a,b), and
the half-open intervals [a,b) and (a,b] to be the sets

Note that if b < a, then [a,b] = (a,b) = f.

Definition. Let X be a nonempty set of real numbers. A lower bound for X is a
number c so that c £ x for all x Œ X. If X has a lower bound, then the infimum or
greatest lower bound for X, denoted by inf X, is the largest element in the set of lower
bounds. An upper bound for X is a number c so that c ≥ x for all x Œ X. If X has an
upper bound, then the supremum or least upper bound for X, denoted by sub X, is the
smallest element in the set of upper bounds. (The completeness of the real numbers
guarantees that the largest and smallest elements exist in our cases.)

Definition. A function defined on an interval is said to be monotonic if it is either
increasing or decreasing on that interval.

Next, we recall some limit notation. The reader is assumed to know about (two-
sided) limits, but sometimes there is a need to talk about one-sided limits, such as at
end of intervals. The notation used in that case will be the following: For a function
f, the right-handed and left-handed limit at a point a denoted by f(a+) and f(a-), respec-
tively, are defined by

a b t a t b and a b t a t b, , , .[ ) = £ <{ } ( ] = < £{ }

a b t a t b a b t a t b, , , ,[ ] = £ £{ } ( ) = < <{ }



D.1.1. Theorem. (The Intermediate Value Theorem) Let f : [a,b] Æ R be a continu-
ous function. Assume that c Œ [f(a),f(b)]. Then there exists an a Œ [a,b] so that f(a) = c.

Proof. See [Buck78].

D.1.2. Theorem. (The Mean Value Theorem) Let f : [a,b] Æ R be continuous and
assume that f is differentiable on (a,b). Then there exists an a Œ (a,b) so that

Proof. See [Buck78].

D.1.3. Theorem. (The Leibnitz Formula) Suppose that h(x) = f(x)g(x), where f(x)
and g(x) are n-times differentiable function. Then the product rule for the derivative
generalizes to

Proof. Use induction.

Definition. Let f be a real-valued function defined on all of R or an open interval
(a,b). The function f is said to be of class Ck if all the derivatives of f exist and are
continuous up to and including order k. If f is of class Ck for all k, then we say that f
is of class C•.

Definition. A partition of an interval [a,b] is a sequence

Each interval [ti,ti+1] is called a subinterval of P. The norm of the partition P, denoted
by |P|, is defined by

A refinement of the partition P is a partition P¢ = (s0,s1, . . . ,sm) of [a,b] with the prop-
erty that {t0,t1, . . . ,tk} Õ {s0,s1, . . . ,sm}.

When it comes to integration, we assume that the reader is familiar with the
Riemann integral, but we recall a few basic definitions and facts. Given a bounded
function f : [a,b] Æ R the standard definition of the Riemann integral is in terms of a
limit of sums. More precisely, for each partition P = (x0,x1, . . . ,xn) of [a,b] we look at
sums of the form

P t t i ki i= - ={ }-max , , . . . , .1 1 2

P t t t where a t t t bk k= ( ) = £ £ ◊ ◊ ◊ £ =0 1 0 1, , . . . , , .

h x
n

i
f x g xn i n i

i

n
( ) ( ) -( )

=
( ) = Ê

Ë
ˆ
¯ ( ) ( )Â .

0

f b f a b a f( ) - ( ) = -( ) ¢( )a .

f a f x and f a f x
x a x a x a x a

+
Æ ≥

-
Æ £

( ) = ( ) ( ) = ( )lim lim .
, ,
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where xi Œ [xi-1,xi]. If these sums converge as the norm of the partition goes to zero,
then their limit is called the Riemann integral of f over [a,b] and denoted by

Definition. A function F is an antiderivative of a function f if F¢ (x) = f(x) for all x in
their common domain.

D.1.4. Theorem. (The Fundamental Theorem of Calculus) Let f : [a,b] Æ R be a con-
tinuous function.

(1) The function f has an antiderivative.
(2) If F is any antiderivative of f, then

Proof. See [Buck78].

D.1.5. Theorem. (The Change of Variable Theorem) Let f : [a,b] Æ R be a continu-
ously differentiable function on [a,b] and let f(a) = a and f(b) = b. If f is a continu-
ous function on f([a,b]), then

Proof. See [Buck78].

Definition. A function f is said to be absolutely integrable if |f| is integrable.

Finally, there are times when one needs to consider integrals over un-
bounded regions. The definitions for such integrals, also called improper inte-
grals, are fairly straightforward. They are defined as limits of integrals over finite 
domains, assuming that the limits exist. More precisely, in the one variable case 
one defines

with

We finish this section with two improper integrals whose values are worth knowing on
occasion.

D.1.6. Theorem.

(D.1)sin cos .x dx x dx2
0

2
0 8

( ) = ( ) =
• •

Ú Ú
p

f f f
-•

• •

-•Ú Ú Ú= +
0

0
.

f f and f f
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b b
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b
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1

,
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Proof. See [Buck78].

Definition. The integrals in (D.1) are called Fresnel integrals.

D.2 Series

This section reviews some basic facts about series, in particular Taylor polynomials
and series.

Definition. A series

(D.2)

is said to converge to the sum A if the sequence of partial sums

converges to A as k goes to infinity, otherwise, it is said to diverge. If the series (D.2)
converges, but the series

(D.3)

diverges, (D.2) is called a conditionally convergent series. If (D.3) converges, then (D.2)
is called an absolutely convergent series.

D.2.1. Theorem. Every absolutely convergent series converges.

Proof. See [Buck78].

Definition. Series of the form

(D.4)

or

(D.5)

are called power series in x or x - c, respectively.

D.2.2. Theorem. For every power series of the form (D.4) there is an R, 0 £ R £ •,
so that the series converges absolutely for all x, |x| < R, and diverges for all x, R < |x|.
One can compute R with the formulas

a x cn
n

n

-( )
=

•

Â
0

a xn
n

n=

•

Â
0

an
n=

•

Â
0

an
n

k

=
Â

0

an
n=

•

Â
0
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(D.6a)

or

(D.6b)

provided that the limits exist.

Proof. See [Buck78].

Definition. The number R in formulas (D.6) is called the radius of convergence of
the series (D.4).

Clearly, if R is the radius of convergence of the power series (D.4), then (D.5) will
converge for all x satisfying |x - c| < R, and diverge for all x satisfying |x - R| > R.
Therefore, the points at which a power series converges is an open interval together
with possibly its endpoints. The endpoints of the interval typically have to be checked
separately for convergence or divergence.

Definition. The interval of numbers at which the power series (D.4) or (D.5) con-
verges is called its interval of convergence.

D.2.3. Theorem. Let R be the radius of convergence of the series defined by (D.4).
The function it defines is differentiable for all x, |x| < R. Its derivative can be obtained
by termwise differentiation and its radius of convergence is again R.

Proof. See [Buck78].

Definition. Let f : (a,b) Æ R be of class Ck. Let x0 Œ (a,b). The polynomial

is called the Taylor polynomial of f of degree k at x0.

D.2.4. Theorem. (The Taylor Polynomial Theorem) Let f : (a,b) Æ R be of class Ck+1

and let c Œ (a,b). Then for any x Œ (a,b) there is an a Œ [c,x] such that

Proof. See [Buck78].

Definition. Let f : (a,b) Æ R be of class C•. Let Pc(x) be the Taylor polynomial of f of
degree k at c Œ (a,b). Let Rk(x) = f(x) - Pc(x). The function f is said to be analytic at c
if there is an open interval I in (a,b) containing c such that

f x f c f c x c
k

f c x c
k

f x ck k k k( ) = ( ) + ¢( ) -( ) + ◊ ◊ ◊ + ( ) -( ) +
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1 1 1
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for all x Œ I.

Analytic functions are properly discussed in complex analysis. See Appendix E.

Definition. Let f : (a,b) Æ R be of class C• and let c Œ (a,b). The power series

is called the Taylor series for f about c.

D.3 Differential Equations

For the sake of completeness we shall state the two theorems about solutions to dif-
ferential equations that are needed in this book. This section uses a few concepts from
Sections 4.2 and 4.3. Note that the order of an (ordinary) differential equation is the
order of the highest derivative appearing in the equation.

Problem 1: Let D be a connected open subset of Rn+1 and assume that f1, f2, . . . ,
fn :D Æ R are continuous functions. We want to find an open interval (a,b) and func-
tions ji : (a,b) Æ R, so that

(1) (t,j1(t),j2(t), . . . ,jn(t)) Œ D, and
(2) ji¢(t) = fi(t,j1(t),j2(t), . . . ,jn(t)).

for t Œ (a,b).

The equations in Problem 1 are called a system of n ordinary differential equations
of the first order and the differentiable functions ji(t), if they exist, are called solutions
to the system.

D.3.1. Theorem. Let (t0,x1,x2, . . . ,xn) Œ D. Then there exists an e > 0 and unique
continuously differentiable functions ji : (t0 - e,t0 + e) Æ R that are solutions to
Problem 1 and satisfy ji(t0) = xi.

Proof. See [CodL55].

Problem 2: Let D be a connected open subset of Rn+1 and assume that f :D Æ R
is a continuous function. We want to find an open interval (a,b) and a function 
j : (a,b) Æ R, so that

(1) (t,j(t),j¢(t), . . . ,j(n-1)(t)) Œ D, and
(2) j(n)(t) = f(t,j(t),j¢(t), . . . ,j(n-1)(t)).

for t Œ (a,b).

1

0 n
f c x cn n

n !
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kR x
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The equation in Problem 2 is called the nth-order differential equation associated
to the function f and the n times differentiable function j(t), if it exists, is called a
solution to the equation.

D.3.2. Theorem. Let (t0,x1,x2, . . . ,xn) Œ D. Then there exists an e > 0 and unique n
times continuously differentiable function j : (t0 - e,t0 + e) Æ R that is the solution to
Problem 2 and satisfies j(i)(t0) = xi+1, 0 £ i < n.

Proof. To prove the theorem one reduces Problem 2 to Problem 1 by introducing
new function ji and solving

See [CodL55].

The values t0, x1, x2, . . . , and xn in Theorem D.3.1 and D.3.2 are called initial con-
ditions. The theorems can be rephrased as saying that initial conditions specify a
unique local solution. An interesting question is whether these local solutions extend
to global solutions. In two important special cases this is indeed the case.

Consider the linear system of differential equations of the first order

(D.7)

Assume that the functions aij(x) are continuous over some interval X which could be
open, closed, or all of R.

D.3.3. Theorem. Let x0 Œ X and let c0, c1, . . . , cn-1 be arbitrary real numbers. There
exist unique functions yi(x) defined on X with continuous derivatives satisfying Equa-
tions (D.7) and the conditions

Proof. See [CodL55].

Definition. A linear differential equation is any equation of the form

(D.8)

where ai(x), y(x), f(x) are functions and y(i)(x) denotes the ith derivative of y(x).

We shall assume that the functions ai(x) and f(x) in Equation (D.8) are continuous
over some interval X which could be open, closed, or all of R and that a0(x) π 0 for x Œ X.
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D.3.4. Theorem. Let x0 Œ X and let c0, c1, . . . , cn-1 be arbitrary real numbers. There
is a unique function y(x) defined on X with continuous derivatives up to order n that
satisfies Equation (D.8) and the conditions

Proof. See [CodL55].

D.4 The Lebesgue Integral

The Riemann integral is quite adequate for most tasks. Certainly, for all the functions
dealt with explicitly in this book and the functions the reader might think about, the
reader will not be wrong if he/she treat their integrals as Riemann integrals. This inte-
gral does has some drawbacks however that another integral called the Lebesgue inte-
gral does not have. The Lebesgue integral is more general and is better for some
mathematical topics for technical reasons because one gets nicer and more complete
results. Fortunately, the two integrals agree on most of the functions that are of prac-
tical interest. Nevertheless, there are some differences, in particular when one is inte-
grating over unbounded intervals.

The specific reason for bringing up the Lebesgue integral in this book is its con-
nection with the mathematics behind understanding the aliasing problem in computer
graphics. See [AgoM05]. This problem is one of the first problems that one encoun-
ters in computer graphics and is caused by the fact that one is trying to display con-
tinuous objects in a discrete way. Alleviating this problem involves understanding
some fairly fancy mathematics such as Fourier series and Fourier transforms. See
Chapter 21 of [AgoM05]. It turns out that the Lebesgue integral would make it easier
and clearer to state some of the definitions and theorems in that chapter carefully and
correctly. It is a natural integral to use in the area of signal processing and the reader
may see references to it in the context of digital image processing.

We cannot give the definition of the Lebesgue integral here because that would
entail the discussion of yet another topic called measure theory. Instead we refer the
interested reader to textbooks which cover this subject such as [Berb66], [Nata61],
and [Spie69]. This is the one case in this book where a term is used without giving
its definition. Our only goal is state a few facts that will at least show the reader the
close relationship between Riemann and Lebesgue integration for functions of one
variable. Similar results hold for integrals of functions of more variables.

D.4.1. Theorem. Let f : [a,b] Æ R.

(1) If f is Riemann integrable, then it is Lebesgue integrable.
(2) If f is Lebesgue integrable, then |f| is Lebesgue integrable. (This is not true for

the Riemann integral because there are functions f with the property that f is
Riemann integrable but |f| is not.)

(3) If |f| if Riemann integrable, then f is both Riemann and Lebesgue integrable
and both integrals are equal.

y x c y x c y x cn
n0 0 0 1

1
0 1( ) = ¢( ) = ( ) =-( )

-, , . . . , .
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Proof. See the references mentioned above.

Theorem D.4.1(3) also holds in the unbounded case. The next example shows that,
unlike the Lebesgue integral, there are functions f with the property that f is Riemann
integrable but |f| is not.

D.4.2. Example. The Riemann integral

exists, but the Riemann integral

diverges. See [Spie69].

Finally, the Riemann integral is only defined if the function is bounded. This is
not a requirement for the Lebesgue integral.

sinx
x

dx
0

•
Ú

sinx
x

dx
0

•
Ú
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A P P E N D I X E

Basic Complex Analysis

E.1 Basic Facts

This appendix summarizes those facts about the complex numbers C and complex
analysis that are needed in other parts of the book. A standard general reference on
complex analysis is [Ahlf66], but [Need98] is also a book that the author would 
recommend.

We can write a complex number z Œ C in the form

Definition. This representation is called the polar form representation of the
complex number z and the function arg(z) defined by arg(z) = q is called the argu-
ment function.

Note that arg(z) is a multiple-valued function. Also,

Definition. The extended complex plane is obtained by adding one extra point to C.
This point is denoted by • and called the point at infinity. (Topologically, the extended
complex plane is the one-point compactification of C. See Section 5.5.)

We identify the extended complex plane with the unit sphere S2 in R3 using the
stereographic projection.

Definition. The sphere S2 along with the complex structure induced by the stereo-
graphic projection is called the Riemann sphere.

Definition. A point (z1,z2, . . . ,zn) Œ Cn is called a real point if all of its coordinates
zi are real.

Finally, since C and R2 are the same sets and we have a notion of limit and con-
tinuity for maps defined on R2, these notions carry over to maps f :C Æ C.

arg arg arg .z z z z1 2 1 2( ) = ( ) + ( )

z i= +( )r cos sin .q q
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E.2 Analytic Functions

Definition. Let f(z) be a complex function defined in a neighborhood of a point z0.
The derivative of f(z) at z0, denoted by f¢(z0), is defined by

assuming that the limit exists.

Definition. A function f(z) defined on an open set U is said to be analytic or holo-
morphic on U if its derivative f¢(z) exists at every point of U. A function f(z) defined
on an arbitrary set A is said to be analytic or holomorphic on A if it is analytic on an
open set containing A.

E.2.1. Example. Let n be a positive integer. The function

is analytic on C and

Although the definition for the complex derivative looks just like that of the deriv-
ative of real functions, it is much more constrained. Let

(E.1)

If we approach z first along a line parallel to the x-axis and next by a line parallel to
the y-axis, it is easy to show that

From this we get the Cauchy-Riemann equations

(E.2)

Therefore, that u(x,y) and v(x,y) satisfy the Cauchy-Riemann equations is a 
necessary condition for f(z) to be differentiable. The converse is essentially also 
true.

E.2.2. Theorem. If the functions u(x,y) and v(x,y) of an arbitrary function f(z)
expressed in form (E.1) have continuous partial derivatives in a neighborhood of a
point z0, then f(z) has a derivative at z0 if and only if the Cauchy-Riemann equations
(E.2) hold at z0.
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Proof. See [Ahlf66].

One important property of analytic functions is that they preserve the angles and
their sense (or orientation or sign) between intersecting curves. More precisely, let f(z)
be a function that is analytic at a point z0. Let a1(t) and a2(t) be two curves in the
complex plane with a1(0) = a2(0) = z0. Assume that both curves have nonzero tangent
vectors at z0. Define

If f¢(z0) π 0, then one can show the following:

(1) The angle between the tangent vectors a1¢(0) and a2¢(0) at z0 is the same as the
angle between the tangent vectors b1¢(0) and b2¢(0) at w0.

(2) The sense (or orientation or sign) of the angles is preserved, that is, if the
curves a1(t) and a2(t) are not tangent at z0, then, thinking of the complex plane
as R2, the ordered bases (a1¢(0),a2¢(0)) and (b1¢(0),b2¢(0)) induce the same orien-
tation on R2.

See Figure E.1.

Definition. A function f(z) satisfying (1) and (2) at a point z0 is said to be conformal
at z0. A conformal map is a map that is conformal at every point of its domain.

E.2.3. Theorem. An analytic function f(z) is conformal at every point z0 where
f¢(z0) π 0.

Proof. See [Ahlf66].

In fact, one can show a converse:

E.2.4. Theorem. If a function f(z) is conformal on an open set, then it is analytic
on that set.

Proof. See [Need98].

The main result about real power series carry over to complex ones. A series

(E.3)f n
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Figure E.1. A conformal map.
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has a radius of convergence R, 0 £ R £ • and a disk of convergence. The proofs are
the same. An important fact is

E.2.5. Theorem. If R is the radius of convergence of the series (E.3), then f(z) is an
analytic function for all z, |z| < R. The derivative of f(z) can be obtained by term-wise
differentiation and the resulting series has the same radius of convergence.

Proof. See [Ahlf66].

E.2.6. Corollary. The function f(z) in (E.3) is infinitely differentiable for all z, |z| <
R, where R is its radius of convergence.

We can now use series to define some standard functions.

Definition. The exponential function ez is defined by

Definition. The sine function sinz and cosine function cosz are defined by

It is easy to show that the complex sine and cosine functions have series repre-
sentations like their real cousins:

Definition. A function f(t) defined on R or C is said to be periodic of period T if
f(t + T) = f (t).

One can check that the sine and cosine functions are periodic of period 2p. Finally,
the definitions also give the famous Euler formula

Definition. Any root of the equation zn = 1 is called an nth root of unity.

It should be clear from the above that there are n nth roots of unity. In fact, they
are

where
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E.3 Complex Integration

The easiest way to define integration of complex-valued functions is to reduce the
problem to integration of real-valued functions.

Let f : [a,b] Æ C be a function. Writing

define

More generally, let g : [a,b] Æ C (=R2) be a C1 parametric curve and let f(z) be a complex
function that is continuous on G = g([a,b]).

Definition. Define the line integral of f along g, Úg f, by

Using the change of variables formula for integrals it is easy to show that the 
line integral is invariant under changes of parameter. What this means is the 
following:

E.3.1. Theorem. Let f : [c,d] Æ [a,b] be a one-to-one C1 map with f¢ > 0. If l : [c,d]
Æ G is the reparameterization of g(t) defined by l(t) = g(f(t)), then

Proof. See [Ahlf66].

A fundamental theorem of complex analysis is

E.3.2. Theorem. (The Cauchy Integral Formula) Let f(z) be a function analytic on
an open disk D. Let g : [a,b] Æ D be a closed proper C1 parametric curve and let z be
a point of D not in the image of g. Then

Proof. See [Ahlf66].

E.3.3. Theorem. With the same hypotheses as in Theorem E.3.2 one has
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Proof. One way to prove this theorem is to use Theorem E.3.2 and show that dif-
ferentiation commutes with integration.

E.3.4. Corollary. An analytic function is infinitely differentiable.

E.4 More on Complex Series

The first theorem is the complex version of the Taylor series expansion for a function.

E.4.1. Theorem. If f(z) is an analytic function on an open disk of radius r about a
point z0, then for every point z in the disk

(E.4)

In particular, the series on the right side of equation (E.4) converges.

Proof. See [Ahlf66].

Let f(z) be a function that is analytic in the neighborhood of a point a except pos-
sibly at the point a itself. More precisely, assume that there exists a d > 0 and that f(z)
is analytic for all z satisfying 0 < |z - a| < d.

Definition. The point a is called an isolated singularity of f(z). It is called a remov-
able singularity of f if some definition of f(a) will make f analytic at a. The point a is
called a pole if

and in that case we set f(a) = •.

Assume that f(z) has a pole at a point a. If

then g(z) has a removable singularity at a and we can remove the singularity by defin-
ing g(a) to be 0, making g into a function which is analytic in a neighborhood of a.
Because a is a zero of g, it follows that

for some m > 0 and h(z) an analytic function at a with h(a) π 0.
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Definition. The integer m is called the order of the pole of f at a.

Since

it follows that

where h(z) is analytic in a neighborhood of a and h(a) π 0.

Definition. A rational function is a quotient of two polynomials that have no
common root.

Definition. A meromorphic function is a function that is analytic on an open set
except possibly for poles.

E.4.2. Example. Rational functions are a special case of meromorphic functions.

E.4.3. Example. If f(z) and g(z) are analytic functions and if g(z) is not identically
0, then f(z)/g(z) is a meromorphic function.

Basic facts about series can be applied to complex series with negative powers of
z such as

(E.5)

By replacing z with 1/z one concludes that the series (E.5) converges for all z with
z > |R| for some R and is an analytic function there. Therefore, we can talk about
series of the form

(E.6)

where we say that it is convergent if the two parts, the part with positive powers of z
and the part with negative powers of z, are separately convergent. More generally, we
can consider series of the form (E.6) where we expand about some arbitrary point z0.
Such series, if they converge, will then converge in some annulus about z0 and define
an analytic function there. The following is a converse to this.

E.4.4. Theorem. Let 0 £ R1 < R2 and assume that f(z) is analytic for all z in the
annulus R1 < |z - z0| < R2. Then f(z) has a unique representation in that region of the
form
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where

and g1 and g2 are proper parameterizations of circles C1 and C2 of radius r1 and r2
about z0, respectively. The only requirements that the circles have to satisfy are that

and that they are parameterized in a counter-clockwise fashion.

Proof. See Figure E.2. This is a fairly straightforward application of Cauchy’s inte-
gral formula.

Definition. The series expansion (E.7) for f(z) is called the Laurent series for f(z).

E.4.5. Example. The Laurent series expansion for is

E.5 Miscellaneous Facts

E.5.1. Theorem. (Liouville’s Theorem) A bounded function that is analytic on the
whole plane must be a constant function.

Proof. See [Ahlf66].

A fundamental result that is an amazingly trivial consequence of Liouville’s
theorem is the algebraic closure of the complex numbers:
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Figure E.2. The circles in the Laurent series formulas in
Theorem E.4.4.
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E.5.2. Theorem. (The Fundamental Theorem of Algebra) Every complex polyno-
mial p(z) of degree one or greater has a root.

Proof. If p(z) has no zero, then the function f(z) = 1/p(z) is an analytic function on
the whole complex plane. Since it is easy to show that f(z) approaches 0 as |z| goes
to infinity, it follows that f(z) is bounded and must therefore be constant by Liouville’s
theorem. This is impossible and so p(z) must have a zero.

E.5.3. Corollary. Every complex polynomial of degree n, n ≥ 1, factors into n linear
factors and has n roots counted with their multiplicity.

E.5.4. Corollary. Every real polynomial of degree n, n ≥ 1, has at most n roots
counted with their multiplicity.

Liouville’s theorem also implies

E.5.5. Theorem. Every function meromorphic on the extended complex plane is a
rational function.

Proof. See [SakZ71].

E.5.6. Theorem. (The Maximum Principle) If f(z) is an analytic function on a closed
and bounded set, then the maximum of |f(z)| occurs on the boundary of the set.

Proof. See [Ahlf66].

E.5.7. Theorem. (Fundamental Theorem of Conformal Mappings) Every simply
connected Riemann surface can be mapped in a biholomorphic way (the map and its
inverse are holomorphic) onto either the closed plane, the plane, or the interior of the
unit disk.

Proof. See [BehS62].

E.5.8. Corollary. (The Riemann Mapping Theorem) Let U be a simply connected
open subset of the complex plane that is not the entire plane and let z0 Œ U. Then
there exists a unique analytic function f(z) on U that satisfies f(z0) = 0, f¢ (z0) > 0, and
that maps U in a one-to-one fashion onto the open unit disk.

Proof. See [Ahlf66].
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A Bit of Numerical Analysis

F.1 The Condition Number of a Matrix

F.1.1. Lemma. If A is an m ¥ n matrix, then there is a real number K > 0, so 
that

for all x Œ Rm.

Proof. Assume A = (aij). Let cj = (a1j,a2j, . . . ,amj) be the jth column vector and let

If y = xA, then the Cauchy-Schwarz inequality implies that

so that

We can let .

Definition. Let A be an m ¥ n matrix. The norm of A, denoted by ||A||, is defined by

Lemma F.1.1 clearly implies that the norm of an m ¥ n matrix is well defined
because a bounded set of real numbers always has a least upper bound. The next
theorem shows that the norm of a matrix behaves like a norm.

A
A

n

=
π Œ
sup .

0 x R

x
x

K nM=

x y x M xA y y y nM nn= £ + + ◊ ◊ ◊ + £ £1
2

2
2 2 2 2

.

y a x Mi ij j
i

m

i= £ £
=
Â

1

c x x ,

M n= { }max , , . . . , .c c c1 2

x xA K£



F.1.2. Theorem. Let A and B be m ¥ n matrices and let a Œ R.

(1) ||A|| ≥ 0 and ||A|| = 0 if and only if A is the zero matrix.
(2) ||aA|| = |a| ||A||.
(3) ||A + B|| £ ||A|| + ||B||.
(4) If m = n, then ||AB|| £ ||A|| ||B||.

Proof. Straightforward.

Definition. Let A be a nonsingular n ¥ n matrix. The product ||A|| ||A-1|| is called the
condition number of A and is denoted by cond(A).

The condition number of a matrix plays an important role in numerical analysis
because it has a direct bearing on the accuracy of numerical solutions to linear
systems of the form xA = b. In this context, one usually says that the linear system or
matrix is ill-conditioned if cond(A) is “large.” Numerical solutions to ill-conditioned
systems are typically very inaccurate.

F.2 Approximation and Numerical Integration

The problem addressed in this section is how, given a function f : [a,b] Æ R, one can
best approximate the integral

(F.1)

numerically if no antiderivative of f is available. In no way does this section intend to
cover the subject of numerical integration. We simply want to explain the gist of one
important technique called Gaussian quadrature because it does come up in geomet-
ric modeling. For example, see Chapter 14 of [AgoM05]. For more details see
[ConD72] or [Hild87].

We assume that the reader is familiar with the trapezoidal and Simpson’s rule
from calculus. These methods approximate the integral I in (F.1) by approximating
the function f by a straight line and parabola, respectively.

Trapezoidal rule:

with the error for some x Œ (a,b)

Simpson’s rule:

with the error for some x Œ (a,b)E f
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These approximations are usually not very good because the line or parabola are
poor approximations to f. The key to improving the accuracy is to look for better
approximating polynomial functions. The reason for sticking with polynomials or
piecewise polynomial functions is that they are easy to integrate. This leads us of
course to another big subject, namely, finding the best piecewise polynomial approx-
imations to a function.

Assume that the function f(x) is known at points x0, x1, . . . , xn. If one looks over
some of the simple standard approaches to finding an approximating polynomial,
such as Lagrange or Hermite interpolation, one will see that they all try to approxi-
mate f(x) by a polynomial g(x) of the form

(F.2)

where pi(x) are suitably chosen polynomials. (In the Hermite case one actually adds
another similar sum but one using the values of the derivative of f at xi.) Since we
want an approximation to f(x), we want the error function

(F.3)

to be “small” over [a,b]. Now, we can think of formula (F.2) as representing a linear
combination of polynomials pi(x). Continuing this line of thought, the problem then
becomes one of finding a basis p0(x), p1(x), . . . for the subspace of polynomials in the
vector space Cr([a,b]) so that the linear combination in (F.2) best approximates this
arbitrary function f(x). Orthonormal bases of vector spaces always have many 
advantages and so one is lead to looking for sequences p0(x), p1(x), . . . of “orthogo-
nal” polynomials.

Definition. Given an inner product <,> on Cr([a,b]), a sequence of polynomials p0(x),
p1(x), . . . in Cr([a,b]) is called a sequence of orthogonal polynomials over [a,b] with
respect to <,> if the polynomials pi(x) have degree i and are pairwise orthogonal with
respect to <,>, that is, <pi(x),pj(x)> = 0, for i π j.

F.2.1. Theorem. Let <,> be an inner product on Cr([a,b]).

(1) Any sequence of orthogonal polynomials [a,b] with respect to <,> forms a basis
for the space of all polynomials over [a,b].

(2) The condition p0(x) = 1 and pi(1) = 1, i ≥ 1, define a unique sequence of 
orthogonal polynomials pi(x) called the sequence of orthogonal polynomials 
associated to <,>. (We assume that 1 belongs to [a,b] here.)

Proof. Easy.

The inner product on Cr([a,b]) that we have in mind here is

(F.4a)

or, more generally,
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(F.4b)

for some nonnegative weight function w(x). To keep formulas simple, let us assume
that [a,b] = [-1,1]. (It is easy to change the domain of functions by a linear change of
variables.)

Note that the sequence 1, x, x2, . . . is not a sequence of orthogonal polynomials
over [-1,1] with respect to the inner product defined by (F.4a).

F.2.2. Theorem. The polynomials Pi(x) in the sequence of orthogonal polynomials
associated to the inner product defined by (F.4a) are defined by the following recur-
sion formulas:

(F.5)

Proof. See [ConD72].

Definition. The orthogonal polynomials Pi(x) defined by formulas (F.5) are called
the Legendre polynomials.

The first few elements in the sequence of orthogonal polynomials Pi(x) are easily
seen to be

One could use a simple Gram-Schmidt type algorithm applied to the sequence 1, x,
x2, . . . to find these polynomials.

F.2.3. Theorem. The polynomials Ti(x) in the sequence of orthogonal polynomials
associated to the inner product defined by (F.4b) with

are defined by

(F.6a)

or by the following recursion formulas:

(F.6b)

Proof. See [ConD72].
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Definition. The orthogonal polynomials Ti(x) defined by formulas (F.6) are called
the Chebyshev polynomials.

The first few Chebyshev polynomials are

One can show that these polynomials give especially good approximations. Particu-
larly relevant for minimizing the error function E(x) in (F.3) is the following fact:

F.2.4. Theorem. Of all nth degree polynomials with leading coefficient 1, the poly-
nomials 21-nTn(x) have the smallest absolute value 21-n on [-1,1].

Proof. See [ConD72]. Note that by formula (F.6a) the polynomials Ti(x) are bounded
by 1 on [-1,1] since the cosine function is.

Here is how one would use Chebyshev polynomials to get an efficient polynomial
approximation to a function f(x) on [-1,1] that is within some e of the function.

Step 1: Begin with the straightforward approach which is to use the Taylor 
polynomial

for f(x) of smallest degree n so that the remainder is less than en for an en < e. See
Theorem D.2.4.

Step 2: Since the monomials xi are linear combinations of the Chebyshev 
polynomials Ti(x), replace them by the Ti(x) and express p(x) in the form

Step 3: Choose k to be the smallest integer so that

Then

will approximate to within e.

It turns out that this use of Chebyshev polynomials will often produce approxima-
tions of degree k of much smaller degree than the degree n of the Taylor polynomial.

We return to the problem of this section. Using the trapezoidal and Simpson’s rule
as an approximation to the integral I in (F.1) we will get the correct answer if f(x) is
a linear or quadratic polynomial respectively. This fact is easy to establish by looking

q x b b T x b T x b T xk k( ) = + ( ) + ( ) + ◊ ◊ ◊ + ( )0 1 1 2 2

e en k nb b+ + ◊ ◊ ◊ + £+1 .

p x b b T x b T x b T xn n( ) = + ( ) + ( ) + ◊ ◊ ◊ + ( )0 1 1 2 2 .

p x a a x a x a xn
n( ) = + + + ◊ ◊ ◊ +0 1 2

2

1 2 1 4 3 8 8 12 3 4 2, , , , , . . . .x x x x x x- - - +
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at the error term E which contains the first, respectively, second derivative as a factor.
Thus we are led to ask if we can find an approximation to the integral that gives the
exact answer on polynomials of degree £ k. We will achieve this if we can find an
approximation whose error term has the (k + 1)st derivative as a factor.

In general, given a function f(x) and a weight function w(x), Gaussian quadrature
gives an approximation for the integral

(F.7)

One uses the inner product on Cr([a,b]) defined by (F.4b). Thus there are different
flavors of Gaussian quadrature depending on the choice of w(x) in this general 
setting. Legendre-Gauss quadrature (or simply Gauss or Gaussian quadrature if one is
only contemplating the integral (F.1)) computes an approximation of this integral (F.7)
when w(x) = 1 and uses the inner product defined by (F.4a). Chebyshev-Gauss quad-
rature uses

The more general type of Gauss quadrature is useful in situations where one is still
trying to approximate an integral of the type (F.1) but the function f(x) has singular-
ities which can be removed by rewriting the integral in the form

where

has no singularities.

F.2.5. Theorem. Let pi(x) be the sequence of orthogonal polynomials with respect
to the inner product (F.4b). If x0, x1, . . . , xk are the zeros of the polynomial pk+1(x)
and if we define

(F.8)

and

(F.9)

then the approximation

I a f x a f x a f xk k k= ( ) + ( ) + ◊ ◊ ◊ + ( )0 0 1 1

a L x w x dxi i k
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b
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L x
x x

x xi k
j

i jj j i

k
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,
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0
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( ) =
( )
( )

I f x dx
f x
w x

w x dx
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b
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b
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x
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1
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for the integral I in (F.7) will be exact whenever f(x) is a polynomial function of degree
£ 2k + 1. Furthermore,

for some x Œ (a,b), where

and ck+1 is the coefficient of the leading term in pk+1(x).

Proof. See [ConD72].

Theorem F.2.5 is one of the basic Gaussian quadrature results. The polynomials
Li,k(x) in formula (F.8) are just the Lagrange basis functions that are used in Lagrange
interpolation.

Definition. The zeros of the polynomials in the sequence of orthogonal polynomi-
als with respect to the inner product (F.4b) are called the Gaussian points or zeros.
The corresponding coefficients ai defined by equation (F.9) are called the Gaussian
weights.

Now, since the sequences of orthogonal polynomials are well known, so are their
Gaussian zeros and weights, which can be looked up in a table. Therefore, to use
Gaussian quadrature one only has to be able to evaluate the function f(x) at the 
Gaussian zeros. For example, in the case of Legendre-Gauss quadrature with k = 1,
the zeros of

are

Also,

and

Therefore, the two-point Gaussian quadrature approximation is

f a f x a f x f f
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One can also show that the error in our approximation is

for some x Œ (-1,1).
In summary, Gaussian quadrature gives extremely good accuracy for smooth func-

tions with a relative few number of function evaluations. It often also works well for
functions that are not so well behaved. It cannot in general be used if only a prede-
termined finite number of values of the function are known because one needs the
values at the Gaussian zeros.

1
135

4f ( ) ( )x
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A
Abelian group, 824

finitely generated, 831
free, 833
torsion-free, 831

Abelianization
of group, 829

Abstract simplicial complex, 334
geometric realization of, 334
induced by labeled complex, 336
simplex of, 334
vertex of, 334

Accumulation point, 210, 296
Adapted frame field

for surface, 656
Adjoining cells, 390
Adjoint, 39
Admissible labeling, 342
Affine closure, 20
Affine hull, 20
Affine part

of projective variety, 688
Affine properties, 101
Affine space, 675
Affine transformation, 95, 153

determinant of, 99, 109
equations for, 99, 109

Affinely equivalent figures, 101
Agreeing vector fields, 662
Algebra, 859

division, 859
graded, 878

of exterior forms, 266, 886
of real-valued multilinear maps, 879

Algebraic closure
of field, 858

Algebraic element
minimum polynomial of, 856
of degree n, 856
over field, 856
over subring, 841

Algebraic extension field, 856
Algebraic geometry, 468, 674
Algebraic plane curve, 675

projective, 676
Algebraic topology, 327

central problem of, 327, 358
Algebraic variety

affine, 468, 675
in Pn(k), 676
projective, 676

Algebraically closed field, 858
Algebraically dependent, 857
Algebraically independent, 857
Aliasing problem, 896
Almost all transforms, 800
Alternation map, 881, 885
Analysis situs, 321
Analytic branch, 749
Analytic continuation, 749

direct, 749
Analytic element, 748

center of, 748
disk of, 749

Index
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point of continuability of, 749
point of noncontinuability of, 749
radius of, 749
singular point of, 749

Analytic function, 893, 899
global, 749

Angle
between oriented hyperplanes, 28
between planes, 18
between u- and v-parameter curves, 

667
between vectors, 6
of rotation, 68, 70, 107, 113
signed, 29

Angle-preserving map, 203
Angular defect

at point of surface, 604
Anticonic pair, 641
Anticonics, 641
Antiderivative, 891
Antipodal map, 431, 444, 454, 472, 489, 814
Antipodal point, 140, 141, 316, 423, 513, 549,

632, 814
Approximation

via Chebyshev polynomials, 911
via Legendre polynomials, 910

Arc-length parametrization, 561
induced, 562

Area
of parameterization, 594
of surface, 596

Arg, 898
Argument function

on complex numbers, 898
Ascending chain condition, 839
Associate

in ring, 837
Asymptotic direction, 611
Asymptotic line, 611, 671

equation for, 612
Atan2 function, 815
Attaching a space by a map, 301
Attaching map, 301

for cell, 390
Augmented frame, 197
Automorphism

over field, 849
Axiom of parallels, 205
Axis of revolution, 23
Azimuth, 552

B
Back k-face

of simplex, 449
Barycenter, 36

of dual cell, 440
Barycentric coordinates, 36, 137

preserving, 109
Barycentric subdivision

first, 381
nth, 381

Base
of topology, 290

Base curve
of ruled surface, 645

Base plane
for generalized frame, 197

Base point
of fundamental group, 416
of pointed space, 303

Base space
of bundle, 422
of vector bundle, 510

Basis
for abelian group, 833
of empty set, 854
of vector space, 853
orthogonal, 7
orthonormal, 7, 13

Betti, Enrico (1823–1892)
Betti number, 388, 389, 407, 408, 495

of polyhedron, 375
of simplicial complex, 374

Between two points, 4
Bézout, Etienne (1730–1783)
Bézout’s theorem, 683, 700, 710, 713, 763,

786, 803, 804
relation to fundamental theorem of

algebra, 711
Biholomorphic, 906
Bijection, 820
Bilinear form, 48
Bilinear map, 44, 862

associated quadratic map for, 46
degenerate, 46
discriminant of, 45
matrix of, 45
nondegenerate, 46
positive definite, 46
rank of, 46
signature of, 48



Index 923

Binary relation, 818
Binormal,

of space curve, 574
Birational equivalence

of affine varieties, 771, 775
of curves, 775
of projective varieties, 780

Birational map
between affine varieties, 771
between projective varieties, 780

Birationally equivalent, 771, 780
Blowing up

a singularity, 760
Blowups, 804
Bolzano, Bernard (1781–1848)
Bolzano-Weierstrass theorem, 306
Bonnet, Pierre Ossian (1819–1892), 659, 673
Bordered surface, 353

classification of, 354
representation of, 354

Borel, Emile (1871–1956), 212
Boundary

in set, 214
induced orientation of, 528
of Cr manifold, 466, 501
of topological manifold, 297
of polyhedron, 387
of set, 211, 292
of simplicial complex, 330
of surface, 353
relative, 214

Boundary map, 364, 393
of singular q-chains, 451, 539

Boundary operator
of singular k-chains, 274, 539

Boundary point
of manifold, 297
of set, 292

Bounded set, 212, 286
Branch, 748, 753

analytic, 749
determined by analytic elements, 749
of curve, 757

Branch line, 750
Branch point, 750
Branch representation, 754
Brianchon, Charles J. (1785–1864)
Brianchon

theorem of, 200, 714
Brouwer, Luitzen Egbertus Jan (1881–1967)

Brouwer fixed point theorem, 445, 531
Buchberger Gröbner basis theorem, 740
Bundle

base space of, 422
fiber of, 422
isomorphic, 423
locally trivial, 423
over space, 422
product, 422
projection of, 422
total space of, 422

Bundle automorphism, 423
Bundle isomorphism, 423
Bundle map, 423

C
C, 851
C• function/map, 224, 502
C• structure, 501

standard, 501
Cr function/map, 223, 231, 502, 890

at point, 231
rank of, 231, 471, 503

Cr manifold, 466, 501
product, 502

Cr parameterization, 460
Cr structure, 501

on product, 502
Cr(A), 223, 231
CAGD (Computer Aided Geometric Design),

459, 579, 586, 587, 638, 643, 676, 744
Canal surface, 638

center curve of, 638
characteristic circle of, 638
radius function of, 638

Canonical line bundle
over P1, 513
over Pn, 549

Canonical vector bundle map
on induced vector bundle, 515

Cap product, 449
Cartan structural equations, 656, 658
Cartan, Élie (1869–1951), 649
Casson, Andrew, 340
Category, 452
Catenary, 670
Cauchy, Augustin Louis (1789–1857), 255
Cauchy integral formula, 902
Cauchy sequence, 288
Cauchy-Riemann equations, 899
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Cauchy-Schwarz inequality, 6, 7, 52, 318,
864, 907

Cell
closed, 390
dual, 440
free, 395
open, 389

Cell decomposition, 389
minimal, 396, 499

Cellular map, 392
Center

of analytic element, 748
of central conic, 169
of parameterization, 755
of place, 757
of quadratic transformation, 759
of rotation, 70, 107

Center curve
for canal surface, 638

Center of curvature
for normal curvatures, 599
for planar curve, 564, 565

Central conic section, 167
center of, 169

Central conic sections 
confocal, 168

Central points
of ruled surface, 647

Central projection, 127, 137
generalized, 196

Chain complex, 363
oriented, 363

Chain map, 378
induced, 378

Chain rule, 221
Change of coordinates, 464, 560
Change of coordinates transformation, 464

orientation-preserving, 464
orientation-reversing, 464

Change of parameters transformation, 464
Change of variable theorem, 891

generalized, 261
Characteristic

of field, 847
Characteristic circle

of canal surface, 638
Characteristic function

of set, 259, 815
Characteristic map

for cell, 390

Characteristic polynomial
of matrix, 871
of linear transformation, 871

Chasles, Michel (1793–1880), 130
Chebyshev, Pafnuty Lvovich (1821–1894)
Chebyshev polynomials, 911
Chebyshev-Gauss quadrature, 912
Christoffel, Elwin Bruno (1829–1900)
Christoffel symbols, 619

for connection, 661, 663
Circle

directrix of, 167
eccentricity of, 167
focus of, 167

Circular cone, 166
Class C•

function of, 224, 890
Class Cr

function of, 223, 224, 231, 502, 890
Classification

of bordered surfaces, 354
of closed surfaces, 351
of conics, 175
of noncompact surfaces, 354
of quadratic surfaces, 196
of quadrics, 194
of vector bundles, 550, 551

Clifford, William Kingdon (1845–1879), 
130

Closed
in set, 213

Closed map, 293
Closed set, 209, 285, 291

as variety, 724
relative, 213

Closed surfaces
classification of, 351

Closure
in set, 214, 292
of set, 210, 292
relative, 214

Closure finite, 391
Cobordant manifolds, 497
Cobordism, 497
Coboundary, 410
Coboundary map, 410
Cochain group, 410
Cocycle, 410
Codazzi, Delfino (1824–1873), 619
Codazzi equations, 658
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Codimension
of submanifold, 474
of variety, 792
of vector subspace, 854

Coefficient
of monomial, 843

Coefficients
of first fundamental form, 591, 667
of second fundamental form, 612, 

667
Cofactor

of matrix, 866
Cohomology group, 410

de Rham, 548
singular, 452

Cohomology ring, 411
Colatitude, 552
Collapse of CW complex, 395

elementary, 395
Collapsing subspace to point, 300
Collar, 528

closed, 528
Collinear points, 4, 141
Collinear vectors, 853
Colon ideal, 722
Column rank

of matrix, 867
Combinatorial topology, 323, 374
Combinatorially equivalent

simplicial complexes, 339
Commutative algebra, 674, 715
Commutative diagram, 816
Commutator

of group, 829
Commutator subgroup, 419, 829
Compact space, 304
Compact subset, 212
Compatibility equations, 619
Complex conjugate, 851
Complex line, 60
Complex manifold, 684, 750
Complex number

real part of, 851
imaginary part of, 851
modulus of, 851

Complex number field, 851
Complex plane

extended, 898
k-dimensional, 60

Complex variety, 675

Component
of simplicial complex, 355
of space, 309
of subset of Rn, 217
of tangent vector, 506, 508
of variety, 701

Component function
of vector field, 269

Composite function, 820
Composition

of formal power series, 844
Concave

downward, 242
upward, 242

Concavity
of graph, 242

Condition number
of matrix, 908

Cone, 191
as ruled surface, 645
axis of, 166
circular, 166
double, 166
oblique circular, 166
of lines, 166
on space, 303
right circular, 166
vertex of, 166

Confocal conic sections, 168
Confocal quadrics, 194
Conformal

at point, 900
Conformal map, 203, 900
Congruent

modulo an ideal, 836
modulo an integer, 817

Congruent figures, 87
Congruent matrices, 45
Congruent transformation, 64, 87
Conic, 180

affine, 170
classification of, 175
constructing points on, 200
degenerate, 172, 174
fitting to data, 185, 186, 189, 190
in projective plane, 173
in R2 versus in P2, 182
nondegenerate, 129, 134, 174
projective, 173
tangent line of, 184
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Conic section, 166, 180
central, 167
degenerate, 166
directrix of, 167
eccentricity of, 167
focus of, 167
natural coordinate system for, 168
nondegenerate, 166
vertex of, 168

Connected space, 217, 308
Connected sum, 348
Connection, 661

compatible with metric, 662
Levi-Civita, 663
symmetric, 662
torsion-free, 662

Connection form
for frame field, 653

Connectivity number
of polyhedron, 407
of simplicial complex, 407

Continuity
at point, 215, 293
(d,d¢)-, 287
sequential, 296
uniform, 216

Continuous function, 215, 293
Contractible space, 311
Contravariant order

of tensor, 878
Contravariant tensor, 507, 878
Converge

in metric space, 287
in topological space, 296

Convergence
pointwise, 288
uniform, 288

Convex
curve, 570
set, 30

Convex closure, 31
geodesic, 602

Convex combination, 35
Convex hull, 31
Convex linear polyhedron, 31
Convex surface, 602
Convexity

at point on surface, 602
Coordinate neighborhood, 

501

Coordinate neighborhood cover
of Pn(k), 686

Coordinate ring
of variety, 766

Coordinate system
choosing one for Pn(k), 687
curvilinear, 478, 489
for projective line, 147
for projective plane, 150
left-handed, 22, 27
right-handed, 22, 27
skew, 111
view plane, 197

Coordinates
affine, 150
change of, 148, 151, 152, 464
cylindrical, 553
extended affine, 147
extended real, 147
for projective line, 147
for projective plane, 150
spherical, 552

Coset, 827
left, 827
right, 827

Cosine function, 901
Countability axioms, 297
Countable set, 820
Covariant derivative

along curve, 634
compatible, 661
for manifold, 661
of vector field, 634, 650, 652

Covariant order
of tensor, 878

Covariant tensor, 507, 878
Cover, 212, 304

closed, 212, 304
finite, 304
locally finite, 315
open, 212, 304

Covering space, 424
from group action, 432
n-fold covering, 424
summary, 433

Covering transformation, 424, 430
Cowlick, 488
Critical point, 240, 490, 529

degenerate, 249
nondegenerate, 249, 490
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Critical value, 240, 490, 529
Cross product, 17

generalized, 51
how to remember it, 17

Crosscap, 350
Cross-ratio, 130

in projective space, 145, 149
Cross-section

nonzero, 510
of vector bundle, 510
support of, 511
zero, 510

Cross-sections
linearly independent, 511

Cube, 256
face of, 256
n-dimensional, 256
singular, 273
unit, 813

Cup product
on cohomology groups, 411

Curl
of vector field, 272

Curvature
at vertex of polygonal curve, 572
difference between 2d and 3d case, 573
geodesic, 622
generalized, 578
geometric definition of, 564, 565, 569, 571,

573
of curve, 566, 573, 664
of regular curve, 567, 577
signed, 566, 569, 571

Curvature tensor, 663
Curvature vector

of curve, 566, 573
Curve, 298, 475

algebraic, 782
algebraic plane, 675
closed, 332, 475
convex, 570
curvature of, 566, 573, 664
curvature vector of, 566
geodesic path, 624
hyperelliptic, 789
interior of, 570
length of, 561
locally flat, 574
normal curvature of, 605
offset, 586, 666

order of, 699
parallel, 586
parametric, 474
planarity condition for, 576, 578
polygonal, 332
projective algebraic plane, 676
rectifiable, 559
simple closed, 569
space, 573, 783
straight line condition for, 569
tangent vector of, 475
topological, 298
torsion of, 575
transformed, 761
unit tangent vectors for, 475

Cusp, 707
extraordinary, 587
of parallel curve, 587
ordinary, 587

Cutting and pasting, 333, 337, 390
CW complex, 390

closed n-cell of, 390
dimension of, 391
finite, 391
finite dimensional, 391
homology theory for, 393
infinite dimensional, 391
irregular, 391
locally finite, 392
normal, 392
n-skeleton of, 391
open n-cell of, 390
properties of, 392
regular, 391
subcomplex of, 392
underlying space of, 391

Cyclic group, 828
Cyclide, 640

central, 642
degenerate, 642
Dupin’s definition of, 641
horned, 642
Maxwell’s definition of, 640
parabolic, 642
revolute, 642
ring, 640
spindle, 642
spine curve of, 640
string construction for, 641

Cycloid, 670
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Cylinder, 645
elliptic, 192
generalized, 645
geodesics of, 626
hyperbolic, 192
parabolic, 192

Cylindrical coordinates, 553, 655
Cylindrical frame field, 655

D
d• metric, 283, 289
d1 metric, 283
d2 metric, 283
d-ball, 284
d-bounded, 286
d-closed, 285
d-diameter, 286
d-disk, 284
d-distance, 283

between sets, 286
from point to set, 286

d-neighborhood, 285
d-open, 285
d-sphere, 284
de Rham, Georges (1903–1990)
de Rham cohomology, 548
Deformation retract, 312
Deformation retraction, 311
Deglex order, 732
Degree

and curvature of curve, 571
geometric interpretation of, 443, 702
mod 2, 534
of algebraic element, 856
of hypersurface, 699
of intersection, 801
of map, 313, 443, 445, 532
of map at point, 531
of map over point, 531
of polynomial, 841, 843
of variety, 800

Degree lexicographic order, 732
Degree reverse lexicographic order, 732
Degrevlex order, 732
Dehomogenization

of homogeneous polynomial, 688
Dense set, 292
Derivation, 507
Derivative

of complex function, 899

of formal power series, 846
of function, 218
of map between manifolds, 481, 507, 

509
of polynomial, 677, 846
of vector field along curve, 650

Derived subgroup, 829
Descartes, René du Perron (1596–1650), 321,

460
Determinant

and volume, 262
of linear transformation, 869
of matrix, 866

Determinant map
of Rn, 884

Developable surface, 648
history of, 649

Diagonal map, 819
Diagonalizable

matrix, 870
linear transformation, 870

Diagonalized linear transformation, 870
Diameter, 286
D-ic form, 46
Diffeomorphism, 232, 473, 503

Cr, 232
local, 232

Differentiable function/map, 218, 471, 
503

continuously, 224
rank of, 231, 471, 503, 509
between manifolds, 471, 503

Differentiable manifold, 466, 501
Differentiable structure, 501

obvious, 503
Differential

of differential form, 272, 539
of function, 537
of real-valued function, 269

Differential equation
existence and uniqueness of solution to,

895, 896
initial conditions for, 895
linear, 895
nth order, 895
solution of, 895

Differential equations
existence and uniqueness of solutions to, 

894
first order system of, 894
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linear system of, 895
solutions of, 894

Differential form
C•, 270, 537
closed, 548
continous, 270, 537
differentiable, 270, 537
exact, 548
integral of, 275, 544
on manifold, 536
on Rn, 269

Differentiable function
rank at point of, 231, 471, 503, 509

Differential geometer, 557
Differential k-form

on manifold, 536
on Rn, 269

Differential operator, 272, 539
Differential topology, 328
Digital image processing, 896
Dim, 854
Dimension

of cell, 389
of CW complex, 391
of linear polyhedron, 331
of plane, 15
of polyhedron, 387
of simplicial complex, 328
of variety, 792
of variety at point, 792
of variety at smooth point, 792
of vector space, 854
pure, 792

Dimp, 792
Direct analytic continuation, 749
Direct product

of groups, 830
Direct sum

of vector subspaces, 861
Direction cosine, 7
Directional derivative, 228

of vector field, 651
Directrix

of conic section, 167
of ruled surface, 645

Discontinuity
essential, 216
removable, 216

Discrete metric, 284
Discrete topology, 290

Discriminant
of bilinear map, 45
of quadratic map, 46

Disjoint union, 301
Disk

n-dimensional, 814
Disk bundle, 517
Disk with handles, 354
Displacement, 83
Distance

between points, 864
between points of manifold, 589
between points of Pn, 317
between sets, 286
from point to set, 286
oriented, 29
signed, 29

Distance-preserving map, 64
Distribution parameter

of ruled surface, 648
Divergence

of vector field, 272
Divergence theorem, 545
Divide, 817

element in ring, 837
Division algebra, 859
Division algorithm

1-variable, 729, 848
multivariable, 735

Division ring, 847
Divisor, 817

in ring, 837
of ideal, 838

Dodecahedron, 322, 324
Domain

of function, 819
of rational function, 769
of relation, 818

Dominant rational function, 770, 811
Dot product

geometric interpretation of, 6
on Cn, 863
on Rn, 863

Double cone, 166
Double point

of plane curve, 705
Double torus, 23
Doubly ruled surface, 645

quadric, 192
Dual basis, 874
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Dual cell, 440
orientation of, 442

Dual cell complex, 442
Dual forms

for frame field, 656
Dual map

of linear transformation, 874
Dual space, 873
Dual statement, 142
Duality principle

in projective plane, 142
Dunce hat, 397, 457
Dupin, Charles Pierre (1784–1873), 640, 641
Dupin cyclide, 640, 641
Dupin indicatrix, 609

classical interpretation of, 610

E
Edge loop

in simplicial complex, 330
Edge path

in simplicial complex, 330
Eigenvalue, 870
Eigenspace, 870
Eigenvector, 870
Eilenberg, Samuel (1913–1998)
Eilenberg-Steenrod axioms, 384, 452
Elementary collapse, 395
Elementary diagonal matrix, 814
Elementary expansion, 395
Elementary P-reduction, 736
Elimination ideal, 745
Elimination theorem, 745
Ellipse, 167

center of, 169
major axis of, 169, 170
minor axis of, 169, 170
principal axes of, 170
string construction for, 167

Ellipsoid, 191, 192, 194
focal curve of, 194
focal ellipse of, 194
focal hyperbolá of, 194
string construction for, 192

Elliptic geometry, 205
Elliptic plane, 205
Elliptic point

of surface, 599, 610, 672
Envelope

of curves, 579
of surfaces, 638

Equality test 
for ideals, 742

Equiaffine group, 101
Equiareal group, 101
Equivalence class, 819
Equivalence relation, 818

induced by relation, 819
Equivalent

analytic element representations, 751
bases, 25
differentiable structures, 503
knots, 420
parameterizations, 464, 756, 757

Essential discontinuity, 216
Euclidean algorithm, 729, 817
Euclidean metric

standard, 283
Euclidean space

n-dimensional, 852
Euclid of Alexandria (365–300 B.C.), 324
Euler, Leonhard (1707–1783), 598
Euler angles for rotation

X-Y-Z, 115
Z-Y-Z, 115

Euler characteristic, 323, 495, 659
and Euler number of manifold, 535
of surface, 349

Euler formula, 901
for homogeneous polynomial, 709, 846
for simple polyhedrom, 321

Euler number
for tangent bundle, 535
for vector bundle, 533
mod 2, 534

Euler-Poincaré characteristic
of CW complex, 394
of polyhedron, 389
of simplicial complex, 388

Euler-Poincaré formula, 388
Euler theorem

for surface curvatures, 599, 600
for homogeneous polynomials, 846

Evaluation map
for polynomial, 844

Evolute
of curve, 584, 666
of surface, 600
plane, 585

Exact sequence, 450
of homology groups, 450
of homotopy groups, 452
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Existence theorem
for motions, 81

Exp function, 815
Expansion

elementary, 395
of CW complex, 395

Expansion by minors, 866
Exponential function, 901
Exponential map

for manifold, 664
for surface, 637

Extended complex plane, 898
Extended plane, 136
Extended real numbers, 144
Extension field, 849

algebraic, 856
degree of, 856
finite, 856
infinite, 856
separable, 857
simple, 850
transcendental, 856

Extension theorem, 746
Exterior algebra, 883
Exterior form algebra, 265, 886

properties of, 266
Exterior k-form

on vector space, 265, 886
Exterior k-form bundle

of manifold, 536
Exterior product, 266, 882

of exterior forms, 886
of linear transformation, 884
of vector space, 882

External direct sum
of abelian groups, 831

Extremum, 240
with constraints, 245

F
Face

of rectangle, 256
of simplex, 31
of singular k-cube, 273, 539
of singular q-simplex, 451

Factor
in ring, 837
multiple, 848
multiplicity of, 848

Factor group, 827
Factor ring, 836

Fiber
of bundle, 422
of vector bundle, 510

Fiber bundle, 512
Fiber map

of vector bundle map, 511
Fibre bundle, 512
Field, 847

automorphism of, 849
algebraically closed, 858
characteristic of, 847
of rational functions, 768, 774

Field of quotients, 850
Fields

isomorphism of, 849
used in algebraic geometry, 674

Finite extension field
of degree n, 856

Finite map, 775
between projective varieties, 781

Finite subcover, 212
First countable space, 297
First fundamental form, 590, 667

coefficients of, 591, 667
First homotopy group, 416
First structural equations, 656, 658, 659
Fixed point, 820
Fixed set, 820
Flat point

of surface, 610, 672
Focal curve, 194
Focal point, 600
Focal surface, 600
Focus

of conic section, 167
of normal line, 600

Form
bilinear, 48
d-ic, 46
linear, 46
quadratic, 46

Formal linear combination, 274, 364, 406,
539, 855

Formal power series, 841
derivative of, 846
order of, 859
partial derivative of, 846
zero, 841

Formal power series ring
in several indeterminates, 843
over a ring, 842
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Four color theorem, 324
Four vertex theorem, 570
Fractional transformation, 136
Frame, 87, 110

as coordinate mapping, 88
as coordinate system, 87, 111
as motion, 89, 111
augmented, 197
for plane, 111
generalized, 197
nonorthogonal, 111
oriented, 87, 110
origin of, 87, 110, 197
standard, 87, 110
transformed, 110
ui-axis of, 110
x-axis of, 87, 110
y-axis of, 87, 110
z-axis of, 110

Frame coordinates, 88, 111
Frame field, 651

adapted, 656
cylindrical, 655
standard, 651

Free abelian group, 833
Free cell, 395
Free group, 417, 830

generators of, 830
Free vector space, 876

with set as basis, 855
Frenet, Jean Frédéric (1816–1900), 576
Frenet basis, 578
Frenet frame, 574
Fresnel, Augustin Jean (1788–1827)
Fresnel integral, 892
Front k-face

of simplex, 449
Fubini, Guido (1879–1943)
Fubini theorem, 260
Function, 819

absolutely integrable, 891
analytic, 893, 899
bijective, 820
C•, 224, 890
Cr, 223, 224, 471, 502, 890
conformal, 900
continuous, 215
continuous at point, 215
continuously differentiable, 224
differentiable, 218, 471, 503

fixed point of, 820
fixed set of, 820
from X to Y, 819
graph of, 820
holomorphic, 899
injective, 819
integrable, 257, 259
invariant set of, 820
inverse of, 820
monotonic, 889
one-to-one, 819
onto, 819
periodic, 901
polynomial, 765
regular, 464, 777
regular at point, 777
smooth, 224
surjective, 819
symmetrio, 823

Function field
for affine variety, 768
for projective variety, 778

Function space, 852
metric for, 283

Functor, 452
Fundamental group, 416

homotopy invariance of, 418
significance of, 420

Fundamental homology class, 524, 804
of oriented manifold, 487

Fundamental lemma
of Riemannian geometry, 663

Fundamental theorem
of algebra, 906
of calculus, 277, 562, 891
of conformal mappings, 906
of finitely generated abelian groups, 832
of plane curves, 568
of projective geometry, 135, 161
of space curves, 577
of surfaces, 620
of symmetric polynomials, 845

Fundamental theorem of algebra
relation to Bézout’s theorem, 711

Fundamental theorem of calculus
generalized, 277

G
Gauss-Bonnet theorem, 659
Gauss, Carl Friedrich (1777–1885)
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Gauss curvature, 601, 607, 659
for polygonal curve, 572
for polygonal surface, 603
total, 659

Gauss elimination, 867
Gauss equation, 619, 658
Gauss map

derivative of, 613
for oriented surface, 601, 667
for planar curve, 565, 571, 573, 

589
Gauss (or Gaussian) quadrature, 912
Gaussian points, 913
Gaussian weights, 913
Gaussian zeros, 913
Gcd, 817, 849
Gelfand, Israil Moiseevic (1913– )
Gelfand–Kolmogoroff theorem, 719
General position, 21
General topology, 281
Generalized frame, 197

base plane of, 197
view direction of, 197
view plane of, 197

Generalized inverse, 53
Generalized inverse matrix, 54
Generalized mean value theorem, 

229
Generator

for abelian group, 831
for free group, 830

Generic point
for curve, 774

Genus,
of plane curve, 789
of surface, 350, 356

Geodesic, 624, 625, 632, 635
and mechanics, 621
in manifold, 664
maximal domain, 633

Geodesic convex closure, 602
Geodesic curvature

of curve in surface, 622, 623
Geodesic path, 624

generated by curve, 624
Geodesically complete, 633
Geodesically convex, 602
Geometria situs, 321
Geometric interpretation

of degree, 443, 702

of dot product, 6
of tangent line, 703

Geometric realization
of abstract simplicial complex, 334
of labeled simplicial complex, 336

GL(n,C), 14
GL(n,R), 13
Glide reflection, 86
Global analytic function, 749
Global maximum, 240
Global minimum, 240
Gn(Cn+k), 797
Gn(Pn+k), 797
Gn(Pn+k(C)), 797
Graded algebra, 878
Graded ring, 411, 878
Gradient, 227

of function on manifold, 522, 556
Gram, Jorgen Pedersen (1850–1916)
Gram-Schmidt algorithm, 8–10, 43, 92, 118,

164, 649, 910
Granny knot, 421
Grassmann, Hermann (Günther)

(1809–1877)
Grassmann algebra, 265, 883
Grassmann manifold, 550
Grassmann variety, 550

generalized, 797
Grassmannian, 550
Great circle, 627
Greatest common divisor

of integers, 817
of polynomials, 849

Greatest lower bound, 889
Green, George (1793–1841)
Green’s theorem, 545
Gröbner basis, 738

minimal, 742
reduced, 742

Gröbner basis algorithm
Buchberger, 740

Group, 824
abelian, 824
abelianization of, 829
commutative, 824
cyclic, 828
finite, 829
free, 830
linear, 13, 14
of covering transformations, 431
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of finite order, 829
of integers mod n, 825
of knot, 421
subgroup of, 825
trivial, 824

Groups
direct product of, 830
isomorphic, 826

H
Hairy billiard ball problem, 488
Hairy circle, 488
Halfline, 20
Halfplane, 20

lower, 813
upper, 813

Handle, 490, 491
Handle decomposition

of manifold, 495
Hauptvermutung

for manifolds, 340
Hausdorff, Felix (1868–1942)
Hausdorff space, 291
H-cobordant manifolds, 498
H-cobordism, 498
H-cobordism theorem, 498
Heine, Edward (1821–1881)
Heine-Borel theorem, 305
Heine-Borel-Lebesgue theorem, 212, 213, 

306
Helicoid, 646
Helix, 575, 669

generalized, 670
Hemisphere

lower, 814
upper, 814

Hermite, Charles (1822–1901)
Hermite interpolation, 909
Hermitian linear transformation, 40
Hertz, H., 621
Hessian, 249, 255
Hessian matrix, 249
Hilbert, David (1862–1943)
Hilbert basis theorem, 716, 846
Hilbert Nullstellensatz, 698, 717, 

723
weak form of, 717

Hill climbing problem, 255
Hironaka, Heisuke (1931– )
Hironaka theorem, 804

Hole
in a space, 359, 374, 412
in polygon, 332

Holomorphic function, 899
Hom, 834
Homeomorphic spaces, 294
Homeomorphism, 217, 294

orientation-preserving, 420, 445
orientation-reversing, 445
relative, 389

Homogeneous component
of polynomial, 843
of power series, 843

Homogeneous coordinates, 137, 138, 139,
154, 158

for projective line, 147
for projective plane, 150
relative to matrix, 686

Homogeneous ideal, 723, 808
Homogeneous polynomial, 843

of degree d, 843
rational, 776

Homogenization
of ideal, 724
of polynomial, 688

Homologous
q-chains, 368

Homology class, 368
and imbedded sphere, 374

Homology functor, 452
Homology group

homotopy invariance of, 384, 385
mod 2, 407
of CW complex, 393
of polyhedron, 375
of simplicial complex, 366
relative, 450
singular, 451
with coefficients in group, 406

Homology manifold, 441
Homology n-sphere, 438
Homology sequence of (K,L), 450
Homology theory

axiomatized, 384
fails to classify spaces, 385, 399
for CW complexes, 393
motivation for, 360
summary, 384

Homomorphism
image of, 827
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kernel of, 827
of groups, 826
of rings, 836

Homotopic maps, 310
relative to subspace, 312

Homotopy, 309
relative to subspace, 312

Homotopy class, 311
Homotopy equivalence, 311

simple, 438
Homotopy functor, 452
Homotopy group

“0th”, 435
first, 416
nth, 434
relative, 452

Homotopy lifting theorem, 427
Homotopy n-sphere, 438
Homotopy theory

fails to classify spaces, 399
Homotopy type, 311
Hopf, Heinz (1894–1971)
Hopf-Rinow theorem, 633
Horizon, 129
Horizon plane, 129
Hurewicz, Witold (1904–1956)
Hurewicz homomorphism, 419, 437
Hurewicz isomorphism theorem, 

437
Hyperbola, 167

asymptote of, 170
center of, 169
conjugate axis of, 169, 170
transverse axis of, 169, 170

Hyperbolic geometry, 205
Hyperbolic plane, 205
Hyperbolic point

of surface, 599, 610, 672
Hyperboloid

of one sheet, 191, 192, 194
of two sheets, 191, 192, 194

Hyperelliptic curve, 789
Hyperplane, 15

equation for, 15
in Pn(k), 676
in projective space, 160
orthogonal vector for, 18
parallel vector for, 18
point-normal equation for, 16
projective, 160

Hyperplanes
angle between, 28
orthogonal, 18
parallel, 18

Hypersurface, 675
degree of, 699
in Pn(k), 676
minimal equation for, 699
minimal polynomial of, 699
order of, 699

I
Icosahedron, 322, 324
Ideal, 836

alternate definition for, 838
colon, 722
divisor of, 838
elimination, 745
generated by elements, 837
homogeneous, 723, 808
homogenization of, 724
irreducible, 840
maximal, 718, 719, 837
multiple of, 838
of set of points, 715
primary, 839
prime, 838
principal, 837
radical, 839
reducible, 840

Ideal line
in P2, 142

Ideal point, 136, 137, 138, 140, 159
with respect to coordinate neighborhood,

686
Ideal quotient, 722
Ideals

product of, 838
sum of, 838

Identity
of group, 824

Identity matrix, 814
Ill-conditioned

linear system, 908
matrix, 908

Im, 827, 836, 854
Image

of group homomorphism, 827
of linear transformation, 854
of rational function, 769
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of ring homomorphism, 836
Imaginary part

of complex number, 851
Imbedding, 296, 473, 503

of manifolds in Rn, 504
of varieties in Pn, 804

Immersion, 473, 503
Implicit definition, 3
Implicit function theorem, 238

complex version of, 791
Implicit parametrization theorem, 470
Implicitization algorithm

via Gröbner bases, 743, 747
Implicitization problem, 677
Implicitization theorem

for polynomials, 746
Incidence matrix, 400

mod, 2, 409
normalized, 402, 405
with respect to basis, 401

Incidence number, 400
Indeterminate, 841
Index

of nondegenerate critical point, 250, 
490

of map at point, 533
of intersection point, 533
of subgroup, 829

Induced abstract simplicial complex, 
336

Induced equivalence relation, 819
Induced homomorphism

on cochain groups, 410
on cohomology groups, 410
on fundamental group, 418
on homology groups, 379, 383, 452
on homotopy groups, 436

Induced map
between simplices, 37
of simplicial map, 37, 333
on differential forms, 271, 538
on exterior forms, 266
on quotient space, 299
on tangent spaces, 269

Induced metric, 284
Induced orientation, 365, 483

for induced vector bundle, 518
Induced topology, 290
Induced vector bundle, 515
Inf, 889

Infimum, 889
Infinite extension field

of degree •, 856
Inflection point, 241, 574, 665
Injection, 819
Inner product, 862
Inner product space, 863
Integrable function, 257, 259

absolutely, 891
Integral, 257

improper, 891
Fresnel, 892
iterated, 260
Lebesgue, 896
of differential form, 275
of n-form over n-manifold, 544
over ring, 775
over set, 257, 259
over singular k-chain, 276, 539
over singular k-cube, 275, 539
over unbounded domain, 891
Riemann, 891

Integral domain, 837
Interior

of manifold, 297
of set, 211, 292
of closed planar curve, 570

Interior point
of manifold, 297
of set, 292

Intermediate value theorem, 309, 890
Internal direct sum

of abelian groups, 832
Intersect properly, 799
Intersect transversally, 530
Intersection multiplicity, 801, 802

along component, 802
at point, 713
of curve and line, 703

Intersection number
for submanifolds, 533
mod 2, 534
of map, 533
of oriented cells, 446
of two curves, 713

Intersection pairing
in manifolds, 448

Intersection problem, 677
Intersection product

of varieties, 802
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Interval
closed, 4, 889
distinction between it and segment, 58
half-open, 889
open, 889

Invariance of boundary theorem, 387
Invariance of dimension theorem, 387
Invariance of domain theorem, 387
Invariance of pseudomanifold theorem, 

439
Invariant

topological, 294, 358
under a map, 820

Invariant set, 820
Inverse

generalized, 53
of function, 820
of group element, 824
of matrix, 866
of vector bundle isomorphism, 512

Inverse function theorem, 232
Inverse image, 820
Inversion, 204

in a sphere, 204
Involute, 670

of curve, 583, 666
of pair of surfaces, 642
string construction for, 584

Irreducible
ring element, 837

Irreducible component
of variety, 701, 721

Irredundant intersection
of ideals, 840

Irredundant union, 721
Isolated point, 210, 296
Isolated singularity, 903
Isometry, 64, 287

local, 287
Isomorphic points, 774
Isomorphism

of affine varieties, 767
of groups, 826
of projective varieties, 778
of rings, 836
of simplicial complexes, 332
of vector spaces, 854
over field, 849

Isoperimetric inequality, 571
Isoperimetric problem, 570

Isotopic imbeddings, 420
Isotopy

between imbeddings, 420

J
Jacobi, Carl G.J. (1804–1851), 621
Jacobian, 224
Jacobian matrix, 224
Jordan, Camille (1838–1922)
Jordan curve theorem, 326, 332, 

570
Jordan-measurable set, 259

K
K-form

on manifold, 536
on Rn, 269

k-cell
closed, 390
open, 389

Ker, 827, 836, 854
Kernel

of group homomorphism, 827
of linear transformation, 854
of ring homomorphism, 836

K-fold exterior product
of linear transformation, 884

Kirby, Robion, 339
Klein, Felix Christian (1849–1925), 23, 63,

351
Klein bottle, 351, 352
Knot, 420, 708

complement of, 420
granny, 421
group of, 421
polygonal, 420
square, 421
tame, 420
torus, 421, 708
trefoil, 325
trivial, 420

Knot theory, 325
Knot type, 420
Knots

equivalent, 420
Kolmogoroff, A. N. (1903–1987), 719
Königsberg bridges problem, 325
Kronecker, Leopold (1823–1891)
Kronecker delta, 813
Künneth theorem, 436
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L
Labels

for simplicial complex, 335
Lagrange, Joseph Louis (1736–1813)
Lagrange basis functions, 913
Lagrange interpolation, 909
Lagrange multipliers

method of, 245
Lagrange theorem, 829
Laurent, Pierre Alphonse (1813–1854)
Laurent series, 905
Law of cosines, 6
Lc, 734
Lcm, 817, 849
Leading coefficient

of polynomial, 734, 842
Leading power product

of polynomial, 734
Leading term

of polynomial, 734, 842
Leading term set, 738
Least common multiple

of integers, 817
of polynomials, 849

Least squares approximation
a special case, 56
linear case, 55, 56

Least upper bound, 889
Lebesgue, Henry (1875–1941), 212
Lebesgue covering lemma, 307
Lebesgue integral, 896
Lebesgue number, 307
Left distributive, 835
Left-handed limit, 890
Legendre, Adrien Marie (1752–1833)
Legendre polynomials, 910
Legendre-Gauss quadrature, 912
Leibniz, Gottfried Wilhelm (1646–1716), 321
Leibnitz formula, 890
Length

of curve, 561, 596
of curve in manifold, 589
of parametric curve, 558
of parameterization, 594
of surface curve, 667
of symbol for surface, 346
of vector, 863

Lens space, 398, 433
properties of, 399

Levi-Civita, Tullio (1873–1941), 634, 635
Levi-Civita connection, 663
Lex order, 732
Lexicographic order, 732
Lie, Marius Sophus (1842–1899)
Lie bracket

of vector fields, 662
Lifting

of curve, 425
of map, 425

Limit function, 288
Limit point, 210, 296

in set, 214
of function, 214
of sequence, 214, 288
relative, 214

Line
asymptotic, 611
complex, 60
directed, 28, 108
direction vector of, 2
equation definition of, 2
horizontal, 2
ideal, 142
in P2, 141
in Pn(k), 676
ordinary, 142
parametric equations for, 3
point-direction-vector definition of, 3
point-slope form of, 2
projective, 141, 160
slope-intercept form of, 2
slope of, 2
two-point form of, 2
vertical, 2

Line at infinity, 686
Line bundle, 510

canonical, 513, 549
Line conic, 189
Line integral, 276

of complex function, 902
Line of curvature

on surface, 617
Line of striction

of ruled surface, 647, 673
Linear combination

of vectors, 853
Linear form, 46
Linear functional, 873
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Linear group
complex, 14
real, 13

Linear polyhedron, 331
dimension of, 331

Linear transformation, 854
alternating, 881
associated matrix of, 868
characteristic polynomial of, 871
determinant of, 869, 888
diagonalizable, 870
Hermitian, 40
image of, 854
kernel of, 854
k-fold exterior product of, 884
nonsingular, 854
normal, 44
rank of, 869
relation to matrix, 868, 869
singular, 854
symmetric, 40
trace of, 869

Linearly dependent
points, 860
vectors, 853

Linearly independent
points, 860
vectors, 853

Liouville, Joseph (1809–1882)
Liouville theorem, 905
Lipschitz, Rudolf (1832–1903), 217
Lipschitz condition, 217, 232
Listing, Johann B. (1806–1882), 22, 

321
Local base, 291
Local coordinates

expressing functions in, 489
Local extremum, 240
Local isometry, 287
Local maximum, 240
Local minimum, 240
Local ring, 782
Locally compact space, 307
Locally finite cover, 315
Locally flat curve, 574
Locally path-connected space, 429
Locally trivial bundle, 423
Lower bound

of set of real numbers, 889

Lower halfplane, 813
Lower hemisphere, 814
Lower sum, 257
Lpp, 734
Lt, 734, 738
LU-decomposition, 868
Lüroth, Jacob (1844–1910)
Lüroth’s problem, 773
Lüroth’s theorem, 773

M
Mainardi, Gaspare (1800–1879)
Mainardi-Codazzi equations, 619
Manifold

boundary of, 297, 466
closed, 297, 466
closed tubular neighborhood of, 

527
combinatorial, 339
complex, 684
Cr, 466, 501
differentiable, 466, 501
differentiable structure for, 501
hauptvermutung for, 340
homology, 441
interior of, 297
n-dimensional, 297, 466
normal bundle of, 525
orientable, 483, 522, 554
orientation of, 483, 522
oriented, 483, 522
parallelizable, 521
piecewise linear, 298
PL, 298
Riemannian, 521
smooth, 466, 501
spherical modification of, 497
surgery of, 497
tangent bundle of, 519, 520
topological, 297, 339, 340
triangulation problem for, 339
tubular neighborhood of, 527
vector field of, 521
with attached k-handle, 494
without boundary, 297, 466

Map (same as function), 819 
Map coloring, 324
Matrix

adjoint of, 39, 866
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associated linear transformation of, 868,
869

characteristic polynomial of, 871
cofactor of, 866
column rank of, 867
condition number of, 908
determinant of, 866
diagonal, 814, 865
diagonalizable, 870
elementary, 48, 49, 181, 814
for linear transformation, 868
for projective transformation, 153
Hermitian, 865
ill-conditioned, 908
inverse of, 866
LU-decomposition of, 868
maximal rank of, 867
minor of, 866
nonsingular, 866
norm of, 907
orthogonal, 13
permutation, 868
pre vs post multiplication of, 868, 

869
rank of, 867
singular, 866
singular value decomposition of, 

57
singular values of, 57
special orthogonal, 13
special unitary, 14
Sylvester, 690
symmetric, 865
trace of, 867
unitary, 14

Max metric
on product, 289
on Rn, 283

Maximal ideal
of functions, 719
of polynomials, 718

Maximum, 240
Maximum principle

for analytic functions, 906
Maxwell, James Clerk (1831–1879), 640, 

641
Mean curvature, 607
Mean value theorem, 890

generalized, 229
Measure theory, 896

Measure zero set
in manifold, 528
in Rn, 258

Membership test
for ideal, 743

Meromorphic function, 904
Metric, 282

bounded, 286
d1, 283
d2, 283
d•, 283
discrete, 284
for Pn, 317
groups, 101
induced, 284
max, 283
properties, 101
standard Euclidean, 283
taxicab, 283

Metric coefficients, 591, 667
determinant of, 591

Metric space, 283
bounded, 286
complete, 289
induced, 284

Metrics
topologically equivalent, 285

Metrizable, 291
Meusnier, Jean Babtiste (1754–1793)
Meusnier theorem

for surface curvatures, 600, 
606

Minding, Ernst Ferdinand Adolf
(1806–1885), 622

Minding theorem, 630
Minimal equation

for hypersurface, 699
Minimal polynomial

for hypersurface, 699
Minimal surface, 499, 609
Minimum, 240
Minimum handle decomposition theorem,

499
Minimun polynomial

of algebraic element, 856
Minor

of matrix, 866
Moduli, 790
Modulus

of complex number, 851
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Moebius, August Ferdinand (1790–1868), 22,
130, 137

Moebius strip, 22, 23, 140, 299, 317, 352,
355, 462, 673

area of, 548
meridian of, 513
open, 512, 534, 555

Moise, Edwin E., 339
Monge, Gaspard (1746–1818), 461, 638, 649
Monge patch, 461
Monodromy lemma, 427
Monoid, 790
Monomial, 843

coefficient of 843
total degree of, 843

Monomial ordering
deglex, 732
degree lexicographic, 732
degree reverse lexicographic, 732
degrevlex, 732
lex, 732
lexicographic, 732
of Nn, 733
of k[X1,X2, . . . ,Xn], 733
reverse lexicographic, 732

Moore-Penrose inverse, 53
Moore-Penrose inverse matrix, 54, 255
Morphism, 214
Morse, Harold Calvin Marston (1892–1977)
Morse inequalities, 495

weak, 495
Morse lemma, 250
Morse-Sard theorem, 530, 531
Motion, 64

defined by frame, 89, 111
equations for, 85, 105
orientation-preserving, 83
orientation-reversing, 83

Moving frames
of Cartan, 649

Moving trihedron, 574
Multilinear map, 862

alternating, 884
relation to linear map, 877

Multiple
of ideal, 838

Multiple factor, 848
Multiple root, 848
Multiplicity

of curve at point, 703, 704

of factor, 848
of function at root, 704
of root, 848
of variety at point, 801

Multiplicity of intersection, 800
Multipolynomial resultant, 695
Mutually orthogonal set, 7
Mutually orthogonal vectors, 7

N
Natural coordinate system

for conic section, 168
for quadric surface, 191

Natural inclusion
of projective spaces, 159

Natural isomorphism
between vector space and its dual, 874

Natural projection
of labeled complex, 336

N-cell
of CW complex, 390

N-cube, 256
Neighborhood, 209, 285, 291
Neighborhood base, 291
Net, 296
Newton, Sir Isaac (1642–1727)
Newton-Raphson method, 252

generalized 253
problems with, 253

NF, 736
Noether, Emmy (1882–1935)
Noether, Max (1844–1921)
Noether normalization theorem, 

782
Noether theorem, 789
Noetherian ring, 840
Noncollapsible cell complex, 397
Non-Euclidean geometry, 205
Nonhomogeneous coordinates, 136
Nonsingular plane curve, 705
Nonsingular point

of variety, 798
Norm

of matrix, 907
of partition, 256

Normal
inward-pointing, 486
outward-pointing, 486

Normal angle
at point on surface, 603
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Normal bundle
of manifold, 525

Normal curvature, 599
in a direction, 606
of curve in surface, 599, 605, 623, 668
of normal section, 599

Normal form
of surface, 348
with respect to polynomials, 736

Normal neighborhood
at point on surface, 603

Normal plane, 574
Normal section

of surface, 598
Normal space, 313
Normal subgroup, 826
Normal transformation, 44
Normal vector

for hyperplane, 16
for subspace, 11

Normal vector field
associated to orientation, 486
of manifold, 484

Nowhere dense set, 292
N-cube, 256
N-plane bundle, 510
N-rectangle, 256

face of, 256
Nullstellensatz, 698, 717, 723

O
O(n), 13
Oblique parallel projection, 103
Octahedron, 322, 324
Offset curve, 586
Offset surface, 643
One-point compactification, 201, 308
One-point union

of spaces, 303
One-point wedge 

of spaces, 303
One-sided derivative, 467
One-sided limit, 232, 467
One-to-one, 819
Onto, 819
Open

in set, 213
Open map, 293
Open set, 209, 285, 290

relative, 213

Ord, 844
Order

of curve, 699
of differential equation, 894
of formal power series, 859
of group, 829
of group element, 829
of hypersurface, 699
of pole, 904
of polynomial, 844
of polynomial at point, 703
of power series, 752
smallest element of, 821

Order of contact, 713
Ordering

monomial, 733
Ordinary line

in P2, 142
Ordinary point

of plane curve, 705
Ordp, 703
Orientability, 375

compatibility issue, 522
determination of, 375, 440

Orientation, 22, 29
at point, 22, 24
determined by ordered basis, 

25
for pseudomanifold, 440
global, 29
induced, 365, 483
induced by isomorphism, 483
induced by ordered basis, 25
induced on boundary, 528
local, 24
of angle, 900
of dual cell, 442
of manifold, 483, 522
of plane, 28
of Rn, 25
of simplex, 362
of surface, 29
of vector space, 25
opposite,  25
standard, 27, 484

Orientation preserving, 83
homeomorphism, 420, 445
linear transformation, 27
manifold map, 524
vector bundle map, 517
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Orientation reversing, 83
homeomorphism, 445
linear transformation, 27
manifold map, 524
vector bundle map, 518

Orientations
continuously varying, 483, 517, 553

Oriented cell, 393
Origin

of view plane, 197
Orthogonal basis, 7
Orthogonal matrix, 13

special, 13
Orthogonal complement

of vector subspace, 11
with respect to plane, 19
with respect to subspace, 11, 12
with respect to vector, 12

Orthogonal direct sum
of vector spaces, 11

Orthogonal group, 13
special, 13

Orthogonal polynomials
associated to inner product, 909

Orthogonal projection, 103, 637
of vector, 12
on plane, 19
on vector, 6, 8, 12

Orthogonal vectors, 7
Orthographic projection, 103
Orthonormal basis, 7
Osculating circle

for planar curve, 564
Osculating plane

for space curve, 574

P
Parabola, 167

axis of, 169
Parabolic point

of surface, 600, 610, 672
Paraboloid

elliptic, 191, 192
hyperbolic, 191, 192

Paracompact space, 315
Parallel curve, 586, 666

nondegenerate, 587
Parallel projection, 103

as a perspectivity, 136
Parallel surface, 643, 669

Parallel translate vector
along curve, 636

Parallel vector field, 634, 662
history of, 634, 635, 638

Parallel vectors, 6
Parallelizable manifold, 521
Parallelogram, 263
Parallelopiped, 263

volume of, 263
Parallelotope, 263

volume of, 263
Parametric curve, 474

closed, 475
differentiable, 474
length of, 558
path of, 474
proper, 475

Parameterization, 3
affine, 756
C• assumption of, 461
Cr, 460
center of, 755
irreducible, 756, 757
local, 466
of projective curve, 756
of projective line, 147
of projective plane, 150
projective, 754
proper, 466, 475
reducible, 756, 757
regular, 464, 567
regular at point, 464
second derivative assumption of, 574
transformed, 464, 761
via implicit function theorem, 236, 237

Parameterization problem, 677
Parameterizations

equivalent, 464, 756, 757
Partial derivative, 223

as tangent vector, 508
mixed, 223
of formal power series, 846
of order k, 223
of polynomial, 846

Partial order, 821
strict, 821

Partition
norm of, 256, 890
of interval, 890
of rectangle, 256
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refinement of, 256, 890
subinterval of, 890
subrectangle of, 256

Partition of unity, 314
subordinate to cover, 314

Pascal, Blaise (1623–1662)
Pascal theorem, 199, 714
Path, 474

between points, 309
geodesic, 624

Path lifting theorem, 425
Path-component, 309
Path-connected space, 217, 309
Periodic function, 901

period of, 901
Permutation, 821

even, 823
odd, 823

Permutation matrix, 868
Perpendicular vectors, 6
Perspective transformation, 127

generalized, 196
Perspectivity, 127

generalized, 196
PID, 837
Pinched sphere, 439
P-irreducible, 736
Pitch angle

of rotation, 114
Place

center of, 757
of curve, 757
of field, 763
of space curve, 783

Place at infinity, 788
Planar point

of surface, 610, 672
Plane

basis for, 15
complex, 60
homogeneous definition of, 34
k-dimensional, 15
k-dimensional projective, 160
oriented, 28
oriented by basis, 28
orthogonal to plane, 19
parallel to plane, 19
point-normals equation for, 18
projective, 160
punctured, 632

Plane at infinity, 685, 686
Plane curve, 675, 676

algebraic, 675
equation of tangent line for, 706, 709
fundamental theorem of, 568

Plane of symmetry
for surface, 672

Planes
angle between, 18
in general position, 21
parallel, 19
transverse, 21

Plateau, Joseph A.F. (1801–1883)
Plateau’s problem, 609
Plücker, Julius (1801–1868)
Plücker coordinates, 796
Plücker relations, 797
Pn, 139, 316

as regular CW complex, 453
Pn(k), 675
P-normal form, 736
Poincaré, Jules Henri (1854–1912), 205, 

498
Poincaré conjecture 498

generalized, 498
Poincaré duality, 496
Poincaré duality theorem, 447, 449

mod 2 version, 447
Poincaré space, 438
Point

nonsingular, 798
r-fold, 704
singular, 798
smooth, 791

Point at infinity, 686, 787, 898
of one-point compactification, 308

Point of continuability, 749
Point of multiplicity r, 704
Point of noncontinuability, 749
Point set topology, 281, 282
Pointed space, 303
Point-normal form

equation for hyperplane, 16
Point-normals form

equation for plane, 18
Points at infinity, 696, 788
Pointwise addition, 852
Pointwise convergent functions, 288
Pointwise scalar multiplication, 852
Polar coordinates, 68, 261
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Polar form
of complex number, 898

Pole
of analytic function, 903
order of, 904

Polygon, 332
vertices of, 332
with holes, 332

Polygonal Gauss curvature, 572, 603
Polyhedron

convex linear, 31
finite, 330
infinite, 331
linear, 321, 331
regular, 321
simple, 321

Polynomial
associated to hypersurface, 699
cubic, 843
degree of, 841, 843
derivative of,  846
evaluation map of, 844
homogeneous, 843
order at point of, 703
order of, 844
over ring, 841
partial derivative of, 846
root of, 844
quadratic, 843
rational homogeneous, 776
resultant of, 693
separable, 857
symmetric, 845
total degree of, 843
zero, 841
zero of, 844

Polynomial function, 765
between varieties, 765
representative for, 765

Polynomial implitization theorem, 746
Polynomial ring

generated by subset, 840
in several indeterminates, 843
over a ring, 842
over subring, 840

Power product, 843
Power series, 892

interval of convergence of, 893
obtained by substitution, 844
radius of convergence of, 893

P-reduces, 736
Prime field, 847

in a field, 847
Prime number, 817
Primitive element

of extension, 850
theorem of, 856

Principal axes theorem, 37, 42
complex, 44
for quadratic forms, 48
real, 41

Principal axis theorem, 107, 112
Principal ideal, 837
Principal ideal domain, 837
Principal normal

of plane curve, 566, 665
of regular curve, 567
of space curve, 574

Principal normal curvatures
of surface, 599, 607, 664, 668
equation for, 614

Principal normal directions, 599, 607, 668
Principal radii, 599
Principle of duality

in projective plane, 142
Principle of least action, 621
Principle of least curvature, 621
Product

of ideals, 838
of permutations, 821

Product bundle, 422
Product Cr manifold, 502
Product Cr structure, 502
Product map, 819
Product n-plane bundle, 510
Product topology, 302
Product vector bundle, 510
Projection

center of, 779
central, 127, 137
of bundle, 422
of projective set, 779
of projective space, 779
of vector bundle, 510
orthogonal, 6, 8, 12, 19, 103, 637

Projection operator, 861
Projective closure

of affine variety, 724
Projective completion

of affine variety, 688
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Projective conic, 173
Projective invariant, 129
Projective line, 137, 139, 160
Projective plane, 138, 139

characterizations of, 140
principle of duality in, 142

Projective properties, 129
Projective space

characterizations of, 315, 316, 317
n-dimensional, 139, 315
over field, 675

Projective transformation, 129, 134, 152, 160
matrix of, 152

Projectively equivalent figures, 160
Projectivity, 134, 152, 160
Properly discontinuous, 432
Pseudo-inverse matrix, 54
Pseudomanifold, 438

closed, 439
invariance of, 439
n-dimensional, 438
nonorientable, 440
orientable, 440
orientation of, 440

Pseudometric, 319
Puiseux, Victor Alexandre (1820–1883)
Puiseux pairs, 708
Pullback

of differential form, 271
Pullback map, 766, 771

of polynomial function, 766
of rational function, 771

Pullback vector bundle, 515
Punctured plane, 632
Pure dimension, 792

Q
q-boundary, 366

and boundary of imbedded (q+1)-disk,
374

mod 2, 407
with coefficients in group, 406

q-chain, 362
elementary, 363
mod 2, 406
singular, 451
with coefficients in group, 405

q-coboundary, 410
q-cochain, 410
q-cocycle, 410

q-cycle, 366
and imbedded q-sphere, 374
mod 2, 407
with coefficients in group, 406

Quadratic form, 46
degenerate, 48
discriminant of, 48
nondegenerate, 48
positive definite, 48
relation to quadratic map, 47
signature of, 48

Quadratic map, 46
degenerate, 46
discriminant of, 46
nondegenerate, 46
positive definite, 46

Quadratic nonresidue, 817
Quadratic residue, 817
Quadratic surface, 190

classification of, 196
Quadratic transformation, 759

center of, 759
Quadric surface, 190

classification of, 194
focal curves of, 194
natural coordinate system for, 

191
principle planes of, 192
properties of, 192
tangent plane to, 196

Quasiprojective variety, 724
Quotient field, 847, 850
Quotient group, 827
Quotient map, 299
Quotient ring, 836
Quotient space, 299

by collapsing subspace, 300
modulo a group, 432
of relation, 819

Quotient topology, 299
Quotient vector space, 855

R
Radial transformation, 94
Radical

of ideal, 839
Radius function

for canal surface, 638
Radius of convergence

of power series, 893
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Radius of curvature
for planar curve, 564, 565

Radó, Tibor (1895–1965), 338
Range

of function, 818
of relation, 818

Rank
maximal, 867
of abelian group, 832
of bilinear map, 46
of differentiable map, 231, 471, 503, 

509
of linear transformation, 869
of matrix, 867

Raphson, Joseph (1648–1715), 252
Ratio of division, 100
Rational affine variety, 771
Rational function, 804, 904

between affine varieties, 769
between projective varieties, 780
domain of, 769, 778
dominant, 770
image of, 770
on Pn(k), 776
on affine variety, 768, 770
on hypersurface, 770
on projective variety, 778, 779
regular, 776
regular at point, 769, 776, 778
regular point of, 769
value of, 769, 778

Rational map
see rational function

Ray, 5
Real part

of complex number, 851
Real point, 140, 159

in complex space, 898
Real variety, 675
Rectangle, 256
Rectifiable curve, 559
Rectifying plane

for space curve, 574
Reduced word, 830
Reduction

of polynomial, 731
Refinement

of partition, 256, 890
Reflection

about hyperplane, 105

about line, 72
axis of, 72

Region
bounded by closed planar curve, 570

Regular function, 464, 776
at point, 464

Regular k-gon
standard, 341

Regular point, 529, 777
of power series, 752
of rational function, 769, 776, 778

Regular value, 529
Reidemeister, Kurt Werner Friedrick

(1893–1971), 399
Relation

antisymmetric, 818
between sets, 818
domain of, 818
equivalence, 818
on set, 818
one-to-one, 818
onto, 818
range of, 818
reflexive, 818
symmetric, 818
transitive, 818
well-defined, 818

Relative boundary, 214
Relative closed set, 213
Relative closure, 214
Relative homeomorphism, 389
Relative homotopy, 312
Relative limit point, 214
Relative open set, 213
Relative topology, 292
Relatively prime, 817
Remainder

of polynomial division, 729, 735
Removable discontinuity, 216
Removable singularity, 903
Reparameterization

of singular k-cube, 540
orientation-preserving, 540
orientation-reversing, 540
regular, 464

Representative
of polynomial function, 765

Resolution of singularities, 804
Resolving

a singularity, 760
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Resultant, 691
multipolynomial, 695
of polynomial, 693
Sylvester, 691

Retract, 311
Retraction, 311
Reverse lexicographic order, 732
R-fold point, 704
Riemann, Bernhard (1826–1866), 460, 660
Riemann integral, 891

versus Lebesgue integral, 896
Riemann mapping theorem, 906
Riemann sphere, 898
Riemann surface, 748, 750
Riemannian manifold, 521
Riemannian metric

for manifold, 521
for vector bundle, 516
induced from Rn, 521

Right distributive, 835
Right hand rule, 112
Right-handed limit, 890
Rigid motion, 83, 107
Ring, 835

commutative, 835
graded, 411, 878
ideal of, 836
local, 782
Noetherian, 839
of continuous functions, 719
of polynomial functions, 766
with unity, 835

Rings
isomorphic, 836

Rinow, Willi (1907–1978), 633
Rn, 852
Rodrigues, Benjamin Olinde (1794–1851)
Rodrigues formula, 617
Roll angle

of rotation, 114
Roll-pitch-yaw representation, 114

uniqueness of, 114
Root

multiplicity of, 848
of polynomial, 844
simple, 848

Root of unity, 901
Roots

finding, 252
Rotation, 107

about directed line through angle, 112, 113

about line, 107, 108
about origin, 68
about point, 70, 107, 108
about x-axis, 113
about y-axis, 113
about z-axis, 107, 113
axis-angle representation of, 112
center of, 70, 107
compact axis-angle representation of, 113
equations for, 69, 71
Euler angle representation of, 115
general, 70
orientation of angle for, 112
roll-pitch-yaw representation of, 114

Rotation about line
ambiguity in, 112

Row rank
of matrix, 867

Rubber sheet geometry, 296, 309, 327
Rubinstein, J.H., 499
Ruled surface, 645

base curve of, 645
central point of, 647
directrix of, 645
distribution parameter of, 648
line of striction of, 647
quadric, 192
ruling of, 645
striction curve of, 647, 673

S
Saddle point, 242
Sard, A., 530
Scalar multiplication, 852
Scalar product, 862
Scaling transformation

global, 96, 110
local, 96, 110

Schmidt, Erhard (1876–1959), 8, 9
Schoenflies, Arthur Moritz (1853–1928)
Schoenflies theorem, 332, 421
Schwarz, Hermann Amandus (1843–1921),

864
Screw motion, 125
Second countable space, 297
Second fundamental form, 605, 667
Second structural equation, 658
Second structural equations, 656, 659
Sectional curvature, 663
Segment, 4
Self-adjoint, 40
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Semi-locally simply connected space, 430
Sense

of angle, 900
Sense preserving

linear transformation, 27
Sense reversing

linear transformation, 27
Separable extension field, 857
Separable field element, 857
Separable polynomial, 857
Separable space, 297
Sequential continuity, 296
Series

absolutely convergent, 892
conditionally convergent, 892
convergent, 892
divergent, 892

Serret, Joseph Alfred (1819–1885)
Serret-Frenet formulas, 576, 649, 666

generalized, 577, 654, 673
Shape operator

of surface, 605
Shear

in x-direction, 96
in y-direction, 96

Siebenmann, Laurence Carl, 339
Sign function

of permutation, 815, 823
of real number, 815

Signed curvature
of plane curve, 566, 569, 571

Similar matrices, 868
Similarity, 94

extended, 203
Similarity transformation, 94
Simple closed curve, 569
Simple closed curves

on combinatorial surface, 408
Simple extension

of field, 850
Simple homotopy equivalence, 438
Simple point

of plane curve, 705
Simple root, 848
Simpler polynomial, 735
Simplex

abstract, 334
back k-face of, 449
face of, 31
front k-face of, 449
k-dimensional, 31

oriented, 362
standard, 450
vertex of, 31

Simplicial approximation, 380
Simplicial approximation theorem, 381, 417,

442
Simplicial complex, 328

abstract, 334
boundary of, 330
connected, 330
defined by labeled figure, 336
determined by simplex, 332
dimension of, 328
finite, 328
infinite, 331
labeled, 335
subcomplex of, 330
subdivision of, 328
underlying space of, 328

Simplicial complexes
combinatorially equivalent, 339
isomorphic, 332

Simplicial map, 37, 332
induced map of underlying spaces, 37, 

333
Simply connected space, 420
Simpson, Thomas (1710–1761)
Simpson’s rule, 908
Sine function, 901
Singular cohomology group, 452
Singular homology group, 451
Singular k-chain, 274

boundary of, 274
in manifold, 539

Singular k-cube, 273
face of, 273
in manifold, 539
standard, 273

Singular point
neighborhoods of, 708
of analytic element, 749
of plane curve, 705
of variety, 798

Singular q-chains
group of, 450

Singular q-simplex, 450
ith face of, 451

Singular value decomposition
of matrix, 57

Singular values
of matrix, 57
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Singularity
blowing up, 760
isolated, 903
removable, 903
resolving, 753

Skew field, 847
Skew lines, 21
Slope, 2, 3
Smale, Stephen, 497
Smallest element

of total order, 821
Smallest subfield

containing field and set, 849
of field, 847

Smooth function, 224
Smooth manifold, 466, 501
Smooth point

of variety, 791
Smooth variety, 792
Sn, 814

as regular CW complex, 453
SO(n), 13
Solid angle, 603

measure of, 603
Solving equations

using Gröbner bases, 743
Space curve, 573, 784

affine, 783
fundamental theorem of, 577
projective, 783
twisted cubic, 670, 785

Span
of set, 853
of vectors, 853

Spanning
set, 853
vectors, 853

Special orthogonal group, 13
Special orthogonal matrix, 13
Special unitary group, 14
Special unitary matrix, 14
Spectral sequence, 453
Spectral theorem, 37
Spectrum, 37
Speed

of parametric curve, 475
Sphere

geodesics of, 627
homology, 438
homotopy, 438

n-dimensional, 814
pinched, 439
with crosscaps, 350
with handles, 350
with twisted handles, 353

Sphere bundle, 517
Sphere-preserving map, 202
Spherical coordinates, 552
Spherical modification, 497
Spine curve

for cyclide, 640
Splitting field, 857
S-polynomial, 740
Square knot, 421
Standard basis

of polynomial ideal, 738
of Rn, 813

Standard C• structure
on Rn, 501

Standard coordinate system
for P1, 147
for projective plane, 150

Standard coordinates
for P1, 147
for projective plane, 150

Standard CW structure
for Pn, 453
for Sn, 453

Standard Euclidean metric, 283
Standard frame field, 651
Standard imbedding

of kn in Pn(k), 685
of Rn in Pn, 140, 159, 549

Standard normal vector field
induced by standard orientation, 

486
Standard n-simplex, 450
Standard orientation

induced by parameterization, 484
of manifold, 484
of Rn, 27, 51

Standard parameterization
of projective line, 147
of projective plane, 150

Standard projection
of Pn onto Rn, 160, 549

Standard topology
of Rn, 290

Star
of simplex, 339
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Star-shaped region, 320
Staudt, Karl Georg von (1798–1867), 144
Steenrod, Norman Earl (1910–1971), 384,

452
Stereographic projection, 201, 202, 386, 502,

524
Stiefel manifold, 550
Stiefel variety, 550
Stokes, Sir George Gabriel (1819–1903)
Stokes theorem, 277, 541, 545
Straight line

properties of, 621
Striction curve

of ruled surface, 647, 673
String construction

for cyclide, 641
for ellipse, 167
for ellipsoid, 192
for involute, 584

Structural equations
first, 656, 658, 659
second, 656, 658, 659

SU(n), 14
Subcomplex

of CW complex, 392
of simplicial complex, 330

Subcover, 304
Subdivision

of simplicial complex, 328
Subfield, 847
Subgroup, 825

generated by elements, 831
normal, 826

Subinterval
of partition, 890

Submanifold, 473, 503
Subrectangle

of partition, 256
Subring, 835
Subspace

of topological space, 292
of vector space, 852

Substitution
of formal power series, 844

Sum
direct, 861
of abelian subgroups, 832
of ideals, 838
of subsets, 861

Sup, 889

Support
of cross-section, 511
of function, 218
of q-chain, 407

Support plane, 603
Supremum, 889
Surface, 298

area of, 548
bordered, 353
boundary of, 353
closed, 340, 353
combinatorial, 338, 353
combinatorial with boundary, 353
convex, 602
convexity at point, 602
developable, 648
doubly ruled, 192, 645
first fundamental form of, 590
folded, 604
genus of, 350, 356
geodesically complete, 633
noncompact, 354
noncylindrical, 645
nonorientable, 23, 24 351
offset, 643, 669
one-sided, 23, 352
orientable, 23, 24, 350, 351
oriented, 30
parallel, 643
quadratic, 190
quadric, 190
ruled, 645
second fundamental form of, 605
topological, 298
two-sided, 22
with boundary, 353
without boundary, 338

Surface of centers, 600
Surface of revolution, 23, 192

circle of latitude of, 24
geodesics of, 628
meridian of, 23
quadric, 192

Surgery
on manifolds, 497

Surjection, 819
Suspension

homology groups of, 456
of space, 303

Sweep surface, 638
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Sylvester, James Joseph (1819–1897)
Sylvester matrix, 690
Sylvester resultant, 691
Symbol for surface, 343, 346
Symmetric difference

of sets, 814
Symmetric function, 823
Symmetric group

of degree n, 821
Symmetric polynomial, 845

elementary, 845
Symmetric linear transformation, 40
Symmetry

plane of, 672
Symmetry equation, 658
Synthetic geometry, 102

T
Tangent bundle

of manifold, 519, 520
Tangent bundle map

induced by map, 524
Tangent line

geometric intepretation of, 703
to conic, 184
to curve, 703, 705
to graph, 219

Tangent plane
at point of manifold, 476
to graph, 219

Tangent space
at point of manifold, 476, 506, 507
at point of Rn, 268
caution for definition of, 476

Tangent surface
of curve, 583

Tangent vector
as contravariant tensor, 507
at point of curve, 475, 506
at point of manifold, 476, 506, 507
at point of Rn, 268
caution for definition of, 476
ith component of, 506, 508
notation for, 650

Tangential vector field, 484
Taxicab metric

on Rn, 283
Taylor, Brook (1685–1731)
Taylor polynomial, 230, 893
Taylor polynomial theorem, 230, 893

Taylor series, 894
complex, 903

T-closed set, 291
Tensor, 878

alternating, 881
contravariant, 507, 878
covariant, 507, 878
mixed, 878
of type (r,s), 878

Tensor algebra
of vector space, 878

Tensor product
of linear transformations, 879
of multilinear maps, 879
of vector space, 878
of vector spaces, 875
of vectors, 877

Tetrahedron, 322, 324
Theorema Egregrium, 619
Tietze, Heinrich (1880–1964), 399
Tietze Extension Lemma, 314
T-open set, 290
Topological invariant, 294, 358
Topological manifold, 297, 339, 340

boundary of, 297
importance of 2nd countability of, 298
interior of, 297

Topological property, 296
Topological space, 290
Topologically invariant function, 394
Topologist, 217, 296, 327
Topology

base for, 290
induced by metric, 290
on set, 289
what it is, 208, 290, 321, 326

Torsion
of space curve, 575
of regular space curve, 577

Torsion coefficient
of polyhedron, 375
of simplicial complex, 374

Torsion coefficients
of abelian group, 832

Torsion-free group, 831
Torsion subgroup, 831
Torus, 23, 24

geodesics of, 630
Torus knot

of type (p,q), 421, 708
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Total curvature
of plane curve, 571, 665

Total degree
of monomial, 843
of polynomial, 843

Total Gauss curvature, 659
Total order, 821

strict, 821
Total space

of bundle, 422
of vector bundle, 570

Trace
of linear transformation, 869
of matrix, 867

Traced out points
from function, 819

Transcendence basis, 857
Transcendence degree, 857
Transcendental element

over field, 856
over subring, 841

Transcendental extension field, 856
Transformation

barycentric coordinate preserving, 109
change of coordinates, 148, 151, 152, 

464
change of parameters, 464
defined by frame, 89, 111
quadratic, 759

Transformed curve, 761
Transformed frame, 110
Transformed parameterization, 464, 761
Translation, 67
Translation vector, 67
Transposition, 821
Transverse

planes, 21
Transverse intersection

of chains, 448
of homology classes, 448

Tranverse
to submanifold, 529

Trapezoidal rule, 908
Trefoil knot, 325
Triangle inequality, 4, 283, 864
Triangulation, 330

infinite, 331
minimal, 356
of Cr manifolds, 339, 340, 468
proper, 338, 339

Triangulation problem, 339
Triple point

of plane curve, 705
Triple product, 62
Trivial bundle, 423
Tube surface, 638
Tubular neighborhood, 527

closed, 527
Turning angle

of planar curve, 569
Turning point

of planar curve, 588
Twisted cubic, 670, 785
Twisted handle, 353
Tychonoff, Andrei Nikolaevich (1906–1993)
Tychonoff product theorem, 305

U
U(n), 14
UFD, 837
Umbilical point

of surface, 610
Unbounded set, 212
Underlying space, 37

of CW complex, 391
of parameterization, 460
of simplicial complex, 328

Uniformization, 751
Uniformization problem, 751
Uniformizing variable, 751
Uniformly continuous function, 216, 287
Uniformly convergent functions, 288
Unique factorization domain, 837
Unit

in ring, 835
Unit disk

closed, 814
open, 814

Unit sphere, 814
Unit tangent vectors

of curve, 475
Unit vector field

on manifold, 484
Unitary group, 14

special, 14
Unitary matrix, 14

special, 14
Universal coefficient theorem, 406
Universal cover, 430
Universal covering space, 430
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Universal factorization property
of exterior product, 884
of free abelian group, 834
of free group, 830
of free vector space, 855
of polynomial rings, 842
of tensor product, 875

u-parameter curve, 478
Upper bound

of set of real numbers, 889
Upper halfplane, 813
Upper hemisphere, 814
Upper sum, 257
Urysohn, Paul S. (1898–1924)
Urysohn Lemma, 313

V
Valuation ring, 763
Value

of polynomial, 763
of rational function, 769, 778

Vanishing line, 129
Vanishing point, 127, 129, 158
Variety, 468, 675, 676

affine, 468, 675
as closed set, 724
codimension of, 792
complex, 675
degree of, 800
dimension at point, 792
dimension of, 792
in Pn(k), 676
irreducible, 699
nonsingular, 798
nonsingular at point, 798
of a set of polynomials, 715
projective, 676, 807
quasiprojective, 724
rational affine, 771
real, 675
reducible, 699
singular at point, 798
smooth, 792
smooth point of, 791

Varieties
properly intersecting, 799

Vect (M), 521
Vect (M,h), 660
Vector, 851

contravariant, 878

covariant, 878
from p to q, 864
orthogonal to hyperplane, 18
orthogonal to plane, 19
parallel to hyperplane, 18
parallel to plane, 19
unit, 863

Vector addition, 824, 851
Vector bundle, 510

base space of, 510
cross-section, 510
fiber of, 510
induced, 515
induced by map, 515
local coordinate chart of, 510
local triviality of, 510
nonzero cross-section of, 510
orientable, 517
orientation of, 517
oriented, 517
product, 510
projection, 510
pullback, 515
restriction of, 510
total space of, 510
trivial, 512
zero cross-section of, 510

Vector bundle isomorphism, 512
inverse of, 512

Vector bundle map, 511
orientation-preserving, 517
orientation-reversing, 518

Vector bundles
classification of, 550, 551
isomorphic, 512
product of, 514
Whitney sum of, 516

Vector field
along curve, 634
covariant derivative of, 634
Cr, 484
defined over manifold, 484
defined over subset, 521
derivative of, 650
differentiable, 634
for Rn, 269
gradient, 522, 556
nonzero, 484
normal to manifold, 484
of manifold, 484, 521
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parallel, 662
parallel along curve, 634
tangential to manifold, 484
unit, 484

Vector space, 851
codimension of, 854
dimension of, 854
oriented, 25
quotient, 855

Velocity
of parametric curve, 475

Veronese imbedding, 779
Veronese variety, 779, 780
Vertex

of abstract simplicial complex, 334
of cone, 166
of conic section, 168
of plane curve, 570
of polygon, 332
of simplex, 31

View direction
for generalized frame, 197

View plane
for generalized frame, 197
origin of, 197

View plane coordinate system, 197
Volume

of Jordan-measurable set, 259
of manifold, 545, 596, 667
of parallelotope, 263
of parameterization, 594
of rectangle, 256

Volume element, 542, 547, 882
v-parameter curve, 478

W
Weak Morse inequalities, 495
Weak topology, 302

Wedge
of maps, 435
of spaces, 303

Wedge product, 266, 882
of differential k-form, 536
of exterior forms, 886

Weierstrass, Karl Theodor Wilhelm
(1815–1897), 748, 749

Weight function, 910
Weingarten, Julius (1836–1910)
Weingarten equations, 614, 643, 668
Weingarten map, 604
Well-ordering, 821
Whitehead, John Henry Constantine

(1904–1960), 391, 399
Whitney, Hassler (1907–1989), 504
Whitney imbedding theorem, 504, 804
Whitney sum

of vector bundles, 516
Winding number, 572
World coordinates, 88, 111
Wu-Ritt method

for implicitization, 744

Y
Yaw angle

of rotation, 114

Z
Zariski topology, 723, 724, 767, 770, 800,

808, 811
Zero

of polynomial, 844
Zero polynomial, 841
Zero power series, 841
Zeros

finding, 252
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